1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
2
|
Guengerich FP, Tateishi Y, McCarty KD, Yoshimoto FK. Updates on Mechanisms of Cytochrome P450 Catalysis of Complex Steroid Oxidations. Int J Mol Sci 2024; 25:9020. [PMID: 39201706 PMCID: PMC11354347 DOI: 10.3390/ijms25169020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Cytochrome P450 (P450) enzymes dominate steroid metabolism. In general, the simple C-hydroxylation reactions are mechanistically straightforward and are generally agreed to involve a perferryl oxygen species (formally FeO3+). Several of the steroid transformations are more complex and involve C-C bond scission. We initiated mechanistic studies with several of these (i.e., 11A1, 17A1, 19A1, and 51A1) and have now established that the dominant modes of catalysis for P450s 19A1 and 51A1 involve a ferric peroxide anion (i.e., Fe3+O2¯) instead of a perferryl ion complex (FeO3+), as demonstrated with 18O incorporation studies. P450 17A1 is less clear. The indicated P450 reactions all involve sequential oxidations, and we have explored the processivity of these multi-step reactions. P450 19A1 is distributive, i.e., intermediate products dissociate and reassociate, but P450s 11A1 and 51A1 are highly processive. P450 17A1 shows intermediate processivity, as expected from the release of 17-hydroxysteroids for the biosynthesis of key molecules, and P450 19A1 is very distributive. P450 11B2 catalyzes a processive multi-step oxidation process with the complexity of a chemical closure of an intermediate to a locked lactol form.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Kevin D. McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; (Y.T.); (K.D.M.)
| | - Francis K. Yoshimoto
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| |
Collapse
|
3
|
Chu S, Yang W, Lu Y, Li J, Peng J, Liu W, Jiang M, Bai G. Tetrandrine inhibits aldosterone synthesis by covalently targeting CYP11A1 to attenuate hypertension. Front Pharmacol 2024; 15:1387756. [PMID: 38948468 PMCID: PMC11211567 DOI: 10.3389/fphar.2024.1387756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Tetrandrine (Tet) is the main pharmacological component of Stephania tetrandra S. Moore, which is a well-documented traditional Chinese medicine known for its diuretic and antihypertensive properties. Unraveling the specific targets and mechanisms of Tet involved in inducing diuresis and mitigating hypertension can provide valuable insights into its therapeutic effects. This study aimed to explore the diuretic and antihypertensive targets and mechanisms of Tet using chemical biology coupled with activity analyses in vivo and in vitro. Methods The diuretic effects of Tet were evaluated using a water-loaded mouse model. The direct target proteins for the diuretic and antihypertensive effects of Tet were determined using chemical biology. Furthermore, the molecular mechanism of Tet binding to target proteins was analyzed using a multidisciplinary approach based on the structure and function of the proteins. Finally, the effects of the Tet-targeted protein on downstream signaling pathways and blood pressure were evaluated in hypertensive model rats. Results Tet exhibited significant antihypertensive and potassium-preserving diuretic effects. The mechanism underlying these effects involves the modulation of the enzyme activity by covalent binding of Tet to Cys423 of CYP11A1. This interaction alters the stability of heme within CYP11A1, subsequently impeding electron transfer and inhibiting aldosterone biosynthesis. Discussion This study not only revealed the mechanism of the diuretic and antihypertensive effects of Tet but also discovered a novel covalent inhibitor of CYP11A1. These findings contribute significantly to our understanding of the therapeutic potential of Tet and provide a foundation for future research in the development of targeted treatments for hypertension.
Collapse
Affiliation(s)
- Simeng Chu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wei Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yujie Lu
- College of Life Health, Dalian University, Dalian, China
| | - Junjie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jiamin Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Lv Y, Dong Y, Su M, Lin H, Zhu Q, Li H. Morphine compromises androgen biosynthesis by immature Leydig cells from pubertal rat testes in vitro. Toxicol Res (Camb) 2024; 13:tfae001. [PMID: 38283823 PMCID: PMC10811522 DOI: 10.1093/toxres/tfae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/18/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024] Open
Abstract
Morphine is an analgesic in the opiate family, isolated from many plants. It can inhibit androgen biosynthesis by Leydig cells. Whether morphine directly inhibits androgen biosynthesis and underlying mechanism remains unclear. To investigate the influence of morphine on androgen secretion by rat immature Leydig cells (ILCs) and possible mechanism. Rat ILCs were treated with 0.5-50 μM morphine for 3 h in vitro. Morphine at ≥0.5 μM significantly reduced total androgen secretion. Morphine at 50 μM also compromised luteinizing hormone (LH, 10 mg/kg), 8Br-cAMP (1 mM), and 22R-hydroxycholesterol (20 μM) stimulated total androgen, androstanediol, and testosterone secretion, without affecting pregnenolone, progesterone, androstenedione mediated androgen secretion and testosterone and dihydrotestosterone mediated androstanediol secretion. Further analysis revealed that morphine at ≥0.5 μM downregulated Star expression and at ≥5 μM downregulated Cyp11a1 expression. Morphine also significantly reduced STAR (≥0.5 μM) and reduced CYP11A1 (≥5 μM) levels. 0.5 μM naloxone significantly antagonized morphine-mediated action. In conclusion, morphine might cause side effects by suppressing androgen biosynthesis via u opioid receptor.
Collapse
Affiliation(s)
- Yao Lv
- Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, Zhejiang, Ningbo 315100, China
| | - Yaoyao Dong
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Hang Lin
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
| | - Huitao Li
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital; Key Laboratory of Pediatric Anesthesiology, Ministry of Education; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Zhejiang, Wenzhou 325027, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, Wenzhou 325000, China
| |
Collapse
|
5
|
McCarty KD, Liu L, Tateishi Y, Wapshott-Stehli HL, Guengerich FP. The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive. J Biol Chem 2024; 300:105495. [PMID: 38006947 PMCID: PMC10716780 DOI: 10.1016/j.jbc.2023.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Lu Liu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
6
|
Burris-Hiday SD, Scott EE. Allosteric modulation of cytochrome P450 enzymes by the NADPH cytochrome P450 reductase FMN-containing domain. J Biol Chem 2023; 299:105112. [PMID: 37517692 PMCID: PMC10481364 DOI: 10.1016/j.jbc.2023.105112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
NADPH-cytochrome P450 reductase delivers electrons required by heme oxygenase, squalene monooxygenase, fatty acid desaturase, and 48 human cytochrome P450 enzymes. While conformational changes supporting reductase intramolecular electron transfer are well defined, intermolecular interactions with these targets are poorly understood, in part because of their transient association. Herein the reductase FMN domain responsible for interacting with targets was fused to the N-terminus of three drug-metabolizing and two steroidogenic cytochrome P450 enzymes to increase the probability of interaction. These artificial fusion enzymes were profiled for their ability to bind their respective substrates and inhibitors and to perform catalysis supported by cumene hydroperoxide. Comparisons with the isolated P450 enzymes revealed that even the oxidized FMN domain causes substantial and diverse effects on P450 function. The FMN domain could increase, decrease, or not affect total ligand binding and/or dissociation constants depending on both P450 enzyme and ligand. As examples, FMN domain fusion has no effect on inhibitor ketoconazole binding to CYP17A1 but substantially altered CYP21A2 binding of the same compound. FMN domain fusion to CYP21A2 resulted in differential effects dependent on whether the ligand was 17α-hydroxyprogesterone versus ketoconazole. Similar enzyme-specific effects were observed on steady-state kinetics. These observations are most consistent with FMN domain interacting with the proximal P450 surface to allosterically impact P450 ligand binding and metabolism separate from electron delivery. The variety of effects on different P450 enzymes and on the same P450 with different ligands suggests intricate and differential allosteric communication between the P450 active site and its proximal reductase-binding surface.
Collapse
Affiliation(s)
- Sarah D Burris-Hiday
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Departments of Pharmacology and Biological Chemistry and the Programs in Chemical Biology and Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
Kumar A, Estrada DF. Structural basis of bidirectional allostery across the heme in a cytochrome P450 enzyme. J Biol Chem 2023; 299:104977. [PMID: 37390989 PMCID: PMC10416055 DOI: 10.1016/j.jbc.2023.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
Cytochromes P450 (CYPs) are heme-containing enzymes that are present in all kingdoms of life and share a structurally homologous, globular protein fold. CYPs utilize structures distal to the heme to recognize and coordinate substrates, while the necessary interactions with redox partner proteins are mediated at the opposite, proximal surface. In the current study, we investigated the functional allostery across the heme for the bacterial enzyme CYP121A1, which utilizes a non-polar distal-to-distal dimer interface for specific binding of its dicyclotyrosine substrate. Fluorine-detected Nuclear Magnetic Resonance (19F-NMR) spectroscopy was combined with site-specific labeling of a distal surface residue (S171C of the FG-loop), one residue of the B-helix (N84C), and two proximal surface residues (T103C and T333C) with a thiol-reactive fluorine label. Adrenodoxin was used as a substitute redox protein and was found to promote a closed arrangement of the FG-loop, similar to the addition of substrate alone. Disruption of the protein-protein interface by mutagenesis of two CYP121 basic surface residues removed the allosteric effect. Moreover, 19F-NMR spectra of the proximal surface indicate that ligand-induced allostery modulates the environment at the C-helix but not the meander region of the enzyme. In light of the high degree of structural homology in this family of enzymes, we interpret the findings from this work to represent a conserved allosteric network in CYPs.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
8
|
Qin Y, He S, Peng H, Ye X, Zhang H, Ding S. Dibutyl Phthalate Adsorbed on Multiwalled Carbon Nanotubes Causes Fetal Developmental Toxicity in Balb/C Mice. TOXICS 2023; 11:565. [PMID: 37505531 PMCID: PMC10385951 DOI: 10.3390/toxics11070565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether using multiwalled carbon nanotubes (MWCNTs) as a carrier for dibutyl phthalate (DBP) could delay the degradation rate of DBP in mice and increase its estrogen-like interference effect. Pregnant Balb/C mice were divided into four groups and exposed to different treatments via tail-vein injection every 3 days until gestational day 20. The female and male mice were then sacrificed for toxicological study. The results showed that the combination of MWCNTs and DBP resulted in a higher fetal mortality rate than if the mice were exposed to MWCNTs or DBP alone. H&E staining showed that the estrous period of the exposed mice was delayed, the development of oocytes was blocked in the combination group, the number of spermatogenic cells decreased, and the quality of sperm decreased. Our experiment showed that the expression levels of the genes involved in sex hormone synthesis in the testis and ovaries were significantly increased after combined treatment compared with the MWCNT group (p < 0.01). The study suggests that DBP degradation is delayed when absorbed on MWCNTs, which increases its estrogen-like interference and interferes with fetal development, ultimately leading to increased fetal mortality.
Collapse
Affiliation(s)
- Yujie Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Suli He
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Haiyan Peng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xin Ye
- Liquor Marking Biological Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Hongmao Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shumao Ding
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
9
|
Liu R, Pan Y, Wang N, Tang D, Urlacher VB, Li S. Comparative biochemical characterization of mammalian-derived CYP11A1s with cholesterol side-chain cleavage activities. J Steroid Biochem Mol Biol 2023; 229:106268. [PMID: 36764495 DOI: 10.1016/j.jsbmb.2023.106268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Steroid drugs, the second largest class of pharmaceuticals after antibiotics, have shown significant anti-inflammatory, anti-allergic, and endocrine-regulating effects. A group of cytochrome P450 enzymes, namely, CYP11A1 isoenzymes from different organisms are capable of converting cholesterol into pregnenolone, which is a pivotal reaction in both steroid metabolism and (bio)synthetic network of steroid products. However, the low activity of CYP11A1s greatly restricts the industrial application of these cholesterol side-chain cleavage enzymes. Herein, we investigate ten CYP11A1 enzymes of different origins and in vitro characterize two CYP11A1s with a relatively higher expression level from Capra hircus and Sus scrofa, together with the CYP11A1s from Homo sapiens and Bos taurus as references. Towards five selected sterol substrates with different side chain structures, S. scrofa CYP11A1 displays relatively higher activities. Through redox partners combination screening, we reveal the optimal redox partner pair of S. scrofa adrenodoxin and C. hircus adrenodoxin reductase. Moreover, the semi-rational mutagenesis for the active sites and substrate entrance channels of human and bovine CYP11A1s is performed based on comparative analysis of their crystal structures. The mutant mBtCYP11A1-Q377A derived from mature B. taurus CYP11A1 shows a 1.46 times higher activity than the wild type enzyme. These results not only demonstrate the tunability of the highly conserved CYP11A1 isoenzymes, but also lay a foundation for the following engineering efforts on these industrially relevant P450 enzymes.
Collapse
Affiliation(s)
- Ruxin Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Yunjun Pan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Vlada B Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| |
Collapse
|
10
|
Sun B, Lu L, Xie S, Zhang W, Zhang X, Tong A, Chen S, Wu X, Mao J, Wang X, Qiu L, Nie M. Molecular analysis of 12 Chinese patients with 11β-hydroxylase deficiency and in vitro functional study of 20 CYP11B1 missense variants. FASEB J 2023; 37:e22869. [PMID: 36929050 DOI: 10.1096/fj.202201398rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Steroid 11β-hydroxylase deficiency (11β-OHD) is a rare autosomal recessive disorder caused by pathogenic variants of CYP11B1 gene. This study aimed to perform molecular analysis of a Chinese 11β-OHD series and in vitro functional study of twenty CYP11B1 missense variants. Twelve Chinese patients with clinical diagnosis of 11β-OHD were included in the study to analyze their molecular etiology. Genomic DNA of patients was extracted to be sequenced all coding exons and intronic flanking sequences of CYP11B1. Fourteen missense variants found in 12 patients mentioned above along with 6 missense variants previously reported by our team were evaluated functionally. Amino acid substitutions were analyzed with computational program to determine their effects on the three-dimensional structure of CYP11B1 protein. Clinical characteristics and hormone levels at baseline of the 18 patients carrying 18 missense variants aforementioned were recorded to perform genotype-phenotype correlation. A total of 21 rare variants including 9 novel and 12 recurrent ones were identified in 12 patients, out of which 17 were missense, 2 were nonsense, 1 was a splice site variant, and 1 was a deletion-insertion variant. Results of in vitro functional study revealed that 3 out of 20 missense mutants (p.Leu3Pro, p.Gly267Ser, and p.Ala367Ser) had partial enzyme activity and the other 17 had little enzymatic activity. The impairment degree of enzymatic activity in vitro functional study was also reflected in the severity degree of interaction change between the wild-type/mutant-type amino acid and its adjacent amino acids in three-dimensional model. In conclusion, the addition of 9 novel variants expands the spectrum of CYP11B1 pathogenic variants. Our results demonstrate that twenty CYP11B1 variants lead to impaired 11β-hydroxylase activity in vitro. Visualizing these variants in the three-dimensional model structure of CYP11B1 protein can provide a plausible explanation for the results measured in vitro.
Collapse
Affiliation(s)
- Bang Sun
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Lu
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaowei Xie
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxia Zhang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Anli Tong
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi Chen
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Wang
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Nie
- Department of Endocrinology, NHC Key laboratory of Endocrinology (Peking Union Medical College Hospital), Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Rahman MK, Umashankar B, Choucair H, Pazderka C, Bourget K, Chen Y, Dunstan CR, Rawling T, Murray M. Inclusion of the in-chain sulfur in 3-thiaCTU increases the efficiency of mitochondrial targeting and cell killing by anticancer aryl-urea fatty acids. Eur J Pharmacol 2023; 939:175470. [PMID: 36543287 DOI: 10.1016/j.ejphar.2022.175470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Mitochondria in tumor cells are functionally different from those in normal cells and could be targeted to develop new anticancer agents. We showed recently that the aryl-ureido fatty acid CTU is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells by increasing the production of reactive oxygen species (ROS), activating endoplasmic reticulum (ER)-stress and promoting apoptosis. However, prolonged treatment with high doses of CTU were required for in vivo anti-tumor activity. Thus, new strategies are now required to produce agents that have enhanced anticancer activity over CTU. In the present study we prepared a novel aryl-urea termed 3-thiaCTU, that contained an in-chain sulfur heteroatom, for evaluation in tumor cell lines and in mice carrying tumor xenografts. The principal finding to emerge was that 3-thiaCTU was several-fold more active than CTU in the activation of aryl-urea mechanisms that promoted cancer cell killing. Thus, in in vitro studies 3-thiaCTU disrupted the mitochondrial membrane potential, increased ROS production, activated ER-stress and promoted tumor cell apoptosis more effectively than CTU. 3-ThiaCTU was also significantly more active than CTUin vivo in mice that carried MDA-MB-231 cell xenografts. Compared to CTU, 3-thiaCTU prevented tumor growth more effectively and at much lower doses. These findings indicate that, in comparison to CTU, 3-thiaCTU is an aryl-urea with markedly enhanced activity that could now be suitable for development as a novel anticancer agent.
Collapse
Affiliation(s)
- Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Curtis Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia
| | - Yongjuan Chen
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia; Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Colin R Dunstan
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, New South Wales, 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
12
|
Dickson AL, Yutuc E, Thornton CA, Wang Y, Griffiths WJ. Identification of unusual oxysterols biosynthesised in human pregnancy by charge-tagging and liquid chromatography - mass spectrometry. Front Endocrinol (Lausanne) 2022; 13:1031013. [PMID: 36440193 PMCID: PMC9685423 DOI: 10.3389/fendo.2022.1031013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to identify oxysterols and any down-stream metabolites in placenta, umbilical cord blood plasma, maternal plasma and amniotic fluid to enhance our knowledge of the involvement of these molecules in pregnancy. We confirm the identification of 20S-hydroxycholesterol in human placenta, previously reported in a single publication, and propose a pathway from 22R-hydroxycholesterol to a C27 bile acid of probable structure 3β,20R,22R-trihydroxycholest-5-en-(25R)26-oic acid. The pathway is evident not only in placenta, but pathway intermediates are also found in umbilical cord plasma, maternal plasma and amniotic fluid but not non-pregnant women.
Collapse
|
13
|
Ali H, van Lier JE. X-ray structure analysis of the cholesterol 25- and 20-hydroperoxides, the elusive primary sidechain autoxidation products of cholesterol. Steroids 2022; 187:109092. [PMID: 35863402 DOI: 10.1016/j.steroids.2022.109092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
The systematic X-ray structure analyses of the primary cholesterol sidechain autoxidation products cholesterol 25- and 20β(S)-hydroperoxide are presented and compared to cholesterol and 25-hydroxycholesterol. Intermolecular interactions in crystal structures of the molecules are revealed through Hirshfeld surface analysis and fingerprint plots. The magnitude of energy frameworks is presented by combining efficient calculations of intermolecular interaction energies with novel graphical representation.
Collapse
Affiliation(s)
- Hasrat Ali
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H5N4, Canada
| | - Johan E van Lier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, Québec J1H5N4, Canada.
| |
Collapse
|
14
|
Loomis CL, Brixius-Anderko S, Scott EE. Redox partner adrenodoxin alters cytochrome P450 11B1 ligand binding and inhibition. J Inorg Biochem 2022; 235:111934. [PMID: 35952394 PMCID: PMC9907956 DOI: 10.1016/j.jinorgbio.2022.111934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023]
Abstract
Human cytochrome P450 11B1 (CYP11B1) generation of the major glucocorticoid cortisol requires two electrons delivered sequentially by the iron‑sulfur protein adrenodoxin. While the expected adrenodoxin binding site is on the opposite side of the heme and 15-20 Å away, evidence is provided that adrenodoxin allosterically impacts CYP11B1 ligand binding and catalysis. The presence of adrenodoxin both decreases the dissociation constant (Kd) for substrate binding and increases the proportion of substrate that is bound at saturation. Adrenodoxin additionally decreases the Michaelis-Menten constant for the native substrate. Similar studies with several inhibitors also demonstrate the ability of adrenodoxin to modulate inhibition (IC50 values). Somewhat similar allosterism has recently been observed for the closely related CYP11B2/aldosterone synthase, but there are several marked differences in adrenodoxin effects on the two CYP11B enzymes. Comparison of the sequences and structures of these two CYP11B enzymes helps identify regions likely responsible for the functional differences. The allosteric effects of adrenodoxin on CYP11B enzymes underscore the importance of considering P450/redox partner interactions when evaluating new inhibitors.
Collapse
Affiliation(s)
- Cara L Loomis
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Emily E Scott
- Departments of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Medicinal Chemistry, Pharmacology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
El Sherif DF, Soliman NH, Alshallash KS, Ahmed N, Ibrahim MAR, A. Al-Shammery K, Al-Khalaf AA. The Binary Mixtures of Lambda-Cyhalothrin, Chlorfenapyr, and Abamectin, against the House Fly Larvae, Musca domestica L. Molecules 2022; 27:molecules27103084. [PMID: 35630573 PMCID: PMC9146536 DOI: 10.3390/molecules27103084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
The house fly Musca domestica L. is one of the medical and veterinary pests that can develop resistance to different insecticides. Mixing insecticides is a new strategy for accelerating pest control; furthermore, it can overcome insect resistance to insecticides. This study aims to evaluate three insecticides, chlorfenapyr, abamectin, and lambda-cyhalothrin, individually and their binary mixtures against 2nd instar larvae of M. domestica laboratory strain. Chlorfenapyr exhibited the most toxic effect on larvae, followed by abamectin then the lambda-cyhalothrin. The half-lethal concentrations (LC50) values were 3.65, 30.6, and 94.89 ppm, respectively. These results revealed that the high potentiation effect was the mixture of abamectin/chlorfenapyr in all the mixing ratios. In contrast, the tested combination of lambda-cyhalothrin/abamectin showed an antagonism effect at all mixing ratios against house fly larvae. The total protein, esterases, glutathione-S-transferase (GST), and cytochrome P-450 activity were also measured in the current investigation in the larvae treated with chlorfenapyr. Our results indicate that GST may play a role in detoxifying chlorfenapyr in M. domestica larvae. The highest activity of glutathione-S-transferase was achieved in treated larvae with chlorfenapyr, and an increase in cytochrome P-450 activity in the larvae was observed post-treatment with Abamectin/chlorfenapyr.
Collapse
Affiliation(s)
- Doaa F. El Sherif
- Plant Protection Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
- Correspondence: (D.F.E.S.); (A.A.A.-K.)
| | - Nagat H. Soliman
- Plant Protection Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Khalid S. Alshallash
- College of Science and Humanities-Huraymila, Imam Mohammed Bin Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia;
| | - Nevin Ahmed
- Plant Protection Department, Faculty of Agriculture, Benha University, Benha 13736, Egypt;
| | - Mervat A. R. Ibrahim
- Biochemistry Department, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt;
| | | | - Areej A. Al-Khalaf
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (D.F.E.S.); (A.A.A.-K.)
| |
Collapse
|
16
|
Jay N, Duffy SR, Estrada DF. Characterization of a Cleavable Fusion of Human CYP24A1 with Adrenodoxin Reveals the Variable Role of Hydrophobics in Redox Partner Binding. Biochemistry 2022; 61:57-66. [PMID: 34979083 DOI: 10.1021/acs.biochem.1c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The improper maintenance of the bioactivated form of vitamin-D (1α,25(OH)2D) may result in vitamin-D insufficiency and therefore compromise the absorption of dietary calcium. A significant regulator of vitamin-D metabolism is the inactivating function of the mitochondrial enzyme cytochrome P450 24A1 (CYP24A1). In humans, CYP24A1 carries out hydroxylation of carbon-23 (C23) or carbon-24 (C24) of the 1α,25(OH)2D side chain, eventually resulting in production of either an antagonist of the vitamin-D receptor (C23 pathway) or calcitroic acid (C24 pathway). Despite its importance to human health, the human isoform (hCYP24A1) remains largely uncharacterized due in part to the difficulty in producing the enzyme using recombinant means. In this study, we utilize a cleavable fusion with the cognate redox partner, human Adx (hAdx), to stabilize hCYP24A1 during production. The subsequent cleavage and isolation of active hCYP24A1 allowed for an investigation of substrate and analog binding, enzymatic activity, and redox partner recognition. We demonstrate involvement of a nonpolar contact involving Leu-80 of hAdx and a nonconserved proximal surface of hCYP24A1. Interestingly, shortening the length of this residue (L80V) results in enhanced binding between the CYP-Adx complex and 1α,25(OH)2D yet unexpectedly results in decreased catalysis. The same mutation has a negligible effect on rat CYP24A1 (a C24-hydroxylase), indicating the presence of a species-specific requirement that may correlate with differences in regioselectivity of the reaction. Taken together, this work presents an example of production of a challenging human CYP as well as providing details regarding hydrophobic modulation of a CYP-Adx complex that is critical to human vitamin-D metabolism.
Collapse
Affiliation(s)
- Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| | - Sean R Duffy
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| | - D Fernando Estrada
- Department of Biochemistry, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
17
|
Fujiyama K, Hino T, Nagano S. Diverse reactions catalyzed by cytochrome P450 and biosynthesis of steroid hormone. Biophys Physicobiol 2022; 19:e190021. [PMID: 35859988 PMCID: PMC9260165 DOI: 10.2142/biophysico.bppb-v19.0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Steroid hormones modulate numerous physiological processes in various higher organisms. Research on the physiology, biosynthesis, and metabolic degradation of steroid hormones is crucial for developing drugs, agrochemicals, and anthelmintics. Most steroid hormone biosynthetic pathways, excluding those in insects, have been elucidated, and the roles of several cytochrome P450s (CYPs, P450s), heme (iron protoporphyrin IX)-containing monooxygenases, have been identified. Specifically, P450s of the animal steroid hormone biosynthetic pathways and their three dimensional structures and reaction mechanisms have been extensively studied; however, the mechanisms of several uncommon P450 reactions involved in animal steroid hormone biosynthesis and structures and reaction mechanisms of various P450s involved in plant and insect steroid hormone biosynthesis remain unclear. Recently, we determined the crystal structure of P450 responsible for the first and rate-determining step in brassinosteroids biosynthesis and clarified the regio- and stereo-selectivity in the hydroxylation reaction mechanism. In this review, we have outlined the general catalytic cycle, reaction mechanism, and structure of P450s. Additionally, we have described the recent advances in research on the reaction mechanisms of steroid hormone biosynthesis-related P450s, some of which catalyze unusual P450 reactions including C–C bond cleavage reactions by utilizing either a heme–peroxo anion species or compound I as an active oxidizing species. This review article is an extended version of the Japanese article, Structure and mechanism of cytochrome P450s involved in steroid hormone biosynthesis, published in SEIBUTSU BUTSURI Vol. 61, p. 189–191 (2021).
Collapse
Affiliation(s)
- Keisuke Fujiyama
- Dormancy and Adaptation Research Unit, RIKEN Center for Sustainable Resource Science
| | - Tomoya Hino
- Center for Research on Green Sustainable Chemistry, Tottori University
| | - Shingo Nagano
- Center for Research on Green Sustainable Chemistry, Tottori University
| |
Collapse
|
18
|
Lin YC, Papadopoulos V. Neurosteroidogenic enzymes: CYP11A1 in the central nervous system. Front Neuroendocrinol 2021; 62:100925. [PMID: 34015388 DOI: 10.1016/j.yfrne.2021.100925] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 01/08/2023]
Abstract
Neurosteroids, steroid hormones synthesized locally in the nervous system, have important neuromodulatory and neuroprotective effects in the central nervous system. Progress in neurosteroid research has led to the successful translation of allopregnanolone into an approved therapy for postpartum depression. However, there is insufficient evidence to support the assumption that steroidogenesis is exactly the same between the nervous system and the periphery. This review focuses on CYP11A1, the only enzyme currently known to catalyze the first reaction in steroidogenesis to produce pregnenolone, the precursor to all other steroids. Although CYP11A1 mRNA has been found in brain of many mammals, the presence of CYP11A1 protein has been difficult to detect, particularly in humans. Here, we highlight the discrepancies in the current evidence for CYP11A1 in the central nervous system and propose new directions for understanding neurosteroidogenesis, which will be crucial for developing neurosteroid-based therapies for the future.
Collapse
Affiliation(s)
- Yiqi Christina Lin
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
19
|
Hartz P, Strohmaier SJ, El-Gayar BM, Abdulmughni A, Hutter MC, Hannemann F, Gillam EMJ, Bernhardt R. Resurrection and characterization of ancestral CYP11A1 enzymes. FEBS J 2021; 288:6510-6527. [PMID: 34092040 DOI: 10.1111/febs.16054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 01/16/2023]
Abstract
Mitochondrial cytochromes P450 presumably originated from a common microsomal P450 ancestor. However, it is still unknown how ancient mitochondrial P450s were able to retain their oxygenase function following relocation to the mitochondrial matrix and later emerged as enzymes specialized for steroid hormone biosynthesis in vertebrates. Here, we used the approach of ancestral sequence reconstruction (ASR) to resurrect ancient CYP11A1 enzymes and characterize their unique biochemical properties. Two ancestral CYP11A1 variants, CYP11A_Mammal_N101 and CYP11A_N1, as well as an extant bovine form were recombinantly expressed and purified to homogeneity. All enzymes showed characteristic P450 spectral properties and were able to convert cholesterol as well as other sterol substrates to pregnenolone, yet with different specificities. The vertebrate CYP11A_N1 ancestor preferred the cholesterol precursor, desmosterol, as substrate suggesting a convergent evolution of early cholesterol metabolism and CYP11A1 enzymes. Both ancestors were able to withstand increased levels of hydrogen peroxide but only the ancestor CYP11A_N1 showed increased thermostability (~ 25 °C increase in T50 ) compared with the extant CYP11A1. The extraordinary robustness of ancient mitochondrial P450s, as demonstrated for CYP11A_N1, may have allowed them to stay active when presented with poorly compatible electron transfer proteins and resulting harmful ROS in the new environment of the mitochondrial matrix. To the best of our knowledge, this work represents the first study that describes the resurrection of ancient mitochondrial P450 enzymes. The results will help to understand and gain fundamental functional insights into the evolutionary origins of steroid hormone biosynthesis in animals.
Collapse
Affiliation(s)
- Philip Hartz
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Silja J Strohmaier
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Basma M El-Gayar
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Ammar Abdulmughni
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Michael C Hutter
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
20
|
Expression of steroidogenic enzymes and TGFβ superfamily members in follicular cells of prepubertal gilts with distinct endocrine profiles. ZYGOTE 2021; 30:65-71. [PMID: 33966679 DOI: 10.1017/s0967199421000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Regulation of the transforming growth factor beta (TGFβ) superfamily by gonadotrophins in swine follicular cells is not fully understood. This study evaluated the expression of steroidogenic enzymes and members of the TGFβ superfamily in prepubertal gilts allocated to three treatments: 1200 IU eCG at D -3 (eCG); 1200 IU eCG at D -6 plus 500 IU hCG at D -3 (eCG + hCG); and the control, composed of untreated gilts. Blood samples and ovaries were collected at slaughter (D0) and follicular cells were recovered thereafter. Relative gene expression was determined by real-time PCR. Serum progesterone levels were greater in the eCG + hCG group compared with the other groups (P < 0.01). No differences were observed in the expression of BMP15, BMPR1A, BMPR2, FSHR, GDF9, LHCGR and TGFBR1 (P > 0.05). Gilts from the eCG group presented numerically greater mean expression of CYP11A1 mRNA than in the control group that approached statistical significance (P = 0.08) and greater expression of CYP19A1 than in both the eCG and the control groups (P < 0.05). Expression of BMPR1B was lower in the eCG + hCG treatment group compared with the control (P < 0.05). In conclusion, eCG treatment increased the relative expression of steroidogenic enzymes, whereas treatment with eCG + hCG increased serum progesterone levels. Although most of the evaluated TGFβ members were not regulated after gonadotrophin treatment, the downregulation of BMPR1B observed after treatment with eCG + hCG and suggests a role in luteinization regulation.
Collapse
|
21
|
Yablokov EO, Sushko TA, Kaluzhskiy LA, Kavaleuski AA, Mezentsev YV, Ershov PV, Gilep AA, Ivanov АS, Strushkevich NV. Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. J Steroid Biochem Mol Biol 2021; 208:105793. [PMID: 33271253 DOI: 10.1016/j.jsbmb.2020.105793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022]
Abstract
Steroidogenesis is strictly regulated at multiple levels, as produced steroid hormones are crucial to maintain physiological functions. Cytochrome P450 enzymes are key players in adrenal steroid hormone biosynthesis and function within short redox-chains in mitochondria and endoplasmic reticulum. However, mechanisms regulating supply of reducing equivalents in the mitochondrial CYP-dependent system are not fully understood. In the present work, we aimed to estimate how the specific steroids, substrates, intermediates and products of multistep reactions modulate protein-protein interactions between adrenodoxin (Adx) and mitochondrial CYP11 s. Using the SPR technology we determined that steroid substrates affect affinity and stability of CYP11s-Adx complexes in an isoform-specific mode. In particular, cholesterol induces a 4-fold increase in the rate of CYP11A1 - Adx complex formation without significant effect on dissociation (koff decreased ∼1.5-fold), overall increasing complex affinity. At the same time steroid substrates decrease the affinity of both CYP11B1 - Adx and CYP11B2 - Adx complexes, predominantly reducing their stability (4-7 fold). This finding reveals differentiation of protein-protein interactions within the mitochondrial pool of CYPs, which have the same electron donor. The regulation of electron supply by the substrates might affect the overall steroid hormones production. Our experimental data provide further insight into protein-protein interactions within CYP-dependent redox chains involved in steroidogenesis.
Collapse
Affiliation(s)
- E O Yablokov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia.
| | - T A Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6 - 1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - L A Kaluzhskiy
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Kavaleuski
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - Y V Mezentsev
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - P V Ershov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Gilep
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - А S Ivanov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - N V Strushkevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205, Moscow, Russia
| |
Collapse
|
22
|
Wang X, Wen H, Li Y, Lyu L, Song M, Zhang Y, Li J, Yao Y, Li J, Qi X. Characterization of CYP11A1 and its potential role in sex asynchronous gonadal development of viviparous black rockfish Sebastes schlegelii (Sebastidae). Gen Comp Endocrinol 2021; 302:113689. [PMID: 33301756 DOI: 10.1016/j.ygcen.2020.113689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial cytochrome P450 side-chain cleavage (P450scc), encoded by the cyp11a1 gene, initiates the first step of steroid biosynthesis. In this study, a 1554-bp open reading frame (ORF) of black rockfish (Sebastes schlegelii) cyp11a1 was cloned. The cyp11a1 gene is located on chromosome 5 and has 9 exons. The ORF encodes a putative precursor protein of 517 amino acids, and the predicted cleavable mitochondrial targeting peptide is located at amino acids 1-39. P450scc shares homology with other teleosts and tetrapods, which have relatively conserved binding regions with heme, cholesterol and adrenodoxin. Tissue distribution analysis revealed that the highest expression levels of cyp11a1 were detected in mature gonads and head kidney but that low levels were detected in gestational/regressed ovaries, regressed testes and other tissues. Immunostaining of P450scc was observed in testicular Leydig cells, ovarian theca cells, interrenal glands of head kidney, pituitary and multiple regions of brain. Particularly, two kinds of fish-specific P450scc-positive cells, including coronet cells of brain saccus vasculosus and hypophyseal somatolactin cells, were identified in black rockfish. Our results provide novel evidence for the potential role played by P450scc in reproduction behavior by mediating steroidogenesis in viviparous teleost.
Collapse
Affiliation(s)
- Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Min Song
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Ying Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yijia Yao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jifang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
23
|
Wang Y, Yutuc E, Griffiths WJ. Cholesterol metabolism pathways - are the intermediates more important than the products? FEBS J 2021; 288:3727-3745. [PMID: 33506652 PMCID: PMC8653896 DOI: 10.1111/febs.15727] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022]
Abstract
Every cell in vertebrates possesses the machinery to synthesise cholesterol and to metabolise it. The major route of cholesterol metabolism is conversion to bile acids. Bile acids themselves are interesting molecules being ligands to nuclear and G protein‐coupled receptors, but perhaps the intermediates in the bile acid biosynthesis pathways are even more interesting and equally important. Here, we discuss the biological activity of the different intermediates generated in the various bile acid biosynthesis pathways. We put forward the hypothesis that the acidic pathway of bile acid biosynthesis has primary evolved to generate signalling molecules and its utilisation by hepatocytes provides an added bonus of producing bile acids to aid absorption of lipids in the intestine.
Collapse
|
24
|
Souza TL, Batschauer AR, Brito PM, Martino-Andrade AJ, Ortolani-Machado CF. Evaluation of testicular structure in mice after exposure to environmentally relevant doses of manganese during critical windows of development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111537. [PMID: 33254399 DOI: 10.1016/j.ecoenv.2020.111537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Despite being an essential trace element with great importance for vital metabolic activities, the manganese (Mn) can also cause damage to organ systems. However, data on the effect of this metal on the male reproductive system are limited, especially using relevant doses to human exposure. The present study aimed to evaluate and compare the effects of Mn exposure on the testicular structure of mice. Three experiments were conducted: (I) direct exposure to realistic doses (0.013, 0.13, and 1.3 mg/kg/day of MnCl2); (II) parental and direct exposure to realistic doses (as in experiment I), where the animals were exposed during intrauterine development and from lactation until reproductive maturity; (III) direct exposure to high doses (15, 30, and 60 mg/kg/day of MnCl2). Biometric, histopathological, histomorphometric and stereological parameters of the testis were evaluated, in addition to sperm morphology. Bioinformatic analyses were performed to identify potential Mn binding sites in 3β-HSD and P450ssc, as well as their protein-protein interaction network. The results obtained were compared using the integrated biomarker response index (IBR). There was an increase of seminiferous tubules pathologies in all experimental conditions tested, with effects on tubular volume, as well as a reduction in tubular diameter. The IBR analyses showed that parental and direct exposure had a significant negative effect on the testicular structure due to the exposure of this metal to sensitive periods of animal development. This study suggests that Mn has the potential to alter the morphological parameters of the testes, affecting the spermatogenesis in mice.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Amândia R Batschauer
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Patricia M Brito
- Laboratory of Cell Toxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Anderson J Martino-Andrade
- Laboratory of Endocrine Physiology and Animal Reproduction, Department of Physiology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Claudia F Ortolani-Machado
- Laboratory of Embryotoxicology, Department of Cell Biology, Federal University of Paraná, Curitiba, PR, Brazil
| |
Collapse
|
25
|
Brixius-Anderko S, Scott EE. Structural and functional insights into aldosterone synthase interaction with its redox partner protein adrenodoxin. J Biol Chem 2021; 296:100794. [PMID: 34015331 PMCID: PMC8215293 DOI: 10.1016/j.jbc.2021.100794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/27/2023] Open
Abstract
Aldosterone is the major mineralocorticoid in the human body controlling blood pressure and salt homeostasis. Overproduction of aldosterone leads to primary aldosteronism, which is the most common form of secondary hypertension with limited treatment options. Production of aldosterone by cytochrome P450 11B2 (CYP11B2, aldosterone synthase) requires two reduction events with the electrons delivered by the iron/sulfur protein adrenodoxin. Very limited information is available about the structural and functional basis of adrenodoxin/CYP11B2 interaction, which impedes the development of new treatment options for primary aldosteronism. A systematic study was carried out to determine if adrenodoxin interaction with CYP11B2 might also have an allosteric component in addition to electron transfer. Indeed, local increases in adrenodoxin concentration promote binding of the substrate 11-deoxycorticosterone and the inhibitor osilodrostat (LCI699) in the active site-over 17 Å away-as well as enhance the inhibitory effect of this latter drug. The CYP11B2 structure in complex with adrenodoxin identified specific residues at the protein-protein interface interacting via five salt bridges and four hydrogen bonds. Comparisons with cholesterol-metabolizing CYP11A1 and cortisol-producing CYP11B1, which also bind adrenodoxin, revealed substantial structural differences in these regions. The structural and functional differences between different P450 interactions with adrenodoxin may provide valuable clues for an orthogonal treatment approach for primary aldosteronism by specifically targeting the interaction between CYP11B2 and adrenodoxin.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
26
|
Paço L, Zarate-Perez F, Clouser AF, Atkins WM, Hackett JC. Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase. Biochemistry 2020; 59:2999-3009. [DOI: 10.1021/acs.biochem.0c00460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lorela Paço
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - Francisco Zarate-Perez
- Department of Physiology and Biophysics and Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0035, United States
| | - Amanda F. Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M. Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - John C. Hackett
- Department of Physiology and Biophysics and Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0035, United States
| |
Collapse
|
27
|
Zhu Q, Li H, Wen Z, Wang Y, Li X, Huang T, Mo J, Wu Y, Zhong Y, Ge RS. Perfluoroalkyl substances cause Leydig cell dysfunction as endocrine disruptors. CHEMOSPHERE 2020; 253:126764. [PMID: 32464778 DOI: 10.1016/j.chemosphere.2020.126764] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Perfluoroalkyl substances (PFASs) are a group of man-made organic substances. Some of PFASs have been classified as persistent organic pollutants and endocrine disruptors. They might interfere with the male sex endocrine system, causing the abnormal development of the male reproductive tract and failure of pubertal onset and infertility. The present review discusses the development and function of two generations of Leydig cells in rodents and the effects of PFASs on Leydig cell development after their exposure in gestational and postnatal periods. We also discuss human epidemiological data for the effects of PFASs on male sex hormone levels. The structure-activity relationship of PFASs on Leydig cell steroidogenesis and enzyme activities are also discussed.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zina Wen
- Chengdu Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyang Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
28
|
Soldatova AV, Spiro TG. Alternative modes of O 2 activation in P450 and NOS enzymes are clarified by DFT modeling and resonance Raman spectroscopy. J Inorg Biochem 2020; 207:111054. [PMID: 32217351 PMCID: PMC7247924 DOI: 10.1016/j.jinorgbio.2020.111054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/24/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
The functions of heme proteins are modulated by hydrogen bonds (H-bonds) directed at the heme-bound ligands by protein residues. When the gaseous ligands CO, NO, or O2 are bound, their activity is strongly influenced by H-bonds to their atoms. These H-bonds produce characteristic changes in the vibrational frequencies of the heme adduct, which can be monitored by resonance Raman spectroscopy and interpreted with density functional theory (DFT) computations. When the protein employs a cysteinate proximal ligand, bound O2 becomes particularly reactive, the course of the reaction being controlled by H-bonding and proton delivery. In this work, DFT modeling is used to examine the effects of H-bonding to either the terminal (Ot) or proximate (Op) atom of methylthiolate-Fe(II)porphine-O2, as well as to the thiolate S atom. H-bonds to Op produce a positive linear correlation between ν(Fe - O) and ν(O - O), because they increase the sp2 character of Op, weakening both the Fe - O and O - O bonds. H-bonds to Ot produce a negative correlation, because they increase Fe backbonding, strengthening the Fe - O but weakening the O - O bond. Available experimental data accommodate well to the computed pattern. In particular, this correspondence supports the interpretation of cytochrome P450 data by Kincaid and Sligar [M. Gregory, P.J. Mak, S.G. Sligar, J.R. Kincaid, Angew. Chem. Int. Ed. 125 (2013) 5450-5453], involving steering between hydroxylation and lyase reaction channels by differential H-bonds. Similar channeling between the first and second steps of the nitric oxide synthase reaction is likely.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, United States.
| |
Collapse
|
29
|
Kumar A, Wilderman PR, Tu C, Shen S, Qu J, Estrada DF. Evidence of Allosteric Coupling between Substrate Binding and Adx Recognition in the Vitamin D Carbon-24 Hydroxylase CYP24A1. Biochemistry 2020; 59:1537-1548. [PMID: 32259445 PMCID: PMC7233526 DOI: 10.1021/acs.biochem.0c00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic inactivation of 1,25(OH)2D3 requires molecular recognition between the mitochondrial enzyme cytochrome P450 24A1 (CYP24A1) and its cognate redox partner adrenodoxin (Adx). Recent evidence supports a model of CYP24A1 function in which substrate binding and Adx recognition are structurally linked. However, the details of this allosteric connection are not clear. In this study, we utilize chemical cross-linking coupled to mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and CYP24A1 functional assays to inform a working model of a CYP24A1-Adx complex. We report that differential cross-linking internal to CYP24A1 points toward an Adx-induced conformational change that perturbs the F and G helices, which are required for substrate binding. Moreover, the modeled complex suggests that a semiconserved nonpolar interaction at the interface may influence CYP24A1 regioselectivity. Taken together, these findings contribute to our understanding of Adx recognition in a critical vitamin D-inactivating enzyme and provide broader insight regarding the variability inherent in CYP-Adx interactions.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine, University at Buffalo, 955 Main Street, Buffalo NY 14203
| | - P. Ross Wilderman
- Department of Pharmaceutical Sciences, School of Pharmacy, 69 North Eagleville Road, University of Connecticut, Storrs, CT 06269
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy, 318 Pharmacy Building, University at Buffalo, Buffalo NY 14214
| | - Shichen Shen
- Department of Pharmaceutical Sciences, School of Pharmacy, 318 Pharmacy Building, University at Buffalo, Buffalo NY 14214
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy, 318 Pharmacy Building, University at Buffalo, Buffalo NY 14214
| | - D. Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine, University at Buffalo, 955 Main Street, Buffalo NY 14203
| |
Collapse
|
30
|
Li X, Wen Z, Wang Y, Mo J, Zhong Y, Ge RS. Bisphenols and Leydig Cell Development and Function. Front Endocrinol (Lausanne) 2020; 11:447. [PMID: 32849262 PMCID: PMC7411000 DOI: 10.3389/fendo.2020.00447] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the production and use of plastics and the degradation of wastes related to industrial plastics. Evidence from laboratory animal and human studies supports the view that BPA has an endocrine disrupting effect on Leydig cell development and function. To better understand the adverse effects of BPA, we reviewed its role and mechanism by analyzing rodent data in vivo and in vitro and human epidemiological evidence. BPA has estrogen and anti-androgen effects, thereby destroying the development and function of Leydig cells and causing related reproductive diseases such as testicular dysgenesis syndrome, delayed puberty, and subfertility/infertility. Due to the limitation of BPA production, the increased use of BPA analogs has also attracted attention to these new chemicals. They may share actions and mechanisms similar to or different from BPA.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zina Wen
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhong
- Chengdu Xi'nan Gynecology Hospital, Chengdu, China
- *Correspondence: Ying Zhong
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Ren-Shan Ge
| |
Collapse
|
31
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
32
|
Su H, Wang B, Shaik S. Quantum-Mechanical/Molecular-Mechanical Studies of CYP11A1-Catalyzed Biosynthesis of Pregnenolone from Cholesterol Reveal a C-C Bond Cleavage Reaction That Occurs by a Compound I-Mediated Electron Transfer. J Am Chem Soc 2019; 141:20079-20088. [PMID: 31741382 DOI: 10.1021/jacs.9b08561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore here a long-standing mechanistic question by using quantum-mechanical/molecular-mechanical (QM/MM) methodology. The question concerns the mechanism of steroid hormone biosynthesis, whereby the P450 enzyme, CYP11A1, catalyzes the C20-C22 bond-cleavage in the 20,22-hydroxylated cholesterol, 20R,22R-DiOHCH, leading to pregnenolone, which is critical for the subsequent production of all steroid hormones. This is an unusual feat whereby the P450 enzyme breaks two O-H bonds and one C-C bond, while making two C═O bonds. How does the enzyme perform such a complex and highly energy-demanding reaction? Our computational results rule out the previously proposed Compound I (Cpd I) electrophilic attack mechanism via the formation of a peroxide intermediate as well as the H-abstraction-mediated C-C cleavage mechanism. Notably, oxygen-rebound cannot transpire, in spite of the fact that the classical active species, Cpd I, participates in the catalytic process. Our findings reveal a mechanism whereby C-C bond cleavage is mediated by an electron transfer from the C22-O--deprotonated substrate to Cpd I. As such, our QM/MM calculations demonstrate that Cpd I acts as an electron sink that facilitates the C-C bond cleavage.
Collapse
Affiliation(s)
- Hao Su
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190400 Jerusalem , Israel
| |
Collapse
|
33
|
Wang Y, Ni C, Li X, Lin Z, Zhu Q, Li L, Ge RS. Phthalate-Induced Fetal Leydig Cell Dysfunction Mediates Male Reproductive Tract Anomalies. Front Pharmacol 2019; 10:1309. [PMID: 31780936 PMCID: PMC6851233 DOI: 10.3389/fphar.2019.01309] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Male fetal Leydig cells in the testis secrete androgen and insulin-like 3, determining the sexual differentiation. The abnormal development of fetal Leydig cells could lead to the reduction of androgen and insulin-like 3, thus causing the male reproductive tract anomalies in male neonates, including cryptorchidism and hypospadias. Environmental pollutants, such as phthalic acid esters (phthalates), can perturb the development and differentiated function of Leydig cells, thereby contributing to the reproductive toxicity in the male. Here, we review the epidemiological studies in humans and experimental investigations in rodents of various phthalates. Most of phthalates disturb the expression of various genes encoded for steroidogenesis-related proteins and insulin-like 3 in fetal Leydig cells and the dose-additive effects are exerted after exposure in a mixture.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaobo Ni
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhenkun Lin
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linxi Li
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Center of Scientific Research, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Crystallographic Studies of Steroid-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:27-45. [PMID: 31098809 DOI: 10.1007/978-3-030-14265-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Steroid molecules have a wide range of function in eukaryotes, including the control and maintenance of membranes, hormonal control of transcription, and intracellular signaling. X-ray crystallography has served as a successful tool for gaining understanding of the structural and mechanistic aspects of these functions by providing snapshots of steroids in complex with various types of proteins. These proteins include nuclear receptors activated by steroid hormones, several families of enzymes involved in steroid synthesis and metabolism, and proteins involved in signaling and trafficking pathways. Proteins found in some bacteria that bind and metabolize steroids have been investigated as well. A survey of the steroid-protein complexes that have been studied using crystallography and the insight learned from them is presented.
Collapse
|
35
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
36
|
Li X, Mo J, Zhu Q, Ni C, Wang Y, Li H, Lin ZK, Ge RS. The structure-activity relationship (SAR) for phthalate-mediated developmental and reproductive toxicity in males. CHEMOSPHERE 2019; 223:504-513. [PMID: 30784757 DOI: 10.1016/j.chemosphere.2019.02.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Testicular dysgenesis syndrome includes the hypospadias, cryptorchidism and abnormal fetal testis in male neonate. This is possibly caused by the environmental phthalates, which down-regulate the expression of androgen synthetic genes and Insl3 or directly inhibits steroidogenic enzymes. There are distinct structure-activity relationships (SARs) for phthalate-mediated developmental and reproductive toxicity. Here, we review the SAR for phthalate-mediated testicular dysgenesis syndrome. Of phthalates of straight side chains, C5-C6 ones are the most potent, C4 or C7 are moderate, C3 is weakest, and C1-2 or C8-13 are ineffective. The branching and unsaturation of side chains increases the toxicity. The cycling of side chains does not increase the toxicity.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaying Mo
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen-Kun Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
37
|
Glyakina AV, Strizhov NI, Karpov MV, Dovidchenko NV, Matkarimov BT, Isaeva LV, Efimova VS, Rubtsov MA, Novikova LA, Donova MV, Galzitskaya OV. Ile351, Leu355 and Ile461 residues are essential for catalytic activity of bovine cytochrome P450scc (CYP11A1). Steroids 2019; 143:80-90. [PMID: 30641046 DOI: 10.1016/j.steroids.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 11/23/2022]
Abstract
Cytochrome P450scc (CYP11A1) is a mammalian mitochondrial enzyme which catalyzes cholesterol side chain cleavage to form pregnenolone. Along with cholesterol, some other steroids including sterols with a branched side chain like β-sitosterol are the substrates for the enzyme, but the activity towards β-sitosterol is rather low. Modification of the catalytic site conformation could provide more effective β-sitosterol bioconversion by the enzyme. This study was aimed to find out the amino acid residues substitution of which could modify the conformation of the active site providing possible higher enzyme activity towards β-sitosterol. After structural and bioinformatics analysis three amino acid residues I351, L355, I461 were chosen. Molecular dynamics simulations of P450scc evidenced the stability of the wild type, double (I351A/L355A) and triple (I351A/L355A/I461A) mutants. Mutant variants of cDNA encoding P450scc with the single, double and triple mutations were obtained by site-directed mutagenesis. However, the experimental data indicate that the introduced single mutations Ile351A, Leu355A and Ile461A dramatically decrease the target catalytic activity of CYP11A1, and no activity was observed for double and triple mutants obtained. Therefore, isoleucine residues 351 and 461, and leucine residue 355 are important for the cytochrome P450scc functioning towards sterols both with unbranched (cholesterol) and branched (sitosterol) side chains.
Collapse
Affiliation(s)
- Anna V Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Nicolai I Strizhov
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Pharmins, Ltd., R&D, 142290 Pushchino, Moscow Region, Russia
| | - Mikhail V Karpov
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Pharmins, Ltd., R&D, 142290 Pushchino, Moscow Region, Russia
| | - Nikita V Dovidchenko
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | | | - Ludmila V Isaeva
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Vera S Efimova
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; Department of Biochemistry, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/40, 119234 Moscow, Russia
| | - Marina V Donova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; Pharmins, Ltd., R&D, 142290 Pushchino, Moscow Region, Russia.
| | - Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
38
|
Hargrove TY, Wawrzak Z, Fisher PM, Child SA, Nes WD, Guengerich FP, Waterman MR, Lepesheva GI. Binding of a physiological substrate causes large-scale conformational reorganization in cytochrome P450 51. J Biol Chem 2018; 293:19344-19353. [PMID: 30327430 DOI: 10.1074/jbc.ra118.005850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Indexed: 11/06/2022] Open
Abstract
Sterol 14α-demethylases (CYP51s) are phylogenetically the most conserved cytochromes P450, and their three-step reaction is crucial for biosynthesis of sterols and serves as a leading target for clinical and agricultural antifungal agents. The structures of several (bacterial, protozoan, fungal, and human) CYP51 orthologs, in both the ligand-free and inhibitor-bound forms, have been determined and have revealed striking similarity at the secondary and tertiary structural levels, despite having low sequence identity. Moreover, in contrast to many of the substrate-promiscuous, drug-metabolizing P450s, CYP51 structures do not display substantial rearrangements in their backbones upon binding of various inhibitory ligands, essentially representing a snapshot of the ligand-free sterol 14α-demethylase. Here, using the obtusifoliol-bound I105F variant of Trypanosoma cruzi CYP51, we report that formation of the catalytically competent complex with the physiological substrate triggers a large-scale conformational switch, dramatically reshaping the enzyme active site (3.5-6.0 Å movements in the FG arm, HI arm, and helix C) in the direction of catalysis. Notably, our X-ray structural analyses revealed that the substrate channel closes, the proton delivery route opens, and the topology and electrostatic potential of the proximal surface reorganize to favor interaction with the electron-donating flavoprotein partner, NADPH-cytochrome P450 reductase. Site-directed mutagenesis of the amino acid residues involved in these events revealed a key role of active-site salt bridges in contributing to the structural dynamics that accompanies CYP51 function. Comparative analysis of apo-CYP51 and its sterol-bound complex provided key conceptual insights into the molecular mechanisms of CYP51 catalysis, functional conservation, lineage-specific substrate complementarity, and druggability differences.
Collapse
Affiliation(s)
- Tatiana Y Hargrove
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Argonne, Illinois 60439
| | - Paxtyn M Fisher
- the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, and
| | - Stella A Child
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - W David Nes
- the Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, and
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Michael R Waterman
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Galina I Lepesheva
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, .,the Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
39
|
Goodin DB, Chuo SW, Liou SH. Conformational Changes in Cytochrome P450cam and the Effector Role of Putidaredoxin. DIOXYGEN-DEPENDENT HEME ENZYMES 2018. [DOI: 10.1039/9781788012911-00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cytochromes P450 form an enormous family of over 20 000 enzyme variants found in all branches of life. They catalyze the O2 dependent monooxygenation of a wide range of substrates in reactions important to drug metabolism, biosynthesis and energy utilization. Understanding how they function is important for biomedical science and requires a full description of their notorious propensity for specificity and promiscuity. The bacterial P450cam is an unusual example, having the most well characterized chemical mechanism of all of the forms. It also undergoes an increasingly well characterized structural change upon substrate binding, which may be similar to to that displayed by some, but not all forms of P450. Finally, P450cam is one of the rare forms that have a strict requirement for a particular electron donor, putidaredoxin (pdx). Pdx provides the required electrons for enzyme turnover, but it also induces specific changes in the enzyme to allow enzyme turnover, long known as its effector role. This review summarizes recent crystallographic and double electron–electron resonance studies that have revealed the effects of substrate and pdx binding on the structure of P450cam. We describe an emerging idea for how pdx exerts its effector function by inducing a conformational change in the enzyme. This change then propagates to the active site to enable cleavage of the ferric–hydroperoxy bond during catalysis, and appears to provide a very elegant approach for P450cam to attain both high efficiency and protection from oxidative damage.
Collapse
Affiliation(s)
- David B. Goodin
- University of California Davis, Department of Chemistry One Shields Ave Davis CA 95616 USA
| | - Shih-Wei Chuo
- University of California Davis, Department of Chemistry One Shields Ave Davis CA 95616 USA
| | - Shu-Hao Liou
- Research Group EPR Spectroscopy, Max-Planck-Institute for Biophysical Chemistry Göttingen 37077 Germany
| |
Collapse
|
40
|
Holy P, Kloudova A, Soucek P. Importance of genetic background of oxysterol signaling in cancer. Biochimie 2018; 153:109-138. [DOI: 10.1016/j.biochi.2018.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/27/2018] [Indexed: 12/14/2022]
|
41
|
Maldonado-Pereira L, Schweiss M, Barnaba C, Medina-Meza IG. The role of cholesterol oxidation products in food toxicity. Food Chem Toxicol 2018; 118:908-939. [DOI: 10.1016/j.fct.2018.05.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 01/10/2023]
|
42
|
Chu M, Chen X, Wang J, Guo L, Wang Q, Gao Z, Kang J, Zhang M, Feng J, Guo Q, Li B, Zhang C, Guo X, Chu Z, Wang Y. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front Pharmacol 2018; 9:801. [PMID: 30087614 PMCID: PMC6066535 DOI: 10.3389/fphar.2018.00801] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Polypharmacology is emerging as the next paradigm in drug discovery. However, considerable challenges still exist for polypharmacology modeling. In this study, we developed a rational design to identify highly potential targets (HPTs) for polypharmacological drugs, such as berberine. Methods and Results: All the proven co-crystal structures locate berberine in the active cavities of a redundancy of aromatic, aliphatic, and acidic residues. The side chains from residues provide hydrophobic and electronic interactions to aid in neutralization for the positive charge of berberine. Accordingly, we generated multi-target binding motifs (MBM) for berberine, and established a new mathematical model to identify HPTs based on MBM. Remarkably, the berberine MBM was embodied in 13 HPTs, including beta-secretase 1 (BACE1) and amyloid-β1-42 (Aβ1-42). Further study indicated that berberine acted as a high-affinity BACE1 inhibitor and prevented Aβ1-42 aggregation to delay the pathological process of Alzheimer's disease. Conclusion: Here, we proposed a MBM-based drug-target space model to analyze the underlying mechanism of multi-target drugs against polypharmacological profiles, and demonstrated the role of berberine in Alzheimer's disease. This approach can be useful in derivation of rules, which will illuminate our understanding of drug action in diseases.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Likai Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zirui Gao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiarui Kang
- Department of Pathology, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Mingbo Zhang
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jinqiu Feng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qi Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Binghua Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Chengrui Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xueyuan Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zhengyun Chu
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
43
|
Klinge CM, Clark BJ, Prough RA. Dehydroepiandrosterone Research: Past, Current, and Future. VITAMINS AND HORMONES 2018; 108:1-28. [PMID: 30029723 DOI: 10.1016/bs.vh.2018.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The discovery of "oestrus-producing" hormones was a major research breakthrough in biochemistry and pharmacology during the early part of the 20th century. The elucidation of the molecular weight and chemical structure of major oxidative metabolites of dehydroepiandrosterone (DHEA) led to the award of the Nobel Prize in 1939 to Adolf Frederick Johann Butenandt and Leopold Ruzicka. Considered a bulk androgen in the circulation, DHEA and its sulfated metabolite DHEA-S can be taken up by most tissues where the sterols are metabolized to active androgenic and estrogenic compounds needed for growth and development. Butenandt's interactions with the German pharmaceutical company Schering led to production of gram quantities of these steroids and other chemically modified compounds of this class. Sharing chemical expertise allowed Butenandt's laboratory at the Kaiser Wilhelm Institute to isolate and synthesize many steroid compounds in the elucidation of the pathway leading from cholesterol to testosterone and estrogen derivatives. As a major pharmaceutical company worldwide, Schering AG sought these new biological sterols as pharmacological agents for endocrine-related diseases, and the European medical community tested these compounds in women for conditions such as postmenopausal depression, and in men for increasing muscle mass. Since it was noted that circulating DHEA-S levels decline as a function of age, experimental pathology experiments in animals were performed to determine how DHEA may protect against cancer, diabetes, aging, obesity, immune function, bone density, depression, adrenal insufficiency, inflammatory bowel disease, diminished sexual function/libido, AIDS/HIV, chronic obstructive pulmonary disease, coronary artery disease, chronic fatigue syndrome, and metabolic syndrome. While the mechanisms by which DHEA ameliorates these conditions in animal models have been elusive to define, even less is known about its role in human disease, other than as a precursor to other sterols, e.g., testosterone and estradiol. Our groups have shown that DHEA and many of its oxidative metabolites serve as a low-affinity ligands for hepatic nuclear receptors, such as the pregnane X receptor, the constitutive androstane receptor, and estrogen receptors α/β (ERα/ERβ) as well as G protein-coupled ER (GPER1). This chapter highlights the founding research on DHEA from a historical perspective, provides an overview of DHEA biosynthesis and metabolism, briefly summarizes the early work on the beneficial effects attributed to DHEA in animals, and summarizes the human trials addressing the action of DHEA as a therapeutic agent. In general, most human studies involve weak correlations of circulating levels of DHEA and disease outcomes. Some support for DHEA as a therapeutic compound has been demonstrated for postmenopausal women, in vitro fertilization, and several autoimmune disorders, and adverse health effects, such as, acne, embryo virilization during pregnancy, and possible endocrine-dependent cancers.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Barbara J Clark
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
44
|
Chen L, Chen X, Chen X, Hu Z, Li X, Su Y, Li X, Ge RS. Ziram inhibits aromatase activity in human placenta and JEG-3 cell line. Steroids 2017; 128:114-119. [PMID: 28951168 DOI: 10.1016/j.steroids.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/23/2017] [Accepted: 09/20/2017] [Indexed: 11/22/2022]
Abstract
Placenta produces progesterone and estradiol for maintaining pregnancy. Two critical enzymes are responsible for their production: 3β-hydroxysteroid dehydrogenase 1 (HSD3B1) that catalyzes the formation of progesterone from pregnenolone and aromatase that catalyzes the production of estradiol from testosterone. Fungicide ziram may disrupt the placental steroid production. In the present study, we investigated the effects of ziram on steroid formation in human placental cell line JEG-3 cells and on HSD3B1 and aromatase in the human placenta. Ziram did not inhibit progesterone production in JEG-3 cells and HSD3B1 activity at 100μM. Ziram was a potent aromatase inhibitor with the half maximal inhibitory concentration (IC50) value of 333.8nM. When testosterone was used to determine the mode of action, ziram was found to be a competitive inhibitor. Docking study showed that ziram binds to the testosterone binding pocket of the aromatase. In conclusion, ziram is a potent inhibitor of human aromatase.
Collapse
Affiliation(s)
- Lanlan Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaomin Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaozhen Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhiyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ying Su
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xingwang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
45
|
Zhu Q, Mak PJ, Tuckey RC, Kincaid JR. Active Site Structures of CYP11A1 in the Presence of Its Physiological Substrates and Alterations upon Binding of Adrenodoxin. Biochemistry 2017; 56:5786-5797. [PMID: 28991453 PMCID: PMC6541926 DOI: 10.1021/acs.biochem.7b00766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate-limiting step in the steroid synthesis pathway is catalyzed by CYP11A1 through three sequential reactions. The first two steps involve hydroxylations at positions 22 and 20, generating 20(R),22(R)-dihydroxycholesterol (20R,22R-DiOHCH), with the third stage leading to a C20-C22 bond cleavage, forming pregnenolone. This work provides detailed information about the active site structure of CYP11A1 in the resting state and substrate-bound ferric forms as well as the CO-ligated adducts. In addition, high-quality resonance Raman spectra are reported for the dioxygen complexes, providing new insight into the status of Fe-O-O fragments encountered during the enzymatic cycle. Results show that the three natural substrates of CYP11A1 have quite different effects on the active site structure, including variations of spin state populations, reorientations of heme peripheral groups, and, most importantly, substrate-mediated distortions of Fe-CO and Fe-O2 fragments, as revealed by telltale shifts of the observed vibrational modes. Specifically, the vibrational mode patterns observed for the Fe-O-O fragments with the first and third substrates are consistent with H-bonding interactions with the terminal oxygen, a structural feature that tends to promote O-O bond cleavage to form the Compound I intermediate. Furthermore, such spectral data are acquired for complexes with the natural redox partner, adrenodoxin (Adx), revealing protein-protein-induced active site structural perturbations. While this work shows that Adx has an only weak effect on ferric and ferrous CO states, it has a relatively stronger impact on the Fe-O-O fragments of the functionally relevant oxy complexes.
Collapse
Affiliation(s)
- Qianhong Zhu
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | - Piotr J Mak
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia , Perth, WA 6009, Australia
| | - James R Kincaid
- Department of Chemistry, Marquette University , Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
46
|
Johnson KM, Phan TTN, Albertolle ME, Guengerich FP. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J Biol Chem 2017; 292:13672-13687. [PMID: 28701464 DOI: 10.1074/jbc.m116.773937] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Recently, zebrafish and human cytochrome P450 (P450) 27C1 enzymes have been shown to be retinoid 3,4-desaturases. The enzyme is unusual among mammalian P450s in that the predominant oxidation is a desaturation and in that hydroxylation represents only a minor pathway. We show by proteomic analysis that P450 27C1 is localized to human skin, with two proteins of different sizes present, one being a cleavage product of the full-length form. P450 27C1 oxidized all-trans-retinol to 3,4-dehydroretinol, 4-hydroxy (OH) retinol, and 3-OH retinol in a 100:3:2 ratio. Neither 3-OH nor 4-OH retinol was an intermediate in desaturation. No kinetic burst was observed in the steady state; neither the rate of substrate binding nor product release was rate-limiting. Ferric P450 27C1 reduction by adrenodoxin was 3-fold faster in the presence of the substrate and was ∼5-fold faster than the overall turnover. Kinetic isotope effects of 1.5-2.3 (on kcat/Km ) were observed with 3,3-, 4,4-, and 3,3,4,4-deuterated retinol. Deuteration at C-4 produced a 4-fold increase in 3-hydroxylation due to metabolic switching, with no observable effect on 4-hydroxylation. Deuteration at C-3 produced a strong kinetic isotope effect for 3-hydroxylation but not 4-hydroxylation. Analysis of the products of deuterated retinol showed a lack of scrambling of a putative allylic radical at C-3 and C-4. We conclude that the most likely catalytic mechanism begins with abstraction of a hydrogen atom from C-4 (or possibly C-3) initiating the desaturation pathway, followed by a sequential abstraction of a hydrogen atom or proton-coupled electron transfer. Adrenodoxin reduction and hydrogen abstraction both contribute to rate limitation.
Collapse
Affiliation(s)
- Kevin M Johnson
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
47
|
Miller WL. Genetic disorders of Vitamin D biosynthesis and degradation. J Steroid Biochem Mol Biol 2017; 165:101-108. [PMID: 27060335 DOI: 10.1016/j.jsbmb.2016.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 01/10/2023]
Abstract
Vitamin D, an inactive secosteroid pro-hormone, is produced by the action of ultraviolet light on 7-dehydrocholesterol in the skin. The active hormone, 1,25(OH)2D is produced by sequential 25-hydroxylation in the liver, principally by CYP2R1, and 1α-hydroxylation in the kidney by CYP27B1. Mutations in CYP27B1 cause 1α-hydroxylase deficiency, also known as vitamin D dependent rickets type I or hereditary pseudo-vitamin D deficient rickets; very rare mutations in CYP2R1 can cause 25-hydroxylase deficiency. Both deficiencies cause hypocalcemia, secondary hyperparathyroidism, severe rickets in infancy, and low serum concentrations of 1,25(OH)2D; both disorders respond to hormonal replacement therapy with calcitriol. The inactivation of vitamin D is principally initiated by its 23- and 24-hydroxylation by CYP24A1. Mutations in CYP24A1 can cause both severe neonatal hypercalcemia and a less severe adult hypercalcemic syndrome. Other pathways of vitamin D metabolism are under investigation, notably its 20-hydroxylation by the cholesterol side-chain cleavage enzyme, CYP11A1.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences and Department of Pediatrics, HSE 1634, University of California San Francisco, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
48
|
Abstract
Oxysterols have long been known for their important role in cholesterol homeostasis, where they are involved in both transcriptional and posttranscriptional mechanisms for controlling cholesterol levels. However, they are increasingly associated with a wide variety of other, sometimes surprising cell functions. They are activators of the Hedgehog pathway (important in embryogenesis), and they act as ligands for a growing list of receptors, including some that are of importance to the immune system. Oxysterols have also been implicated in several diseases such as neurodegenerative diseases and atherosclerosis. Here, we explore the latest research into the roles oxy-sterols play in different areas, and we evaluate the current evidence for these roles. In addition, we outline critical concepts to consider when investigating the roles of oxysterols in various situations, which includes ensuring that the concentration and form of the oxysterol are relevant in that context--a caveat with which many studies have struggled.
Collapse
Affiliation(s)
- Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Isabelle Capell-Hattam
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| | - Ingrid C Gelissen
- Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia;
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia; , , ,
| |
Collapse
|
49
|
Kubeil C, Yeung JCI, Tuckey RC, Rodgers RJ, Martin LL. Membrane‐Mediated Protein–Protein Interactions of Cholesterol Side‐Chain Cleavage Cytochrome P450 with its Associated Electron Transport Proteins. Chempluschem 2016; 81:995-1002. [DOI: 10.1002/cplu.201600272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Clemens Kubeil
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| | | | - Robert C. Tuckey
- School of Chemistry and Biochemistry The University of Western Australia Western Australia 6009 Australia
| | - Raymond J. Rodgers
- School of Medicine Robinson Research Institute University of Adelaide Adelaide South Australia 5005 Australia
| | | |
Collapse
|
50
|
Gaikwad S, Goswami A, De S, Schmittel M. Ein metallregulierter vierstufiger Nanoschalter zur Steuerung einer zweistufigen sequenziellen Katalyse in einem Elf-Komponenten-System. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604658] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sudhakar Gaikwad
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| | - Abir Goswami
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| | - Soumen De
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| | - Michael Schmittel
- Forschungszentrum für Mikro-/Nanochemie und Technologie (Cμ), Organische Chemie I; Universität Siegen; Adolf-Reichwein Straße 2 57068 Siegen Deutschland
| |
Collapse
|