1
|
Hakami Zanjani AA, Ebstrup ML, Nylandsted J, Khandelia H. Modulation of Annexin-Induced Membrane Curvature by Cholesterol and the Anionic Lipid Headgroup during Plasma Membrane Repair. J Phys Chem B 2024; 128:8701-8711. [PMID: 39214593 DOI: 10.1021/acs.jpcb.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Annexins (ANXAs), calcium-sensitive phospholipid-binding proteins, are pivotal for cellular membrane repair, which is crucial for eukaryotic cell survival under membrane stress. With their unique trimeric arrangements and crystalline arrays on the membrane surface, ANXA4 and ANXA5 induce membrane curvature and rapidly orchestrate plasma membrane resealing. However, the influence of cholesterol and anionic lipid headgroups on annexin-induced membrane curvature remains poorly understood at the molecular level. Using all-atom molecular dynamics simulations, we measured the local curvature-induced underneath ANXA4 and ANXA5 monomers and trimers when they bind to lipid bilayers of distinct lipid compositions: PSPC (20% POPS, 80% POPC), PAPC (20% POPA, 80% POPC), and PSPCCHL (14% POPS, 56% POPC, 30% cholesterol). Laser injury experiments were conducted on MCF7 cells transfected to transiently express fluorescently labeled ANXA4 or ANXA5 to facilitate the examination of protein and lipid accumulation at the damage site. Annexin trimers induce higher curvature than monomers, particularly with cholesterol present. Annexin trimers induce similar curvatures on both PAPC and PSPC membranes. Notably, among monomers, ANXA5 induces the highest curvature on PAPC, suggesting more efficient recruitment of ANXA5 compared with ANXA4 in the early stages of membrane repair near a lesion. Laser injury experiments confirm rapid coaccumulation of phosphatidic acid lipids with ANXA4 and ANXA5 at repair sites, potentially enhancing the accumulation of annexins in the early stages of membrane repair.
Collapse
Affiliation(s)
- Ali Asghar Hakami Zanjani
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | | | - Jesper Nylandsted
- Danish Cancer Institute, Copenhagen 2100, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense 5230, Denmark
| | - Himanshu Khandelia
- PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| |
Collapse
|
2
|
Nakamura M, Parkhurst SM. Calcium influx rapidly establishes distinct spatial recruitments of Annexins to cell wounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.03.569799. [PMID: 38105960 PMCID: PMC10723296 DOI: 10.1101/2023.12.03.569799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
To survive daily damage, the formation of actomyosin ring at the wound periphery is required to rapidly close cell wounds. Calcium influx is one of the start signals for these cell wound repair events. Here, we find that rapid recruitment of all three Drosophila calcium responding and phospholipid binding Annexin proteins (AnxB9, AnxB10, AnxB11) to distinct regions around the wound are regulated by the quantity of calcium influx rather than their binding to specific phospholipids. The distinct recruitment patterns of these Annexins regulate the subsequent recruitment of RhoGEF2 and RhoGEF3 through actin stabilization to form a robust actomyosin ring. Surprisingly, we find that reduced extracellular calcium and depletion of intracellular calcium affect cell wound repair differently, despite these two conditions exhibiting similar GCaMP signals. Thus, our results suggest that, in addition to initiating repair events, both the quantity and sources of calcium influx are important for precise Annexin spatiotemporal protein recruitment to cell wounds and efficient wound repair.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
3
|
Cao J, Wan S, Chen S, Yang L. ANXA6: a key molecular player in cancer progression and drug resistance. Discov Oncol 2023; 14:53. [PMID: 37129645 PMCID: PMC10154440 DOI: 10.1007/s12672-023-00662-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Annexin-A6 (ANXA6), a Ca2+-dependent membrane binding protein, is the largest of all conserved annexin families and highly expressed in the plasma membrane and endosomal compartments. As a multifunctional scaffold protein, ANXA6 can interact with phospholipid membranes and various signaling proteins. These properties enable ANXA6 to participate in signal transduction, cholesterol homeostasis, intracellular/extracellular membrane transport, and repair of membrane domains, etc. Many studies have demonstrated that the expression of ANXA6 is consistently altered during tumor formation and progression. ANXA6 is currently known to mediate different patterns of tumor progression in different cancer types through multiple cancer-type specific mechanisms. ANXA6 is a potentially valuable marker in the diagnosis, progression, and treatment strategy of various cancers. This review mainly summarizes recent findings on the mechanism of tumor formation, development, and drug resistance of ANXA6. The contents reviewed herein may expand researchers' understanding of ANXA6 and contribute to developing ANXA6-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Drescher DG, Drescher MJ, Selvakumar D, Annam NP. Analysis of Dysferlin Direct Interactions with Putative Repair Proteins Links Apoptotic Signaling to Ca 2+ Elevation via PDCD6 and FKBP8. Int J Mol Sci 2023; 24:4707. [PMID: 36902136 PMCID: PMC10002499 DOI: 10.3390/ijms24054707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Quantitative surface plasmon resonance (SPR) was utilized to determine binding strength and calcium dependence of direct interactions between dysferlin and proteins likely to mediate skeletal muscle repair, interrupted in limb girdle muscular dystrophy type 2B/R2. Dysferlin canonical C2A (cC2A) and C2F/G domains directly interacted with annexin A1, calpain-3, caveolin-3, affixin, AHNAK1, syntaxin-4, and mitsugumin-53, with cC2A the primary target and C2F lesser involved, overall demonstrating positive calcium dependence. Dysferlin C2 pairings alone showed negative calcium dependence in almost all cases. Like otoferlin, dysferlin directly interacted via its carboxy terminus with FKBP8, an anti-apoptotic outer mitochondrial membrane protein, and via its C2DE domain with apoptosis-linked gene (ALG-2/PDCD6), linking anti-apoptosis with apoptosis. Confocal Z-stack immunofluorescence confirmed co-compartmentalization of PDCD6 and FKBP8 at the sarcolemmal membrane. Our evidence supports the hypothesis that prior to injury, dysferlin C2 domains self-interact and give rise to a folded, compact structure as indicated for otoferlin. With elevation of intracellular Ca2+ in injury, dysferlin would unfold and expose the cC2A domain for interaction with annexin A1, calpain-3, mitsugumin 53, affixin, and caveolin-3, and dysferlin would realign from its interactions with PDCD6 at basal calcium levels to interact strongly with FKBP8, an intramolecular rearrangement facilitating membrane repair.
Collapse
Affiliation(s)
- Dennis G. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Marian J. Drescher
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Dakshnamurthy Selvakumar
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Neeraja P. Annam
- Laboratory of Bio-otology, Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Interplay of membrane crosslinking and curvature induction by annexins. Sci Rep 2022; 12:22568. [PMID: 36581673 PMCID: PMC9800579 DOI: 10.1038/s41598-022-26633-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Efficient plasma membrane repair (PMR) is required to repair damage sustained in the cellular life cycle. The annexin family of proteins, involved in PMR, are activated by Ca2+ influx from extracellular media at the site of injury. Mechanistic studies of the annexins have been overwhelmingly performed using a single annexin, despite the recruitment of multiple annexins to membrane damage sites in living cells. Hence, we investigate the effect of the presence of the crosslinking annexins, annexin A1, A2 and A6 (ANXA1, ANXA2 and ANXA6) on the membrane curvature induction of annexin A4 (ANXA4) in model membrane systems. Our data support a mechanistic model of PMR where ANXA4 induced membrane curvature and ANXA6 crosslinking promotes wound closure. The model now can be expanded to include ANXA1 and ANXA2 as specialist free edge membrane crosslinkers that act in concert with ANXA4 induced curvature and ANXA6 crosslinking.
Collapse
|
6
|
Sîrbulescu RF, Ilieş I, Amelung L, Zupanc GKH. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:671-706. [PMID: 36445471 DOI: 10.1007/s00359-022-01591-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
In adult mammals, spontaneous repair after spinal cord injury (SCI) is severely limited. By contrast, teleost fish successfully regenerate injured axons and produce new neurons from adult neural stem cells after SCI. The molecular mechanisms underlying this high regenerative capacity are largely unknown. The present study addresses this gap by examining the temporal dynamics of proteome changes in response to SCI in the brown ghost knifefish (Apteronotus leptorhynchus). Two-dimensional difference gel electrophoresis (2D DIGE) was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem mass spectrometry (MS/MS) to collect data during early (1 day), mid (10 days), and late (30 days) phases of regeneration following caudal amputation SCI. Forty-two unique proteins with significant differences in abundance between injured and intact control samples were identified. Correlation analysis uncovered six clusters of spots with similar expression patterns over time and strong conditional dependences, typically within functional families or between isoforms. Significantly regulated proteins were associated with axon development and regeneration; proliferation and morphogenesis; neuronal differentiation and re-establishment of neural connections; promotion of neuroprotection, redox homeostasis, and membrane repair; and metabolism or energy supply. Notably, at all three time points examined, significant regulation of proteins involved in inflammatory responses was absent.
Collapse
Affiliation(s)
- Ruxandra F Sîrbulescu
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
- Vaccine and Immunotherapy Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Iulian Ilieş
- School of Humanities and Social Sciences, Jacobs University Bremen, 28725, Bremen, Germany
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Lisa Amelung
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Günther K H Zupanc
- School of Engineering and Science, Jacobs University Bremen, 28725, Bremen, Germany.
- Laboratory of Neurobiology, Department of Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Labes R, Dong L, Mrowka R, Bachmann S, von Vietinghoff S, Paliege A. Annexin A1 exerts renoprotective effects in experimental crescentic glomerulonephritis. Front Physiol 2022; 13:984362. [PMID: 36311242 PMCID: PMC9605209 DOI: 10.3389/fphys.2022.984362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Non-resolving inflammation plays a critical role during the transition from renal injury towards end-stage renal disease. The glucocorticoid-inducible protein annexin A1 has been shown to function as key regulator in the resolution phase of inflammation, but its role in immune-mediated crescentic glomerulonephritis has not been studied so far. Methods: Acute crescentic glomerulonephritis was induced in annexin A1-deficient and wildtype mice using a sheep serum against rat glomerular basement membrane constituents. Animals were sacrificed at d5 and d10 after nephritis induction. Renal leukocyte abundance was studied by immunofluorescence and flow cytometry. Alterations in gene expression were determined by RNA-Seq and gene ontology analysis. Renal levels of eicosanoids and related lipid products were measured using lipid mass spectrometry. Results: Histological analysis revealed an increased number of sclerotic glomeruli and aggravated tubulointerstitial damage in the kidneys of annexin A1-deficient mice compared to the wildtype controls. Flow cytometry analysis confirmed an increased number of CD45+ leukocytes and neutrophil granulocytes in the absence of annexin A1. Lipid mass spectrometry showed elevated levels of prostaglandins PGE2 and PGD2 and reduced levels of antiinflammatory epoxydocosapentaenoic acid regioisomers. RNA-Seq with subsequent gene ontology analysis revealed induction of gene products related to leukocyte activation and chemotaxis as well as regulation of cytokine production and secretion. Conclusion: Intrinsic annexin A1 reduces proinflammatory signals and infiltration of neutrophil granulocytes and thereby protects the kidney during crescentic glomerulonephritis. The annexin A1 signaling cascade may therefore provide novel targets for the treatment of inflammatory kidney disease.
Collapse
Affiliation(s)
- Robert Labes
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Dong
- Nephrology Department, Tongji Hospital, Tongji College, Huazhong University of Science and Technology, Wuhan, China
| | - Ralf Mrowka
- Klinik für Innere Medizin III, AG Experimentelle Nephrologie, Universitätsklinikum Jena, Jena, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sibylle von Vietinghoff
- Nephrology Section, First Medical Clinic, University Clinic and Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- *Correspondence: Alexander Paliege,
| |
Collapse
|
8
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
A Novel Homozygous Variant in DYSF Gene Is Associated with Autosomal Recessive Limb Girdle Muscular Dystrophy R2/2B. Int J Mol Sci 2022; 23:ijms23168932. [PMID: 36012197 PMCID: PMC9408934 DOI: 10.3390/ijms23168932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the DYSF gene, encoding dysferlin, are responsible for Limb Girdle Muscular Dystrophy type R2/2B (LGMDR2/2B), Miyoshi myopathy (MM), and Distal Myopathy with Anterior Tibialis onset (MDAT). The size of the gene and the reported inter and intra familial phenotypic variability make early diagnosis difficult. Genetic analysis was conducted using Next Gene Sequencing (NGS), with a panel of 40 Muscular Dystrophies associated genes we designed. In the present study, we report a new missense variant c.5033G>A, p.Cys1678Tyr (NM_003494) in the exon 45 of DYSF gene related to Limb Girdle Muscular Dystrophy type R2/2B in a 57-year-old patient affected with LGMD from a consanguineous family of south Italy. Both healthy parents carried this variant in heterozygosity. Genetic analysis extended to two moderately affected sisters of the proband, showed the presence of the variant c.5033G>A in both in homozygosity. These data indicate a probable pathological role of the variant c.5033G>A never reported before in the onset of LGMDR2/2B, pointing at the NGS as powerful tool for identifying LGMD subtypes. Moreover, the collection and the networking of genetic data will increase power of genetic-molecular investigation, the management of at-risk individuals, the development of new therapeutic targets and a personalized medicine.
Collapse
|
10
|
Demonbreun AR, Bogdanovic E, Vaught LA, Reiser NL, Fallon KS, Long AM, Oosterbaan CC, Hadhazy M, Page PG, Joseph PRB, Cowen G, Telenson AM, Khatri A, Sadleir KR, Vassar R, McNally EM. A conserved annexin A6-mediated membrane repair mechanism in muscle, heart, and nerve. JCI Insight 2022; 7:158107. [PMID: 35866481 PMCID: PMC9431694 DOI: 10.1172/jci.insight.158107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Membrane instability and disruption underlie myriad acute and chronic disorders. Anxa6 encodes the membrane-associated protein annexin A6 and was identified as a genetic modifier of muscle repair and muscular dystrophy. To evaluate annexin A6’s role in membrane repair in vivo, we inserted sequences encoding green fluorescent protein (GFP) into the last coding exon of Anxa6. Heterozygous Anxa6gfp mice expressed a normal pattern of annexin A6 with reduced annexin A6GFP mRNA and protein. High-resolution imaging of wounded muscle fibers showed annexin A6GFP rapidly formed a repair cap at the site of injury. Injured cardiomyocytes and neurons also displayed repair caps after wounding, highlighting annexin A6–mediated repair caps as a feature in multiple cell types. Using surface plasmon resonance, we showed recombinant annexin A6 bound phosphatidylserine-containing lipids in a Ca2+- and dose-dependent fashion with appreciable binding at approximately 50 μM Ca2+. Exogenously added recombinant annexin A6 localized to repair caps and improved muscle membrane repair capacity in a dose-dependent fashion without disrupting endogenous annexin A6 localization, indicating annexin A6 promotes repair from both intracellular and extracellular compartments. Thus, annexin A6 orchestrates repair in multiple cell types, and recombinant annexin A6 may be useful in additional chronic disorders beyond skeletal muscle myopathies.
Collapse
Affiliation(s)
| | - Elena Bogdanovic
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren A Vaught
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nina L Reiser
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine S Fallon
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ashlee M Long
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Gabrielle Cowen
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ammaarah Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Pereira JM, Xu S, Leong JM, Sousa S. The Yin and Yang of Pneumolysin During Pneumococcal Infection. Front Immunol 2022; 13:878244. [PMID: 35529870 PMCID: PMC9074694 DOI: 10.3389/fimmu.2022.878244] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022] Open
Abstract
Pneumolysin (PLY) is a pore-forming toxin produced by the human pathobiont Streptococcus pneumoniae, the major cause of pneumonia worldwide. PLY, a key pneumococcal virulence factor, can form transmembrane pores in host cells, disrupting plasma membrane integrity and deregulating cellular homeostasis. At lytic concentrations, PLY causes cell death. At sub-lytic concentrations, PLY triggers host cell survival pathways that cooperate to reseal the damaged plasma membrane and restore cell homeostasis. While PLY is generally considered a pivotal factor promoting S. pneumoniae colonization and survival, it is also a powerful trigger of the innate and adaptive host immune response against bacterial infection. The dichotomy of PLY as both a key bacterial virulence factor and a trigger for host immune modulation allows the toxin to display both "Yin" and "Yang" properties during infection, promoting disease by membrane perforation and activating inflammatory pathways, while also mitigating damage by triggering host cell repair and initiating anti-inflammatory responses. Due to its cytolytic activity and diverse immunomodulatory properties, PLY is integral to every stage of S. pneumoniae pathogenesis and may tip the balance towards either the pathogen or the host depending on the context of infection.
Collapse
Affiliation(s)
- Joana M. Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Molecular and Cellular (MC) Biology PhD Program, ICBAS - Instituto de Ciência Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA, United States
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040886. [PMID: 35456718 PMCID: PMC9031838 DOI: 10.3390/pharmaceutics14040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Localized and reversible plasma membrane disruption is a promising technique employed for the targeted deposition of exogenous therapeutic compounds for the treatment of disease. Indeed, the plasma membrane represents a significant barrier to successful delivery, and various physical methods using light, sound, and electrical energy have been developed to generate cell membrane perforations to circumvent this issue. To restore homeostasis and preserve viability, localized cellular repair mechanisms are subsequently triggered to initiate a rapid restoration of plasma membrane integrity. Here, we summarize the known emergency membrane repair responses, detailing the salient membrane sealing proteins as well as the underlying cytoskeletal remodeling that follows the physical induction of a localized plasma membrane pore, and we present an overview of potential modulation strategies that may improve targeted drug delivery approaches.
Collapse
|
13
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
14
|
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins. Cell Mol Life Sci 2021; 78:6229-6249. [PMID: 34387717 PMCID: PMC11073440 DOI: 10.1007/s00018-021-03914-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
Pore-forming proteins (PFPs) are a heterogeneous group of proteins that are expressed and secreted by a wide range of organisms. PFPs are produced as soluble monomers that bind to a receptor molecule in the host cell membrane. They then assemble into oligomers that are incorporated into the lipid membrane to form transmembrane pores. Such pore formation alters the permeability of the plasma membrane and is one of the most common mechanisms used by PFPs to destroy target cells. Interestingly, PFPs can also indirectly manipulate diverse cellular functions. In recent years, increasing evidence indicates that the interaction of PFPs with lipid membranes is not only limited to pore-induced membrane permeabilization but is also strongly associated with extensive plasma membrane reorganization. This includes lateral rearrangement and deformation of the lipid membrane, which can lead to the disruption of target cell function and finally death. Conversely, these modifications also constitute an essential component of the membrane repair system that protects cells from the lethal consequences of pore formation. Here, we provide an overview of the current knowledge on the changes in lipid membrane organization caused by PFPs from different organisms.
Collapse
Affiliation(s)
- Magdalena Kulma
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| |
Collapse
|
15
|
Banerji R, Karkee A, Kanojiya P, Saroj SD. Pore-forming toxins of foodborne pathogens. Compr Rev Food Sci Food Saf 2021; 20:2265-2285. [PMID: 33773026 DOI: 10.1111/1541-4337.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Pore-forming toxins (PFTs) are water-soluble molecules that have been identified as the most crucial virulence factors during bacterial pathogenesis. PFTs disrupt the host cell membrane to internalize or to deliver other bacterial or virulence factors for establishing infections. Disruption of the host cell membrane by PFTs can lead to uncontrollable exchanges between the extracellular and the intracellular matrix, thereby disturbing the cellular homeostasis. Recent studies have provided insights into the molecular mechanism of PFTs during pathogenesis. Evidence also suggests the activation of several signal transduction pathways in the host cell on recognition of PFTs. Additionally, numerous distinctive host defense mechanisms as well as membrane repair mechanisms have been reported; however, studies reveal that PFTs aid in host immune evasion of the bacteria through numerous pathways. PFTs have been primarily associated with foodborne pathogens. Infection and death from diseases by consuming contaminated food are a constant threat to public health worldwide, affecting socioeconomic development. Moreover, the emergence of new foodborne pathogens has led to the rise of bacterial antimicrobial resistance affecting the population. Hence, this review focuses on the role of PFTs secreted by foodborne pathogens. The review highlights the molecular mechanism of foodborne bacterial PFTs, assisting bacterial survival from the host immune responses and understanding the downstream mechanism in the activation of various signaling pathways in the host upon PFT recognition. PFT research is a remarkable and an important field for exploring novel and broad applications of antimicrobial compounds as therapeutics.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Astha Karkee
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
16
|
Repairing plasma membrane damage in regulated necrotic cell death. Mol Biol Rep 2021; 48:2751-2759. [PMID: 33687702 DOI: 10.1007/s11033-021-06252-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
The plasma membrane performs a central role in maintaining cellular homeostasis and viability by acting as a semi-permeable barrier separating the cell from its surroundings. Under physiological conditions, it is constantly exposed to different kinds of stress, such as from pore-forming proteins/toxins and mechanical activity, that compromises its integrity resulting in cells developing various ways to cope with these dangers to survive. These plasma membrane repair mechanisms are initiated by the rapid influx of extracellular Ca2+ ions and are thus hinged on the activity of various Ca2+-binding proteins. The cell's response to membrane damage also depends on the nature and extent of the stimuli as well as the cell type, and the mechanisms involved are believed to be not mutually exclusive. In regulated necrotic cell death, specifically necroptosis, pyroptosis, and ferroptosis, plasma membrane damage ultimately causes cell lysis and the release of immunomodulating damage-associated molecular patterns. Here, I will discuss how these three cell death pathways are counterbalanced by the action of ESCRT (Endosomal Sorting Complex Required for Transport)-III-dependent plasma membrane repair mechanism, that eventually affects the profile of released cytokines and cell-to-cell communication. These highlight a crucial role that plasma membrane repair play in regulated necrosis, and its potential as a viable target to modulate the immune responses associated with these pathways in the context of the various human pathologies where these cell death modalities are implicated.
Collapse
|
17
|
Ashraf APK, Gerke V. Plasma membrane wound repair is characterized by extensive membrane lipid and protein rearrangements in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118991. [PMID: 33667528 DOI: 10.1016/j.bbamcr.2021.118991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/28/2022]
Abstract
Vascular endothelial cells are subject to mechanical stress resulting from blood flow and interactions with leukocytes. Stress occurs at the apical, vessel-facing cell surface and leads to membrane ruptures that have to be resealed to ensure cell survival. To mimic this process, we developed a laser ablation protocol selectively inducing wounds in the apical plasma membrane of endothelial cells. We show that Ca2+-dependent membrane resealing is initiated following this wounding protocol and that the process is accompanied by substantial membrane lipid dynamics at the wound site. Specifically, phosphatidylinositol (4,5)-bisphosphate, phosphatidylserine and phosphatidic acid rapidly accumulate at membrane wounds forming potential interaction platforms for Ca2+/phospholipid binding proteins of the annexin (Anx) family that are also recruited within seconds after wounding. Depletion of one annexin, AnxA2, and its putative binding partner S100A11 interferes with membrane resealing suggesting that Ca2+-dependent annexin-phospholipid interactions are required for efficient membrane wound repair in endothelial cells.
Collapse
Affiliation(s)
- Arsila P K Ashraf
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Strasse 56, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Strasse 56, 48149, Münster, Germany.
| |
Collapse
|
18
|
Mageswaran SK, Yang WY, Chakrabarty Y, Oikonomou CM, Jensen GJ. A cryo-electron tomography workflow reveals protrusion-mediated shedding on injured plasma membrane. SCIENCE ADVANCES 2021; 7:7/13/eabc6345. [PMID: 33771860 PMCID: PMC7997517 DOI: 10.1126/sciadv.abc6345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Cryo-electron tomography (cryo-ET) provides structural context to molecular mechanisms underlying biological processes. Although straightforward to implement for studying stable macromolecular complexes, using it to locate short-lived structures and events can be impractical. A combination of live-cell microscopy, correlative light and electron microscopy, and cryo-ET will alleviate this issue. We developed a workflow combining the three to study the ubiquitous and dynamic process of shedding in response to plasma membrane damage in HeLa cells. We found filopodia-like protrusions enriched at damage sites and acting as scaffolds for shedding, which involves F-actin dynamics, myosin-1a, and vacuolar protein sorting 4B (a component of the 'endosomal sorting complex required for transport' machinery). Overall, shedding is more complex than current models of vesiculation from flat membranes. Its similarities to constitutive shedding in enterocytes argue for a conserved mechanism. Our workflow can also be adapted to study other damage response pathways and dynamic cellular events.
Collapse
Affiliation(s)
- Shrawan Kumar Mageswaran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Biophysics and Biochemistry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Yuan Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yogaditya Chakrabarty
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| |
Collapse
|
19
|
Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov 2021; 7:4. [PMID: 33462191 PMCID: PMC7813858 DOI: 10.1038/s41421-020-00233-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.
Collapse
|
20
|
Bittel DC, Chandra G, Tirunagri LMS, Deora AB, Medikayala S, Scheffer L, Defour A, Jaiswal JK. Annexin A2 Mediates Dysferlin Accumulation and Muscle Cell Membrane Repair. Cells 2020; 9:cells9091919. [PMID: 32824910 PMCID: PMC7565960 DOI: 10.3390/cells9091919] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Muscle cell plasma membrane is frequently damaged by mechanical activity, and its repair requires the membrane protein dysferlin. We previously identified that, similar to dysferlin deficit, lack of annexin A2 (AnxA2) also impairs repair of skeletal myofibers. Here, we have studied the mechanism of AnxA2-mediated muscle cell membrane repair in cultured muscle cells. We find that injury-triggered increase in cytosolic calcium causes AnxA2 to bind dysferlin and accumulate on dysferlin-containing vesicles as well as with dysferlin at the site of membrane injury. AnxA2 accumulates on the injured plasma membrane in cholesterol-rich lipid microdomains and requires Src kinase activity and the presence of cholesterol. Lack of AnxA2 and its failure to translocate to the plasma membrane, both prevent calcium-triggered dysferlin translocation to the plasma membrane and compromise repair of the injured plasma membrane. Our studies identify that Anx2 senses calcium increase and injury-triggered change in plasma membrane cholesterol to facilitate dysferlin delivery and repair of the injured plasma membrane.
Collapse
Affiliation(s)
- Daniel C. Bittel
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Goutam Chandra
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Laxmi M. S. Tirunagri
- Department of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA;
| | - Arun B. Deora
- Department of Cell & Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Sushma Medikayala
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Luana Scheffer
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Aurelia Defour
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
- Department of Genomics and Precision medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-(202)476-6456; Fax: +1-(202)476-6014
| |
Collapse
|
21
|
Korolkova OY, Widatalla SE, Williams SD, Whalen DS, Beasley HK, Ochieng J, Grewal T, Sakwe AM. Diverse Roles of Annexin A6 in Triple-Negative Breast Cancer Diagnosis, Prognosis and EGFR-Targeted Therapies. Cells 2020; 9:E1855. [PMID: 32784650 PMCID: PMC7465958 DOI: 10.3390/cells9081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its expression in certain tumor cells is also induced by a variety of pharmacological drugs. Together with the secretion of AnxA6 as a component of extracellular vesicles, this suggests that AnxA6 mediates distinct tumor progression patterns via extracellular and/or intracellular activities. Although it lacks enzymatic activity, some of the AnxA6-mediated functions involving membrane, nucleotide and cholesterol binding as well as the scaffolding of specific proteins or multifactorial protein complexes, suggest its potential utility in the diagnosis, prognosis and therapeutic strategies for various cancers. In breast cancer, the low AnxA6 expression levels in the more aggressive basal-like triple-negative breast cancer (TNBC) subtype correlate with its tumor suppressor activity and the poor overall survival of basal-like TNBC patients. In this review, we highlight the potential tumor suppressor function of AnxA6 in TNBC progression and metastasis, the relevance of AnxA6 in the diagnosis and prognosis of several cancers and discuss the concept of therapy-induced expression of AnxA6 as a novel mechanism for acquired resistance of TNBC to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Olga Y. Korolkova
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Sarrah E. Widatalla
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Stephen D. Williams
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Diva S. Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Heather K. Beasley
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| |
Collapse
|
22
|
Bohannon KP, Hanson PI. ESCRT puts its thumb on the nanoscale: Fixing tiny holes in endolysosomes. Curr Opin Cell Biol 2020; 65:122-130. [PMID: 32731154 PMCID: PMC7578027 DOI: 10.1016/j.ceb.2020.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
The ESCRT (endosomal complex required for transport) machinery remodels membranes to bud vesicles away from the cytoplasm. In addition to this classic role, ESCRTs are now understood to repair damage in the plasma membrane, nuclear envelope, and throughout the endolysosomal network. Wounds in endolysosomal membranes are caused by pathogens, particulates, and other chemical or metabolic stresses. Nanoscale damage in these membranes promotes activation and engagement of ESCRT proteins. A full understanding of damage signals, molecular sensing, and the mechanism of membrane repair is yet to be developed. Nevertheless, a triggering role for calcium and ESCRT-I in recruiting ESCRT-III machinery for membrane remodeling is a repeated theme in functional studies of this response. In our current understanding of the continuum of cellular responses to lipid bilayer damage, the ESCRT machinery is fast, sensitive, and deployed independently of other systems.
Collapse
Affiliation(s)
- Kevin P Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Phyllis I Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Simonsen AC, Boye TL, Nylandsted J. Annexins Bend Wound Edges during Plasma Membrane Repair. Curr Med Chem 2020; 27:3600-3610. [DOI: 10.2174/0929867326666190121121143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The plasma membrane of eukaryotic cells defines the boundary to the extracellular environment
and, thus provides essential protection from the surroundings. Consequently, disruptions to
the cell membrane triggered by excessive mechanical or biochemical stresses pose fatal threats to
cells, which they need to cope with to survive. Eukaryotic cells cope with these threats by activating
their plasma membrane repair system, which is shared by other cellular functions, and includes
mechanisms to remove damaged membrane by internalization (endocytosis), shedding, reorganization
of cytoskeleton and membrane fusion events to reseal the membrane. Members of the
annexin protein family, which are characterized by their Ca2+-dependent binding to anionic phospholipids,
are important regulators of plasma membrane repair. Recent studies based on cellular and
biophysical membrane models show that they have more distinct functions in the repair response
than previously assumed by regulating membrane curvature and excision of damaged membrane. In
cells, plasma membrane injury and flux of Ca2+ ions into the cytoplasm trigger recruitment of annexins
including annexin A4 and A6 to the membrane wound edges. Here, they induce curvature and
constriction force, which help pull the wound edges together for eventual fusion. Cancer cells are
dependent on efficient plasma membrane repair to counteract frequent stress-induced membrane
injuries, which opens novel avenues to target cancer cells through their membrane repair system.
Here, we discuss mechanisms of single cell wound healing implicating annexin proteins and membrane
curvature.
Collapse
Affiliation(s)
- Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK- 5230 Odense M, Denmark
| | - Theresa Louise Boye
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK- 2100 Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK- 2100 Copenhagen, Denmark
| |
Collapse
|
24
|
Vötsch D, Willenborg M, Oelemann WM, Brogden G, Valentin-Weigand P. Membrane Binding, Cellular Cholesterol Content and Resealing Capacity Contribute to Epithelial Cell Damage Induced by Suilysin of Streptococcus suis. Pathogens 2019; 9:pathogens9010033. [PMID: 31905867 PMCID: PMC7168673 DOI: 10.3390/pathogens9010033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
Streptococcus (S.) suis is a major cause of economic losses in the pig industry worldwide and is an emerging zoonotic pathogen. One important virulence-associated factor is suilysin (SLY), a toxin that belongs to the family of cholesterol-dependent pore-forming cytolysins (CDC). However, the precise role of SLY in host–pathogen interactions is still unclear. Here, we investigated the susceptibility of different respiratory epithelial cells to SLY, including immortalized cell lines (HEp-2 and NPTr cells), which are frequently used in in vitro studies on S. suis virulence mechanisms, as well as primary porcine respiratory cells, which represent the first line of barrier during S. suis infections. SLY-induced cell damage was determined by measuring the release of lactate dehydrogenase after infection with a virulent S. suis serotype 2 strain, its isogenic SLY-deficient mutant strain, or treatment with the recombinant protein. HEp-2 cells were most susceptible, whereas primary epithelial cells were hardly affected by the toxin. This prompted us to study possible explanations for these differences. We first investigated the binding capacity of SLY using flow cytometry analysis. Since binding and pore-formation of CDC is dependent on the membrane composition, we also determined the cellular cholesterol content of the different cell types using TLC and HPLC. Finally, we examined the ability of those cells to reseal SLY-induced pores using flow cytometry analysis. Our results indicated that the amount of membrane-bound SLY, the cholesterol content of the cells, as well as their resealing capacity all affect the susceptibility of the different cells regarding the effects of SLY. These findings underline the differences of in vitro pathogenicity models and may further help to dissect the biological role of SLY during S. suis infections.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Maren Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
| | - Walter M.R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Departamento de Imunologia, Instituto de Microbiologia Paulo Góes, Universidade Federal do Rio de Janeiro (UFRJ), 21941-901 Rio de Janeiro, Brazil
| | - Graham Brogden
- Department of Physiological Chemistry, University for Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, 30173 Hannover, Germany; (D.V.); (M.W.)
- Correspondence: ; Tel.: +49-(0)511-856-7362
| |
Collapse
|
25
|
Creutz CE. Expression of Metazoan Annexins in Yeast Provides Protection Against Deleterious Effects of the Biofuel Isobutanol. Sci Rep 2019; 9:18603. [PMID: 31819124 PMCID: PMC6901584 DOI: 10.1038/s41598-019-55169-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/23/2019] [Indexed: 02/08/2023] Open
Abstract
The ability of microorganisms to produce biofuels by fermentation is adversely affected by the perturbing effects of the hydrophobic biofuel on plasma membrane structure. It is demonstrated here that heterologous expression of metazoan, calcium-dependent, membrane-binding proteins of the annexin class can reduce deleterious effects of isobutanol on Saccharomyces cerevisiae viability and complex membrane functions. Therefore, expression of annexins in industrial strains of yeast or bacteria may prove beneficial in biofuel production.
Collapse
Affiliation(s)
- Carl E Creutz
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
26
|
Spray drying of Lactobacillus rhamnosus GG with calcium-containing protectant for enhanced viability. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.09.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Schumann MR, Brandt U, Adis C, Hartung L, Fleißner A. Plasma Membrane Integrity During Cell-Cell Fusion and in Response to Pore-Forming Drugs Is Promoted by the Penta-EF-Hand Protein PEF1 in Neurospora crassa. Genetics 2019; 213:195-211. [PMID: 31270133 PMCID: PMC6727798 DOI: 10.1534/genetics.119.302363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Plasma membrane damage commonly occurs during cellular growth and development. To counteract these potentially lethal injuries, membrane repair mechanisms have evolved, which promote the integrity of the lipid bilayer. Although the membrane of fungi is the target of important clinical drugs and agricultural fungicides, the molecular mechanisms which mediate membrane repair in these organisms remain elusive. Here we identify the penta-EF-hand protein PEF1 of the genetic model fungus Neurospora crassa as part of a cellular response mechanism against different types of membrane injury. Deletion of the pef1 gene in the wild type and different lysis-prone gene knockout mutants revealed a function of the protein in maintaining cell integrity during cell-cell fusion and in the presence of pore-forming drugs, such as the plant defense compound tomatine. By fluorescence and live-cell imaging we show that green fluorescent protein (GFP)-tagged PEF1 accumulates at the sites of membrane injury in a Ca2+-dependent manner. Site-directed mutagenesis identified Ca2+-binding domains essential for the spatial dynamics and function of the protein. In addition, the subcellular localization of PEF1 revealed that the syncytial fungal colony undergoes compartmentation in response to antifungal treatment. We propose that plasma membrane repair in fungi constitutes an additional line of defense against membrane-disturbing drugs, thereby expanding the current model of fungal drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - Christian Adis
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - Lisa Hartung
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| |
Collapse
|
28
|
Ramírez-Montiel F, Mendoza-Macías C, Andrade-Guillén S, Rangel-Serrano Á, Páramo-Pérez I, Rivera-Cuéllar PE, España-Sánchez BL, Luna-Bárcenas G, Anaya-Velázquez F, Franco B, Padilla-Vaca F. Plasma membrane damage repair is mediated by an acid sphingomyelinase in Entamoeba histolytica. PLoS Pathog 2019; 15:e1008016. [PMID: 31461501 PMCID: PMC6713333 DOI: 10.1371/journal.ppat.1008016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is a pathogen that during its infective process confronts the host defenses, which damages the amoebic plasma membrane (PM), resulting in the loss of viability. However, it is unknown whether amoebic trophozoites are able to repair their PM when it is damaged. Acid sphingomyelinases (aSMases) have been reported in mammalian cells to promote endocytosis and removal of PM lesions. In this work, six predicted amoebic genes encoding for aSMases were found to be transcribed in the HM1:IMSS strain, finding that the EhaSM6 gene is the most transcribed in basal growth conditions and rendered a functional protein. The secreted aSMase activity detected was stimulated by Mg+2 and inhibited by Co+2. Trophozoites that overexpress the EhaSM6 gene (HM1-SM6HA) exhibit an increase of 2-fold in the secreted aSMase activity. This transfectant trophozoites exposed to pore-forming molecules (SLO, Magainin, β-Defensin 2 and human complement) exhibited an increase from 6 to 25-fold in the secreted aSMase activity which correlated with higher amoebic viability in a Ca+2 dependent process. However, other agents that affect the PM such as hydrogen peroxide also induced an increase of secreted aSMase, but to a lesser extent. The aSMase6 enzyme is N- and C-terminal processed. Confocal and transmission electron microscopy showed that trophozoites treated with SLO presented a migration of lysosomes containing the aSMase towards the PM, inducing the formation of membrane patches and endosomes in the control strain. These cellular structures were increased in the overexpressing strain, indicating the involvement of the aSMase6 in the PM injury repair. The pore-forming molecules induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile, hydrogen peroxide induced an increase in all of them. In all the conditions evaluated, the EhaSM6 gene exhibited the highest levels of induction. Overall, these novel findings show that the aSMase6 enzyme from E. histolytica promotes the repair of the PM damaged with pore-forming molecules to prevent losing cell integrity. This novel system could act when encountered with the lytic defense systems of the host. The host-amoeba relationship is based on a series of interplays between host defense mechanisms and parasite survival strategies. While host cells elaborate diverse mechanisms for pathogen elimination, Entamoeba histolytica trophozoites have also developed complex strategies to counteract host immune response and facilitate its own survival while confronting host defenses. E. histolytica exposed to pore-forming proteins such as β-Defensin 2, human complement and Streptolysin O (SLO), increases the activity of secreted aSMase, which is related to greater amoebic viability. Other agents that affect plasma membrane (PM) may also increase secreted aSMase but to a lesser extent. SLO form pores in the PM of E. histolytica trophozoites that initiates the uncontrolled entry of Ca2+, recognized as the primary trigger for cell responses which favors the migration of the lysosomes to the periphery of the cell, fuses with the PM and release their content, including aSMase to the external side of the cell. The secreted aSMase favoring the internalization of the lesion for its degradation in phagolysosomes. During the early stages of PM damage, the pores are rapidly blocked by patch-like structures that prevent the lysis of the trophozoite and immediately begin internalizing the lesion. The aSMase6 overexpression favors the repair of the lesion and the survival of E. histolytica trophozoites. Pore-forming proteins induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile oxidative stress induced an increase in all of them. Here we report, for the first time, that E. histolytica possess a mechanism for PM damage repair mediated by aSMase similar to the system described in mammalian cells.
Collapse
Affiliation(s)
- Fátima Ramírez-Montiel
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Claudia Mendoza-Macías
- Departmento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Sairy Andrade-Guillén
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Ángeles Rangel-Serrano
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Itzel Páramo-Pérez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Paris E. Rivera-Cuéllar
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - B. Liliana España-Sánchez
- CONACYT_Centro de Investigación y Desarrollo en Electroquímica (CIDETEQ) S.C. Parque Tecnológico, San Fandila, Querétaro, México
| | - Gabriel Luna-Bárcenas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Querétaro, Fracc. Real de Juriquilla, Querétaro, Querétaro, México
| | - Fernando Anaya-Velázquez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| | - Felipe Padilla-Vaca
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| |
Collapse
|
29
|
Koerdt SN, Ashraf APK, Gerke V. Annexins and plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:43-65. [PMID: 31610865 DOI: 10.1016/bs.ctm.2019.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma membrane wound repair is a cell-autonomous process that is triggered by Ca2+ entering through the site of injury and involves membrane resealing, i.e., re-establishment of a continuous plasma membrane, as well as remodeling of the cortical actin cytoskeleton. Among other things, the injury-induced Ca2+ elevation initiates the wound site recruitment of Ca2+-regulated proteins that function in the course of repair. Annexins are a class of such Ca2+-regulated proteins. They associate with acidic phospholipids of cellular membranes in their Ca2+ bound conformation with Ca2+ sensitivities ranging from the low to high micromolar range depending on the respective annexin protein. Annexins accumulate at sites of plasma membrane injury in a temporally controlled manner and are thought to function by controlling membrane rearrangements at the wound site, most likely in conjunction with other repair proteins such as dysferlin. Their role in membrane repair, which has been evidenced in several model systems, will be discussed in this chapter.
Collapse
Affiliation(s)
- Sophia N Koerdt
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Arsila P K Ashraf
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany.
| |
Collapse
|
30
|
Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:67-98. [PMID: 31610866 PMCID: PMC7182362 DOI: 10.1016/bs.ctm.2019.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The plasma membrane forms the physical barrier between the cytoplasm and extracellular space, allowing for biochemical reactions necessary for life to occur. Plasma membrane damage needs to be rapidly repaired to avoid cell death. This relies upon the coordinated action of the machinery that polarizes the repair response to the site of injury, resulting in resealing of the damaged membrane and subsequent remodeling to return the injured plasma membrane to its pre-injury state. As lipids comprise the bulk of the plasma membrane, the acts of injury, resealing, and remodeling all directly impinge upon the plasma membrane lipids. In addition to their structural role in shaping the physical properties of the plasma membrane, lipids also play an important signaling role in maintaining plasma membrane integrity. While much attention has been paid to the involvement of proteins in the membrane repair pathway, the role of lipids in facilitating plasma membrane repair remains poorly studied. Here we will discuss the current knowledge of how lipids facilitate plasma membrane repair by regulating membrane structure and signaling to coordinate the repair response, and will briefly note how lipid involvement extends beyond plasma membrane repair to the tissue repair response.
Collapse
Affiliation(s)
- Adam Horn
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| |
Collapse
|
31
|
Sønder SL, Boye TL, Tölle R, Dengjel J, Maeda K, Jäättelä M, Simonsen AC, Jaiswal JK, Nylandsted J. Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Sci Rep 2019; 9:6726. [PMID: 31040365 PMCID: PMC6491720 DOI: 10.1038/s41598-019-43143-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
The plasma membrane of eukaryotic cells forms the essential barrier to the extracellular environment, and thus plasma membrane disruptions pose a fatal threat to cells. Here, using invasive breast cancer cells we show that the Ca2+ - and phospholipid-binding protein annexin A7 is part of the plasma membrane repair response by enabling assembly of the endosomal sorting complex required for transport (ESCRT) III. Following injury to the plasma membrane and Ca2+ flux into the cytoplasm, annexin A7 forms a complex with apoptosis linked gene-2 (ALG-2) to facilitate proper recruitment and binding of ALG-2 and ALG-2-interacting protein X (ALIX) to the damaged membrane. ALG-2 and ALIX assemble the ESCRT III complex, which helps excise and shed the damaged portion of the plasma membrane during wound healing. Our results reveal a novel function of annexin A7 – enabling plasma membrane repair by regulating ESCRT III-mediated shedding of injured plasma membrane.
Collapse
Affiliation(s)
- Stine Lauritzen Sønder
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Theresa Louise Boye
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Regine Tölle
- Department of Dermatology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Department of Biology, University of Fribourg Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Dermatology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Department of Biology, University of Fribourg Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Kenji Maeda
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Marja Jäättelä
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
| | - Jesper Nylandsted
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark. .,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
32
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
33
|
Nygård Skalman L, Holst MR, Larsson E, Lundmark R. Plasma membrane damage caused by listeriolysin O is not repaired through endocytosis of the membrane pore. Biol Open 2018; 7:bio.035287. [PMID: 30254077 PMCID: PMC6215411 DOI: 10.1242/bio.035287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endocytic mechanisms have been suggested to be important for plasma membrane repair in response to pore-forming toxins such as listeriolysin O (LLO), which form membrane pores that disrupt cellular homeostasis. Yet, little is known about the specific role of distinct endocytic machineries in this process. Here, we have addressed the importance of key endocytic pathways and developed reporter systems for real-time imaging of the endocytic response to LLO pore formation. We found that loss of clathrin-independent endocytic pathways negatively influenced the efficiency of membrane repair. However, we did not detect any increased activity of these pathways, or co-localisation with the toxin or markers of membrane repair, suggesting that they were not directly involved in removal of LLO pores from the plasma membrane. In fact, markers of clathrin-independent carriers (CLICs) were rapidly disassembled in the acute phase of membrane damage due to Ca2+ influx, followed by a reassembly about 2 min after pore formation. We propose that these endocytic mechanisms might influence membrane repair by regulating the plasma membrane composition and tension, but not via direct internalisation of LLO pores.
Collapse
Affiliation(s)
- Lars Nygård Skalman
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden.,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Mikkel R Holst
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - Elin Larsson
- Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Richard Lundmark
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden .,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
34
|
Horn A, Jaiswal JK. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci 2018; 75:3751-3770. [PMID: 30051163 PMCID: PMC6541445 DOI: 10.1007/s00018-018-2888-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.
Collapse
Affiliation(s)
- Adam Horn
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
35
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
36
|
Schoenauer R, Larpin Y, Babiychuk EB, Drücker P, Babiychuk VS, Avota E, Schneider-Schaulies S, Schumacher F, Kleuser B, Köffel R, Draeger A. Down‐regulation of acid sphingomyelinase and neutral sphingomyelinase‐2 inversely determines the cellular resistance to plasmalemmal injury by pore‐forming toxins. FASEB J 2018; 33:275-285. [DOI: 10.1096/fj.201800033r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roman Schoenauer
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Yu Larpin
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Eduard B. Babiychuk
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Patrick Drücker
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | | | - Elita Avota
- Institute of Virology and ImmunobiologyUniversity of Würzburg Würzburg Germany
| | | | - Fabian Schumacher
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - Burkhard Kleuser
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - René Köffel
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Annette Draeger
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| |
Collapse
|
37
|
Annexins in Translational Research: Hidden Treasures to Be Found. Int J Mol Sci 2018; 19:ijms19061781. [PMID: 29914106 PMCID: PMC6032224 DOI: 10.3390/ijms19061781] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The vertebrate annexin superfamily (AnxA) consists of 12 members of a calcium (Ca2+) and phospholipid binding protein family which share a high structural homology. In keeping with this hallmark feature, annexins have been implicated in the Ca2+-controlled regulation of a broad range of membrane events. In this review, we identify and discuss several themes of annexin actions that hold a potential therapeutic value, namely, the regulation of the immune response and the control of tissue homeostasis, and that repeatedly surface in the annexin activity profile. Our aim is to identify and discuss those annexin properties which might be exploited from a translational science and specifically, a clinical point of view.
Collapse
|
38
|
Etxaniz A, González-Bullón D, Martín C, Ostolaza H. Membrane Repair Mechanisms against Permeabilization by Pore-Forming Toxins. Toxins (Basel) 2018; 10:E234. [PMID: 29890730 PMCID: PMC6024578 DOI: 10.3390/toxins10060234] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023] Open
Abstract
Permeabilization of the plasma membrane represents an important threat for any cell, since it compromises its viability by disrupting cell homeostasis. Numerous pathogenic bacteria produce pore-forming toxins that break plasma membrane integrity and cause cell death by colloid-osmotic lysis. Eukaryotic cells, in turn, have developed different ways to cope with the effects of such membrane piercing. Here, we provide a short overview of the general mechanisms currently proposed for plasma membrane repair, focusing more specifically on the cellular responses to membrane permeabilization by pore-forming toxins and presenting new data on the effects and cellular responses to the permeabilization by an RTX (repeats in toxin) toxin, the adenylate cyclase toxin-hemolysin secreted by the whooping cough bacterium Bordetella pertussis, which we have studied in the laboratory.
Collapse
Affiliation(s)
- Asier Etxaniz
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - David González-Bullón
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - Helena Ostolaza
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| |
Collapse
|
39
|
Barthélémy F, Defour A, Lévy N, Krahn M, Bartoli M. Muscle Cells Fix Breaches by Orchestrating a Membrane Repair Ballet. J Neuromuscul Dis 2018; 5:21-28. [PMID: 29480214 PMCID: PMC5836414 DOI: 10.3233/jnd-170251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Skeletal muscle undergoes many micro-membrane lesions at physiological state. Based on their sizes and magnitude these lesions are repaired via different complexes on a specific spatio-temporal manner. One of the major repair complex is a dysferlin-dependent mechanism. Accordingly, mutations in the DYSF gene encoding dysferlin results in the development of several muscle pathologies called dysferlinopathies, where abnormalities of the membrane repair process have been characterized in patients and animal models. Recent efforts have been deployed to decipher the function of dysferlin, they shed light on its direct implication in sarcolemma resealing after injuries. These discoveries served as a strong ground to design therapeutic approaches for dysferlin-deficient patients. This review detailed the different partners and function of dysferlin and positions the sarcolemma repair in normal and pathological conditions.
Collapse
Affiliation(s)
- Florian Barthélémy
- Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
| | - Aurélia Defour
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Nicolas Lévy
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Martin Krahn
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Marc Bartoli
- Aix Marseille University, MMG, INSERM, Marseille, France
| |
Collapse
|
40
|
Pervin MS, Itoh G, Talukder MSU, Fujimoto K, Morimoto YV, Tanaka M, Ueda M, Yumura S. A study of wound repair in Dictyostelium cells by using novel laserporation. Sci Rep 2018; 8:7969. [PMID: 29789591 PMCID: PMC5964096 DOI: 10.1038/s41598-018-26337-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
We examined the mechanism of cell membrane repair in Dictyostelium cells by using a novel laser-based cell poration method. The dynamics of wound pores opening and closing were characterized by live imaging of fluorescent cell membrane proteins, influx of fluorescent dye, and Ca2+ imaging. The wound closed within 2-4 sec, depending on the wound size. Cells could tolerate a wound size of less than 2.0 µm. In the absence of Ca2+ in the external medium, the wound pore did not close and cells ruptured. The release of Ca2+ from intracellular stores also contributed to the elevation of cytoplasmic Ca2+ but not to wound repair. Annexin C1 immediately accumulated at the wound site depending on the external Ca2+ concentration, and annexin C1 knockout cells had a defect in wound repair, but it was not essential. Dictyostelium cells were able to respond to multiple repeated wounds with the same time courses, in contrast to previous reports showing that the first wound accelerates the second wound repair in fibroblasts.
Collapse
Affiliation(s)
- Mst Shaela Pervin
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Go Itoh
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Md Shahabe Uddin Talukder
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan.,Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, GPO Box 3787, Dhaka, 1000, Bangladesh
| | - Koushiro Fujimoto
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Yusuke V Morimoto
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan.,Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0871, Japan
| | - Masamitsu Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Masahiro Ueda
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Shigehiko Yumura
- Department of Functional Molecular Biology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, 753-8512, Japan.
| |
Collapse
|
41
|
Functional Association between Regulatory RNAs and the Annexins. Int J Mol Sci 2018; 19:ijms19020591. [PMID: 29462943 PMCID: PMC5855813 DOI: 10.3390/ijms19020591] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs.
Collapse
|
42
|
Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nat Commun 2017; 8:1623. [PMID: 29158488 PMCID: PMC5696365 DOI: 10.1038/s41467-017-01743-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 10/12/2017] [Indexed: 11/12/2022] Open
Abstract
Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane curvature near the edges. We propose that curvature force is utilized together with annexin A6-mediated constriction force to pull the wound edges together for eventual fusion. We show that annexin A4 can counteract various plasma membrane disruptions including holes of several micrometers indicating that induction of curvature force around wound edges is an early key event in cell membrane repair. The role of annexins in cell membrane repair is largely undefined. Here the authors use a model lipid bilayer to show that annexin A4 induces curvature at the membrane free edge and annexin A6 induces constriction force, and find that both annexins are recruited to wound edges in cells and are required for repair.
Collapse
|
43
|
Frislev HS, Boye TL, Nylandsted J, Otzen D. Liprotides kill cancer cells by disrupting the plasma membrane. Sci Rep 2017; 7:15129. [PMID: 29123177 PMCID: PMC5680231 DOI: 10.1038/s41598-017-15003-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
HAMLET (human α-lactalbumin made lethal to tumour cells) is a complex of α-lactalbumin (aLA) and oleic acid (OA) which kills transformed cells, while leaving fully differentiated cells largely unaffected. Other protein-lipid complexes show similar anti-cancer potential. We call such complexes liprotides. The cellular impact of liprotides, while intensely investigated, remains unresolved. To address this, we report on the cell-killing mechanisms of liprotides prepared by incubating aLA with OA for 1 h at 20 or 80 °C (lip20 and lip80, respectively). The liprotides showed similar cytotoxicity against MCF7 cells, though lip80 acts more slowly, possibly due to intermolecular disulphide bonds formed during preparation. Liprotides are known to increase the fluidity of a membrane and transfer OA to vesicles, prompting us to focus on the effect of liprotides on the cell membrane. Extracellular Ca2+ influx is important for activation of the plasma membrane repair system, and we found that removal of Ca2+ from the medium enhanced the liprotides’ killing effect. Liprotide cytotoxicity was also increased by knockdown of Annexin A6 (ANXA6), a protein involved in plasma membrane repair. We conclude that MCF7 cells counteract liprotide-induced membrane permeabilization by activating their plasma membrane repair system, which is triggered by extracellular Ca2+ and involves ANXA6.
Collapse
Affiliation(s)
- Henriette S Frislev
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus, Denmark
| | - Theresa Louise Boye
- Membrane Integrity Group, Cell Death and Metabolism Unit, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity Group, Cell Death and Metabolism Unit, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark.
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, DK-8000, Aarhus, Denmark.
| |
Collapse
|
44
|
Plasma membrane repair: the adaptable cell life-insurance. Curr Opin Cell Biol 2017; 47:99-107. [DOI: 10.1016/j.ceb.2017.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
|
45
|
Fernandez MP, Garcia M, Martin-Almedina S, Morgan RO. Novel domain architectures and functional determinants in atypical annexins revealed by phylogenomic analysis. Biol Chem 2017; 398:751-763. [PMID: 28002020 DOI: 10.1515/hsz-2016-0273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/11/2016] [Indexed: 01/27/2023]
Abstract
The fundamental cellular role and molecular interactions of annexins in vesicle trafficking and membrane remodeling remain to be further clarified in order to better understand and exploit their contributions to health and disease. We focused on distinctive features of atypical annexins from all domains of life using phylogenomic, molecular systematic and experimental approaches, to extend the current paradigm and better account for annexin diversity of structure, function and mechanistic role in membrane homeostasis. The analysis of gene duplications, organization of domain architectures and profile hidden Markov models of subfamily orthologs defined conserved structural features relevant to molecular interactions and functional divergence of seven family clades ANXA-G. Single domain annexins of bacteria, including cyanobacteria, were frequently coupled to enzymatic units conceivably related to membrane metabolism and remodeling. Multiple ANX domains (up to 20) and various distinct functional domains were observed in unique annexins. Canonical type 2 calcium binding ligands were well-preserved in roughly half of all ANX domains, but alternative structural motifs comprised of 'KGD', cysteine or tryptophan residues were prominently conserved in the same strategic interhelical loops. Selective evolutionary constraint, site-specific location and co-occurrence in all kingdoms identify alternative modes of fundamental binding interactions for annexins.
Collapse
|
46
|
NIELSEN JAKOBLINDBERG, FRANDSEN ULRIK, PROKHOROVA TATYANA, BECH RUNEDUEHOLM, NYGAARD TOBIAS, SUETTA CHARLOTTE, AAGAARD PER. Delayed Effect of Blood Flow–restricted Resistance Training on Rapid Force Capacity. Med Sci Sports Exerc 2017; 49:1157-1167. [DOI: 10.1249/mss.0000000000001208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
48
|
Grewal T, Hoque M, Conway JRW, Reverter M, Wahba M, Beevi SS, Timpson P, Enrich C, Rentero C. Annexin A6-A multifunctional scaffold in cell motility. Cell Adh Migr 2017; 11:288-304. [PMID: 28060548 DOI: 10.1080/19336918.2016.1268318] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Annexin A6 (AnxA6) belongs to a highly conserved protein family characterized by their calcium (Ca2+)-dependent binding to phospholipids. Over the years, immunohistochemistry, subcellular fractionations, and live cell microscopy established that AnxA6 is predominantly found at the plasma membrane and endosomal compartments. In these locations, AnxA6 acts as a multifunctional scaffold protein, recruiting signaling proteins, modulating cholesterol and membrane transport and influencing actin dynamics. These activities enable AnxA6 to contribute to the formation of multifactorial protein complexes and membrane domains relevant in signal transduction, cholesterol homeostasis and endo-/exocytic membrane transport. Hence, AnxA6 has been implicated in many biological processes, including cell proliferation, survival, differentiation, inflammation, but also membrane repair and viral infection. More recently, we and others identified roles for AnxA6 in cancer cell migration and invasion. This review will discuss how the multiple scaffold functions may enable AnxA6 to modulate migratory cell behavior in health and disease.
Collapse
Affiliation(s)
- Thomas Grewal
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Monira Hoque
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - James R W Conway
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Meritxell Reverter
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Mohamed Wahba
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Syed S Beevi
- a Faculty of Pharmacy , University of Sydney , Sydney , NSW , Australia
| | - Paul Timpson
- b The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, Faculty of Medicine , University of New South Wales , Sydney , NSW , Australia
| | - Carlos Enrich
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| | - Carles Rentero
- c Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina , Universitat de Barcelona , Barcelona , Spain
| |
Collapse
|
49
|
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:351-385. [PMID: 29594868 DOI: 10.1007/978-3-319-55858-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
50
|
Annexin A2 is involved in Ca 2+-dependent plasma membrane repair in primary human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:1046-1053. [PMID: 27956131 DOI: 10.1016/j.bbamcr.2016.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 12/23/2022]
Abstract
Many cells in an organism are exposed to constant and acute mechanical stress that can induce plasma membrane injuries. These plasma membrane wounds have to be resealed rapidly to guarantee cell survival. Plasma membrane resealing in response to mechanical strain has been studied in some detail in muscle, where it is required for efficient recovery after insult. However, less is known about the capacity of other cell types and tissues to perform membrane repair and the underlying molecular mechanisms. Here we show that vascular endothelial cells, which are subject to profound mechanical burden, can reseal plasma membrane holes inflicted by laser ablation. Resealing in endothelial cells is a Ca2+-dependent process, as it is inhibited when cells are wounded in Ca2+-free medium. We also show that annexin A1 (AnxA1), AnxA2 and AnxA6, Ca2+-regulated membrane binding proteins previously implicated in membrane resealing in other cell types, are rapidly recruited to the site of plasma membrane injury. S100A11, a known protein ligand of AnxA1, is also recruited to endothelial plasma membrane wounds, albeit with a different kinetic. Mutant expression experiments reveal that Ca2+ binding to AnxA2, the most abundant endothelial annexin, is required for translocation of the protein to the wound site. Furthermore, we show by knock-down and rescue experiments that AnxA2 is a positive regulator of plasma membrane resealing. Thus, vascular endothelial cells are capable of active, Ca2+-dependent plasma membrane resealing and this process requires the activity of AnxA2.
Collapse
|