1
|
Kim JS, Chen Z, Garcia SAE, Buhlheller C, Richards SJ, Chen T, Wu J, Bruntz RC, Gilliam ME, Yamauchi M, Liang B, Guo H. Structural basis of collagen glucosyltransferase function and its serendipitous role in kojibiose synthesis. RESEARCH SQUARE 2025:rs.3.rs-5850681. [PMID: 39975904 PMCID: PMC11838735 DOI: 10.21203/rs.3.rs-5850681/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Collagen glucosyltransferases catalyze a unique type of collagen glucosylation that is critical for biological processes and disease mechanisms. However, the structural regulation of collagen glucosyltransferases remains poorly understood. Here, we report the crystal structures of a mimiviral collagen glucosyltransferase in its apo form and in complexes with uridine diphosphate (UDP) and the disaccharide product. Our findings reveal that the enzyme functions as a homodimer, stabilized by a loop from one subunit locking into a cleft on the opposite subunit. This dimerization enables UDP-glucose binding cooperativity and enzymatic activity, a property conserved in the human homolog. Further structural analyses suggest an induced fit model for UDP interaction, mediated by Lysine 222. The dimerization also forms an extended cleft flanked by two active sites, which likely facilitates collagen recognition. Unexpectedly, we discovered that the mimiviral collagen glucosyltransferase can also synthesize the prebiotic disaccharide kojibiose. An elongated pocket adjacent to the UDP-binding site allows the enzyme to use UDP-glucose as the sugar donor and glucose as the acceptor for kojibiose production. Enzymatic activity assays confirmed the enzyme's novel kojibiose synthesis activity in vitro and in vivo. These structural insights not only inform glucosyltransferase function but also open new avenues for biomedicine.
Collapse
Affiliation(s)
- Jeong Seon Kim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhenhang Chen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Stephen J. Richards
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tingfei Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jingjing Wu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ronald C. Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Marisa E. Gilliam
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Mitsuo Yamauchi
- Department of Biomedical Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Houfu Guo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Rutten L, Macías-Sánchez E, Sommerdijk N. On the role of the glycosylation of type I collagen in bone. J Struct Biol 2024; 216:108145. [PMID: 39447940 DOI: 10.1016/j.jsb.2024.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Glycan-protein interactions play a crucial role in biology, providing additional functions capable of inducing biochemical and cellular responses. In the extracellular matrix of bone, this type of interactions is ubiquitous. During the synthesis of the collagen molecule, glycans are post-translationally added to specific lysine residues through an enzymatically catalysed hydroxylation and subsequent glycosylation. During and after fibril assembly, proteoglycans are essential for maintaining tissue structure, porosity, and integrity. Glycosaminoglycans (GAGs), the carbohydrate chains attached to interstitial proteoglycans, are known to be involved in mineralization. They can attract and retain water, which is critical for the mechanical properties of bone. In addition, like other long-lived proteins, collagen is susceptible to glycation. Prolonged exposure of the amine group to glucose eventually leads to the formation of advanced glycation end-products (AGEs). Changes in the degree of glycosylation and glycation have been identified in bone pathologies such as osteogenesis imperfecta and diabetes and appear to be associated with a reduction in bone quality. However, how these changes affect mineralization is not well understood. Based on the literature review, we hypothesize that the covalently attached carbohydrates may have a water-attracting function similar to that of GAGs, but at different lengths and timescales in the bone formation process. Glycosylation potentially increases the hydration around the collagen triple helix, leading to increased mineralization (hypermineralization) after water has been replaced by mineral. Meanwhile, glycation leads to the formation of crosslinking AGEs, which are associated with a decrease in hydration levels, reducing the mechanical properties of bone.
Collapse
Affiliation(s)
- Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands
| | - Elena Macías-Sánchez
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands; Department of Stratigraphy and Palaeontolgy, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain.
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Geert Grooteplein Noord 29, 6525 EZ Nijmegen, Netherlands; Department of Medical BioSciences, Research Institute for Medical Innovations, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
3
|
Joshi A, Nigam A, Narayan Mudgal L, Mondal B, Basak T. ColPTMScape: An open access knowledge base for tissue-specific collagen PTM maps. Matrix Biol Plus 2024; 22:100144. [PMID: 38469247 PMCID: PMC10926295 DOI: 10.1016/j.mbplus.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Collagen is a key component of the extracellular matrix (ECM). In the remodeling of ECM, a remarkable variation in collagen post-translational modifications (PTMs) occurs. This makes collagen a potential target for understanding extracellular matrix remodeling during pathological conditions. Over the years, scientists have gathered a huge amount of data about collagen PTM during extracellular matrix remodeling. To make such information easily accessible in a consolidated space, we have developed ColPTMScape (https://colptmscape.iitmandi.ac.in/), a dedicated knowledge base for collagen PTMs. The identified site-specific PTMs, quantitated PTM sites, and PTM maps of collagen chains are deliverables to the scientific community, especially to matrix biologists. Through this knowledge base, users can easily gain information related to the difference in the collagen PTMs across different tissues in different organisms.
Collapse
Affiliation(s)
- Ashutosh Joshi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Ayush Nigam
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Lalit Narayan Mudgal
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
4
|
Tvaroška I. Glycosylation Modulates the Structure and Functions of Collagen: A Review. Molecules 2024; 29:1417. [PMID: 38611696 PMCID: PMC11012932 DOI: 10.3390/molecules29071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Collagens are fundamental constituents of the extracellular matrix and are the most abundant proteins in mammals. Collagens belong to the family of fibrous or fiber-forming proteins that self-assemble into fibrils that define their mechanical properties and biological functions. Up to now, 28 members of the collagen superfamily have been recognized. Collagen biosynthesis occurs in the endoplasmic reticulum, where specific post-translational modification-glycosylation-is also carried out. The glycosylation of collagens is very specific and adds β-d-galactopyranose and β-d-Glcp-(1→2)-d-Galp disaccharide through β-O-linkage to hydroxylysine. Several glycosyltransferases, namely COLGALT1, COLGALT2, LH3, and PGGHG glucosidase, were associated the with glycosylation of collagens, and recently, the crystal structure of LH3 has been solved. Although not fully understood, it is clear that the glycosylation of collagens influences collagen secretion and the alignment of collagen fibrils. A growing body of evidence also associates the glycosylation of collagen with its functions and various human diseases. Recent progress in understanding collagen glycosylation allows for the exploitation of its therapeutic potential and the discovery of new agents. This review will discuss the relevant contributions to understanding the glycosylation of collagens. Then, glycosyltransferases involved in collagen glycosylation, their structure, and catalytic mechanism will be surveyed. Furthermore, the involvement of glycosylation in collagen functions and collagen glycosylation-related diseases will be discussed.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, 845 38 Bratislava, Slovakia
| |
Collapse
|
5
|
Picker SM, Parker G, Gissen P. Features of Congenital Arthrogryposis Due to Abnormalities in Collagen Homeostasis, a Scoping Review. Int J Mol Sci 2023; 24:13545. [PMID: 37686358 PMCID: PMC10487887 DOI: 10.3390/ijms241713545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Congenital arthrogryposis (CA) refers to the presence of multiple contractures at birth. It is a feature of several inherited syndromes, notable amongst them are disorders of collagen formation. This review aims to characterize disorders that directly or indirectly impact collagen structure and function leading to CA in search for common phenotypic or pathophysiological features, possible genotype-phenotype correlation, and potential novel treatment approaches based on a better understanding of the underlying pathomechanism. Nine genes, corresponding to five clinical phenotypes, were identified after a literature search. The most notable trend was the extreme phenotype variability. Clinical features across all syndromes ranged from subtle with minimal congenital contractures, to severe with multiple congenital contractures and extra-articular features including skin, respiratory, or other manifestations. Five of the identified genes were involved in the function of the Lysyl Hydroxylase 2 or 3 enzymes, which enable the hydroxylation and/or glycosylation of lysyl residues to allow the formation of the collagen superstructure. Whilst current treatment approaches are post-natal surgical correction, there are also potential in-utero therapies being developed. Cyclosporin A showed promise in treating collagen VI disorders although there is an associated risk of immunosuppression. The treatments that could be in the clinical trials soon are the splice correction therapies in collagen VI-related disorders.
Collapse
Affiliation(s)
| | - George Parker
- Newcastle University Medical School, Newcastle NE2 4HH, UK;
| | - Paul Gissen
- National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
6
|
Mattoteia D, Chiapparino A, Fumagalli M, De Marco M, De Giorgi F, Negro L, Pinnola A, Faravelli S, Roscioli T, Scietti L, Forneris F. Identification of Regulatory Molecular "Hot Spots" for LH/PLOD Collagen Glycosyltransferase Activity. Int J Mol Sci 2023; 24:11213. [PMID: 37446392 DOI: 10.3390/ijms241311213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Hydroxylysine glycosylations are post-translational modifications (PTMs) essential for the maturation and homeostasis of fibrillar and non-fibrillar collagen molecules. The multifunctional collagen lysyl hydroxylase 3 (LH3/PLOD3) and the collagen galactosyltransferase GLT25D1 are the human enzymes that have been identified as being responsible for the glycosylation of collagen lysines, although a precise description of the contribution of each enzyme to these essential PTMs has not yet been provided in the literature. LH3/PLOD3 is thought to be capable of performing two chemically distinct collagen glycosyltransferase reactions using the same catalytic site: an inverting beta-1,O-galactosylation of hydroxylysines (Gal-T) and a retaining alpha-1,2-glucosylation of galactosyl hydroxylysines (Glc-T). In this work, we have combined indirect luminescence-based assays with direct mass spectrometry-based assays and molecular structure studies to demonstrate that LH3/PLOD3 only has Glc-T activity and that GLT25D1 only has Gal-T activity. Structure-guided mutagenesis confirmed that the Glc-T activity is defined by key residues in the first-shell environment of the glycosyltransferase catalytic site as well as by long-range contributions from residues within the same glycosyltransferase (GT) domain. By solving the molecular structures and characterizing the interactions and solving the molecular structures of human LH3/PLOD3 in complex with different UDP-sugar analogs, we show how these studies could provide insights for LH3/PLOD3 glycosyltransferase inhibitor development. Collectively, our data provide new tools for the direct investigation of collagen hydroxylysine PTMs and a comprehensive overview of the complex network of shapes, charges, and interactions that enable LH3/PLOD3 glycosyltransferase activities, expanding the molecular framework and facilitating an improved understanding and manipulation of glycosyltransferase functions in biomedical applications.
Collapse
Affiliation(s)
- Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Antonella Chiapparino
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Marco Fumagalli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Francesca De Giorgi
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Lisa Negro
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Neuroscience Research Australia (NeuRA), Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100 Pavia, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
7
|
Visser DR, Loo TS, Norris GE, Parry DAD. Potential implications of the glycosylation patterns in collagen α1(I) and α2(I) chains for fibril assembly and growth. J Struct Biol 2023; 215:107938. [PMID: 36641113 DOI: 10.1016/j.jsb.2023.107938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
O-Glycosylation of hydroxylysine (Hyl) in collagen occurs at an early stage of biosynthesis before the triple-helix has formed. This simple post-translational modification (PTM) of lysine by either a galactosyl or glucosylgalactosyl moiety is highly conserved in collagens and depends on the species, type of tissue and the collagen amino acid sequence. The structural/functional reason why only specific lysines are modified is poorly understood, and has led to increased efforts to map the sites of PTMs on collagen sequences from different species and to ascertain their potential role in vivo. To investigate this, we purified collagen type I (Col1) from the skins of four animals, then used mass spectrometry and proteomic techniques to identify lysines that were oxidised, galactosylated, glucosylgalactosylated, or glycated in its mature sequence. We found 18 out of the 38 lysines in collagen type Iα1, (Col1A1) and 7 of the 30 lysines in collagen type Iα2 (Col1A2) were glycosylated. Six of these modifications had not been reported before, and included a lysine involved in crosslinking collagen molecules. A Fourier transform analysis of the positions of the glycosylated hydroxylysines showed they display a regular axial distribution with the same d-period observed in collagen fibrils. The significance of this finding in terms of the assembly of collagen molecules into fibrils and of potential restrictions on the growth of the collagen fibrils is discussed.
Collapse
Affiliation(s)
- D R Visser
- School of Natural Sciences, Massey University, New Zealand
| | - T S Loo
- School of Natural Sciences, Massey University, New Zealand
| | - G E Norris
- School of Natural Sciences, Massey University, New Zealand.
| | | |
Collapse
|
8
|
Wang S, He L, Xiao F, Gao M, Wei H, Yang J, Shu Y, Zhang F, Ye X, Li P, Hao X, Zhou X, Wei H. Upregulation of GLT25D1 in Hepatic Stellate Cells Promotes Liver Fibrosis via the TGF-β1/SMAD3 Pathway In Vivo and In vitro. J Clin Transl Hepatol 2023; 11:1-14. [PMID: 36406310 PMCID: PMC9647113 DOI: 10.14218/jcth.2022.00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Collagen β(1-O) galactosyltransferase 25 domain 1 (GLT25D1) is associated with collagen production and glycosylation, and its knockout in mice results in embryonic death. However, its role in liver fibrosis remains elusive, particularly in hepatic stellate cells (HSCs), the primary collagen-producing cells associated with liver fibrogenesis. Herein, we aimed to elucidate the role of GLT25D1 in HSCs. METHODS Bile duct ligation (BDL)-induced mouse liver fibrosis models, primary mouse HSCs (mHSCs), and transforming growth factor beta 1 (TGF-β1)-stimulated LX-2 human hepatic stellate cells were used in in vivo and in vitro studies. Stable LX-2 cell lines with either GLT25D1 overexpression or knockdown were established using lentiviral transfection. RNA-seq was performed to investigate the genomic differences. HPLC-MS/MS were used to identify glycosylation sites. Scanning electronic microscopy (SEM) and second-harmonic generation/two-photon excited fluorescence (SHG/TPEF) were used to image collagen fibril morphology. RESULTS GLT25D1 expression was upregulated in nonparenchymal cells in human cirrhotic liver tissues. Meanwhile, its knockdown attenuated collagen deposition in BDL-induced mouse liver fibrosis and inhibited mHSC activation. GLT25D1 was overexpressed in activated versus quiescence LX-2 cells and regulated in vitro LX-2 cell activation, including proliferation, contraction, and migration. GLT25D1 also significantly increased liver fibrogenic gene and protein expression. GLT25D1 upregulation promoted HSC activation and enhanced collagen expression through the TGF-β1/SMAD signaling pathway. Mass spectrometry showed that GLT25D1 regulated the glycosylation of collagen in HSCs, affecting the diameter of collagen fibers. CONCLUSIONS Collectively, the upregulation of GLT25D1 in HSCs promoted the progression of liver fibrosis by affecting HSCs activation and collagen stability.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lingling He
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fan Xiao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Meixin Gao
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Herui Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Junru Yang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yang Shu
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fuyang Zhang
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ye
- Department of Gastroenterology, Beijing Huaxin Hospital, the First Affiliated Hospital of Tsinghua University, Beijing, China
| | - Ping Li
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Hao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongshan Wei
- Department of Gastroenterology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Gastroenterology, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
9
|
Wu W, Kim JS, Bailey AO, Russell WK, Richards SJ, Chen T, Chen T, Chen Z, Liang B, Yamauchi M, Guo H. Comparative genomic and biochemical analyses identify a collagen galactosylhydroxylysyl glucosyltransferase from Acanthamoeba polyphaga mimivirus. Sci Rep 2022; 12:16806. [PMID: 36207453 PMCID: PMC9546862 DOI: 10.1038/s41598-022-21197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Humans and Acanthamoeba polyphaga mimivirus share numerous homologous genes, including collagens and collagen-modifying enzymes. To explore this homology, we performed a genome-wide comparison between human and mimivirus using DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) and identified 52 new putative mimiviral proteins that are homologous with human proteins. To gain functional insights into mimiviral proteins, their human protein homologs were organized into Gene Ontology (GO) and REACTOME pathways to build a functional network. Collagen and collagen-modifying enzymes form the largest subnetwork with most nodes. Further analysis of this subnetwork identified a putative collagen glycosyltransferase R699. Protein expression test suggested that R699 is highly expressed in Escherichia coli, unlike the human collagen-modifying enzymes. Enzymatic activity assay and mass spectrometric analyses showed that R699 catalyzes the glucosylation of galactosylhydroxylysine to glucosylgalactosylhydroxylysine on collagen using uridine diphosphate glucose (UDP-glucose) but no other UDP-sugars as a sugar donor, suggesting R699 is a mimiviral collagen galactosylhydroxylysyl glucosyltransferase (GGT). To facilitate further analysis of human and mimiviral homologous proteins, we presented an interactive and searchable genome-wide comparison website for quickly browsing human and Acanthamoeba polyphaga mimivirus homologs, which is available at RRID Resource ID: SCR_022140 or https://guolab.shinyapps.io/app-mimivirus-publication/ .
Collapse
Affiliation(s)
- Wenhui Wu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Arvinas, LLC, 5 Science Park, New Haven, CT, USA
| | - Jeong Seon Kim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Richards
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tiantian Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tingfei Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhenhang Chen
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Houfu Guo
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes. Sci Rep 2022; 12:14256. [PMID: 35995931 PMCID: PMC9395344 DOI: 10.1038/s41598-022-18165-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Lysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2. Is LH2 involved in the helical Lys hydroxylation? 3. What are the functional consequences when LH2 is completely absent? To answer these questions, we generated LH2-null MC3T3 cells (LH2KO), and extensively characterized the type I collagen phenotypes in comparison with controls. Cross-link analysis demonstrated that the hydroxylysine-aldehyde (Hylald)-derived cross-links were completely absent from LH2KO collagen with concomitant increases in the Lysald-derived cross-links. Mass spectrometric analysis revealed that, in LH2KO type I collagen, telopeptidyl Lys hydroxylation was completely abolished at all sites while helical Lys hydroxylation was slightly diminished in a site-specific manner. Moreover, di-glycosylated Hyl was diminished at the expense of mono-glycosylated Hyl. LH2KO collagen was highly soluble and digestible, fibril diameters were diminished, and mineralization impaired when compared to controls. Together, these data underscore the critical role of LH2-catalyzed collagen modifications in collagen stability, organization and mineralization in MC3T3 cells.
Collapse
|
11
|
Kirchner M, Deng H, Xu Y. Heterogeneity in proline hydroxylation of fibrillar collagens observed by mass spectrometry. PLoS One 2021; 16:e0250544. [PMID: 34464391 PMCID: PMC8407550 DOI: 10.1371/journal.pone.0250544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/28/2021] [Indexed: 01/22/2023] Open
Abstract
Collagen is the major protein in the extracellular matrix and plays vital roles in tissue development and function. Collagen is also one of the most processed proteins in its biosynthesis. The most prominent post-translational modification (PTM) of collagen is the hydroxylation of Pro residues in the Y-position of the characteristic (Gly-Xaa-Yaa) repeating amino acid sequence of a collagen triple helix. Recent studies using mass spectrometry (MS) and tandem MS sequencing (MS/MS) have revealed unexpected hydroxylation of Pro residues in the X-positions (X-Hyp). The newly identified X-Hyp residues appear to be highly heterogeneous in location and percent occupancy. In order to understand the dynamic nature of the new X-Hyps and their potential impact on applications of MS and MS/MS for collagen research, we sampled four different collagen samples using standard MS and MS/MS techniques. We found considerable variations in the degree of PTMs of the same collagen from different organisms and/or tissues. The rat tail tendon type I collagen is particularly variable in terms of both over-hydroxylation of Pro in the X-position and under-hydroxylation of Pro in the Y-position. In contrast, only a few unexpected PTMs in collagens type I and type III from human placenta were observed. Some observations are not reproducible between different sequencing efforts of the same sample, presumably due to a low population and/or the unpredictable nature of the ionization process. Additionally, despite the heterogeneous preparation and sourcing, collagen samples from commercial sources do not show elevated variations in PTMs compared to samples prepared from a single tissue and/or organism. These findings will contribute to the growing body of information regarding the PTMs of collagen by MS technology, and culminate to a more comprehensive understanding of the extent and the functional roles of the PTMs of collagen.
Collapse
Affiliation(s)
- Michele Kirchner
- Department of Chemistry, Hunter College of CUNY, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
| | - Haiteng Deng
- Proteomics Resource Center, The Rockefeller University, New York, NY, United States of America
| | - Yujia Xu
- Department of Chemistry, Hunter College of CUNY, New York, NY, United States of America
- The Graduate Center, The City University of New York, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yamada S, Yamamoto K, Nakazono A, Matsuura T, Yoshimura A. Functional roles of fish collagen peptides on bone regeneration. Dent Mater J 2021; 40:1295-1302. [PMID: 34334505 DOI: 10.4012/dmj.2020-446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fish collagen peptides (FCP) derived from the skin, bones and scales are commercially used as a functional food or dietary supplement for hypertension and diabetes. However, there is limited evidence on the effects of FCP on the osteoblast function in contrast to evidence of the effects on wound healing, diabetes and bone regeneration, which have been obtained from animal studies. In this narrative review, we expound on the availability of FCP by basic research using osteoblasts. Low-concentration FCP upregulates the expression of osteoblast proliferation, differentiation and collagen modifying enzyme-related genes. Furthermore, it could accelerate matrix mineralization. FCP may have potential utility as a biomaterial to improve collagen quality and promote mineralization through the mitogen-activated protein kinase and Smad cascades. However, there are few clinical studies on bone regeneration in human subjects. It is desirable to be applied clinically through clinical study as soon as possible, based on the results from basic research.
Collapse
Affiliation(s)
- Shizuka Yamada
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kohei Yamamoto
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Ayako Nakazono
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takashi Matsuura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| | - Atsutoshi Yoshimura
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
13
|
Guo T, Gu C, Li B, Xu C. PLODs are overexpressed in ovarian cancer and are associated with gap junctions via connexin 43. J Transl Med 2021; 101:564-569. [PMID: 33483598 DOI: 10.1038/s41374-021-00533-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) play important roles in cancer progression, but their role in ovarian cancer remains elusive. In silico analysis of expression of PLODs in ovarian cancer was performed with reproduction of The Cancer Genome Atlas dataset. PLOD-enriched pathways and related gene(s) were validated by immunohistochemistry (IHC) in 80 ovarian cancer tissue blocks and in vivo xenograft murine models. PLODs (PLOD-1, -2, and -3) were overexpressed in ovarian cancer tissue. Overexpression of individual PLODs showed mutual exclusivity. Each of the three PLODs was differentially expressed between normal and cancer tissue of the ovary. PLOD1 was not prognostic, whereas lower PLOD2 and higher PLOD3 expression were associated with worsened prognosis, respectively. Cases with PLOD overexpression showed enrichment in gap junctions. GJA1 (connexin 43) was significantly overexpressed in cases with PLOD overexpression. IHC in tissue showed the strongest positive correlation between PLOD3 and connexin 43 expression, followed by PLOD2. As per Harmonizome, we selected SKOV3 and CAOV3 cell lines based on constitutive high PLOD1 and PLOD2/PLOD3 expression, respectively for in vitro and in vivo modeling. Only knockdown of PLOD3 was significantly associated with decreased GJA1 expression level in both cell lines. IHC in murine xenograft tumors also showed significantly lower connexin 43 in PLOD3-KD SKOV3 tumors. We conclude that PLODs are generally overexpressed in ovarian cancer and each PLOD may be functionally non-redundant. Association between PLOD3 and gap junctions warrants further investigation.
Collapse
Affiliation(s)
- Ting Guo
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, PR China
| | - Chao Gu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, PR China
| | - Bin Li
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, PR China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan University, 419 Fangxie Rd, Shanghai, 200011, PR China.
| |
Collapse
|
14
|
Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues. Sci Rep 2021; 11:8659. [PMID: 33883562 PMCID: PMC8060395 DOI: 10.1038/s41598-021-87380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023] Open
Abstract
In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.
Collapse
|
15
|
Guo HF, Bota-Rabassedas N, Terajima M, Leticia Rodriguez B, Gibbons DL, Chen Y, Banerjee P, Tsai CL, Tan X, Liu X, Yu J, Tokmina-Roszyk M, Stawikowska R, Fields GB, Miller MD, Wang X, Lee J, Dalby KN, Creighton CJ, Phillips GN, Tainer JA, Yamauchi M, Kurie JM. A collagen glucosyltransferase drives lung adenocarcinoma progression in mice. Commun Biol 2021; 4:482. [PMID: 33875777 PMCID: PMC8055892 DOI: 10.1038/s42003-021-01982-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are a major source of enzymes that modify collagen to create a stiff, fibrotic tumor stroma. High collagen lysyl hydroxylase 2 (LH2) expression promotes metastasis and is correlated with shorter survival in lung adenocarcinoma (LUAD) and other tumor types. LH2 hydroxylates lysine (Lys) residues on fibrillar collagen's amino- and carboxy-terminal telopeptides to create stable collagen cross-links. Here, we show that electrostatic interactions between the LH domain active site and collagen determine the unique telopeptidyl lysyl hydroxylase (tLH) activity of LH2. However, CRISPR/Cas-9-mediated inactivation of tLH activity does not fully recapitulate the inhibitory effect of LH2 knock out on LUAD growth and metastasis in mice, suggesting that LH2 drives LUAD progression, in part, through a tLH-independent mechanism. Protein homology modeling and biochemical studies identify an LH2 isoform (LH2b) that has previously undetected collagen galactosylhydroxylysyl glucosyltransferase (GGT) activity determined by a loop that enhances UDP-glucose-binding in the GLT active site and is encoded by alternatively spliced exon 13 A. CRISPR/Cas-9-mediated deletion of exon 13 A sharply reduces the growth and metastasis of LH2b-expressing LUADs in mice. These findings identify a previously unrecognized collagen GGT activity that drives LUAD progression.
Collapse
Affiliation(s)
- Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyam Banerjee
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi-Lin Tsai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michal Tokmina-Roszyk
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Roma Stawikowska
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Gregg B Fields
- Institute for Human Health & Disease Intervention (I-HEALTH) and Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | | | - Xiaoyan Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juhoon Lee
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kevin N Dalby
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
16
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
17
|
Use of osteoblast-derived matrix to assess the influence of collagen modifications on cancer cells. Matrix Biol Plus 2021; 8:100047. [PMID: 33543040 PMCID: PMC7852199 DOI: 10.1016/j.mbplus.2020.100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/19/2023] Open
Abstract
Collagenous stromal accumulations predict a worse clinical outcome in a variety of malignancies. Better tools are needed to elucidate the way in which collagen influences cancer cells. Here, we report a method to generate collagenous matrices that are deficient in key post-translational modifications and evaluate cancer cell behaviors on those matrices. We utilized genetic and biochemical approaches to inhibit lysine hydroxylation and glucosylation on collagen produced by MC-3T3-E1 murine osteoblasts (MC cells). Seeded onto MC cell-derived matrix surface, multicellular aggregates containing lung adenocarcinoma cells alone or in combination with cancer-associated fibroblasts dissociated with temporal and spatial patterns that were influenced by collagen modifications. These findings demonstrate the feasibility of generating defined collagen matrices that are suitable for cell culture studies. Feasibility of culturing multicellular aggregates on matrices with defined collagen modifications. Collagen modifications influence cancer cell behavior. This methodology is a useful tool for cancer researchers.
Collapse
Key Words
- Co-culture models
- Collagen
- Collagen cross-links
- DHLNL, Dehydro-dihydroxylysinonorleucine/its ketoamine
- ER, Endoplasmic Reticulum
- G, Galactosyl group
- GG, Glucosylgalactosyl group
- HLCCs, Hydroxylysine aldehyde-derived collagen cross-links
- HLNL, Dehydro-hydroxylysinonorleucine/its ketoamine
- Hyl, Hydroxylysine
- Hylald, Aldehide Hydroxylysine
- Hyp, Hydroxyproline
- LCC, Lysine aldehyde–derived cross-links
- LH, Lysyl hydroxylases
- LOX, Lysyl oxidases
- Lung cancer
- Lys, Lysine
- Lysald, Aldehide Lysine
- Lysyl hydroxylases
- Metastasis
- PGGHG, Glucosylgalactosylhydroxylysine glucosidase
- PTMs, Post-translational modifications
- Pro, Proline
- hLys, Helical domain Lysine
- tLys, Telopeptidyl Lysine
Collapse
|
18
|
Tang M, Wang X, Gandhi NS, Foley BL, Burrage K, Woods RJ, Gu Y. Effect of hydroxylysine-O-glycosylation on the structure of type I collagen molecule: A computational study. Glycobiology 2020; 30:830-843. [PMID: 32188979 PMCID: PMC7526737 DOI: 10.1093/glycob/cwaa026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis. However, the underlying atomic-level mechanisms of these phenomena remain unclear. In this study, we first adapted the force field parameters for O-linkages between Hyl and carbohydrates and then investigated the influence of Hyl-O-glycosylation on the structure of type I collagen molecule, by performing comprehensive molecular dynamic simulations in explicit solvent of collagen molecule segment with and without the glycosylation of Hyl. Data analysis demonstrated that (i) collagen triple helices remain in a triple-helical structure upon glycosylation of Hyl; (ii) glycosylation of Hyl modulates the peptide backbone conformation and their solvation environment in the vicinity and (iii) the attached sugars are arranged such that their hydrophilic faces are well exposed to the solvent, while their hydrophobic faces point towards the hydrophobic portions of collagen. The adapted force field parameters for O-linkages between Hyl and carbohydrates will aid future computational studies on proteins with Hyl-O-glycosylation. In addition, this work, for the first time, presents the detailed effect of Hyl-O-glycosylation on the structure of human type I collagen at the atomic level, which may provide insights into the design and manufacture of collagenous biomaterials and the development of biomedical therapies for collagen-related diseases.
Collapse
Affiliation(s)
- Ming Tang
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| | - Xiaocong Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Neha S Gandhi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
| | | | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane 4001, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - YuanTong Gu
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| |
Collapse
|
19
|
Yamauchi M, Gibbons DL, Zong C, Fradette JJ, Bota-Rabassedas N, Kurie JM. Fibroblast heterogeneity and its impact on extracellular matrix and immune landscape remodeling in cancer. Matrix Biol 2020; 91-92:8-18. [PMID: 32442601 DOI: 10.1016/j.matbio.2020.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is marked by dense collagenous matrix accumulations that dynamically reorganize to accommodate a growing and invasive tumor mass. Cancer-associated fibroblasts (CAFs) play an essential role in matrix remodeling and influence other processes in the tumor microenvironment, including angiogenesis, immunosuppression, and invasion. These findings have spawned efforts to elucidate CAF functionality at the single-cell level. Here, we will discuss how those efforts have impacted our understanding of the ways in which CAFs govern matrix remodeling and the influence of matrix remodeling on the development of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NS, United States
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
20
|
Terajima M, Taga Y, Sricholpech M, Kayashima Y, Sumida N, Maeda N, Hattori S, Yamauchi M. Role of Glycosyltransferase 25 Domain 1 in Type I Collagen Glycosylation and Molecular Phenotypes. Biochemistry 2019; 58:5040-5051. [PMID: 31726007 DOI: 10.1021/acs.biochem.8b00984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycosylation in type I collagen occurs as O-linked galactosyl- (G-) lesser and glucosylgalactosyl-hydroxylysine (GG-Hyl); however, its biological significance is still not well understood. To investigate the function of this modification in bone, we have generated preosteoblast MC3T3-E1 (MC)-derived clones, short hairpin (Sh) clones, in which Glt25d1 gene expression was stably suppressed. In Sh clones, the GLT25D1 protein levels were markedly diminished in comparison to controls (MC and those transfected with the empty vector). In Sh collagen, levels of both G- and GG-Hyl were significantly diminished with a concomitant increase in the level of free-Hyl. In addition, the level of immature divalent cross-links significantly diminished while the level of the mature trivalent cross-link increased. As determined by mass spectrometric analysis, seven glycosylation sites were identified in type I collagen and the most predominant site was at the helical cross-linking site, α1-87. At all of the glycosylation sites, the relative levels of G- and GG-Hyl were markedly diminished, i.e., by ∼50-75%, in Sh collagen, and at five of these sites, the level of Lys hydroxylation was significantly increased. The collagen fibrils in Sh clones were larger, and mineralization was impaired. These results indicate that GLT25D1 catalyzes galactosylation of Hyl throughout the type I collagen molecule and that this modification may regulate maturation of collagen cross-linking, fibrillogenesis, and mineralization.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017 , Japan
| | - Marnisa Sricholpech
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry , Srinakharinwirot University , Bangkok 10110 , Thailand
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017 , Japan
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
21
|
Sinpreechanon P, Boonzong U, Sricholpech M. Comparative evaluation of periodontal ligament fibroblasts stored in different types of milk: effects on viability and biosynthesis of collagen. Eur J Oral Sci 2019; 127:323-332. [PMID: 31185144 DOI: 10.1111/eos.12621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 01/18/2023]
Abstract
Milk remains one of the most frequently recommended solutions for storage of avulsed teeth because it can maintain cell viability and is easily accessible. However, some negative effects of milk on avulsed teeth have been reported, just as the effects of milk on the long-term functions of cells are not clear. This study aimed to evaluate the effects of different types of milk on the viability, proliferation, and functions of periodontal ligament fibroblasts (PDLF)s in vitro. Human PDLFs were culture-medium depleted for 5 min and stored in Hanks' balanced salt solution (HBSS), whole cow's milk, low-fat cow's milk, or almond milk for 1 h at 25°C. Cell viability and proliferation were assessed using MTT assays. Expression of the genes encoding type I collagen and its modifying enzymes were analyzed using real-time PCR. Collagen matrix production was evaluated using Picrosirius red polarization. Our results showed the overall efficiency of low-fat cow's milk in maintaining the viability and proliferation of PDLFs, and in enhancing the process of collagen production. Almond milk storage resulted in the highest rate of PDLF proliferation, and comparable collagen biosynthesis ability to the control. Therefore, besides low-fat cow's milk, almond milk may potentially be an alternative tooth-storage medium for PDLF preservation and PDL tissue regeneration.
Collapse
Affiliation(s)
- Phuttikarn Sinpreechanon
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Utamaphorn Boonzong
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - Marnisa Sricholpech
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
22
|
Terajima M, Taga Y, Cabral WA, Liu Y, Nagasawa M, Sumida N, Kayashima Y, Chandrasekaran P, Han L, Maeda N, Perdivara I, Hattori S, Marini JC, Yamauchi M. Cyclophilin B control of lysine post-translational modifications of skin type I collagen. PLoS Genet 2019; 15:e1008196. [PMID: 31173582 PMCID: PMC6602281 DOI: 10.1371/journal.pgen.1008196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/01/2019] [Accepted: 05/14/2019] [Indexed: 01/06/2023] Open
Abstract
Covalent intermolecular cross-linking of collagen is essential for tissue stability. Recent studies have demonstrated that cyclophilin B (CypB), an endoplasmic reticulum (ER)-resident peptidyl-prolyl cis-trans isomerase, modulates lysine (Lys) hydroxylation of type I collagen impacting cross-linking chemistry. However, the extent of modulation, the molecular mechanism and the functional outcome in tissues are not well understood. Here, we report that, in CypB null (KO) mouse skin, two unusual collagen cross-links lacking Lys hydroxylation are formed while neither was detected in wild type (WT) or heterozygous (Het) mice. Mass spectrometric analysis of type I collagen showed that none of the telopeptidyl Lys was hydroxylated in KO or WT/Het mice. Hydroxylation of the helical cross-linking Lys residues was almost complete in WT/Het but was markedly diminished in KO. Lys hydroxylation at other sites was also lower in KO but to a lesser extent. A key glycosylation site, α1(I) Lys-87, was underglycosylated while other sites were mostly overglycosylated in KO. Despite these findings, lysyl hydroxylases and glycosyltransferase 25 domain 1 levels were significantly higher in KO than WT/Het. However, the components of ER chaperone complex that positively or negatively regulates lysyl hydroxylase activities were severely reduced or slightly increased, respectively, in KO. The atomic force microscopy-based nanoindentation modulus were significantly lower in KO skin than WT. These data demonstrate that CypB deficiency profoundly affects Lys post-translational modifications of collagen likely by modulating LH chaperone complexes. Together, our study underscores the critical role of CypB in Lys modifications of collagen, cross-linking and mechanical properties of skin. Deficiency of cyclophilin B (CypB), an endoplasmic reticulum-resident peptidyl-prolyl cis-trans isomerase, causes recessive osteogenesis imperfecta type IX, resulting in defective connective tissues. Recent studies using CypB null mice revealed that CypB modulates lysine hydroxylation of type I collagen impacting collagen cross-linking. However, the extent of modulation, the molecular mechanism and the effect on tissue properties are not well understood. In the present study, we show that CypB deficiency in mouse skin results in the formation of unusual collagen cross-links, aberrant tissue formation, altered levels of lysine modifying enzymes and their chaperones, and impaired mechanical property. These findings highlight an essential role of CypB in collagen post-translational modifications which are critical in maintaining the structure and function of connective tissues.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Wayne A. Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
- Molecular Genetics Section, Medical Genomics and Metabolic Genetics Branch, NHGRI, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Liu
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Irina Perdivara
- Fujifilm Diosynth Biotechnologies, Morrisville, North Carolina, United States of America
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Joan C. Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Fibrillar type I collagen is the most abundant structural protein in most tissues and organs. One of the unique and functionally important characteristics of collagen is sequential posttranslational modifications of lysine (Lys) residues. In the endoplasmic reticulum, hydroxylation of specific Lys occurs producing 5-hydroxylysine (Hyl). Then, to the 5-hydroxyl group of Hyl, a single galactose unit can be attached to form galactosyl-Hyl (Gal-Hyl) and further glucose can be added to Gal-Hyl to form glucosylgalactosyl-Hyl (GlcGal-Hyl). These are the only two O-linked glycosides found in mature type I collagen. It has been shown that this modification is critically involved in a number of biological and pathological processes likely through its regulatory roles in collagen fibrillogenesis, intermolecular cross-linking, and collagen-cell interaction. Recently, with the advances in molecular/cell biology and analytical chemistry, the molecular mechanisms of collagen glycosylation have been gradually deciphered, and the type and extent of glycosylation at the specific molecular loci can now be quantitatively analyzed. In this chapter, we describe quantitative analysis of collagen glycosylation by high-performance liquid chromatography (HPLC) and semiquantitative, site-specific analysis by HPLC-tandem mass spectrometry.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Marnisa Sricholpech
- Faculty of Dentistry, Department of Oral Surgery and Oral Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Masahiko Terajima
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
24
|
Abstract
Collagens represent a large family of structurally related proteins containing a unique triple-helical structure. Among them, the fibril-forming collagens are the most abundant in vertebrates providing tissues with form and stability. One of the characteristics of the fibrillar collagens is its sequential posttranslational modifications of specific lysine residues that have major effects on molecular assembly and stability of the fibrils in the extracellular space. Hydroxylation of lysine residues is the first modification catalyzed by lysyl hydroxylases, and is critical for the following glycosylation and in determining the fate of covalent cross-linking. This chapter presents an overview of lysine hydroxylation and cross-linking of collagen, and the analytical methods we have developed.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Masahiko Terajima
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| | - Masashi Shiiba
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
25
|
Qi Y, Xu R. Roles of PLODs in Collagen Synthesis and Cancer Progression. Front Cell Dev Biol 2018; 6:66. [PMID: 30003082 PMCID: PMC6031748 DOI: 10.3389/fcell.2018.00066] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Collagen is the major component of extracellular matrix. Collagen cross-link and deposition depend on lysyl hydroxylation, which is catalyzed by procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD). Aberrant lysyl hydroxylation and collagen cross-link contributes to the progression of many collagen-related diseases, such as fibrosis and cancer. Three lysyl hydroxylases (LH1, LH2, and LH3) are identified, encoded by PLOD1, PLOD2, and PLOD3 genes. Expression of PLODs is regulated by multiple cytokines, transcription factors and microRNAs. Dysregulation of PLODs promotes cancer progression and metastasis, suggesting that targeting PLODs is potential strategy for cancer treatment. Here, we summarize the recent progress in the investigation of function and regulation of PLODs in normal tissue development and disease progression, especially in cancer.
Collapse
Affiliation(s)
- Yifei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Ren Xu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States.,Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
26
|
Abstract
Intratumoral fibrosis results from the deposition of a cross-linked collagen matrix by cancer-associated fibroblasts (CAFs). This type of fibrosis has been shown to exert mechanical forces and create a biochemical milieu that, together, shape intratumoral immunity and influence tumor cell metastatic behavior. In this Review, we present recent evidence that CAFs and tumor cells are regulated by provisional matrix molecules, that metastasis results from a change in the type of stromal collagen cross-link, and that fibrosis and inflammation perpetuate each other through proteolytic and chemotactic mediators released into the tumor stroma. We also discuss aspects of the emerging biology that have potential therapeutic value.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Sciences and School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
27
|
Abstract
Fibrillar collagens represent the most abundant extracellular matrix proteins in vertebrates providing tissues and organs with form, stability, and connectivity. For such mechanical functions, the formation of covalent intermolecular cross-linking between molecules is essential. This process, the final posttranslational modification during collagen biosynthesis, is initiated by conversion of specific lysine and hydroxylysine residues to the respective aldehydes by the action of lysyl oxidases. This conversion triggers a series of condensation reactions with the juxtaposed lysine-aldehyde, lysine, hydroxylysine, and histidine residues within the same and neighboring molecules resulting in di-, tri-, and tetravalent cross-links. Elastin, another class of extracellular matrix protein, is also stabilized by the lysyl oxidase-mediated mechanism but involving only lysine residues leading to the formation of unique tetravalent cross-links. This chapter presents an overview of fibrillar collagen cross-linking, and the analytical methods for collagen and elastin cross-links we have developed.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, United States.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | | | - Masashi Shiiba
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
28
|
Terajima M, Taga Y, Cabral WA, Nagasawa M, Sumida N, Hattori S, Marini JC, Yamauchi M. Cyclophilin B Deficiency Causes Abnormal Dentin Collagen Matrix. J Proteome Res 2017; 16:2914-2923. [PMID: 28696707 DOI: 10.1021/acs.jproteome.7b00190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclophilin B (CypB) is an endoplasmic reticulum-resident protein that regulates collagen folding, and also contributes to prolyl 3-hydroxylation (P3H) and lysine (Lys) hydroxylation of collagen. In this study, we characterized dentin type I collagen in CypB null (KO) mice, a model of recessive osteogenesis imperfecta type IX, and compared to those of wild-type (WT) and heterozygous (Het) mice. Mass spectrometric analysis demonstrated that the extent of P3H in KO collagen was significantly diminished compared to WT/Het. Lys hydroxylation in KO was significantly diminished at the helical cross-linking sites, α1/α2(I) Lys-87 and α1(I) Lys-930, leading to a significant increase in the under-hydroxylated cross-links and a decrease in fully hydroxylated cross-links. The extent of glycosylation of hydroxylysine residues was, except α1(I) Lys-87, generally higher in KO than WT/Het. Some of these molecular phenotypes were distinct from other KO tissues reported previously, indicating the dentin-specific control mechanism through CypB. Histological analysis revealed that the width of predentin was greater and irregular, and collagen fibrils were sparse and significantly smaller in KO than WT/Het. These results indicate a critical role of CypB in dentin matrix formation, suggesting a possible association between recessive osteogenesis imperfecta and dentin defects that have not been clinically detected.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017, Japan
| | - Wayne A Cabral
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Masako Nagasawa
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences , Niigata 951-8514, Japan
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017, Japan
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, NICHD, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Gjaltema RAF, Bank RA. Molecular insights into prolyl and lysyl hydroxylation of fibrillar collagens in health and disease. Crit Rev Biochem Mol Biol 2016; 52:74-95. [PMID: 28006962 DOI: 10.1080/10409238.2016.1269716] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Ruud A Bank
- a MATRIX Research Group, Department of Pathology and Medical Biology , University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
30
|
Chen Y, Guo H, Terajima M, Banerjee P, Liu X, Yu J, Momin AA, Katayama H, Hanash SM, Burns AR, Fields GB, Yamauchi M, Kurie JM. Lysyl Hydroxylase 2 Is Secreted by Tumor Cells and Can Modify Collagen in the Extracellular Space. J Biol Chem 2016; 291:25799-25808. [PMID: 27803159 DOI: 10.1074/jbc.m116.759803] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/28/2016] [Indexed: 12/19/2022] Open
Abstract
Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147-1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology.
Collapse
Affiliation(s)
- Yulong Chen
- From the Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Houfu Guo
- From the Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Priyam Banerjee
- From the Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Xin Liu
- From the Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jiang Yu
- From the Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Amin A Momin
- the Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hiroyuki Katayama
- the Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Samir M Hanash
- the Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Alan R Burns
- the College of Optometry, University of Houston, Houston, Texas 77004, and
| | - Gregg B Fields
- the Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599,
| | - Jonathan M Kurie
- From the Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030,
| |
Collapse
|
31
|
Baumann S, Hennet T. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase. J Biol Chem 2016; 291:18514-24. [PMID: 27402836 DOI: 10.1074/jbc.m116.723379] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Indexed: 01/22/2023] Open
Abstract
Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability.
Collapse
Affiliation(s)
- Stephan Baumann
- From the Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| | - Thierry Hennet
- From the Institute of Physiology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Terajima M, Taga Y, Chen Y, Cabral WA, Hou-Fu G, Srisawasdi S, Nagasawa M, Sumida N, Hattori S, Kurie JM, Marini JC, Yamauchi M. Cyclophilin-B Modulates Collagen Cross-linking by Differentially Affecting Lysine Hydroxylation in the Helical and Telopeptidyl Domains of Tendon Type I Collagen. J Biol Chem 2016; 291:9501-12. [PMID: 26934917 DOI: 10.1074/jbc.m115.699470] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/07/2023] Open
Abstract
Covalent intermolecular cross-linking provides collagen fibrils with stability. The cross-linking chemistry is tissue-specific and determined primarily by the state of lysine hydroxylation at specific sites. A recent study on cyclophilin B (CypB) null mice, a model of recessive osteogenesis imperfecta, demonstrated that lysine hydroxylation at the helical cross-linking site of bone type I collagen was diminished in these animals (Cabral, W. A., Perdivara, I., Weis, M., Terajima, M., Blissett, A. R., Chang, W., Perosky, J. E., Makareeva, E. N., Mertz, E. L., Leikin, S., Tomer, K. B., Kozloff, K. M., Eyre, D. R., Yamauchi, M., and Marini, J. C. (2014) PLoS Genet 10, e1004465). However, the extent of decrease appears to be tissue- and molecular site-specific, the mechanism of which is unknown. Here we report that although CypB deficiency resulted in lower lysine hydroxylation in the helical cross-linking sites, it was increased in the telopeptide cross-linking sites in tendon type I collagen. This resulted in a decrease in the lysine aldehyde-derived cross-links but generation of hydroxylysine aldehyde-derived cross-links. The latter were absent from the wild type and heterozygous mice. Glycosylation of hydroxylysine residues was moderately increased in the CypB null tendon. We found that CypB interacted with all lysyl hydroxylase isoforms (isoforms 1-3) and a putative lysyl hydroxylase-2 chaperone, 65-kDa FK506-binding protein. Tendon collagen in CypB null mice showed severe size and organizational abnormalities. The data indicate that CypB modulates collagen cross-linking by differentially affecting lysine hydroxylation in a site-specific manner, possibly via its interaction with lysyl hydroxylases and associated molecules. This study underscores the critical importance of collagen post-translational modifications in connective tissue formation.
Collapse
Affiliation(s)
- Masahiko Terajima
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Yuki Taga
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Yulong Chen
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Wayne A Cabral
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Guo Hou-Fu
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sirivimol Srisawasdi
- the Departments of Operative Dentistry, Chulalongkorn University, Bangkok 10330, Thailand, and
| | - Masako Nagasawa
- the Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noriko Sumida
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Shunji Hattori
- the Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Jonathan M Kurie
- the Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Joan C Marini
- the Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Mitsuo Yamauchi
- From the North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
33
|
Trackman PC. Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol 2016; 52-54:7-18. [PMID: 26772152 DOI: 10.1016/j.matbio.2016.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
Advances in the understanding of the biological roles of the lysyl oxidase family of enzyme proteins in bone structure and function are reviewed. This family of proteins is well-known as catalyzing the final reaction required for cross-linking of collagens and elastin. Novel emerging roles for these proteins in the phenotypic development of progenitor cells and in angiogenesis are highlighted and which point to enzymatic and non-enzymatic roles for this family in bone development and homeostasis and in disease. The explosion of interest in the lysyl oxidase family in the cancer field highlights the need to have a better understanding of the functions of this protein family in normal and abnormal connective tissue homeostasis at fundamental molecular and cellular levels including in mineralized tissues.
Collapse
Affiliation(s)
- Philip C Trackman
- Boston University, Henry M. Goldman School of Dental Medicine, 700 Albany Street, W-201, Boston, MA 02118, United States.
| |
Collapse
|
34
|
McNerny EMB, Gardinier JD, Kohn DH. Exercise increases pyridinoline cross-linking and counters the mechanical effects of concurrent lathyrogenic treatment. Bone 2015; 81:327-337. [PMID: 26211995 PMCID: PMC4640975 DOI: 10.1016/j.bone.2015.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 01/22/2023]
Abstract
The collagen cross-link profile of bone, associated with bone strength and fracture toughness, is tightly regulated (affecting cross-link quantity, type, lysine hydroxylation and maturity) and may contribute to the improvements in bone quality during exercise. We hypothesized that 1) exercise promotes mature cross-link formation, 2) increased mature cross-linking is accompanied by shifts in lysine hydroxylation, and 3) these changes in collagen cross-link profile have positive effects on mechanical properties. Growing male C57Bl6 mice were treated with 30 min/day of running exercise, 350 mg/kg/day β-aminopropionitrile (BAPN) injected subcutaneously to inhibit enzymatic collagen cross-linking, or both exercise and BAPN, from 5 to 8 weeks of age. Bone collagen cross-linking profile, mechanical properties, morphology, and mineralization were measured from the tibiae. Cross-link measures, including immature, pyridinoline, pyrrole and pentosidine cross-links, ratios reflecting cross-link maturity and hydroxylation, and mineralization were tested for their importance to mechanical properties across 8 week groups through correlation analyses and step-wise linear regressions. BAPN treatment significantly reduced lysylpyridinoline, pyrrole, hydroxylysinorleucine, and total mature collagen cross-linking, resulting in decreased bone elastic modulus and increased yield strain despite a marginal increase in TMD. Exercise caused a shift toward pyridinoline cross-linking, with increased hydroxylysylpyridinoline and decreased pyrrole cross-linking resulting in total mature cross-linking and estimated tissue level mechanical properties matching sedentary control levels. Exercise superimposed on BAPN treatment increased total mature cross-linking from BAPN to control levels, but did so by increasing pyridinoline, not pyrrole, cross-links. Exercise also counteracted the BAPN effects on modulus and strain, without a change in TMD. Pyrrole cross-linking was the strongest correlate of modulus (r=0.470, p<0.01) and yield strain (r=-0.467, p<0.01). Cross-links with similar levels of telopeptide lysine hydroxylation to pyrrole (lysylpyridinoline and hydroxylysinorleucine) also correlated with modulus and strain to a lesser extent. In conclusion, exercise in growing mice promotes pyridinoline collagen cross-linking in bone, the resulting increase in total mature cross-linking is sufficient to counteract the mechanical effects of concurrent cross-link inhibition, and this responsiveness to loading is a potential means by which exercise might improve bone quality in diseased or otherwise compromised bone.
Collapse
Affiliation(s)
- Erin M B McNerny
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, MI, USA
| | - Joseph D Gardinier
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering and Medical School, University of Michigan, MI, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
35
|
Tumor-suppressive microRNAs (miR-26a/b, miR-29a/b/c and miR-218) concertedly suppressed metastasis-promoting LOXL2 in head and neck squamous cell carcinoma. J Hum Genet 2015; 61:109-18. [PMID: 26490187 DOI: 10.1038/jhg.2015.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/05/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
Abstract
In spite of considerable advances in multimodality therapy, including surgery, radiotherapy and chemotherapy, the overall survival rate for patients with head and neck squamous cell carcinoma (HNSCC) is very poor (only 15-45%). Understanding the molecular mechanisms of metastatic pathways underlying HNSCC using currently available genomic approaches might improve therapies for and prevention of the disease. Our previous studies showed that three tumor-suppressive microRNAs (miRNAs), miR-26a/b, miR-29a/b/c and miR-218, significantly inhibited cancer cell migration and invasion. Therefore, we hypothesized that these miRNAs-regulated target genes deeply contributed to cancer metastasis. These tumor-suppressive miRNAs directly regulate LOXL2 expression in HNSCC cells by using in silico analysis and luciferase reporter assays. Overexpressed LOXL2 was confirmed in HNSCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in HNSCC cell lines. Our present data showed that tumor-suppressive miRNAs regulation of LOXL2 will provide new insights into the novel molecular mechanisms of HNSCC metastasis.
Collapse
|
36
|
Kaku M, Rosales Rocabado JM, Kitami M, Ida T, Akiba Y, Yamauchi M, Uoshima K. Mechanical Loading Stimulates Expression of Collagen Cross-Linking Associated Enzymes in Periodontal Ligament. J Cell Physiol 2015; 231:926-33. [DOI: 10.1002/jcp.25184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/03/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | | | - Megumi Kitami
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Takako Ida
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Yosuke Akiba
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute; University of North Carolina at Chapel Hill; Chapel Hill North Carolina
| | - Katsumi Uoshima
- Division of Bioprosthodontics; Niigata University Graduate School of Medical and Dental Sciences; Niigata Japan
| |
Collapse
|
37
|
Risteli M, Ruotsalainen H, Bergmann U, Venkatraman Girija U, Wallis R, Myllylä R. Lysyl hydroxylase 3 modifies lysine residues to facilitate oligomerization of mannan-binding lectin. PLoS One 2014; 9:e113498. [PMID: 25419660 PMCID: PMC4242627 DOI: 10.1371/journal.pone.0113498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023] Open
Abstract
Lysyl hydroxylase 3 (LH3) is a multifunctional protein with lysyl hydroxylase, galactosyltransferase and glucosyltransferase activities. The LH3 has been shown to modify the lysine residues both in collagens and also in some collagenous proteins. In this study we show for the first time that LH3 is essential for catalyzing formation of the glucosylgalactosylhydroxylysines of mannan-binding lectin (MBL), the first component of the lectin pathway of complement activation. Furthermore, loss of the terminal glucose units on the derivatized lysine residues in mouse embryonic fibroblasts lacking the LH3 protein leads to defective disulphide bonding and oligomerization of rat MBL-A, with a decrease in the proportion of the larger functional MBL oligomers. The oligomerization could be completely restored with the full length LH3 or the amino-terminal fragment of LH3 that possesses the glycosyltransferase activities. Our results confirm that LH3 is the only enzyme capable of glucosylating the galactosylhydroxylysine residues in proteins with a collagenous domain. In mice lacking the lysyl hydroxylase activity of LH3, but with untouched galactosyltransferase and glucosyltransferase activities, reduced circulating MBL-A levels were observed. Oligomerization was normal, however and residual lysyl hydroxylation was compensated in part by other lysyl hydroxylase isoenzymes. Our data suggest that LH3 is commonly involved in biosynthesis of collagenous proteins and the glucosylation of galactosylhydroxylysines residues by LH3 is crucial for the formation of the functional high-molecular weight MBL oligomers.
Collapse
Affiliation(s)
- Maija Risteli
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- * E-mail:
| | - Heli Ruotsalainen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, Mass Spectrometry Core Facility, University of Oulu, Oulu, Finland
| | | | - Russell Wallis
- Department of Infection, Immunity, and Inflammation, University of Leicester, Leicester, United Kingdom
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Raili Myllylä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
38
|
Matsuura T, Sasaki M, Katafuchi M, Tokutomi K, Mizumachi E, Makino M, Naito T, Sato H. Characterization of the bone matrix and its contribution to tooth loss in human cadaveric mandibles. Acta Odontol Scand 2014; 72:753-61. [PMID: 24694099 DOI: 10.3109/00016357.2014.903517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE It is uncertain as to what extent the major bone matrix constituents, mineral and collagen, show inter-individual variation and dependence on age and sex in jawbones. The purpose of this study was to clarify this uncertainty using cadaveric mandibles and investigate the association of bone matrix with the number of existing teeth. MATERIALS AND METHODS Cortical bone samples (1 × 1 cm) collected from the mental of 48 cadaveric mandibles (27 men and 21 women; age range = 56-93 years and 63-103 years, respectively) were used to quantify three bone matrix indices: mineral content, collagen content and extent of lysine hydroxylation of collagen. Associations with age and comparisons by sex were evaluated based on bone matrix indices and the numbers of existing teeth. The numbers of existing teeth were compared between the groups showing low and high bone matrix index values. RESULTS A great amount of inter-individual variation was seen in all bone matrix indices. No bone matrix indices were associated with age, while the number of existing teeth was negatively associated with age. The bone matrix indices and number of existing teeth did not differ by sex. The number of existing teeth was nearly twice as high in the group showing high collagen content as in the low collagen group; however, an analysis of covariance showed a significant inter-group difference not from bone matrix indices, but rather from age. Interestingly, in comparison to femoral collagen, mandibular collagen showed lower lysine hydroxylation, which can represent an aspect of bone quality. CONCLUSIONS Mandibular bone matrix shows great inter-individual variation and is independent of age and sex, but did not show as strong a relationship with tooth loss as age. Even so, mandibular collagen may represent a unique characteristic of bone matrix and deserves to be further investigated.
Collapse
Affiliation(s)
- Takashi Matsuura
- Section of Fixed Prosthodontics, Department of Oral Rehabilitation
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kaku M, Yamauchi M. Mechano-regulation of collagen biosynthesis in periodontal ligament. J Prosthodont Res 2014; 58:193-207. [PMID: 25311991 DOI: 10.1016/j.jpor.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/25/2014] [Indexed: 12/12/2022]
Abstract
Periodontal ligament (PDL) plays critical roles in the development and maintenance of periodontium such as tooth eruption and dissipation of masticatory force. The mechanical properties of PDL are mainly derived from fibrillar type I collagen, the most abundant extracellular component. The biosynthesis of type I collagen is a long, complex process including a number of intra- and extracellular post-translational modifications. The final modification step is the formation of covalent intra- and intermolecular cross-links that provide collagen fibrils with stability and connectivity. It is now clear that collagen post-translational modifications are regulated by groups of specific enzymes and associated molecules in a tissue-specific manner; and these modifications appear to change in response to mechanical force. This review focuses on the effect of mechanical loading on collagen biosynthesis and fibrillogenesis in PDL with emphasis on the post-translational modifications of collagens, which is an important molecular aspect to understand in the field of prosthetic dentistry.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
40
|
Stawikowski MJ, Aukszi B, Stawikowska R, Cudic M, Fields GB. Glycosylation modulates melanoma cell α2β1 and α3β1 integrin interactions with type IV collagen. J Biol Chem 2014; 289:21591-604. [PMID: 24958723 PMCID: PMC4118119 DOI: 10.1074/jbc.m114.572073] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/20/2014] [Indexed: 01/02/2023] Open
Abstract
Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382-393 and α1(IV)531-543 sequences, which are binding sites for the α2β1 and α3β1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl(393) in α1(IV)382-393 and Hyl(540) and Hyl(543) in α1(IV)531-543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3β1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2β1 integrin interaction with α1(IV)382-393 but right in the middle of α3β1 integrin interaction with α1(IV)531-543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no β-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity.
Collapse
Affiliation(s)
- Maciej J Stawikowski
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Beatrix Aukszi
- the Nova Southeastern University, Fort Lauderdale, Florida 33314
| | - Roma Stawikowska
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Mare Cudic
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| | - Gregg B Fields
- From the Torrey Pines Institute for Molecular Studies, Port St. Lucie, Florida 34987 and
| |
Collapse
|
41
|
Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W, Perosky JE, Makareeva EN, Mertz EL, Leikin S, Tomer KB, Kozloff KM, Eyre DR, Yamauchi M, Marini JC. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLoS Genet 2014; 10:e1004465. [PMID: 24968150 PMCID: PMC4072593 DOI: 10.1371/journal.pgen.1004465] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/14/2014] [Indexed: 01/24/2023] Open
Abstract
Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties. Osteogenesis imperfecta (OI), or brittle bone disease, is characterized by susceptibility to fractures from minimal trauma and growth deficiency. Deficiency of components of the collagen prolyl 3-hydroxylation complex, CRTAP, P3H1 and CyPB, cause recessive types VII, VIII and IX OI, respectively. We have previously shown that mutual protection within the endoplasmic reticulum accounts for the overlapping severe phenotype of patients with CRTAP and P3H1 mutations. However, the bone dysplasia in patients with CyPB deficiency is distinct in terms of phenotype and type I collagen biochemistry. Using a knock-out mouse model of type IX OI, we have demonstrated that CyPB is the major, although not unique, peptidyl prolyl cis-trans isomerase that catalyzes the rate-limiting step in collagen folding. CyPB is also required for activity of the collagen prolyl 3-hydroxylation complex; collagen α1(I) P986 modification is lost in the absence of CyPB. Unexpectedly, CyPB was found to also influence collagen helical lysyl hydroxylation in a tissue-, cell- and residue-specific manner. Thus CyPB facilitates collagen folding directly, but also indirectly regulates collagen hydroxylation, glycosylation, crosslinking and fibrillogenesis through its interactions with other collagen modifying enzymes in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Wayne A. Cabral
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Irina Perdivara
- Laboratory of Structural Biology, NIEHS, NIH, Research Triangle Park, North Carolina, United States of America
| | - MaryAnn Weis
- Orthopaedic Research Laboratories, University of Washington, Seattle, Washington, United States of America
| | - Masahiko Terajima
- North Carolina Oral Health Institute, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Angela R. Blissett
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Weizhong Chang
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Joseph E. Perosky
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elena N. Makareeva
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Edward L. Mertz
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Kenneth B. Tomer
- Laboratory of Structural Biology, NIEHS, NIH, Research Triangle Park, North Carolina, United States of America
| | - Kenneth M. Kozloff
- Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R. Eyre
- Orthopaedic Research Laboratories, University of Washington, Seattle, Washington, United States of America
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joan C. Marini
- Bone and Extracellular Matrix Branch, NICHD, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Terajima M, Perdivara I, Sricholpech M, Deguchi Y, Pleshko N, Tomer KB, Yamauchi M. Glycosylation and cross-linking in bone type I collagen. J Biol Chem 2014; 289:22636-22647. [PMID: 24958722 DOI: 10.1074/jbc.m113.528513] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998-23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen.
Collapse
Affiliation(s)
- Masahiko Terajima
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Irina Perdivara
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Marnisa Sricholpech
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, Bangkok 10110, Thailand, and
| | - Yoshizumi Deguchi
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Nancy Pleshko
- Tissue Imaging and Spectroscopy Laboratory, Department of Bioengineering, Temple University, Philadelphia, Pennsylvania 19122
| | - Kenneth B Tomer
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Mitsuo Yamauchi
- North Carolina Oral Health Institute, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina 27599,.
| |
Collapse
|
43
|
Distinct characteristics of mandibular bone collagen relative to long bone collagen: relevance to clinical dentistry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:769414. [PMID: 24818151 PMCID: PMC4004038 DOI: 10.1155/2014/769414] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/19/2014] [Indexed: 01/17/2023]
Abstract
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.
Collapse
|
44
|
Yamada S, Nagaoka H, Terajima M, Tsuda N, Hayashi Y, Yamauchi M. Effects of fish collagen peptides on collagen post-translational modifications and mineralization in an osteoblastic cell culture system. Dent Mater J 2014; 32:88-95. [PMID: 23370875 DOI: 10.4012/dmj.2012-220] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Collagen is one of the most widely used biomaterials for tissue engineering and regenerative medicine. Fish collagen peptides (FCP) have been used as a dietary supplement, but their effects on the cellular function are still poorly understood. The objective of this study was to investigate the effects of FCP on collagen synthesis, quality and mineralization using an osteoblastic MC3T3-E1 cell culture system. Cells treated with FCP significantly upregulated the gene expression of several collagen modifying enzymes and more collagen was deposited in the cultures. Collagen in the treated group showed a greater extent of lysine hydroxylation, higher levels of hydroxylysine-aldehyde derived cross-links and accelerated cross-link maturation compared with the untreated group. Furthermore, the treated group showed accelerated matrix mineralization. These results indicate that FCP exerts a positive effect on osteoblastic cells in terms of collagen synthesis, quality and mineralization, thereby suggesting the potential utility of FCP for bone tissue engineering.
Collapse
Affiliation(s)
- Shizuka Yamada
- NC Oral Health Institute, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
45
|
Posey JE, Burrage LC, Miller MJ, Liu P, Hardison MT, Elsea SH, Sun Q, Yang Y, Willis AS, Schlesinger AE, Bacino CA, Lee BH. Lysinuric Protein Intolerance Presenting with Multiple Fractures. Mol Genet Metab Rep 2014; 1:176-183. [PMID: 25419514 PMCID: PMC4235665 DOI: 10.1016/j.ymgmr.2014.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is a rare autosomal recessive inborn error of metabolism caused by mutations in SLC7A7, which encodes a component of the dibasic amino acid transporter found in intestinal and renal tubular cells. Patients typically present with vomiting, diarrhea, irritability, failure to thrive, and symptomatic hyperammonemia after protein-rich meals. Long-term complications may include pulmonary alveolar proteinosis, renal disease, and osteoporosis. We present a 5-year-old male who was followed in our skeletal dysplasia clinic for 3 years for multiple fractures, idiopathic osteoporosis, and short stature in the absence of typical features of LPI. Whole exome sequencing performed to determine the etiology of the osteoporosis and speech delay identified a nonsense mutation in SLC7A7. Chromosome microarray analysis identified a deletion involving the second allele of the same gene, and biochemical analysis supported the diagnosis of LPI. Our patient's atypical presentation underscores the importance of maintaining a high index of suspicion for LPI in patients with unexplained fractures and idiopathic osteoporosis, even in the absence of clinical symptoms of hyperammonemia after protein rich meals or other systemic features of classical LPI. This case further demonstrates the utility of whole exome sequencing in diagnosis of unusual presentations of rare disorders for which early intervention may modify the clinical course.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Marcus J Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Matthew T Hardison
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Alecia S Willis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Alan E Schlesinger
- Department of Pediatric Radiology, Texas Children's Hospital, 6701 Fannin, Suite 470, Houston, TX, 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Suite R814, Houston, TX, 77030-3411, USA ; Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
46
|
A molecular ensemble in the rER for procollagen maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2479-91. [DOI: 10.1016/j.bbamcr.2013.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 01/18/2023]
|
47
|
Perdivara I, Yamauchi M, Tomer KB. Molecular Characterization of Collagen Hydroxylysine O-Glycosylation by Mass Spectrometry: Current Status. Aust J Chem 2013; 66:760-769. [PMID: 25414518 PMCID: PMC4235766 DOI: 10.1071/ch13174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The most abundant proteins in vertebrates - the collagen family proteins - play structural and biological roles in the body. The predominant member, type I collagen, provides tissues and organs with structure and connectivity. This protein has several unique post-translational modifications that take place intra- and extra-cellularly. With growing evidence of the relevance of such post-translational modifications in health and disease, the biological significance of O-linked collagen glycosylation has recently drawn increased attention. However, several aspects of this unique modification - the requirement for prior lysyl hydroxylation as a substrate, involvement of at least two distinct glycosyl transferases, its involvement in intermolecular crosslinking - have made its molecular mapping and quantitative characterization challenging. Such characterization is obviously crucial for understanding its biological significance. Recent progress in mass spectrometry has provided an unprecedented opportunity for this type of analysis. This review summarizes recent advances in the area of O-glycosylation of fibrillar collagens and their characterization using state-of-the-art liquid chromatography-mass spectrometry-based methodologies, and perspectives on future research. The analytical characterization of collagen crosslinking and advanced glycation end-products are not addressed here.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, NC 27599, USA
| | - Kenneth B. Tomer
- Mass Spectrometry Group, National Institutes of Health/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, NC 27709, USA
| |
Collapse
|
48
|
Perdivara I, Perera L, Sricholpech M, Terajima M, Pleshko N, Yamauchi M, Tomer KB. Unusual fragmentation pathways in collagen glycopeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1072-1081. [PMID: 23633013 PMCID: PMC3679267 DOI: 10.1007/s13361-013-0624-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 05/29/2023]
Abstract
Collagens are the most abundant glycoproteins in the body. One characteristic of this protein family is that the amino acid sequence consists of repeats of three amino acids -(X-Y-Gly)n. Within this motif, the Y residue is often 4-hydroxyproline (HyP) or 5-hydroxylysine (HyK). Glycosylation in collagen occurs at the 5-OH group in HyK in the form of two glycosides, galactosylhydroxylysine (Gal-HyK) and glucosyl galactosylhydroxylysine (GlcGal-HyK). In collision induced dissociation (CID), collagen tryptic glycopeptides exhibit unexpected gas-phase dissociation behavior compared to typical N- and O-linked glycopeptides (i.e., in addition to glycosidic bond cleavages, extensive cleavages of the amide bonds are observed). The Gal- or GlcGal- glycan modifications are largely retained on the fragment ions. These features enable unambiguous determination of the amino acid sequence of collagen glycopeptides and the location of the glycosylation site. This dissociation pattern was consistent for all analyzed collagen glycopeptides, regardless of their length or amino acid composition, collagen type or tissue. The two fragmentation pathways-amide bond and glycosidic bond cleavage-are highly competitive in collagen tryptic glycopeptides. The number of ionizing protons relative to the number of basic sites (i.e., Arg, Lys, HyK, and N-terminus) is a major driving force of the fragmentation. We present here our experimental results and employ quantum mechanics calculations to understand the factors enhancing the labile character of the amide bonds and the stability of hydroxylysine glycosides in gas phase dissociation of collagen glycopeptides.
Collapse
Affiliation(s)
- Irina Perdivara
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | - Lalith Perera
- Computational Chemistry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| | | | - Masahiko Terajima
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Pennsylvania, USA
| | - Mitsuo Yamauchi
- School of Dentistry, University of North Carolina at Chapel Hill, North Carolina, United States
| | - Kenneth B. Tomer
- Mass Spectrometry Group, NIH/National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States
| |
Collapse
|
49
|
Ruotsalainen H, Risteli M, Wang C, Wang Y, Karppinen M, Bergmann U, Kvist AP, Pospiech H, Herzig KH, Myllylä R. The activities of lysyl hydroxylase 3 (LH3) regulate the amount and oligomerization status of adiponectin. PLoS One 2012; 7:e50045. [PMID: 23209641 PMCID: PMC3510199 DOI: 10.1371/journal.pone.0050045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 10/15/2012] [Indexed: 01/04/2023] Open
Abstract
Lysyl hydroxylase 3 (LH3) has lysyl hydroxylase, galactosyltransferase, and glucosyltransferase activities, which are sequentially required for the formation of glucosylgalactosyl hydroxylysines in collagens. Here we demonstrate for the first time that LH3 also modifies the lysine residues in the collagenous domain of adiponectin, which has important roles in glucose and lipid metabolism and inflammation. Hydroxylation and, especially, glycosylation of the lysine residues of adiponectin have been shown to be essential for the formation of the more active high molecular weight adiponectin oligomers and thus for its function. In cells that totally lack LH3 enzyme, the galactosylhydroxylysine residues of adiponectin were not glucosylated to glucosylgalactosylhydroxylysine residues and the formation of high and middle molecular weight adiponectin oligomers was impaired. Circulating adiponectin levels in mutant mice lacking the lysyl hydroxylase activity of LH3 were significantly reduced, which indicates that LH3 is required for complete modification of lysine residues in adiponectin and the loss of some of the glycosylated hydroxylysine residues severely affects the secretion of adiponectin. LH mutant mice with reduced adiponectin level showed a high fat diet-induced increase in glucose, triglyceride, and LDL-cholesterol levels, hallmarks of the metabolic syndrome in humans. Our results reveal the first indication that LH3 is an important regulator of adiponectin biosynthesis, secretion and activity and thus might be a potential candidate for therapeutic applications in diseases associated with obesity and insulin resistance.
Collapse
|
50
|
Abstract
Type I collagen is the most abundant structural protein in vertebrates. It is a heterotrimeric molecule composed of two α1 chains and one α2 chain, forming a long uninterrupted triple helical structure with short non-triple helical telopeptides at both the N- and C-termini. During biosynthesis, collagen acquires a number of post-translational modifications, including lysine modifications, that are critical to the structure and biological functions of this protein. Lysine modifications of collagen are highly complicated sequential processes catalysed by several groups of enzymes leading to the final step of biosynthesis, covalent intermolecular cross-linking. In the cell, specific lysine residues are hydroxylated to form hydroxylysine. Then specific hydroxylysine residues located in the helical domain of the molecule are glycosylated by the addition of galactose or glucose-galactose. Outside the cell, lysine and hydroxylysine residues in the N- and C-telopeptides can be oxidatively deaminated to produce reactive aldehydes that undergo a series of non-enzymatic condensation reactions to form covalent intra- and inter-molecular cross-links. Owing to the recent advances in molecular and cellular biology, and analytical technologies, the biological significance and molecular mechanisms of these modifications have been gradually elucidated. This chapter provides an overview on these enzymatic lysine modifications and subsequent cross-linking.
Collapse
|