1
|
Chang L, Čok Z, Yu L. Protein Kinases as Mediators for miRNA Modulation of Neuropathic Pain. Cells 2025; 14:577. [PMID: 40277902 PMCID: PMC12025903 DOI: 10.3390/cells14080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Neuropathic pain is a chronic condition resulting from injury or dysfunction in the somatosensory nervous system, which leads to persistent pain and a significant impairment of quality of life. Research has highlighted the complex molecular mechanisms that underlie neuropathic pain and has begun to delineate the roles of microRNAs (miRNAs) in modulating pain pathways. miRNAs, which are small non-coding RNAs that regulate gene expression post-transcriptionally, have been shown to influence key cellular processes, including neuroinflammation, neuronal excitability, and synaptic plasticity. These processes contribute to the persistence of neuropathic pain, and miRNAs have emerged as critical regulators of pain behaviors by modulating signaling pathways that control pain sensitivity. miRNAs can influence neuropathic pain by targeting genes that encode protein kinases involved in pain signaling. This review focuses on miRNAs that have been demonstrated to modulate neuropathic pain behavior through their effects on protein kinases or their immediate upstream regulators. The relationship between miRNAs and neuropathic pain behaviors is characterized as either an upregulation or a downregulation of miRNA levels that leads to a reduction in neuropathic pain. In the case of miRNA upregulation resulting in an alleviation of neuropathic pain behaviors, protein kinases exhibit a positive correlation with neuropathic pain, whereas decreased protein kinase levels correlate with diminished neuropathic pain behaviors. The only exception is GRK2, which shows an inverse correlation with neuropathic pain. In the case of miRNA downregulation resulting in a reduction in neuropathic pain behaviors, protein kinases display mixed relationships to neuropathic pain, with some kinases exhibiting positive correlation, while others exhibit negative correlation. By exploring how protein kinases mediate miRNA modulation of neuropathic pain, valuable insight may be gained into the pathophysiology of neuropathic pain, offering potential therapeutic targets for developing more effective strategies for pain management.
Collapse
Affiliation(s)
| | | | - Lei Yu
- Department of Genetics, Center of Alcohol & Substance Use Studies, Rutgers University, Piscataway, NJ 08854, USA; (L.C.)
| |
Collapse
|
2
|
Elkhadragy L, Myers A, Long W. Role of the Atypical MAPK ERK3 in Cancer Growth and Progression. Cancers (Basel) 2024; 16:1381. [PMID: 38611058 PMCID: PMC11011113 DOI: 10.3390/cancers16071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose structural and regulatory features are distinct from those of conventional MAPKs, such as ERK1/2. Since its identification in 1991, the regulation, substrates and functions of ERK3 have remained largely unknown. However, recent years have witnessed a wealth of new findings about ERK3 signaling. Several important biological functions for ERK3 have been revealed, including its role in neuronal morphogenesis, inflammation, metabolism, endothelial cell tube formation and epithelial architecture. In addition, ERK3 has been recently shown to play important roles in cancer cell proliferation, migration, invasion and chemoresistance in multiple types of cancers. Furthermore, accumulating studies have uncovered various molecular mechanisms by which the expression level, protein stability and activity of ERK3 are regulated. In particular, several post-translational modifications (PTMs), including ubiquitination, hydroxylation and phosphorylation, have been shown to regulate the stability and activity of ERK3 protein. In this review, we discuss recent findings regarding biochemical and cellular functions of ERK3, with a main focus on its roles in cancers, as well as the molecular mechanisms of regulating its expression and activity.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Amanda Myers
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (L.E.); (A.M.)
| |
Collapse
|
3
|
Javary J, Goupil E, Soulez M, Kanshin E, Bouchard A, Seternes OM, Thibault P, Labbé JC, Meloche S. Phosphoproteomic analysis identifies supervillin as an ERK3 substrate regulating cytokinesis and cell ploidy. J Cell Physiol 2024; 239:e30938. [PMID: 36576983 DOI: 10.1002/jcp.30938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is a poorly characterized member of the mitogen-activated protein (MAP) kinase family. Functional analysis of the ERK3 signaling pathway has been hampered by a lack of knowledge about the substrates and downstream effectors of the kinase. Here, we used large-scale quantitative phosphoproteomics and targeted gene silencing to identify direct ERK3 substrates and gain insight into its cellular functions. Detailed validation of one candidate substrate identified the gelsolin/villin family member supervillin (SVIL) as a bona fide ERK3 substrate. We show that ERK3 phosphorylates SVIL on Ser245 to regulate myosin II activation and cytokinesis completion in dividing cells. Depletion of SVIL or ERK3 leads to increased cytokinesis failure and multinucleation, a phenotype rescued by wild type SVIL but not by the non-phosphorylatable S245A mutant. Our results unveil a new function of the atypical MAP kinase ERK3 in cell division and the regulation of cell ploidy.
Collapse
Affiliation(s)
- Joaquim Javary
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Eugénie Goupil
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Mathilde Soulez
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| | - Evgeny Kanshin
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- NYU Langone Health, New York City, New York, USA
| | - Antoine Bouchard
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Myers AK, Morel M, Gee SH, Hoffmann KA, Long W. ERK3 and DGKζ interact to modulate cell motility in lung cancer cells. Front Cell Dev Biol 2023; 11:1192221. [PMID: 37287450 PMCID: PMC10242005 DOI: 10.3389/fcell.2023.1192221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) promotes cell migration and tumor metastasis in multiple cancer types, including lung cancer. The extracellular-regulated kinase 3 protein has a unique structure. In addition to the N-terminal kinase domain, ERK3 includes a central conserved in extracellular-regulated kinase 3 and ERK4 (C34) domain and an extended C-terminus. However, relatively little is known regarding the role(s) of the C34 domain. A yeast two-hybrid assay using extracellular-regulated kinase 3 as bait identified diacylglycerol kinase ζ (DGKζ) as a binding partner. DGKζ was shown to promote migration and invasion in some cancer cell types, but its role in lung cancer cells is yet to be described. The interaction of extracellular-regulated kinase 3 and DGKζ was confirmed by co-immunoprecipitation and in vitro binding assays, consistent with their co-localization at the periphery of lung cancer cells. The C34 domain of ERK3 was sufficient for binding to DGKζ, while extracellular-regulated kinase 3 bound to the N-terminal and C1 domains of DGKζ. Surprisingly, in contrast to extracellular-regulated kinase 3, DGKζ suppresses lung cancer cell migration, suggesting DGKζ might inhibit ERK3-mediated cell motility. Indeed, co-overexpression of exogenous DGKζ and extracellular-regulated kinase 3 completely blocked the ability of ERK3 to promote cell migration, but DGKζ did not affect the migration of cells with stable ERK3 knockdown. Furthermore, DGKζ had little effect on cell migration induced by overexpression of an ERK3 mutant missing the C34 domain, suggesting DGKζ requires this domain to prevent ERK3-mediated increase in cell migration. In summary, this study has identified DGKζ as a new binding partner and negative regulator of extracellular-regulated kinase 3 in controlling lung cancer cell migration.
Collapse
Affiliation(s)
- Amanda K. Myers
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Marion Morel
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Stephen H. Gee
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Katherine A. Hoffmann
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, United States
| |
Collapse
|
5
|
Yu FY, Xu Q, Zhao XY, Mo HY, Zhong QH, Luo L, Lau ATY, Xu YM. The Atypical MAP Kinase MAPK15 Is Required for Lung Adenocarcinoma Metastasis via Its Interaction with NF-κB p50 Subunit and Transcriptional Regulation of Prostaglandin E2 Receptor EP3 Subtype. Cancers (Basel) 2023; 15:cancers15051398. [PMID: 36900191 PMCID: PMC10000388 DOI: 10.3390/cancers15051398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Studying the relatively underexplored atypical MAP Kinase MAPK15 on cancer progression/patient outcomes and its potential transcriptional regulation of downstream genes would be highly valuable for the diagnosis, prognosis, and potential oncotherapy of malignant tumors such as lung adenocarcinoma (LUAD). Here, the expression of MAPK15 in LUAD was detected by immunohistochemistry and its correlation with clinical parameters such as lymph node metastasis and clinical stage was analyzed. The correlation between the prostaglandin E2 receptor EP3 subtype (EP3) and MAPK15 expression in LUAD tissues was examined, and the transcriptional regulation of EP3 and cell migration by MAPK15 in LUAD cell lines were studied using the luciferase reporter assay, immunoblot analysis, qRT-PCR, and transwell assay. We found that MAPK15 is highly expressed in LUAD with lymph node metastasis. In addition, EP3 is positively correlated with the expression of MAPK15 in LUAD tissues, and we confirmed that MAPK15 transcriptionally regulates the expression of EP3. Upon the knockdown of MAPK15, the expression of EP3 was down-regulated and the cell migration ability was decreased in vitro; similarly, the mesenteric metastasis ability of the MAPK15 knockdown cells was inhibited in in vivo animal experiments. Mechanistically, we demonstrate for the first time that MAPK15 interacts with NF-κB p50 and enters the nucleus, and NF-κB p50 binds to the EP3 promoter and transcriptionally regulates the expression of EP3. Taken together, we show that a novel atypical MAPK and NF-κB subunit interaction promotes LUAD cell migration through transcriptional regulation of EP3, and higher MAPK15 level is associated with lymph node metastasis in patients with LUAD.
Collapse
Affiliation(s)
- Fei-Yuan Yu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qian Xu
- Laboratory of Molecular Pathology, Department of Pathology, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Li Luo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
| | - Andy T. Y. Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
- Correspondence: (A.T.Y.L.); (Y.-M.X.); Tel.: +86-754-8853-0052 (A.T.Y.L.); +86-754-8890-0437 (Y.-M.X.)
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China
- Correspondence: (A.T.Y.L.); (Y.-M.X.); Tel.: +86-754-8853-0052 (A.T.Y.L.); +86-754-8890-0437 (Y.-M.X.)
| |
Collapse
|
6
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
7
|
Gupta A, Galinski MR, Voit EO. Dynamic Control Balancing Cell Proliferation and Inflammation is Crucial for an Effective Immune Response to Malaria. Front Mol Biosci 2022; 8:800721. [PMID: 35242812 PMCID: PMC8886244 DOI: 10.3389/fmolb.2021.800721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria has a complex pathology with varying manifestations and symptoms, effects on host tissues, and different degrees of severity and ultimate outcome, depending on the causative Plasmodium pathogen and host species. Previously, we compared the peripheral blood transcriptomes of two macaque species (Macaca mulatta and Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi. Although these two species are very closely related, the infection in M. mulatta is fatal, unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable infection in the blood. As a reason for this stark difference, our analysis suggests delayed pathogen detection in M. mulatta followed by extended inflammation that eventually overwhelms this monkey’s immune response. By contrast, the natural host M. fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M. fascicularis limits cell proliferation pathways during the log phase of infection, presumably in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-mediated adaptive immune response. Here, we focus on molecular mechanisms underlying the key differences in the host and parasite responses and their coordination. SICAvar Type 1 surface antigens are highly correlated with pattern recognition receptor signaling and important inflammatory genes for both hosts. Analysis of pathogen detection pathways reveals a similar signaling mechanism, but with important differences in the glutamate G-protein coupled receptor (GPCR) signaling pathway. Furthermore, differences in inflammasome assembly processes suggests an important role of S100 proteins in balancing inflammation and cell proliferation. Both differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic modeling provides a functional method for evaluating these changes and understanding downstream changes in NAD metabolism and aryl hydrocarbon receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be established due to complicated regulatory feedback mechanisms associated with the AhR repressor (AhRR). A complete understanding of the exact dynamics of the immune response is difficult to achieve. Nonetheless, our comparative analysis provides clear suggestions of processes that underlie an effective immune response. Thus, our study identifies multiple points of intervention that are apparently responsible for a balanced and effective immune response and thereby paves the way toward future immune strategies for treating malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Eberhard O. Voit,
| |
Collapse
|
8
|
Khalil MI, Singh V, King J, De Benedetti A. TLK1-mediated MK5-S354 phosphorylation drives prostate cancer cell motility and may signify distinct pathologies. Mol Oncol 2022; 16:2537-2557. [PMID: 35064619 PMCID: PMC9251878 DOI: 10.1002/1878-0261.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Metastases account for the majority of prostate cancer (PCa) deaths, and targeting them is a major goal of systemic therapy. We identified a novel interaction between two kinases: tousled‐like kinase 1 (TLK1) and MAP kinase‐activated protein kinase 5 (MK5) that promotes PCa spread. In PCa progression, TLK1–MK5 signalling appears to increase following antiandrogen treatment and in metastatic castration‐resistant prostate cancer (mCRPC) patients. Determinations of motility rates (2D and 3D) of different TLK1‐ and MK5‐perturbed cells, including knockout (KO) and knockdown (KD), as well as the use of specific inhibitors, showed the importance of these two proteins for in vitro dissemination. We established that TLK1 phosphorylates MK5 on three residues (S160, S354 and S386), resulting in MK5 activation, and additionally, mobility shifts of MK5 also supported its phosphorylation by TLK1 in transfected HEK 293 cells. Expression of MK5‐S354A or kinase‐dead MK5 in MK5‐depleted mouse embryonic fibroblast (MEF) cells failed to restore their motility compared with that of wild‐type (WT) MK5‐rescued MK5−/− MEF cells. A pMK5‐S354 antiserum was used to establish this site as an authentic TLK1 target in androgen‐sensitive human prostate adenocarcinoma (LNCaP) cells, and was used in immunohistochemistry (IHC) studies of age‐related PCa sections from TRAMP (transgenic adenocarcinoma of the mouse prostate) mice and to probe a human tissue microarray (TMA), which revealed pMK5‐S354 level is correlated with disease progression (Gleason score and nodal metastases). In addition, The Cancer Genome Atlas (TCGA) analyses of PCa expression and genome‐wide association study (GWAS) relations identify TLK1 and MK5 as potential drivers of advanced PCa and as markers of mCRPC. Our work suggests that TLK1–MK5 signalling is functionally involved in driving PCa cell motility and clinical features of aggressiveness; hence, disruption of this axis may inhibit the metastatic spread of PCa.
Collapse
Affiliation(s)
| | - Vibha Singh
- Department of Biochemistry and Molecular Biology
| | - Judy King
- Deparment of Pathology and Translational Pathobiology, LSU Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
9
|
Cai Q, Zhou W, Wang W, Dong B, Han D, Shen T, Creighton CJ, Moore DD, Yang F. MAPK6-AKT signaling promotes tumor growth and resistance to mTOR kinase blockade. SCIENCE ADVANCES 2021; 7:eabi6439. [PMID: 34767444 PMCID: PMC8589317 DOI: 10.1126/sciadv.abi6439] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/23/2021] [Indexed: 05/08/2023]
Abstract
Mitogen-activated protein kinase 6 (MAPK6) is an atypical MAPK. Its function in regulating cancer growth remains elusive. Here, we reported that MAPK6 directly activated AKT and induced oncogenic outcomes. MAPK6 interacted with AKT through its C34 region and the C-terminal tail and phosphorylated AKT at S473 independent of mTORC2, the major S473 kinase. mTOR kinase inhibitors have not made notable progress in the clinic. Our identified MAPK6-AKT axis may provide a major resistance pathway. Besides repressing growth, inhibiting MAPK6 sensitized cancer cells to mTOR kinase inhibitors. MAPK6 overexpression is associated with decreased overall survival and the survival of patients with lung adenocarcinoma, mesothelioma, uveal melanoma, and breast cancer. MAPK6 expression also correlated with AKT phosphorylation at S473 in human cancer tissues. We conclude that MAPK6 can promote cancer by activating AKT independent of mTORC2 and targeting MAPK6, either alone or in combination with mTOR blockade, may be effective in cancers.
Collapse
Affiliation(s)
- Qinbo Cai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wolong Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77070, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77070, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Vallabhaneni S, Liu J, Morel M, Wang J, DeMayo FJ, Long W. Conditional ERK3 overexpression cooperates with PTEN deletion to promote lung adenocarcinoma formation in mice. Mol Oncol 2021; 16:1184-1199. [PMID: 34719109 PMCID: PMC8895443 DOI: 10.1002/1878-0261.13132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
ERK3, officially known as mitogen‐activated protein kinase 6 (MAPK6), is a poorly studied mitogen‐activated protein kinase (MAPK). Recent studies have revealed the upregulation of ERK3 expression in cancer and suggest an important role for ERK3 in promoting cancer cell growth and invasion in some cancers, in particular lung cancer. However, it is unknown whether ERK3 plays a role in spontaneous tumorigenesis in vivo. To determine the role of ERK3 in lung tumorigenesis, we created a conditional ERK3 transgenic mouse line in which ERK3 transgene expression is controlled by Cre recombinase. By crossing these transgenic mice with a mouse line harboring a lung tissue–specific Cre recombinase transgene driven by a club cell secretory protein gene promoter (CCSP‐iCre), we have found that conditional ERK3 overexpression cooperates with phosphatase and tensin homolog (PTEN) deletion to induce the formation of lung adenocarcinomas (LUADs). Mechanistically, ERK3 overexpression stimulates activating phosphorylations of erb‐b2 receptor tyrosine kinases 2 and 3 (ERBB2 and ERBB3) by upregulating Sp1 transcription factor (SP1)–mediated gene transcription of neuregulin 1 (NRG1), a potent ligand for ERBB2/ERBB3. Our study has revealed a bona fide tumor‐promoting role for ERK3 using genetically engineered mouse models. Together with previous findings showing the roles of ERK3 in cultured cells and in a xenograft lung tumor model, our findings corroborate that ERK3 acts as an oncoprotein in promoting LUAD development and progression.
Collapse
Affiliation(s)
- Sreeram Vallabhaneni
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, China.,Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Marion Morel
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jixin Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, China.,Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park (RTP), NC, USA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
11
|
Zhang Q, Zhong C, Duan S. The tumorigenic function of LINC00858 in cancer. Biomed Pharmacother 2021; 143:112235. [PMID: 34649358 DOI: 10.1016/j.biopha.2021.112235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNA (lncRNA) plays an important regulatory role in the occurrence and development of human cancer. LINC00858 is a newly discovered lncRNA with a length of 2685 nucleotides. Existing studies have shown that LINC00858 has abnormally high expression levels in malignant tumors such as colorectal cancer, gastric cancer, hepatocellular carcinoma, lung cancer, non-small cell lung cancer, ovarian cancer, osteosarcoma, retinoblastoma, Wilms tumor, bladder cancer, and cervical cancer. By regulating a variety of microRNAs, LINC00858 can affect tumor cell proliferation, invasion, metastasis, and apoptosis. Related research also found that LINC00858 is related to nuclear transcription factor/protein kinase and gene methylation. The aberrant expression of LINC00858 is related to the prognosis and clinicopathological characteristics of a variety of tumors. Overexpressed LINC00858 is closely related to the clinical stage, lymph node metastasis, and distant metastasis of cancer, including colorectal cancer, gastric cancer, non-small cell lung cancer, ovarian cancer, and Wilms tumor. Also, it is summarized that LINC00858 can regulate MAPK and TGF-β signaling pathways. This review shows that LINC00858 as an important oncogene can promote tumorigenesis and cancer development.
Collapse
Affiliation(s)
- Qiudan Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China; Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
12
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, Krug K, Clark DJ, Schnaubelt M, Chen L, da Veiga Leprevost F, Eguez RV, Yang W, Pan J, Wen B, Dou Y, Jiang W, Liao Y, Shi Z, Terekhanova NV, Cao S, Lu RJH, Li Y, Liu R, Zhu H, Ronning P, Wu Y, Wyczalkowski MA, Easwaran H, Danilova L, Mer AS, Yoo S, Wang JM, Liu W, Haibe-Kains B, Thiagarajan M, Jewell SD, Hostetter G, Newton CJ, Li QK, Roehrl MH, Fenyö D, Wang P, Nesvizhskii AI, Mani DR, Omenn GS, Boja ES, Mesri M, Robles AI, Rodriguez H, Bathe OF, Chan DW, Hruban RH, Ding L, Zhang B, Zhang H. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 2021; 184:5031-5052.e26. [PMID: 34534465 PMCID: PMC8654574 DOI: 10.1016/j.cell.2021.08.023] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/19/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Liwei Cao
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - T Mamie Lih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianbo Pan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadezhda V Terekhanova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Peter Ronning
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Hariharan Easwaran
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ludmila Danilova
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Arvind Singh Mer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Seungyeul Yoo
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | - Joshua M Wang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael H Roehrl
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Pei Wang
- Sema4, a Mount Sinai venture, Stamford, CT 06902, USA
| | | | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21287, USA.
| |
Collapse
|
14
|
Grädler U, Busch M, Leuthner B, Raba M, Burgdorf L, Lehmann M, Linde N, Esdar C. Biochemical, cellular and structural characterization of novel and selective ERK3 inhibitors. Bioorg Med Chem Lett 2020; 30:127551. [DOI: 10.1016/j.bmcl.2020.127551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
|
15
|
Schröder M, Filippakopoulos P, Schwalm MP, Ferrer CA, Drewry DH, Knapp S, Chaikuad A. Crystal Structure and Inhibitor Identifications Reveal Targeting Opportunity for the Atypical MAPK Kinase ERK3. Int J Mol Sci 2020; 21:E7953. [PMID: 33114754 PMCID: PMC7663056 DOI: 10.3390/ijms21217953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3), known also as mitogen-activated protein kinase 6 (MAPK6), is an atypical member of MAPK kinase family, which has been poorly studied. Little is known regarding its function in biological processes, yet this atypical kinase has been suggested to play important roles in the migration and invasiveness of certain cancers. The lack of tools, such as a selective inhibitor, hampers the study of ERK3 biology. Here, we report the crystal structure of the kinase domain of this atypical MAPK kinase, providing molecular insights into its distinct ATP binding pocket compared to the classical MAPK ERK2, explaining differences in their inhibitor binding properties. Medium-scale small molecule screening identified a number of inhibitors, several of which unexpectedly exhibited remarkably high inhibitory potencies. The crystal structure of CLK1 in complex with CAF052, one of the most potent inhibitors identified for ERK3, revealed typical type-I binding mode of the inhibitor, which by structural comparison could likely be maintained in ERK3. Together with the presented structural insights, these diverse chemical scaffolds displaying both reversible and irreversible modes of action, will serve as a starting point for the development of selective inhibitors for ERK3, which will be beneficial for elucidating the important functions of this understudied kinase.
Collapse
Affiliation(s)
- Martin Schröder
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Martin P. Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| | - Carla A. Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.A.F.); (D.H.D.)
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; (C.A.F.); (D.H.D.)
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
- German Cancer network DKTK and Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany;
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany;
| |
Collapse
|
16
|
The C-Terminus Tail Regulates ERK3 Kinase Activity and Its Ability in Promoting Cancer Cell Migration and Invasion. Int J Mol Sci 2020; 21:ijms21114044. [PMID: 32516969 PMCID: PMC7312006 DOI: 10.3390/ijms21114044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family. It harbors a kinase domain in the N-terminus and a long C-terminus extension. The C-terminus extension comprises a conserved in ERK3 and ERK4 (C34) region and a unique C-terminus tail, which was shown to be required for the interaction of ERK3 with the cytoskeletal protein septin 7. Recent studies have elucidated the role of ERK3 signaling in promoting the motility and invasiveness of cancer cells. However, little is known about the intramolecular regulation of the enzymatic activity and cellular functions of ERK3. In this study, we investigated the role of the elongated C-terminus extension in regulating ERK3 kinase activity and its ability to promote cancer cell migration and invasion. Our study revealed that the deletion of the C-terminus tail greatly diminishes the ability of ERK3 to promote the migration and invasion of lung cancer cells. We identified two molecular mechanisms underlying this effect. Firstly, the deletion of the C-terminus tail decreases the kinase activity of ERK3 towards substrates, including the oncogenic protein steroid receptor co-activator 3 (SRC-3), an important downstream target for ERK3 signaling in cancer. Secondly, in line with the previous finding that the C-terminus tail mediates the interaction of ERK3 with septin 7, we found that the depletion of septin 7 abolished the ability of ERK3 to promote migration, indicating that septin 7 acts as a downstream effector for ERK3-induced cancer cell migration. Taken together, the findings of this study advance our understanding of the molecular regulation of ERK3 signaling by unraveling the role of the C-terminus tail in regulating ERK3 kinase activity and functions in cancer cells. These findings provide useful insights for the development of therapeutic agents targeting ERK3 signaling in cancer.
Collapse
|
17
|
Venkadakrishnan VB, Ben-Salem S, Heemers HV. AR-dependent phosphorylation and phospho-proteome targets in prostate cancer. Endocr Relat Cancer 2020; 27:R193-R210. [PMID: 32276264 PMCID: PMC7583603 DOI: 10.1530/erc-20-0048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in Western men. Because androgens drive CaP by activating the androgen receptor (AR), blocking AR's ligand activation, known as androgen deprivation therapy (ADT), is the default treatment for metastatic CaP. Despite an initial remission, CaP eventually develops resistance to ADT and progresses to castration-recurrent CaP (CRPC). CRPC continues to rely on aberrantly activated AR that is no longer inhibited effectively by available therapeutics. Interference with signaling pathways downstream of activated AR that mediate aggressive CRPC behavior may lead to alternative CaP treatments. Developing such therapeutic strategies requires a thorough mechanistic understanding of the most clinically relevant and druggable AR-dependent signaling events. Recent proteomics analyses of CRPC clinical specimens indicate a shift in the phosphoproteome during CaP progression. Kinases and phosphatases represent druggable entities, for which clinically tested inhibitors are available, some of which are incorporated already in treatment plans for other human malignancies. Here, we reviewed the AR-associated transcriptome and translational regulon, and AR interactome involved in CaP phosphorylation events. Novel and for the most part mutually exclusive AR-dependent transcriptional and post-transcriptional control over kinase and phosphatase expression was found, with yet other phospho-regulators interacting with AR. The multiple mechanisms by which AR can shape and fine-tune the CaP phosphoproteome were reflected in diverse aspects of CaP biology such as cell cycle progression and cell migration. Furthermore, we examined the potential, limitations and challenges of interfering with AR-mediated phosphorylation events as alternative strategy to block AR function during CaP progression.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
18
|
Nguyen EV, Pereira BA, Lawrence MG, Ma X, Rebello RJ, Chan H, Niranjan B, Wu Y, Ellem S, Guan X, Wu J, Skhinas JN, Cox TR, Risbridger GP, Taylor RA, Lister NL, Daly RJ. Proteomic Profiling of Human Prostate Cancer-associated Fibroblasts (CAF) Reveals LOXL2-dependent Regulation of the Tumor Microenvironment. Mol Cell Proteomics 2019; 18:1410-1427. [PMID: 31061140 PMCID: PMC6601211 DOI: 10.1074/mcp.ra119.001496] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Indexed: 12/31/2022] Open
Abstract
In prostate cancer, cancer-associated fibroblasts (CAF) exhibit contrasting biological properties to non-malignant prostate fibroblasts (NPF) and promote tumorigenesis. Resolving intercellular signaling pathways between CAF and prostate tumor epithelium may offer novel opportunities for research translation. To this end, the proteome and phosphoproteome of four pairs of patient-matched CAF and NPF were characterized to identify discriminating proteomic signatures. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with a hyper reaction monitoring data-independent acquisition (HRM-DIA) workflow. Proteins that exhibited a significant increase in CAF versus NPF were enriched for the functional categories "cell adhesion" and the "extracellular matrix." The CAF phosphoproteome exhibited enhanced phosphorylation of proteins associated with the "spliceosome" and "actin binding." STRING analysis of the CAF proteome revealed a prominent interaction hub associated with collagen synthesis, modification, and signaling. It contained multiple collagens, including the fibrillar types COL1A1/2 and COL5A1; the receptor tyrosine kinase discoidin domain-containing receptor 2 (DDR2), a receptor for fibrillar collagens; and lysyl oxidase-like 2 (LOXL2), an enzyme that promotes collagen crosslinking. Increased activity and/or expression of LOXL2 and DDR2 in CAF were confirmed by enzymatic assays and Western blotting analyses. Pharmacological inhibition of CAF-derived LOXL2 perturbed extracellular matrix (ECM) organization and decreased CAF migration in a wound healing assay. Further, it significantly impaired the motility of co-cultured RWPE-2 prostate tumor epithelial cells. These results indicate that CAF-derived LOXL2 is an important mediator of intercellular communication within the prostate tumor microenvironment and is a potential therapeutic target.
Collapse
Affiliation(s)
- Elizabeth V Nguyen
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Brooke A Pereira
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Mitchell G Lawrence
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Xiuquan Ma
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Richard J Rebello
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia
| | - Howard Chan
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Birunthi Niranjan
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Yunjian Wu
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology
| | - Stuart Ellem
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; **School of Health and Wellbeing, University of Southern Queensland, Ipswich, Queensland, Australia
| | - Xiaoqing Guan
- ‡‡Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianmin Wu
- ‡‡Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Joanna N Skhinas
- §§The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
| | - Thomas R Cox
- §§The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia;; ¶¶St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gail P Risbridger
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia;; ‖‖Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Renea A Taylor
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ‖Cancer Research Division, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Parkville, Australia;; ‡‡‡Physiology, Monash University, Clayton, Australia
| | - Natalie L Lister
- From the ‡Cancer Program, Biomedicine Discovery Institute,; ¶Anatomy and Developmental Biology, and
| | - Roger J Daly
- From the ‡Cancer Program, Biomedicine Discovery Institute,; Departments of §Biochemistry and Molecular Biology,.
| |
Collapse
|
19
|
Germ Line Deletion Reveals a Nonessential Role of Atypical Mitogen-Activated Protein Kinase 6/Extracellular Signal-Regulated Kinase 3. Mol Cell Biol 2019; 39:MCB.00516-18. [PMID: 30642948 DOI: 10.1128/mcb.00516-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/09/2018] [Indexed: 01/02/2023] Open
Abstract
Mitogen-activated protein kinase 6/extracellular signal-regulated kinase 3 (MAPK6/ERK3) is an atypical member of the MAPKs. An essential role has been suggested by the perinatal lethal phenotype of ERK3 knockout mice carrying a lacZ insertion in exon 2 due to pulmonary dysfunction and by defects in function, activation, and positive selection of T cells. To study the role of ERK3 in vivo, we generated mice carrying a conditional Erk3 allele with exon 3 flanked by loxP sites. Loss of ERK3 protein was validated after deletion of Erk3 in the female germ line using zona pellucida 3 (Zp3)-cre and a clear reduction of the protein kinase MK5 is detected, providing the first evidence for the existence of the ERK3/MK5 signaling complex in vivo In contrast to the previously reported Erk3 knockout phenotype, these mice are viable and fertile and do not display pulmonary hypoplasia, acute respiratory failure, abnormal T-cell development, reduction of thymocyte numbers, or altered T-cell selection. Hence, ERK3 is dispensable for pulmonary and T-cell functions. The perinatal lethality and lung and T-cell defects of the previous ERK3 knockout mice are likely due to ERK3-unrelated effects of the inserted lacZ-neomycin resistance cassette. The knockout mouse of the closely related atypical MAPK ERK4/MAPK4 is also normal, suggesting redundant functions of both protein kinases.
Collapse
|
20
|
Reevaluation of the Role of Extracellular Signal-Regulated Kinase 3 in Perinatal Survival and Postnatal Growth Using New Genetically Engineered Mouse Models. Mol Cell Biol 2019; 39:MCB.00527-18. [PMID: 30642949 DOI: 10.1128/mcb.00527-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/06/2019] [Indexed: 11/20/2022] Open
Abstract
The physiological functions of the atypical mitogen-activated protein kinase extracellular signal-regulated kinase 3 (ERK3) remain poorly characterized. Previous analysis of mice with a targeted insertion of the lacZ reporter in the Mapk6 locus (Mapk6lacZ ) showed that inactivation of ERK3 in Mapk6lacZ mice leads to perinatal lethality associated with intrauterine growth restriction, defective lung maturation, and neuromuscular anomalies. To further explore the role of ERK3 in physiology and disease, we generated novel mouse models expressing a catalytically inactive (Mapk6KD ) or conditional (Mapk6Δ ) allele of ERK3. Surprisingly, we found that mice devoid of ERK3 kinase activity or expression survive the perinatal period without any observable lung or neuromuscular phenotype. ERK3 mutant mice reached adulthood, were fertile, and showed no apparent health problem. However, analysis of growth curves revealed that ERK3 kinase activity is necessary for optimal postnatal growth. To gain insight into the genetic basis underlying the discrepancy in phenotypes of different Mapk6 mutant mouse models, we analyzed the regulation of genes flanking the Mapk6 locus by quantitative PCR. We found that the expression of several Mapk6 neighboring genes is deregulated in Mapk6lacZ mice but not in Mapk6KD or Mapk6Δ mutant mice. Our genetic analysis suggests that off-target effects of the targeting construct on local gene expression are responsible for the perinatal lethality phenotype of Mapk6lacZ mutant mice.
Collapse
|
21
|
The Expression Pattern of p120-Catenin is Associated With Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. Appl Immunohistochem Mol Morphol 2018; 26:64-70. [PMID: 27299185 DOI: 10.1097/pai.0000000000000381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous research connects p120-catenin (p120ctn) with epidermal growth factor receptor (EGFR) signaling pathways, which presents a potential role for p120ctn in EGFR tyrosine kinase inhibitor (EGFR-TKIs) resistance. However, a direct correlation between the expression pattern of p120ctn in solid tumors and the therapeutic effect of EGFR-TKIs has not yet been demonstrated. METHODS AND RESULTS In this study, the expression pattern of p120ctn was examined in patients with the EGFR gene mutation in lung adenocarcinoma, and p120ctn was found to have different patterns of expression even in the same mutation type. The therapeutic effect of EGFR-TKIs was investigated in these patients, and patients with an abnormal expression of p120ctn were found to be more likely to have drug resistance. A gefitinib-resistant lung cancer cell line was established and alterations in the p120ctn expression pattern were also observed in vitro. CONCLUSIONS Therefore, this study demonstrates that the expression pattern of p120ctn is associated with acquired resistance to EGFR-TKIs in lung cancer, providing information toward addressing the problem of drug resistance in patients with non-small cell lung cancer.
Collapse
|
22
|
Elkhadragy L, Alsaran H, Morel M, Long W. Activation loop phosphorylation of ERK3 is important for its kinase activity and ability to promote lung cancer cell invasiveness. J Biol Chem 2018; 293:16193-16205. [PMID: 30166347 DOI: 10.1074/jbc.ra118.003699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
ERK3 is an atypical mitogen-activated protein kinase (MAPK) that has recently gained interest for its role in promoting cancer cell migration and invasion. However, the molecular regulation of ERK3 functions in cancer cells is largely unknown. ERK3 has a single phospho-acceptor site (Ser189) in its activation motif rather than the TXY conserved in conventional MAPKs such as ERK1/2. Although dual phosphorylation of the TXY motif is known to be critical for the activation of conventional MAPKs, the role of Ser189 phosphorylation in ERK3 activity and its function in cancer cells remain elusive. In this study, we revealed that activation loop phosphorylation is important for ERK3 in promoting cancer cell invasiveness, as the S189A mutation greatly decreased the ability of ERK3 to promote migration and invasion of lung cancer cells. Interestingly, a catalytically inactive ERK3 mutant was still capable of increasing migration and invasion, although to a lesser extent compared with WT ERK3, suggesting that ERK3 promotes cancer cell invasiveness by both kinase-dependent and kinase-independent mechanisms. To elucidate how the S189A mutation reduces the invasiveness-promoting ability of ERK3, we tested its effect on the kinase activity of ERK3 toward steroid receptor coactivator 3 (SRC3), a recently identified substrate of ERK3 critical for cancer cell invasiveness. Compared with ERK3, ERK3-S189A exhibited a dramatic decrease in kinase activity toward SRC3 and a concomitantly reduced ability to stimulate matrix metalloproteinase expression. Taken together, our study unravels the importance of Ser189 phosphorylation for intramolecular regulation of ERK3 kinase activity and invasiveness-promoting ability in lung cancer cells.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Hadel Alsaran
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Marion Morel
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Weiwen Long
- From the Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
23
|
Singh T, Agarwal T, Ghosh SK. Identification and functional analysis of a stress-responsive MAPK15 in Entamoeba invadens. Mol Biochem Parasitol 2018; 222:34-44. [PMID: 29730364 DOI: 10.1016/j.molbiopara.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023]
Abstract
E. histolytica, a protozoan parasite is the causative agent of amoebiasis in human beings. It exists in two different forms - the motile trophozoite form which undergoes encystation under starvation conditions to form the non-motile, osmotically resistant cyst form. Cellular stresses stimulate several signaling cascades which assist the parasite in counter-attacking such conditions thereby, promoting cell survival. To study the stress-associated pathways activated during encystation, we have used Entamoeba invadens, a reptilian parasite as a model organism because of its ability to undergo encystation under in vitro conditions. In this study, we have identified a stress-responsive MAPK which gets upregulated under different stress conditions, including encystation. Sequence analysis and phylogenetic classification show that the MAPK belongs to the atypical MAPK15 family (henceforth, named EiMAPK15), which does not require an upstream MAPKK for its phosphorylation and activation. The in vitro kinase activity of recombinant EiMAPK15 exhibits its auto-phosphorylation ability. Immunolocalization studies reveal that the protein is mainly cytosolic under normal growing conditions but gets translocated into the nucleus under stress conditions. Knockdown of EiMAPK15 using double-stranded RNA was found to reduce the expression of other encystation-specific genes which in turn, resulted in the decline of the overall encystation efficiency of the cells. Overall, the present work has laid the platform for further characterization of this important MAPK gene in Entamoeba invadens.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
24
|
Alsaran H, Elkhadragy L, Shakya A, Long W. L290P/V mutations increase ERK3's cytoplasmic localization and migration/invasion-promoting capability in cancer cells. Sci Rep 2017; 7:14979. [PMID: 29101390 PMCID: PMC5670241 DOI: 10.1038/s41598-017-15135-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/20/2017] [Indexed: 12/24/2022] Open
Abstract
Protein kinases are frequently mutated in human cancers, which leads to altered signaling pathways and contributes to tumor growth and progression. ERK3 is an atypical mitogen-activated protein kinase (MAPK) containing an S-E-G activation motif rather than the conserved T-X-Y motif in conventional MAPKs such as ERK1/2. Recent studies have revealed important roles for ERK3 in cancers. ERK3 promotes cancer cell migration/invasion and tumor metastasis, and its expression is upregulated in multiple cancers. Little is known, however, regarding ERK3 mutations in cancers. In the present study, we functionally and mechanistically characterized ERK3 L290P/V mutations, which are located within ERK3’s kinase domain, and are shown to exist in several cancers including lung cancer and colon cancer. We found that in comparison with wild type ERK3, both L290P and L290V mutants have greatly increased activity in promoting cancer cell migration and invasion, but have little impact on ERK3’s role in cell proliferation. Mechanistically, while they have no clear effect on kinase activity, L290P/V mutations enhance ERK3’s cytoplasmic localization by increasing the interaction with the nuclear export factor CRM1. Our findings suggest that L290P/V mutations of ERK3 may confer increased invasiveness to cancers.
Collapse
Affiliation(s)
- Hadel Alsaran
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Lobna Elkhadragy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Astha Shakya
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA.
| |
Collapse
|
25
|
Sahadevan P, Allen BG. MK5: A novel regulator of cardiac fibroblast function? IUBMB Life 2017; 69:785-794. [PMID: 28941148 DOI: 10.1002/iub.1677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022]
Abstract
MAP kinase-activated protein kinases (MKs), protein serine/threonine kinases downstream of the MAPKs, regulate a number of biological functions. MK5 was initially identified as a substrate for p38 MAPK but subsequent studies revealed that MK5 activity is regulated by atypical MAPKs ERK3 and ERK4. However, the roles of these MAPKs in activating MK5 remain controversial. The interactome and physiological function of MK5 are just beginning to be understood. Here, we provide an overview of the structure-function of MK5 including recent progress in determining its role in cardiac structure and function. The cardiac phenotype of MK5 haplodeficient mice, and the effect of reduced MK5 expression on cardiac remodeling, is also discussed. © 2017 IUBMB Life, 69(10):785-794, 2017.
Collapse
Affiliation(s)
- Pramod Sahadevan
- Department of Biochemistry and Molecular Medicine, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada
| | - Bruce G Allen
- Department of Biochemistry and Molecular Medicine, Université de Montréal and Montreal Heart Institute, Montréal, Québec, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Deubiquitinating Enzyme USP20 Regulates Extracellular Signal-Regulated Kinase 3 Stability and Biological Activity. Mol Cell Biol 2017; 37:MCB.00432-16. [PMID: 28167606 DOI: 10.1128/mcb.00432-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical mitogen-activated protein kinase (MAPK) whose regulatory mechanisms and biological functions remain superficially understood. Contrary to most protein kinases, ERK3 is a highly unstable protein that is subject to dynamic regulation by the ubiquitin-proteasome system. However, the effectors that control ERK3 ubiquitination and degradation are unknown. In this study, we carried out an unbiased functional loss-of-function screen of the human deubiquitinating enzyme (DUB) family and identified ubiquitin-specific protease 20 (USP20) as a novel ERK3 regulator. USP20 interacts with and deubiquitinates ERK3 both in vitro and in intact cells. The overexpression of USP20 results in the stabilization and accumulation of the ERK3 protein, whereas USP20 depletion reduces the levels of ERK3. We found that the expression levels of ERK3 correlate with those of USP20 in various cellular contexts. Importantly, we show that USP20 regulates actin cytoskeleton organization and cell migration in a manner dependent on ERK3 expression. Our results identify USP20 as a bona fide regulator of ERK3 stability and physiological functions.
Collapse
|
27
|
Perander M, Al-Mahdi R, Jensen TC, Nunn JAL, Kildalsen H, Johansen B, Gabrielsen M, Keyse SM, Seternes OM. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Sci Rep 2017; 7:43471. [PMID: 28252035 PMCID: PMC5333157 DOI: 10.1038/srep43471] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022] Open
Abstract
The atypical MAP kinases ERK3 and ERK4 are activated by phosphorylation of a serine residue lying within the activation loop signature sequence S-E-G. However, the regulation of ERK3 and ERK4 phosphorylation and activity is poorly understood. Here we report that the inducible nuclear dual-specificity MAP kinase phosphatase (MKP) DUSP2, a known regulator of the ERK and p38 MAPKs, is unique amongst the MKP family in being able to bind to both ERK3 and ERK4. This interaction is mediated by a conserved common docking (CD) domain within the carboxyl-terminal domains of ERK3 and ERK4 and the conserved kinase interaction motif (KIM) located within the non-catalytic amino terminus of DUSP2. This interaction is direct and results in the dephosphorylation of ERK3 and ERK4 and the stabilization of DUSP2. In the case of ERK4 its ability to stabilize DUSP2 requires its kinase activity. Finally, we demonstrate that expression of DUSP2 inhibits ERK3 and ERK4-mediated activation of its downstream substrate MK5. We conclude that the activity of DUSP2 is not restricted to the classical MAPK pathways and that DUSP2 can also regulate the atypical ERK3/4-MK5 signalling pathway in mammalian cells.
Collapse
Affiliation(s)
- Maria Perander
- Department of Medical Biology, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Rania Al-Mahdi
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Thomas C Jensen
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jennifer A L Nunn
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanne Kildalsen
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Bjarne Johansen
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mads Gabrielsen
- Stress Response Laboratory, Division of Cancer Research, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Stephen M Keyse
- Stress Response Laboratory, Division of Cancer Research, Jacqui Wood Cancer Centre, James Arrot Drive, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Ole-Morten Seternes
- Department of Pharmacy UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
28
|
Tang H, Xue G. Major Physiological Signaling Pathways in the Regulation of Cell Proliferation and Survival. Handb Exp Pharmacol 2017; 249:13-30. [PMID: 28233182 DOI: 10.1007/164_2017_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Multiple signaling pathways regulate cell proliferation and survival and are therefore important for maintaining homeostasis of development. The balance between cell growth and death is achieved through orchestrated signal transduction pathways mediated by complex functional interactions between signaling axes, among which, PI3K/Akt and Ras/MAPK as well as JAK/STAT play a dominant role in promoting cell proliferation, differentiation, and survival. In clinical cancer therapies, drug resistance is the major challenge that occurs in almost all targeted therapeutic strategies. Recent advances in research have suggested that the intrinsic pro-survival signaling crosstalk is the driving force in acquired resistance to a targeted therapy, which may be abolished by interfering with the cross-reacting network.
Collapse
Affiliation(s)
- Huifang Tang
- Department of Pharmacology, Zhejiang University, School of Basic Medical Sciences, Hangzhou, 310058, China.
| | - Gongda Xue
- Department of Biomedicine, University Hospital Basel, Basel, 4031, Switzerland
| |
Collapse
|
29
|
Abstract
The limited regenerative capacity of neuronal cells requires tight orchestration of cell death and survival regulation in the context of longevity, age-associated diseases as well as during the development of the nervous system. Subordinate to genetic networks epigenetic mechanisms like DNA methylation and histone modifications are involved in the regulation of neuronal development, function and aging. DNA methylation by DNA methyltransferases (DNMTs), mostly correlated with gene silencing, is a dynamic and reversible process. In addition to their canonical actions performing cytosine methylation, DNMTs influence gene expression by interactions with histone modifying enzymes or complexes increasing the complexity of epigenetic transcriptional networks. DNMTs are expressed in neuronal progenitors, post-mitotic as well as adult neurons. In this review, we discuss the role and mode of actions of DNMTs including downstream networks in the regulation of neuronal survival in the developing and aging nervous system and its relevance for associated disorders.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
30
|
Shen XF, Teng Y, Sha KH, Wang XY, Yang XL, Guo XJ, Ren LB, Wang XY, Li J, Huang N. Dietary flavonoid luteolin attenuates uropathogenic Escherichia. Coli invasion of the urinary bladder. Biofactors 2016; 42:674-685. [PMID: 27452812 DOI: 10.1002/biof.1314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/18/2016] [Indexed: 02/06/2023]
Abstract
Uropathogenic Escherichia coli (UPEC), the primary uropathogen, adhere to and invade bladder epithelial cells (BECs) to establish a successful urinary tract infection (UTI). Emerging antibiotic resistance requires novel nonantibiotic strategies. Our previous study indicated that luteolin attenuated adhesive and invasive abilities as well as cytotoxicity of UPEC on T24 BECs through down-regulating UPEC virulence factors. The aims of this study were to investigate the possible function of the flavonoid luteolin and the mechanisms by which luteolin functions in UPEC-induced bladder infection. Firstly, obvious reduction of UPEC invasion but not adhesion were observed in luteolin-pretreated 5637 and T24 BECs sa well as mice bladder via colony counting. The luteolin-mediated suppression of UPEC invasion was linked to elevated levels of intracellular cAMP induced by inhibiting the activity of cAMP-phosphodiesterases (cAMP-PDEs), which resulting activation of protein kinase A, thereby negatively regulating Rac1-GTPase-mediated actin polymerization. Furthermore, p38 MAPK was primarily and ERK1/2 was partially involved in luteolin-mediated suppression of UPEC invasion and actin polymerization, as confirmed with chemical activators of p38 MAPK and ERK1/2. These data suggest that luteolin can protect bladder epithelial cells against UPEC invasion. Therefore, luteolin or luteolin-rich products as dietary supplement may be beneficial to control the UPEC-related bladder infections, and cAMP-PDEs may be a therapy target for UTIs treatment. © 2016 BioFactors, 42(6):674-685, 2016.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan Teng
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Kai-Hui Sha
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xin-Yuan Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiao-Long Yang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiao-Juan Guo
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lai-Bin Ren
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiao-Ying Wang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Research Unit of Infection and Immunity, Department of Pathophysiology, West China College of Basic and Forensic Medicine, Sichuan University, Chengdu, China
- Sichuan University 985 Project-Science and Technology Innovation Platform for Novel Drug Development, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Al-Mahdi R, Babteen N, Thillai K, Holt M, Johansen B, Wetting HL, Seternes OM, Wells CM. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adh Migr 2016; 9:483-94. [PMID: 26588708 PMCID: PMC4955959 DOI: 10.1080/19336918.2015.1112485] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ERK3 is an atypical Mitogen-activated protein kinase (MAPK6). Despite the fact that the Erk3 gene was originally identified in 1991, its function is still unknown. MK5 (MAP kinase- activated protein kinase 5) also called PRAK is the only known substrate for ERK3. Recently, it was found that group I p21 protein activated kinases (PAKs) are critical effectors of ERK3. PAKs link Rho family of GTPases to actin cytoskeletal dynamics and are known to be involved in the regulation of cell adhesion and migration. In this study we demonstrate that ERK3 protein levels are elevated as MDA-MB-231 breast cancer cells adhere to collagen I which is concomitant with changes in cellular morphology where cells become less well spread following nascent adhesion formation. During this early cellular adhesion event we observe that the cells retain protrusive activity while reducing overall cellular area. Interestingly exogenous expression of ERK3 delivers a comparable reduction in cell spread area, while depletion of ERK3 expression increases cell spread area. Importantly, we have detected a novel specific endogenous ERK3 localization at the cell periphery. Furthermore we find that ERK3 overexpressing cells exhibit a rounded morphology and increased cell migration speed. Surprisingly, exogenous expression of a kinase inactive mutant of ERK3 phenocopies ERK3 overexpression, suggesting a novel kinase independent function for ERK3. Taken together our data suggest that as cells initiate adhesion to matrix increasing levels of ERK3 at the cell periphery are required to orchestrate cell morphology changes which can then drive migratory behavior.
Collapse
Affiliation(s)
- Rania Al-Mahdi
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Nouf Babteen
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Kiruthikah Thillai
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Mark Holt
- c Randall Division for Cell and Molecular Biophysics and Cardiovascular Division; King's College London ; London , UK
| | - Bjarne Johansen
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Hilde Ljones Wetting
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Ole-Morten Seternes
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Claire M Wells
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| |
Collapse
|
32
|
Deng WW, Wu L, Bu LL, Liu JF, Li YC, Ma SR, Yu GT, Mao L, Zhang WF, Sun ZJ. PAK2 promotes migration and proliferation of salivary gland adenoid cystic carcinoma. Am J Transl Res 2016; 8:3387-3397. [PMID: 27648129 PMCID: PMC5009391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
P21 activated kinase 2 (PAK2) is a member of Group I PAKs family and highly expressed in various cancers. Current studies have demonstrated that PAK2 played a pivotal role in tumor progression. However, the role of PAK2 in salivary adenoid cystic carcinoma is still unclear. This study aims to explore the expression and the function of PAK2 in AdCC. Human salivary gland tissue microarray, including 18 normal salivary glands (NSG), 12 pleomorphic adenoma (PMA) and 72 AdCC, and immunohistochemistry were used to evaluate the expression of PAK2. The result showed that PAK2 was significantly increased in AdCC compared with NSG and PMA. Then the Pearson correlation analysis using serial tissue sections showed a close correlation of PAK2 with Cyclin D1, Phospho-STAT3 at Tyrosine 705 (p-STAT3) and Ki-67. Further in vitro study utilizing PAK2 knockdown via siRNA transfection revealed significantly reduced migration and proliferation of AdCC cell lines compared with control group. Knockdown of PAK2 decreased the expression of Cyclin D1 in AdCC cell lines. In addition, the inhibition of STAT3 reduced the expression of PAK2 in AdCC cell lines. These findings suggested that PAK2 promotes AdCC cell migration and proliferation and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Yi-Cun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan UniversityWuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| |
Collapse
|
33
|
Barrows D, He JZ, Parsons R. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs). J Biol Chem 2016; 291:20042-54. [PMID: 27481946 DOI: 10.1074/jbc.m116.723882] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and the Department of Pharmacology, Columbia University, New York, New York 10032
| | - John Z He
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| |
Collapse
|
34
|
Gaestel M. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges. Front Cell Dev Biol 2016; 3:88. [PMID: 26779481 PMCID: PMC4705221 DOI: 10.3389/fcell.2015.00088] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/18/2015] [Indexed: 11/14/2022] Open
Abstract
Downstream of MAPKs, such as classical/atypical ERKs and p38 MAPKs, but not of JNKs, signaling is often mediated by protein kinases which are phosphorylated and activated by MAPKs and, therefore, designated MAPK-activated protein kinases (MAPKAPKs). Recently, novel insights into the specificity of the assembly of MAPK/MAPKAPK hetero-dimeric protein kinase signaling complexes have been gained. In addition, new functional aspects of MKs have been described and established functions have been challenged. This short review will summarize recent developments including the linear motif (LM) in MKs, the ERK-independent activation of RSK, the RSK-independent effects of some RSK-inhibitors and the challenged role of MK5/PRAK in tumor suppression.
Collapse
Affiliation(s)
- Matthias Gaestel
- Department of Biochemistry, Hannover Medical University Hannover, Germany
| |
Collapse
|
35
|
Barrows D, Schoenfeld SM, Hodakoski C, Silkov A, Honig B, Couvillon A, Shymanets A, Nürnberg B, Asara JM, Parsons R. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem 2015; 290:28915-31. [PMID: 26438819 DOI: 10.1074/jbc.m115.668244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, the Department of Pharmacology, Columbia University, New York, New York 10032
| | - Sarah M Schoenfeld
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Cindy Hodakoski
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Antonina Silkov
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | - Aliaksei Shymanets
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - Bernd Nürnberg
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - John M Asara
- the Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
36
|
Sirois J, Daudelin JF, Boulet S, Marquis M, Meloche S, Labrecque N. The atypical MAPK ERK3 controls positive selection of thymocytes. Immunology 2015; 145:161-9. [PMID: 25521218 DOI: 10.1111/imm.12433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/30/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3 )is an atypical member of the mitogen-activated protein kinase (MAPK) family. We have previously shown that ERK3 is expressed during thymocyte differentiation and that its expression is induced in mature peripheral T cells following activation of ERK1/2 by T-cell receptor (TCR) signalling. Herein, we have investigated whether ERK3 expression is required for proper T-cell selection. Using a knock-in mouse model in which the coding sequence of ERK3 is replaced by the gene encoding for the β-galactosidase reporter, we show that ERK3 is expressed by double-positive (DP) thymocytes undergoing positive selection. In ERK3-deficient mice with a polyclonal TCR repertoire, we observe a decrease in positive selection. This reduction in positive selection was also observed when ERK3-deficient mice were backcrossed to class I- and class II-restricted TCR transgenic mice. Furthermore, the response of DP thymocytes to in vitro TCR stimulation was strongly reduced in ERK3-deficient mice. Together, these results show that ERK3 expression following TCR signalling is critical for proper thymic positive selection.
Collapse
Affiliation(s)
- Julien Sirois
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada; Department of Microbiology, Infection and Immunology, University of Montreal, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Transformation of a normal cell to a cancer cell is caused by mutations in genes that regulate proliferation, apoptosis, and invasion. Small GTPases such as Ras, Rho, Rac and Cdc42 orchestrate many of the signals that are required for malignant transformation. The p21-activated kinases (PAKs) are effectors of Rac and Cdc42. PAKs are a family of serine/threonine protein kinases comprised of six isoforms (PAK1–6), and they play important roles in cytoskeletal dynamics, cell survival and proliferation. They act as key signal transducers in several cancer signaling pathways, including Ras, Raf, NFκB, Akt, Bad and p53. Although PAKs are not mutated in cancers, they are overexpressed, hyperactivated or amplified in several human tumors and their role in cell transformation make them attractive therapeutic targets. This review discusses the evidence that PAK is important for cell transformation and some key signaling pathways it regulates. This review primarily discusses Group I PAKs (PAK1, PAK2 and PAK3) as Group II PAKs (PAK4, PAK5 and PAK6) are discussed elsewhere in this issue (by Minden).
Collapse
Affiliation(s)
- Diana Zi Ye
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
38
|
Field J, Manser E. The PAKs come of age: Celebrating 18 years of discovery. CELLULAR LOGISTICS 2014; 2:54-58. [PMID: 23125949 PMCID: PMC3485743 DOI: 10.4161/cl.22084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein kinases are versatile signaling molecules that are involved in the regulation most physiological responses. The p21-activated kinases (PAKs) can be activated directly by the small GTPases Rac and Cdc42 and are among the best characterized downstream effectors of these Rho proteins. The structure, substrate specificity and functional role of PAKS are evolutionarily conserved from protozoa to mammals. Vertebrate PAKs are particularly important for cytoskeletal remodeling and focal adhesion assembly, thereby contributing to dynamic processes such as cell migration and synaptic plasticity. This issue of Cellular Logistics focuses on the PAK family of kinases, with ten reviews written by researchers currently working in the field. Here in this introductory overview we highlight some of the most interesting recent discoveries regarding PAK biochemistry and biology. The reviews in this issue cover a range of topics including the atomic structures of PAK1 and PAK4, their role in animals as assessed by knockout studies, and how PAKs are likely to contribute to cancer and neurodegenerative diseases. The promise remains that PAK inhibitors will emerge that validate current pre-clinical studies suggesting that blocking PAK activity will positively contribute to human health.
Collapse
Affiliation(s)
- Jeffrey Field
- Department of Pharmacology; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | | |
Collapse
|
39
|
PRAK interacts with DJ-1 and prevents oxidative stress-induced cell death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:735618. [PMID: 25383140 PMCID: PMC4212658 DOI: 10.1155/2014/735618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022]
Abstract
As a core member of p38 MAPK signal transduction pathway, p38 regulated/activated kinase (PRAK) is activated by cellular stresses. However, the function of PRAK and its downstream interacting partner remain undefined. Using a yeast two-hybrid system, we identified DJ-1 as a potential PRAK interacting protein. We further verified that DJ-1 bound to PRAK in vitro and in vivo and colocalized with PRAK in the nuclei of NIH3T3 cells. Furthermore, following H2O2 stimulation the majority of endogenous DJ-1 in PRAK+/+ cells still remained in the nucleus, whereas most DJ-1 in PRAK−/− cells translocated from the nucleus into the cytoplasm, indicating that PRAK is essential for DJ-1 to localize in the nucleus. In addition, PRAK-associated phosphorylation of DJ-1 was observed in vitro and in vivo of H2O2-challenged PRAK+/+ cells. Cytoplasmic translocation of DJ-1 in H2O2-treated PRAK−/− cells lost its ability to sequester Daxx, a death protein, in the nucleus, and as a result, Daxx gained access to the cytoplasm and triggered cell death. These data highlight that DJ-1 is the downstream interacting target for PRAK, and in response to oxidative stress PRAK may exert a cytoprotective effect by facilitating DJ-1 to sequester Daxx in the nucleus, thus preventing cell death.
Collapse
|
40
|
The catalytic activity of the mitogen-activated protein kinase extracellular signal-regulated kinase 3 is required to sustain CD4+ CD8+ thymocyte survival. Mol Cell Biol 2014; 34:3374-87. [PMID: 25002529 DOI: 10.1128/mcb.01701-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family whose function is largely unknown. Given the central role of MAPKs in T cell development, we hypothesized that ERK3 may regulate thymocyte development. Here we have shown that ERK3 deficiency leads to a 50% reduction in CD4(+) CD8(+) (DP) thymocyte number. Analysis of hematopoietic chimeras revealed that the reduction in DP thymocytes is intrinsic to hematopoietic cells. We found that early thymic progenitors seed the Erk3(-/-) thymus and can properly differentiate and proliferate to generate DP thymocytes. However, ERK3 deficiency results in a decrease in the DP thymocyte half-life, associated with a higher level of apoptosis. As a consequence, ERK3-deficient DP thymocytes are impaired in their ability to make successful secondary T cell receptor alpha (TCRα) gene rearrangement. Introduction of an already rearranged TCR transgene restores thymic cell number. We further show that knock-in of a catalytically inactive allele of Erk3 fails to rescue the loss of DP thymocytes. Our results uncover a unique role for ERK3, dependent on its kinase activity, during T cell development and show that this atypical MAPK is essential to sustain DP survival during RAG-mediated rearrangements.
Collapse
|
41
|
Marquis M, Boulet S, Mathien S, Rousseau J, Thébault P, Daudelin JF, Rooney J, Turgeon B, Beauchamp C, Meloche S, Labrecque N. The non-classical MAP kinase ERK3 controls T cell activation. PLoS One 2014; 9:e86681. [PMID: 24475167 PMCID: PMC3903551 DOI: 10.1371/journal.pone.0086681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The classical mitogen-activated protein kinases (MAPKs) ERK1 and ERK2 are activated upon stimulation of cells with a broad range of extracellular signals (including antigens) allowing cellular responses to occur. ERK3 is an atypical member of the MAPK family with highest homology to ERK1/2. Therefore, we evaluated the role of ERK3 in mature T cell response. Mouse resting T cells do not transcribe ERK3 but its expression is induced in both CD4⁺ and CD8⁺ T cells following T cell receptor (TCR)-induced T cell activation. This induction of ERK3 expression in T lymphocytes requires activation of the classical MAPK ERK1 and ERK2. Moreover, ERK3 protein is phosphorylated and associates with MK5 in activated primary T cells. We show that ERK3-deficient T cells have a decreased proliferation rate and are impaired in cytokine secretion following in vitro stimulation with low dose of anti-CD3 antibodies. Our findings identify the atypical MAPK ERK3 as a new and important regulator of TCR-induced T cell activation.
Collapse
Affiliation(s)
- Miriam Marquis
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
| | - Salix Boulet
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Simon Mathien
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Justine Rousseau
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Paméla Thébault
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | | | - Julie Rooney
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
| | - Benjamin Turgeon
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | | | - Sylvain Meloche
- Department of Pharmacology and Molecular Biology, University of Montreal, Quebec, Canada
- Institute of Research in Immunology and Cancer, University of Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Microbiology, Infectiology and Immunology, University of Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
42
|
Abstract
p21-Activated kinases (PAKs) are positioned at the nexus of several oncogenic signalling pathways. Overexpression or mutational activation of PAK isoforms frequently occurs in various human tumours, and recent data suggest that excessive PAK activity drives many of the cellular processes that are the hallmarks of cancer. In this Review, we discuss the mechanisms of PAK activation in cancer, the key substrates that mediate the developmental and oncogenic effects of this family of kinases, and how small-molecule inhibitors of these enzymes might be best developed and deployed for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Radu
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Galina Semenova
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Rachelle Kosoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- Cancer Biology program, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- To whom correspondence should be addressed: Jonathan Chernoff, Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA, Tel.: (215) 728 5319; Fax: (215) 728 3616;
| |
Collapse
|
43
|
Chow KT, Timblin GA, McWhirter SM, Schlissel MS. MK5 activates Rag transcription via Foxo1 in developing B cells. ACTA ACUST UNITED AC 2013; 210:1621-34. [PMID: 23878308 PMCID: PMC3727319 DOI: 10.1084/jem.20130498] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The kinase MK5 phosphorylates and activates Foxo1 at serine 215, and this modification is required for Foxo1 to induce Rag transcription. Foxo1 is a critical, direct regulator of Rag (recombination activating gene) transcription during B cell development and is thus essential for the generation of a diverse repertoire of antigen receptors. Although Foxo1 regulation has been widely studied in many cell types, pathways regulating Foxo1 in B cells have not been fully elucidated. By screening a panel of Foxo1 mutants, we identified serine 215 on Foxo1 as a novel phosphorylation site that is essential for the activation of Rag transcription. Mutation of S215 strongly attenuated transactivation of Rag but did not affect most other Foxo1 target genes. We show that MK5, a MAPK-activated protein kinase, is a previously unidentified upstream regulator of Foxo1. MK5 was necessary and sufficient to activate Rag transcription in transformed and primary pro–B cells. Together, our experiments show that MK5 positively regulates Rag transcription via phosphorylation of Foxo1 in developing B cells.
Collapse
Affiliation(s)
- Kwan T Chow
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
44
|
Radu M, Rawat SJ, Beeser A, Iliuk A, Tao WA, Chernoff J. ArhGAP15, a Rac-specific GTPase-activating protein, plays a dual role in inhibiting small GTPase signaling. J Biol Chem 2013; 288:21117-21125. [PMID: 23760270 DOI: 10.1074/jbc.m113.459719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Signaling from small GTPases is a tightly regulated process. In this work we used a protein microarray screen to identify the Rac-specific GAP, ArhGAP15, as a substrate of the Rac effectors Pak1 and Pak2. In addition to serving as a substrate of Pak1/2, we found that ArhGAP15, via its PH domain, bound to these kinases. The association of ArhGAP15 to Pak1/2 resulted in mutual inhibition of GAP and kinase catalytic activity, respectively. Knock-down of ArhGAP15 resulted in activation of Pak1/2, both indirectly, as a result of Rac activation, and directly, as a result of disruption of the ArhGAP15/Pak complex. Our data suggest that ArhGAP15 plays a dual negative role in regulating small GTPase signaling, by acting at the level of the GTPase itself, as well interacting with its effector, Pak kinase.
Collapse
Affiliation(s)
- Maria Radu
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Sonali J Rawat
- the Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania 19102, and
| | - Alexander Beeser
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Anton Iliuk
- the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Weiguo Andy Tao
- the Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jonathan Chernoff
- From the Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111,.
| |
Collapse
|
45
|
Abstract
Cells respond to external stimuli by transducing signals through a series of intracellular molecules and eliciting an appropriate response. The cascade of events through which the signals are transduced include post-translational modifications such as phosphorylation and ubiquitylation in addition to formation of multi-protein complexes. Improvements in biological mass spectrometry and protein/peptide microarray technology have tremendously improved our ability to probe proteins, protein complexes, and signaling pathways in a high-throughput fashion. Today, a single mass spectrometry-based investigation of a signaling pathway has the potential to uncover the large majority of known signaling intermediates painstakingly characterized over decades in addition to discovering a number of novel ones. Here, we discuss various proteomic strategies to characterize signaling pathways and provide protocols for phosphoproteomic analysis.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | | | | |
Collapse
|
46
|
Kostenko S, Dumitriu G, Moens U. Tumour promoting and suppressing roles of the atypical MAP kinase signalling pathway ERK3/4-MK5. J Mol Signal 2012; 7:9. [PMID: 22800433 PMCID: PMC3419095 DOI: 10.1186/1750-2187-7-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/20/2012] [Indexed: 12/28/2022] Open
Abstract
Perturbed action of signal transduction pathways, including the mitogen-activated protein (MAP) kinase pathways, is one of the hallmarks of many cancers. While the implication of the typical MAP kinase pathways ERK1/2-MEK1/2, p38MAPK and JNK is well established, recent findings illustrate that the atypical MAP kinase ERK3/4-MK5 may also be involved in tumorigenic processes. Remarkably, the ERK3/4-MK5 pathway seems to possess anti-oncogenic as well as pro-oncogenic properties in cell culture and aninal models. This review summarizes the mutations in the genes encoding ERK3, ERK4 and MK5 that have been detected in different cancers, reports aberrant expression levels of these proteins in human tumours, and discusses the mechanisms by which this pathway can induce senescence, stimulate angiogenesis and invasiveness.
Collapse
Affiliation(s)
- Sergiy Kostenko
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| | - Gianina Dumitriu
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, NO-9037, Norway
| |
Collapse
|
47
|
The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol Cell Biol 2012; 32:2467-78. [PMID: 22508986 DOI: 10.1128/mcb.06633-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mitogen-activated protein kinase-activated protein (MAPKAP) kinase 5 (MK5) deficiency is associated with reduced extracellular signal-regulated kinase 3 (ERK3) (mitogen-activated protein kinase 6) levels, hence we utilized the MK5 knockout mouse model to analyze the physiological functions of the ERK3/MK5 signaling module. MK5-deficient mice displayed impaired dendritic spine formation in mouse hippocampal neurons in vivo. We performed large-scale interaction screens to understand the neuronal functions of the ERK3/MK5 pathway and identified septin7 (Sept7) as a novel interacting partner of ERK3. ERK3/MK5/Sept7 form a ternary complex, which can phosphorylate the Sept7 regulators Binders of Rho GTPases (Borgs). In addition, the brain-specific nucleotide exchange factor kalirin-7 (Kal7) was identified as an MK5 interaction partner and substrate protein. In transfected primary neurons, Sept7-dependent dendrite development and spine formation are stimulated by the ERK3/MK5 module. Thus, the regulation of neuronal morphogenesis is proposed as the first physiological function of the ERK3/MK5 signaling module.
Collapse
|
48
|
Long W, Foulds CE, Qin J, Liu J, Ding C, Lonard DM, Solis LM, Wistuba II, Qin J, Tsai SY, Tsai MJ, O'Malley BW. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J Clin Invest 2012; 122:1869-80. [PMID: 22505454 DOI: 10.1172/jci61492] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/07/2012] [Indexed: 12/30/2022] Open
Abstract
In contrast to the well-studied classic MAPKs, such as ERK1/2, little is known concerning the regulation and substrates of the atypical MAPK ERK3 signaling cascade and its function in cancer progression. Here, we report that ERK3 interacted with and phosphorylated steroid receptor coactivator 3 (SRC-3), an oncogenic protein overexpressed in multiple human cancers at serine 857 (S857). This ERK3-mediated phosphorylation at S857 was essential for interaction of SRC-3 with the ETS transcription factor PEA3, which promotes upregulation of MMP gene expression and proinvasive activity in lung cancer cells. Importantly, knockdown of ERK3 or SRC-3 inhibited the ability of lung cancer cells to invade and form tumors in the lung in a xenograft mouse model. In addition, ERK3 was found to be highly upregulated in human lung carcinomas. Our study identifies a previously unknown role for ERK3 in promoting lung cancer cell invasiveness by phosphorylating SRC-3 and regulating SRC-3 proinvasive activity by site-specific phosphorylation. As such, ERK3 protein kinase may be an attractive target for therapeutic treatment of invasive lung cancer.
Collapse
Affiliation(s)
- Weiwen Long
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chan PM, Manser E. PAKs in Human Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:171-87. [DOI: 10.1016/b978-0-12-396456-4.00011-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Wu JB, Dang T, Chen XQ, Zhang ZS, Zhang HQ, Song YG. Construction of a eukaryotic green fluorescent protein expression vector carrying the PAK-1 gene (pEGFP-C1/PAK1) and its expression in SW480 cells. Shijie Huaren Xiaohua Zazhi 2011; 19:2730-2734. [DOI: 10.11569/wcjd.v19.i26.2730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a recombinant eukaryotic fluorescent expression plasmid containing the coding region of p21-activated kinase-1 (PAK-1) gene and to detect its expression in SW480 cells.
METHODS: Total RNA was extracted from human colorectal carcinoma cell line SW620 and used to amplify the PAK1 gene fragment by reverse transcription-polymerase chain reaction (RT-PCR). The resulting PCR product was inserted into the plasmid pEGFP-C1 after restriction endonuclease digestion and ligation. After verifying the correct insertion of the DNA fragment by endonuclease digestion and direct sequencing, the recombinant plasmid was transfected into SW480 cells to detect its expression in vitro.
RESULTS: The sequence of the recombinant plasmid was verified by restriction digestion and DNA sequence analysis, and the target protein expression was detected in the cell cytoplasm of SW480 cells.
CONCLUSION: A recombinant eukaryotic fluorescent expression vector carrying the PAK-1 gene (pEGFP-C1/PAK1) has been constructed successfully and provides a potent tool to investigate the role of PAK-1 in colorectal carcinoma.
Collapse
|