1
|
Kharrat O, Yamaryo-Botté Y, Nasreddine R, Voisin S, Aumer T, Cammue BPA, Madinier JB, Knobloch T, Thevissen K, Nehmé R, Aucagne V, Botté C, Bulet P, Landon C. The antimicrobial activity of ETD151 defensin is dictated by the presence of glycosphingolipids in the targeted organisms. Proc Natl Acad Sci U S A 2025; 122:e2415524122. [PMID: 39937853 PMCID: PMC11848316 DOI: 10.1073/pnas.2415524122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/08/2025] [Indexed: 02/14/2025] Open
Abstract
Fungal infections represent a significant global health concern, with a growing prevalence of antifungal drug resistance. Targeting glucosylceramides (GlcCer), which are functionally important glycosphingolipids (GSL) present in fungal membranes, represents a promising strategy for the development of antifungal drugs. GlcCer are associated with the antifungal activity of certain plant and insect defensins. The 44-residue ETD151 peptide, optimized from butterfly defensins, is active against several fungal pathogens. ETD151 has been shown to induce a multifaceted mechanism of action (MOA) in Botrytis cinerea, a multiresistant phytopathogenic fungus. However, the target has yet to be identified. Our findings demonstrate that the presence of GlcCer in membranes determines the susceptibility of Pichia pastoris and Candida albicans toward ETD151. To ascertain whether this is due to direct molecular recognition, we demonstrate that ETD151 selectively recognizes liposomes containing GlcCer from B. cinerea, which reveals a methylated-sphingoid base structure. The dissociation constant was estimated by microscale thermophoresis to be in the µM range. Finally, fluorescence microscopy revealed that ETD151 localizes preferentially at the surface of B. cinerea. Furthermore, the majority of prokaryotic cells do not contain GSL, which explains their resistance to ETD151. We investigated the susceptibility of Novosphingobium capsulatum, one of the rare GSL-containing bacteria, to ETD151. ETD151 demonstrated transient morphological changes and inhibitory growth activity (IC50 ~75 µM) with an affinity for the cell surface, emphasizing the critical importance of GSL as target. Understanding the MOA of ETD151 could pave the way for new perspectives in human health and crop protection.
Collapse
Affiliation(s)
- Ons Kharrat
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| | - Yoshiki Yamaryo-Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Rouba Nasreddine
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Thomas Aumer
- Plateform BioPark Archamps, Archamps74160, France
- Bayer CropScience, Lyon69263, France
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | | | | | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven3001, Belgium
| | - Reine Nehmé
- Institute of Organic and Analytical Chemistry, University of Orléans, CNRS, Orléans45069, France
| | | | - Cyrille Botté
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
| | - Philippe Bulet
- Institute for Advanced Biosciences, University of Grenoble Alpes, Grenoble38700, France
- Plateform BioPark Archamps, Archamps74160, France
| | - Céline Landon
- Centre for Molecular Biophysics, CNRS, Orléans45071, France
| |
Collapse
|
2
|
Shin SH, Moon HY, Park HE, Nam GJ, Baek JH, Jeon CO, Jung H, Cha MS, Choi S, Han JJ, Hou CY, Park CS, Kang HA. Elucidation and engineering of Sphingolipid biosynthesis pathway in Yarrowia lipolytica for enhanced production of human-type sphingoid bases and glucosylceramides. Metab Eng 2025; 87:68-85. [PMID: 39603335 DOI: 10.1016/j.ymben.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast Yarrowia lipolytica by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the SUR2 gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation. The Y. lipolytica SUR2 deletion (Ylsur2Δ) strain displayed retarded growth, increased pseudohyphal formation and stress sensitivity, along with the altered profiles of inositolphosphate-containing ceramides, GlcCers, and sterols. The subsequent disruption of the SLD1 gene, encoding a fungal/plant-specific Δ8 sphingolipid desaturase, restored filamentous growth in the Ylsur2Δ strain to a yeast-type form and further increased the production of human-type GlcCers. Additional introduction of mouse alkaline ceramidase 1 (maCER1) into the Ylsur2Δsld1Δ double mutants considerably increased DHS and So production while decreasing GlcCers. The production yields of LCBs from the Ylsur2Δsld1Δ/maCER1 strain increased in proportion to the C/N ratio in the N-source optimized medium, leading to production of 1.4 g/L non-acetylated DHS at the 5 L fed-batch fermentation with glucose feeding. This study highlights the feasibility of using the engineered Y. lipolytica strains as a cell factory for valuable sphingolipid derivatives for pharmaceuticals, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Seo Hyeon Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hye Yun Moon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hae Eun Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Gi Jeong Nam
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyunwook Jung
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | | | - Sol Choi
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Jeong Jun Han
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Chen Yuan Hou
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Chang Seo Park
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
3
|
Shoma JF, Ernan B, Keiser G, Heiss C, Azadi P, Free SJ. Genetic Characterization of the Acidic and Neutral Glycosphingolipid Biosynthetic Pathways in Neurospora crassa. Microorganisms 2023; 11:2093. [PMID: 37630653 PMCID: PMC10457978 DOI: 10.3390/microorganisms11082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Fungal glycosphingolipids (GSLs) are important membrane components which play a key role in vesicle trafficking. To assess the importance of GSLs in the fungal life cycle, we performed a mutant phenotypic study of the acidic and neutral GSL biosynthetic pathways in Neurospora crassa. GSL biosynthesis begins with two reactions leading up to the formation of dihydrosphingosine. The first of these reactions is catalyzed by serine palmitoyltransferase and generates 3-keto dihydrosphinganine. In N. crassa, this reaction is catalyzed by GSL-1 and GSL-2 and is required for viability. The second reaction is carried out by GSL-3, a 3-keto dihydrosphinoganine reductase to generate dihydrosphingosine, which is used for the synthesis of neutral and acidic GSLs. We found that deletion mutations in the acidic GSL pathway leading up to the formation of mannosylinositol-phosphoceramide are lethal, indicating that acidic GSLs are essential for viability in N. crassa. Once mannosylinositol-phosphoceramide is made, it is further modified by GSL-5, an inositol-phosphoceramide-B C26 hydroxylase, which adds a hydroxyl group to the amide-linked fatty acid. GSL-5 is not required for viability but gives a clear mutant phenotype affecting all stages of the life cycle. Our results show that the synthesis of mannosylinositol-phosphoceramide is required for viability and that the modification of the amide-linked fatty acid is important for acidic GSL functionality. We also examined the neutral GSL biosynthetic pathway and identified the presence of glucosylceramide. The deletion of neutral GSL biosynthetic genes affected hyphal morphology, vegetative growth rate, conidiation, and female development. Our results indicate that the synthesis of neutral GSLs is essential for normal growth and development of N. crassa.
Collapse
Affiliation(s)
- Jannatul F. Shoma
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| | - Ben Ernan
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA (P.A.)
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Cooke Hall Room 109, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Haslam TM, Feussner I. Diversity in sphingolipid metabolism across land plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2785-2798. [PMID: 35560193 PMCID: PMC9113257 DOI: 10.1093/jxb/erab558] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
Sphingolipids are essential metabolites found in all plant species. They are required for plasma membrane integrity, tolerance of and responses to biotic and abiotic stresses, and intracellular signalling. There is extensive diversity in the sphingolipid content of different plant species, and in the identities and roles of enzymes required for their processing. In this review, we survey results obtained from investigations of the classical genetic model Arabidopsis thaliana, from assorted dicots with less extensive genetic toolkits, from the model monocot Oryza sativa, and finally from the model bryophyte Physcomitrium patens. For each species or group, we first broadly summarize what is known about sphingolipid content. We then discuss the most insightful and puzzling features of modifications to the hydrophobic ceramides, and to the polar headgroups of complex sphingolipids. Altogether, these data can serve as a framework for our knowledge of sphingolipid metabolism across the plant kingdom. This chemical and metabolic heterogeneity underpins equally diverse functions. With greater availability of different tools for analytical measurements and genetic manipulation, our field is entering an exciting phase of expanding our knowledge of the biological functions of this persistently cryptic class of lipids.
Collapse
Affiliation(s)
- Tegan M Haslam
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
| | - Ivo Feussner
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Justus-von-Liebig-Weg 11, D-37077, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Metabolomics and Lipidomics, Goettingen, Germany
- University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Goettingen, Germany
| |
Collapse
|
5
|
Wang J, Chen YL, Li YK, Chen DK, He JF, Yao N. Functions of Sphingolipids in Pathogenesis During Host-Pathogen Interactions. Front Microbiol 2021; 12:701041. [PMID: 34408731 PMCID: PMC8366399 DOI: 10.3389/fmicb.2021.701041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids are a class of membrane lipids that serve as vital structural and signaling bioactive molecules in organisms ranging from yeast to animals. Recent studies have emphasized the importance of sphingolipids as signaling molecules in the development and pathogenicity of microbial pathogens including bacteria, fungi, and viruses. In particular, sphingolipids play key roles in regulating the delicate balance between microbes and hosts during microbial pathogenesis. Some pathogens, such as bacteria and viruses, harness host sphingolipids to promote development and infection, whereas sphingolipids from both the host and pathogen are involved in fungus-host interactions. Moreover, a regulatory role for sphingolipids has been described, but their effects on host physiology and metabolism remain to be elucidated. Here, we summarize the current state of knowledge about the roles of sphingolipids in pathogenesis and interactions with host factors, including how sphingolipids modify pathogen and host metabolism with a focus on pathogenesis regulators and relevant metabolic enzymes. In addition, we discuss emerging perspectives on targeting sphingolipids that function in host-microbe interactions as new therapeutic strategies for infectious diseases.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Yi-Li Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yong-Kang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ding-Kang Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Fan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Agriculture, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Gömann J, Herrfurth C, Zienkiewicz K, Haslam TM, Feussner I. Sphingolipid Δ4-desaturation is an important metabolic step for glycosylceramide formation in Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5569-5583. [PMID: 34111292 PMCID: PMC8318264 DOI: 10.1093/jxb/erab238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/22/2021] [Indexed: 05/24/2023]
Abstract
Glycosylceramides are abundant membrane components in vascular plants and are associated with cell differentiation, organogenesis, and protein secretion. Long-chain base (LCB) Δ4-desaturation is an important structural feature for metabolic channeling of sphingolipids into glycosylceramide formation in plants and fungi. In Arabidopsis thaliana, LCB Δ4-unsaturated glycosylceramides are restricted to pollen and floral tissue, indicating that LCB Δ4-desaturation has a less important overall physiological role in A. thaliana. In the bryophyte Physcomitrium patens, LCB Δ4-desaturation is a feature of the most abundant glycosylceramides of the gametophyte generation. Metabolic changes in the P. patens null mutants for the sphingolipid Δ4-desaturase (PpSD4D) and the glycosylceramide synthase (PpGCS), sd4d-1 and gcs-1, were determined by ultra-performance liquid chromatography coupled with nanoelectrospray ionization and triple quadrupole tandem mass spectrometry analysis. sd4d-1 plants lacked unsaturated LCBs and the most abundant glycosylceramides. gcs-1 plants lacked all glycosylceramides and accumulated hydroxyceramides. While sd4d-1 plants mostly resembled wild-type plants, gcs-1 mutants were impaired in growth and development. These results indicate that LCB Δ4-desaturation is a prerequisite for the formation of the most abundant glycosylceramides in P. patens. However, loss of unsaturated LCBs does not affect plant viability, while blockage of glycosylceramide synthesis in gcs-1 plants causes severe plant growth and development defects.
Collapse
Affiliation(s)
- Jasmin Gömann
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Tegan M Haslam
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Jiang C, Ge J, He B, Zeng B. Glycosphingolipids in Filamentous Fungi: Biological Roles and Potential Applications in Cosmetics and Health Foods. Front Microbiol 2021; 12:690211. [PMID: 34367090 PMCID: PMC8341767 DOI: 10.3389/fmicb.2021.690211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are a group of economically important fungi used in the production of fermented foods, industrial enzymes, and secondary metabolites. Glycosphingolipids (GSLs) as constituents of lipid rafts are involved in growth, differentiation, and response to environment stress in filamentous fungi. In addition to these key roles, GSLs are also important in the barrier function of skin to retain moisture as a moisturizing ingredient in cosmetics or health products for their strong biological activity as a functional component. GSLs found in filamentous fungi are divided in two major classes: neutral GSLs (glycosylceramides), glucosylceramides (GlcCers), and/or galactosylceramides (GalCers) and acidic GSLs, mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C]. Glycosylceramides are one of the abundant GSLs in Aspergillus and known to improve skin-barrier function and prevent intestinal impairment as a prebiotic. Some filamentous fungi of Aspergillus spp., synthesizing both GlcCer and GalCer, would be an amenable source to exploit glycosylceramides that wildly adding in cosmetics as moisturizing ingredients or health food as dietary supplements. In this minireview, the types, structures, and biosynthetic pathways of GSLs in filamentous fungi, and the relevance of GSLs in fungal growth, spore formation, and environmental stress response are explained. Furthermore, the advantage, potential development, and application of GlcCer and GalCer from filamentous fungi Aspergillus spp. are also investigate based on the use of plant GlcCer in health foods and cosmetics.
Collapse
Affiliation(s)
- Chunmiao Jiang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jinxin Ge
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China.,College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
8
|
Mbuyane LL, Bauer FF, Divol B. The metabolism of lipids in yeasts and applications in oenology. Food Res Int 2021; 141:110142. [PMID: 33642009 DOI: 10.1016/j.foodres.2021.110142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Lipids are valuable compounds present in all living organisms, which display an array of functions related to compartmentalization, energy storage and enzyme activation. Furthermore, these compounds are an integral part of the plasma membrane which is responsible for maintaining structure, facilitating the transport of solutes in and out of the cell and cellular signalling necessary for cell survival. The lipid composition of the yeast Saccharomyces cerevisiae has been extensively investigated and the impact of lipids on S. cerevisiae cellular functions during wine alcoholic fermentation is well documented. Although other yeast species are currently used in various industries and are receiving increasing attention in winemaking, little is known about their lipid metabolism. This review article provides an extensive and critical evaluation of our knowledge on the biosynthesis, accumulation, metabolism and regulation of fatty acids and sterols in yeasts. The implications of the yeast lipid content on stress resistance as well as performance during alcoholic fermentation are discussed and a particular emphasis is given on non-Saccharomyces yeasts. Understanding lipid requirements and metabolism in non-Saccharomyces yeasts may lead to a better management of these yeast to enhance their contributions to wine properties.
Collapse
Affiliation(s)
- Lethiwe Lynett Mbuyane
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
9
|
Resemann HC, Herrfurth C, Feussner K, Hornung E, Ostendorf AK, Gömann J, Mittag J, van Gessel N, Vries JD, Ludwig-Müller J, Markham J, Reski R, Feussner I. Convergence of sphingolipid desaturation across over 500 million years of plant evolution. NATURE PLANTS 2021; 7:219-232. [PMID: 33495556 DOI: 10.1038/s41477-020-00844-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/18/2020] [Indexed: 05/16/2023]
Abstract
For plants, acclimation to low temperatures is fundamental to survival. This process involves the modification of lipids to maintain membrane fluidity. We previously identified a new cold-induced putative desaturase in Physcomitrium (Physcomitrella) patens. Lipid profiles of null mutants of this gene lack sphingolipids containing monounsaturated C24 fatty acids, classifying the new protein as sphingolipid fatty acid denaturase (PpSFD). PpSFD mutants showed a cold-sensitive phenotype as well as higher susceptibility to the oomycete Pythium, assigning functions in stress tolerance for PpSFD. Ectopic expression of PpSFD in the Atads2.1 (acyl coenzyme A desaturase-like 2) Arabidopsis thaliana mutant functionally complemented its cold-sensitive phenotype. While these two enzymes catalyse a similar reaction, their evolutionary origin is clearly different since AtADS2 is a methyl-end desaturase whereas PpSFD is a cytochrome b5 fusion desaturase. Altogether, we suggest that adjustment of membrane fluidity evolved independently in mosses and seed plants, which diverged more than 500 million years ago.
Collapse
Affiliation(s)
- Hanno Christoph Resemann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Cornelia Herrfurth
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kirstin Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ellen Hornung
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Anna K Ostendorf
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jasmin Gömann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Jennifer Mittag
- Institute of Botany, Technical University Dresden, Dresden, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jan de Vries
- Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| | | | - Jennifer Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany.
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
- Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
10
|
Bernauer L, Radkohl A, Lehmayer LGK, Emmerstorfer-Augustin A. Komagataella phaffii as Emerging Model Organism in Fundamental Research. Front Microbiol 2021; 11:607028. [PMID: 33505376 PMCID: PMC7829337 DOI: 10.3389/fmicb.2020.607028] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023] Open
Abstract
Komagataella phaffii (Pichia pastoris) is one of the most extensively applied yeast species in pharmaceutical and biotechnological industries, and, therefore, also called the biotech yeast. However, thanks to more advanced strain engineering techniques, it recently started to gain attention as model organism in fundamental research. So far, the most studied model yeast is its distant cousin, Saccharomyces cerevisiae. While these data are of great importance, they limit our knowledge to one organism only. Since the divergence of the two species 250 million years ago, K. phaffii appears to have evolved less rapidly than S. cerevisiae, which is why it remains more characteristic of the common ancient yeast ancestors and shares more features with metazoan cells. This makes K. phaffii a valuable model organism for research on eukaryotic molecular cell biology, a potential we are only beginning to fully exploit. As methylotrophic yeast, K. phaffii has the intriguing property of being able to efficiently assimilate methanol as a sole source of carbon and energy. Therefore, major efforts have been made using K. phaffii as model organism to study methanol assimilation, peroxisome biogenesis and pexophagy. Other research topics covered in this review range from yeast genetics including mating and sporulation behavior to other cellular processes such as protein secretion, lipid biosynthesis and cell wall biogenesis. In this review article, we compare data obtained from K. phaffii with S. cerevisiae and other yeasts whenever relevant, elucidate major differences, and, most importantly, highlight the big potential of using K. phaffii in fundamental research.
Collapse
Affiliation(s)
- Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | - Astrid Radkohl
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz, Graz, Austria
- acib—Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
11
|
Fernandes CM, Poeta MD. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies. Expert Rev Anti Infect Ther 2020; 18:1083-1092. [PMID: 32673125 PMCID: PMC7657966 DOI: 10.1080/14787210.2020.1792288] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The antifungal therapy currently available includes three major classes of drugs: polyenes, azoles and echinocandins. However, the clinical use of these compounds faces several challenges: while polyenes are toxic to the host, antifungal resistance to azoles and echinocandins has been reported. AREAS COVERED Fungal sphingolipids (SL) play a pivotal role in growth, morphogenesis and virulence. In addition, fungi possess unique enzymes involved in SL synthesis, leading to the production of lipids which are absent or differ structurally from the mammalian counterparts. In this review, we address the enzymatic reactions involved in the SL synthesis and their relevance to the fungal pathogenesis, highlighting their potential as targets for novel drugs and the inhibitors described so far. EXPERT OPINION The pharmacological inhibition of fungal serine palmitoyltransferase depends on the development of specific drugs, as myriocin also targets the mammalian enzyme. Inhibitors of ceramide synthase might constitute potent antifungals, by depleting the pool of complex SL and leading to the accumulation of the toxic intermediates. Acylhydrazones and aureobasidin A, which inhibit GlcCer and IPC synthesis, are not toxic to the host and effectively treat invasive mycoses, emerging as promising new classes of antifungal drugs.
Collapse
Affiliation(s)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, NY, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
- Veterans Administration Medical Center, Northport, NY, USA
| |
Collapse
|
12
|
Rollin-Pinheiro R, Xisto MIDDS, Rochetti VP, Barreto-Bergter E. Scedosporium Cell Wall: From Carbohydrate-Containing Structures to Host-Pathogen Interactions. Mycopathologia 2020; 185:931-946. [PMID: 32990888 DOI: 10.1007/s11046-020-00480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Scedosporium species are filamentous fungi usually found in sewage and soil from human-impacted areas. They cause a wide range of diseases in humans, from superficial infections, such as mycetoma, to invasive and disseminated cases, especially associated in immunocompromised patients. Scedosporium species are also related to lung colonization in individuals presenting cystic fibrosis and are considered one of the most frequent fungal pathogens associated to this pathology. Scedosporium cell wall contains glycosylated molecules involved in important biological events related to virulence and pathogenicity and represents a significant source of antigens. Polysaccharides, peptidopolysaccharides, O-linked oligosaccharides and glycosphingolipids have been identified on the Scedosporium surface. Their primary structures were determined based on a combination of techniques including gas chromatography, ESI-MS, and 1H and 13C nuclear magnetic resonance. Peptidorhamnnomannans are common cell wall components among Scedosporium species. Comparing different species, minor structural differences in the carbohydrate portions were detected which could be useful to understand variations in virulence observed among the species. N- and O-linked peptidorhamnomannans are major pathogen-associated molecular patterns and, along with α-glucans, play important roles in triggering host innate immunity. Glycosphingolipids, such as glucosylceramides, have highly conserved structures in Scedosporium species and are crucial for fungal growth and virulence. The present review presents current knowledge on structural and functional aspects of Scedosporium glycoconjugates that are relevant for understanding pathogenicity mechanisms and could contribute to the design of new agents capable of inhibiting growth and differentiation of Scedosporium species. Other cell components such as melanin and ectophosphatases will be also included.
Collapse
Affiliation(s)
- Rodrigo Rollin-Pinheiro
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Victor Pereira Rochetti
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.
| |
Collapse
|
13
|
do Amaral VSG, Santos SACS, de Andrade PC, Nowatzki J, Júnior NS, de Medeiros LN, Gitirana LB, Pascutti PG, Almeida VH, Monteiro RQ, Kurtenbach E. Pisum sativum Defensin 1 Eradicates Mouse Metastatic Lung Nodules from B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:E2662. [PMID: 32290394 PMCID: PMC7219108 DOI: 10.3390/ijms21082662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Psd1 is a pea plant defensin which can be actively expressed in Pichia pastoris and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane. In this work, in vitroassays using B16F10 cells showed that labeled fluorescein isothiocyanate FITC-Psd1 internalized into live cultured cells and targeted the nucleus, which underwent fragmentation, exhibiting approximately 60% of cells in the sub-G0/G1 stage. This phenomenon was dependent on GlcCer, and the participation of cyclin-F was suggested. In a murine lung metastatic melanoma model, intravenous injection of Psd1 together with B16F10 cells drastically reduced the number of nodules at concentrations above 0.5 mg/kg. Additionally, the administration of 1 mg/kg Psd1 decreased the number of lung inflammatory cells to near zero without weight loss, unlike animals that received melanoma cells only. It is worth noting that 1 mg/kg Psd1 alone did not provoke inflammation in lung tissue or weight or vital signal losses over 21 days, inferring no whole animal cytotoxicity. These results suggest that Psd1 could be a promising prototype for human lung anti-metastatic melanoma therapy.
Collapse
Affiliation(s)
- Virginia Sara Grancieri do Amaral
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Stephanie Alexia Cristina Silva Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Paula Cavalcante de Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Jenifer Nowatzki
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Nilton Silva Júnior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Luciano Neves de Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Lycia Brito Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil;
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Vitor H. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| |
Collapse
|
14
|
Plant-Unique cis/ trans Isomerism of Long-Chain Base Unsaturation is Selectively Required for Aluminum Tolerance Resulting from Glucosylceramide-Dependent Plasma Membrane Fluidity. PLANTS 2019; 9:plants9010019. [PMID: 31877922 PMCID: PMC7020186 DOI: 10.3390/plants9010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Cis/trans isomerism of the Δ8 unsaturation of long-chain base (LCB) is found only in plant sphingolipids. This unique geometry is generated by sphingolipid LCB Δ8 desaturase SLD which produces both isomers at various ratios, resulting in diverse cis/trans ratios in plants. However, the biological significance of this isomeric diversity remains controversial. Here, we show that the plant-specific cis unsaturation of LCB selectively contributes to glucosylceramide (GlcCer)-dependent tolerance to aluminum toxicity. We established three transgenic rice lines with altered LCB unsaturation profiles. Overexpression of SLD from rice (OsSLD-OX), which preferentially exhibits cis-activity, or Arabidopsis (AtSLD-OX), showing preference for trans-activity, facilitated Δ8 unsaturation in different manners: a slight increase of cis-unsaturated glycosylinositolphosphoceramide (GIPC) in OsSLD-OX, and a drastic increase of trans-unsaturated GlcCer and GIPC in AtSLD-OX. Disruption of LCB Δ4 desaturase (des) significantly decreased the content of GlcCer. Fluorescence imaging analysis revealed that OsSLD-OX and AtSLD-OX showed increased plasma membrane fluidity, whereas des had less fluidity, demonstrating that the isomers universally contributed to increasing membrane fluidity. However, the results of a hydroponic assay showed decreased aluminum tolerance in AtSLD-OX and des compared to OsSLD-OX and the control plants, which did not correlate with membrane fluidity. These results suggest that cis-unsaturated GlcCer, not GIPC, selectively serves to maintain the membrane fluidity specifically associated with aluminum tolerance.
Collapse
|
15
|
Tian Y, Li Y, Zhao F, Meng C. Engineered Pichia pastoris production of fusaruside, a selective immunomodulator. BMC Biotechnol 2019; 19:37. [PMID: 31208387 PMCID: PMC6580515 DOI: 10.1186/s12896-019-0532-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/10/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUD Fusaruside is an immunomodulatory fungal sphingolipid which has medical potentials for treating colitis and liver injury, but its poor natural abundance limits its further study. RESULTS In this study, we described a synthetic biology approach for fusaruside production by engineered Pichia pastoris that was based on polycistronic expression. Two fusaruside biosynthesis genes (Δ3(E)-sd and Δ10(E)-sd), were introduced into P. pastoris to obtain fusaruside producing strain FUS2. To further enhance the yield of fusaruside, three relevant biosynthetic genes (Δ3(E)-sd, Δ10(E)-sd and gcs) were subsequently introduced into P. pastoris to obtain FUS3. All of the biosynthetic genes were successfully co-expressed in FUS2 and FUS3. Compared to that produced by FUS2, fusaruside achieved from FUS3 were slightly increased. In addition, the culture conditions including pH, temperature and methanol concentration were optimized to improve the fusaruside production level. CONCLUSIONS Here a novel P. pastoris fusaruside production system was developed by introducing the biosynthetic genes linked by 2A peptide gene sequences into a polycistronic expression construct, laying a foundation for further development and application of fusaruside.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China.
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China
| | - Fengchun Zhao
- Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018, China
| | - Chao Meng
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, Shandong, China
| |
Collapse
|
16
|
Harrison PJ, Dunn T, Campopiano DJ. Sphingolipid biosynthesis in man and microbes. Nat Prod Rep 2018; 35:921-954. [PMID: 29863195 PMCID: PMC6148460 DOI: 10.1039/c8np00019k] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 12/20/2022]
Abstract
A new review covering up to 2018 Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.
Collapse
Affiliation(s)
- Peter J. Harrison
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| | - Teresa M. Dunn
- Department of Biochemistry and Molecular Biology
, Uniformed Services University
,
Bethesda
, Maryland
20814
, USA
| | - Dominic J. Campopiano
- School of Chemistry
, University of Edinburgh
,
David Brewster Road
, Edinburgh
, EH9 3FJ
, UK
.
| |
Collapse
|
17
|
Abstract
Filamentous and dimorphic fungi cause invasive mycoses associated with high mortality rates. Among the fungal determinants involved in the establishment of infection, glycosphingolipids (GSLs) have gained increased interest in the last few decades. GSLs are ubiquitous membrane components that have been isolated from both filamentous and dimorphic species and play a crucial role in polarized growth as well as hypha-to-yeast transition. In fungi, two major classes of GSLs are found: neutral and acidic GSLs. Neutral GSLs comprise glucosylceramide and galactosylceramide, which utilize Δ4-Δ8-9-methyl-sphingadienine as a sphingoid base, linked to a C16-18 fatty acid chain, forming ceramide, and to a sugar residue, such as glucose or galactose. In contrast, acidic GSLs include glycosylinositol phosphorylceramides (GIPCs), composed of phytosphingosine attached to a long or very long fatty acid chain (C18-26) and to diverse and complex glycan groups via an inositol-phosphate linker. GIPCs are absent in mammalian cells, while fungal glucosylceramide and galactosylceramide are present but diverge structurally from their counterparts. Therefore, these compounds and their biosynthetic pathways represent potential targets for the development of selective therapeutic strategies. In this minireview, we discuss the enzymatic steps involved in the production of fungal GSLs, analyze their structure, and address the role of the currently characterized genes in the biology and pathogenesis of filamentous and dimorphic fungi.
Collapse
|
18
|
Munshi MA, Gardin JM, Singh A, Luberto C, Rieger R, Bouklas T, Fries BC, Del Poeta M. The Role of Ceramide Synthases in the Pathogenicity of Cryptococcus neoformans. Cell Rep 2018; 22:1392-1400. [PMID: 29425496 PMCID: PMC5839121 DOI: 10.1016/j.celrep.2018.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/02/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is estimated to cause about 220,000 new cases every year in patients with AIDS, despite advances in antifungal treatments. C. neoformans possesses a remarkable ability to disseminate through an immunocompromised host, making treatment difficult. Here, we examine the mechanism of survival of C. neoformans under varying host conditions and find a role for ceramide synthase in C. neoformans virulence. This study also provides a detailed lipidomics resource for the fungal lipid research community in addition to discovering a potential target for antifungal therapy.
Collapse
Affiliation(s)
- Mansa A Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Rieger
- Proteomics Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tejas Bouklas
- Department of Biomedical Sciences, School of Health Professions and Nursing, Long Island University, Brookville, NY 11548, USA
| | - Bettina C Fries
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Veterans Administration Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
19
|
Reisberg M, Arnold N, Porzel A, Neubert RHH, Dräger B. Malusides, novel glucosylceramides isolated from apple pomace (Malus domestica). Z NATURFORSCH C 2018; 73:33-39. [PMID: 28937966 DOI: 10.1515/znc-2017-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/28/2017] [Indexed: 11/15/2022]
Abstract
Three new glucosylceramides (GluCers) named malusides I-III (1-3) were isolated from apple (cultivars of Malus domestica) pomace (fruit material remaining after juice extraction). An unusual oxo/hydroxy group pattern within the sphingadienine (d18:2) type sphingoid base was observed. All compounds contained the same α-hydroxylated fatty acid (h16:0) and a β-D-glucose moiety. Their structures were assigned on the basis of one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopic analyses and mass spectrometry (MS) measurements.
Collapse
Affiliation(s)
- Mathias Reisberg
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany
| |
Collapse
|
20
|
Palmgren M, Hernebring M, Eriksson S, Elbing K, Geijer C, Lasič S, Dahl P, Hansen JS, Topgaard D, Lindkvist-Petersson K. Quantification of the Intracellular Life Time of Water Molecules to Measure Transport Rates of Human Aquaglyceroporins. J Membr Biol 2017; 250:629-639. [PMID: 28914342 PMCID: PMC5696491 DOI: 10.1007/s00232-017-9988-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 01/13/2023]
Abstract
Orthodox aquaporins are transmembrane channel proteins that facilitate rapid diffusion of water, while aquaglyceroporins facilitate the diffusion of small uncharged molecules such as glycerol and arsenic trioxide. Aquaglyceroporins play important roles in human physiology, in particular for glycerol metabolism and arsenic detoxification. We have developed a unique system applying the strain of the yeast Pichia pastoris, where the endogenous aquaporins/aquaglyceroporins have been removed and human aquaglyceroporins AQP3, AQP7, and AQP9 are recombinantly expressed enabling comparative permeability measurements between the expressed proteins. Using a newly established Nuclear Magnetic Resonance approach based on measurement of the intracellular life time of water, we propose that human aquaglyceroporins are poor facilitators of water and that the water transport efficiency is similar to that of passive diffusion across native cell membranes. This is distinctly different from glycerol and arsenic trioxide, where high glycerol transport efficiency was recorded.
Collapse
Affiliation(s)
- Madelene Palmgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Malin Hernebring
- Department of Experimental Medical Science, Lund University, BMC C13, 221 84, Lund, Sweden
| | - Stefanie Eriksson
- Physical Chemistry, Lund University, P.O.B. 124, 22100, Lund, Sweden
| | - Karin Elbing
- Department of Experimental Medical Science, Lund University, BMC C13, 221 84, Lund, Sweden
| | - Cecilia Geijer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Samo Lasič
- CR Development, AB, Naturvetarvägen 14, 22362, Lund, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Jesper S Hansen
- Department of Experimental Medical Science, Lund University, BMC C13, 221 84, Lund, Sweden
| | - Daniel Topgaard
- Physical Chemistry, Lund University, P.O.B. 124, 22100, Lund, Sweden
| | - Karin Lindkvist-Petersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden. .,Department of Experimental Medical Science, Lund University, BMC C13, 221 84, Lund, Sweden.
| |
Collapse
|
21
|
Zahrl RJ, Peña DA, Mattanovich D, Gasser B. Systems biotechnology for protein production in Pichia pastoris. FEMS Yeast Res 2017; 17:4093073. [DOI: 10.1093/femsyr/fox068] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
|
22
|
Singh A, MacKenzie A, Girnun G, Del Poeta M. Analysis of sphingolipids, sterols, and phospholipids in human pathogenic Cryptococcus strains. J Lipid Res 2017; 58:2017-2036. [PMID: 28811322 DOI: 10.1194/jlr.m078600] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/13/2017] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus species cause invasive infections in humans. Lipids play an important role in the progression of these infections. Independent studies done by our group and others provide some detail about the functions of these lipids in Cryptococcus infections. However, the pathways of biosynthesis and the metabolism of these lipids are not completely understood. To thoroughly understand the physiological role of these Cryptococcus lipids, a proper structure and composition analysis of Cryptococcus lipids is demanded. In this study, a detailed spectroscopic analysis of lipid extracts from Cryptococcus gattii and Cryptococcus grubii strains is presented. Sphingolipid profiling by LC-ESI-MS/MS was used to analyze sphingosine, dihydrosphingosine, sphingosine-1-phosphate, dihydrosphingosine-1-phosphate, ceramide, dihydroceramide, glucosylceramide, phytosphingosine, phytosphingosine-1-phosphate, phytoceramide, α-hydroxy phytoceramide, and inositolphosphorylceramide species. A total of 13 sterol species were identified using GC-MS, where ergosterol is the most abundant species. The 31P-NMR-based phospholipid analysis identified phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidyl-N,N-dimethylethanolamine, phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, phosphatidic acid, and lysophosphatidylethanolamine. A comparison of lipid profiles among different Cryptococcus strains illustrates a marked change in the metabolic flux of these organisms, especially sphingolipid metabolism. These data improve our understanding of the structure, biosynthesis, and metabolism of common lipid groups of Cryptococcus and should be useful while studying their functional significance and designing therapeutic interventions.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794
| | | | - Geoffrey Girnun
- Department of Pathology, Stony Brook School of Medicine, Stony Brook, NY 11794
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology and Stony Brook University, Stony Brook, NY 11794 .,Veterans Administration Medical Center, Northport, NY 11768.,Division of Infectious Diseases, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
23
|
Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie 2017; 141:9-15. [PMID: 28652019 DOI: 10.1016/j.biochi.2017.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 01/24/2023]
Abstract
Sphingolipids (SPLs) are key components of the plasma membrane in yeast and filamentous fungi. These molecules are involved in a number of cellular processes, and particularly, SGLs are essential components of the highly polarized fungal growth where they are required for the formation of the polarisome organization at the hyphal apex. Aspergillus fumigatus, a human fungal pathogen, produce SGLs that are discriminated into neutral cerebrosides, glycosylinositolphosphoceramides (GIPCs) and glycosylphosphatidylinositol (GPI) anchors. In addition to complex hydrophilic head groups of GIPCs, A. fumigatus is, to date, the sole fungus that produces a GPI-anchored polysaccharide. These SPLs follow three different biosynthetic pathways. Genetics blockage leading to the inhibition of any SPL biosynthesis or to the alteration of the structure of SPL induces growth and virulence defects. The complete lipid moiety of SPLs is essential for the lipid microdomain organization and their biosynthetic pathways are potential antifungal targets but remains understudied.
Collapse
|
24
|
Rampler E, Coman C, Hermann G, Sickmann A, Ahrends R, Koellensperger G. LILY-lipidome isotope labeling of yeast: in vivo synthesis of 13C labeled reference lipids for quantification by mass spectrometry. Analyst 2017; 142:1891-1899. [PMID: 28475182 DOI: 10.1039/c7an00107j] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantification is an essential task in comprehensive lipidomics studies challenged by the high number of lipids, their chemical diversity and their dynamic range of the lipidome. In this work, we introduce lipidome isotope labeling of yeast (LILY) in order to produce (non-radioactive) isotopically labeled eukaryotic lipid standards in yeast for normalization and quantification in mass spectrometric assays. More specifically, LILY is a fast and efficient in vivo labeling strategy in Pichia pastoris for the production of 13C labeled lipid library further paving the way to comprehensive compound-specific internal standardization in quantitative mass spectrometry based assays. More than 200 lipid species (from PA, PC, PE, PG, PI, PS, LysoGP, CL, DAG, TAG, DMPE, Cer, HexCer, IPC, MIPC) were obtained from yeast extracts with an excellent 13C enrichment >99.5%, as determined by complementary high resolution mass spectrometry based shotgun and high resolution LC-MS/MS analysis. In a first proof of principle study we tested the relative and absolute quantification capabilities of the 13C enriched lipids obtained by LILY using a parallel reaction monitoring based LC-MS approach. In relative quantification it could be shown that compound specific internal standardization was essential for the accuracy extending the linear dynamic range to four orders of magnitude. Excellent analytical figures of merit were observed for absolute quantification for a selected panel of 5 investigated glycerophospholipids (e.g. LOQs around 5 fmol absolute; typical concentrations ranging between 1 to 10 nmol per 108 yeast cell starting material; RSDs <10% (N = 4)).
Collapse
Affiliation(s)
- Evelyn Rampler
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiolgy, Althanstraße 14, 1090 Vienna, Austria
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Gerrit Hermann
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and ISOtopic Solutions, Währingerstr. 38, 1090 Vienna, Austria
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany and College of Physical Sciences, University of Aberdeen, Department of Chemistry, AB24 3UE Aberdeen, UK and Medizinische Fakultät, Medizinische Proteom-Center (MCP), Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria. and Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria and Chemistry Meets Microbiolgy, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
25
|
Reisberg M, Arnold N, Porzel A, Neubert RHH, Dräger B. Production of Rare Phyto-Ceramides from Abundant Food Plant Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1507-1517. [PMID: 28118713 DOI: 10.1021/acs.jafc.6b04275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ceramides (Cers) are major components of the outermost layer of the skin, the stratum corneum, and play a crucial role in permeability barrier functions. Alterations in Cer composition causing skin diseases are compensated with semisynthetic skin-identical Cers. Plants constitute new resources for Cer production as they contain glucosylceramides (GluCers) as major components. GluCers were purified from industrial waste plant materials, apple pomace (Malus domestica), wheat germs (Triticum sp.), and coffee grounds (Coffea sp.), with GluCer contents of 28.9 mg, 33.7 mg, and 4.4 mg per 100 g of plant material. Forty-five species of GluCers (1-45) were identified with different sphingoid bases, saturated or monounsaturated α-hydroxy fatty acids (C15-28), and β-glucose as polar headgroup. Three main GluCers were hydrolyzed by a recombinant human glucocerebrosidase to produce phyto-Cers (46-48). These studies showed that rare and expensive phyto-Cers can be obtained from industrial food plant residues.
Collapse
Affiliation(s)
- Mathias Reisberg
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| |
Collapse
|
26
|
Mi JN, Han Y, Xu Y, Kou J, Wang JR, Jiang ZH. New Immunosuppressive Sphingoid Base and Ceramide Analogues in Wild Cordyceps. Sci Rep 2016; 6:38641. [PMID: 27966660 PMCID: PMC5155214 DOI: 10.1038/srep38641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/11/2016] [Indexed: 01/02/2023] Open
Abstract
A comprehensive identification of sphingoid bases and ceramides in wild Cordyceps was performed by integrating a sequential chromatographic enrichment procedure and an UHPLC-ultrahigh definition-Q-TOF-MS based sphingolipidomic approach. A total of 43 sphingoid bases and 303 ceramides were identified from wild Cordyceps, including 12 new sphingoid base analogues and 159 new ceramide analogues based on high-resolution MS and MS/MS data, isotope distribution, matching with the comprehensive personal sphingolipid database, confirmation by sphingolipid standards and chromatographic retention time rule. The immunosuppressive bioassay results demonstrated that Cordyceps sphingoid base fraction exhibits more potent immunosuppressive activity than ceramide fraction, elucidating the immunosuppressive ingredients of wild Cordyceps. This study represented the most comprehensive identification of sphingoid bases and ceramides from a natural source. The findings of this study provided an insight into therapeutic application of wild Cordyceps.
Collapse
Affiliation(s)
- Jia-Ning Mi
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuwei Han
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Yingqiong Xu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Hansen JS, Krintel C, Hernebring M, Haataja TJK, de Marè S, Wasserstrom S, Kosinska-Eriksson U, Palmgren M, Holm C, Stenkula KG, Jones HA, Lindkvist-Petersson K. Perilipin 1 binds to aquaporin 7 in human adipocytes and controls its mobility via protein kinase A mediated phosphorylation. Metabolism 2016; 65:1731-1742. [PMID: 27832861 DOI: 10.1016/j.metabol.2016.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that dysregulated glycerol metabolism contributes to the pathophysiology of obesity and type 2 diabetes. Glycerol efflux from adipocytes is regulated by the aquaglyceroporin AQP7, which is translocated upon hormone stimulation. Here, we propose a molecular mechanism where the AQP7 mobility in adipocytes is dependent on perilipin 1 and protein kinase A. Biochemical analyses combined with ex vivo studies in human primary adipocytes, demonstrate that perilipin 1 binds to AQP7, and that catecholamine activated protein kinase A phosphorylates the N-terminus of AQP7, thereby reducing complex formation. Together, these findings are indicative of how glycerol release is controlled in adipocytes, and may pave the way for the future design of drugs against human metabolic pathologies.
Collapse
Affiliation(s)
- Jesper S Hansen
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Christian Krintel
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Malin Hernebring
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Tatu J K Haataja
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Sofia de Marè
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Sebastian Wasserstrom
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | | | - Madelene Palmgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | - Helena A Jones
- Department of Experimental Medical Science, Lund University, BMC, 221 84, Lund, Sweden
| | | |
Collapse
|
28
|
Fernandes CM, de Castro PA, Singh A, Fonseca FL, Pereira MD, Vila TVM, Atella GC, Rozental S, Savoldi M, Del Poeta M, Goldman GH, Kurtenbach E. Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity. Mol Microbiol 2016; 102:488-505. [PMID: 27479571 DOI: 10.1111/mmi.13474] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/22/2022]
Abstract
C8-desaturated and C9-methylated glucosylceramide (GlcCer) is a fungal-specific sphingolipid that plays an important role in the growth and virulence of many species. In this work, we investigated the contribution of Aspergillus nidulans sphingolipid Δ8-desaturase (SdeA), sphingolipid C9-methyltransferases (SmtA/SmtB) and glucosylceramide synthase (GcsA) to fungal phenotypes, sensitivity to Psd1 defensin and Galleria mellonella virulence. We showed that ΔsdeA accumulated C8-saturated and unmethylated GlcCer, while gcsA deletion impaired GlcCer synthesis. Although increased levels of unmethylated GlcCer were observed in smtA and smtB mutants, ΔsmtA and wild-type cells showed a similar 9,Me-GlcCer content, reduced by 50% in the smtB disruptant. The compromised 9,Me-GlcCer production in the ΔsmtB strain was not accompanied by reduced filamentation or defects in cell polarity. When combined with the smtA deletion, smtB repression significantly increased unmethylated GlcCer levels and compromised filamentous growth. Furthermore, sdeA and gcsA mutants displayed growth defects and raft mislocalization, which were accompanied by reduced neutral lipids levels and attenuated G. mellonella virulence in the ΔgcsA strain. Finally, ΔsdeA and ΔgcsA showed increased resistance to Psd1, suggesting that GlcCer synthesis and fungal sphingoid base structure specificities are relevant not only to differentiation but also to proper recognition by this antifungal defensin.
Collapse
Affiliation(s)
- C M Fernandes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P A de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - A Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - F L Fonseca
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T V M Vila
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - G C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - S Rozental
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - M Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - G H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - E Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Abstract
Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids.
Collapse
|
30
|
Martínez-Montañés F, Schneiter R. Tools for the analysis of metabolic flux through the sphingolipid pathway. Biochimie 2016; 130:76-80. [PMID: 27208414 DOI: 10.1016/j.biochi.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/13/2016] [Indexed: 01/26/2023]
Abstract
Discerning the complex regulation of the enzymatic steps necessary for sphingolipid biosynthesis is facilitated by the utilization of tracers that allow a time-resolved analysis of the pathway dynamics without affecting the metabolic flux. Different strategies have been used and new tools are continuously being developed to probe the various enzymatic conversions that occur within this complex pathway. Here, we provide a short overview of the divergent fungal and mammalian sphingolipid biosynthetic routes, and of the tracers and methods that are frequently employed to follow the flux of intermediates throughout these pathways.
Collapse
Affiliation(s)
| | - Roger Schneiter
- University of Fribourg, Department of Biology, 1700 Fribourg, Switzerland.
| |
Collapse
|
31
|
Singh A, Del Poeta M. Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens. Front Microbiol 2016; 7:501. [PMID: 27148190 PMCID: PMC4830811 DOI: 10.3389/fmicb.2016.00501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/28/2016] [Indexed: 01/28/2023] Open
Abstract
Sphingolipids form of a unique and complex group of bioactive lipids in fungi. Structurally, sphingolipids of fungi are quite diverse with unique differences in the sphingoid backbone, amide linked fatty acyl chain and the polar head group. Two of the most studied and conserved sphingolipid classes in fungi are the glucosyl- or galactosyl-ceramides and the phosphorylinositol containing phytoceramides. Comprehensive structural characterization and quantification of these lipids is largely based on advanced analytical mass spectrometry based lipidomic methods. While separation of complex lipid mixtures is achieved through high performance liquid chromatography, the soft - electrospray ionization tandem mass spectrometry allows a high sensitivity and selectivity of detection. Herein, we present an overview of lipid extraction, chromatographic separation and mass spectrometry employed in qualitative and quantitative sphingolipidomics in fungi.
Collapse
Affiliation(s)
- Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony BrookNY, USA; Veterans Administration Medical Center, NorthportNY, USA
| |
Collapse
|
32
|
Lipids in plant-microbe interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1379-1395. [PMID: 26928590 DOI: 10.1016/j.bbalip.2016.02.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/24/2022]
Abstract
Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner.
Collapse
|
33
|
Tomàs-Gamisans M, Ferrer P, Albiol J. Integration and Validation of the Genome-Scale Metabolic Models of Pichia pastoris: A Comprehensive Update of Protein Glycosylation Pathways, Lipid and Energy Metabolism. PLoS One 2016; 11:e0148031. [PMID: 26812499 PMCID: PMC4734642 DOI: 10.1371/journal.pone.0148031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/12/2016] [Indexed: 01/21/2023] Open
Abstract
Motivation Genome-scale metabolic models (GEMs) are tools that allow predicting a phenotype from a genotype under certain environmental conditions. GEMs have been developed in the last ten years for a broad range of organisms, and are used for multiple purposes such as discovering new properties of metabolic networks, predicting new targets for metabolic engineering, as well as optimizing the cultivation conditions for biochemicals or recombinant protein production. Pichia pastoris is one of the most widely used organisms for heterologous protein expression. There are different GEMs for this methylotrophic yeast of which the most relevant and complete in the published literature are iPP668, PpaMBEL1254 and iLC915. However, these three models differ regarding certain pathways, terminology for metabolites and reactions and annotations. Moreover, GEMs for some species are typically built based on the reconstructed models of related model organisms. In these cases, some organism-specific pathways could be missing or misrepresented. Results In order to provide an updated and more comprehensive GEM for P. pastoris, we have reconstructed and validated a consensus model integrating and merging all three existing models. In this step a comprehensive review and integration of the metabolic pathways included in each one of these three versions was performed. In addition, the resulting iMT1026 model includes a new description of some metabolic processes. Particularly new information described in recently published literature is included, mainly related to fatty acid and sphingolipid metabolism, glycosylation and cell energetics. Finally the reconstructed model was tested and validated, by comparing the results of the simulations with available empirical physiological datasets results obtained from a wide range of experimental conditions, such as different carbon sources, distinct oxygen availability conditions, as well as producing of two different recombinant proteins. In these simulations, the iMT1026 model has shown a better performance than the previous existing models.
Collapse
Affiliation(s)
- Màrius Tomàs-Gamisans
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Pau Ferrer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Joan Albiol
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Luttgeharm KD, Chen M, Mehra A, Cahoon RE, Markham JE, Cahoon EB. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance. PLANT PHYSIOLOGY 2015; 169:1108-17. [PMID: 26276842 PMCID: PMC4587468 DOI: 10.1104/pp.15.00987] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/13/2015] [Indexed: 05/05/2023]
Abstract
Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance for improved plant performance.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Ming Chen
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Amit Mehra
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Rebecca E Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Jennifer E Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Nebraska 68588
| |
Collapse
|
35
|
Glucosylceramide Contained in Koji Mold-Cultured Cereal Confers Membrane and Flavor Modification and Stress Tolerance to Saccharomyces cerevisiae during Coculture Fermentation. Appl Environ Microbiol 2015; 81:3688-98. [PMID: 25795678 DOI: 10.1128/aem.00454-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation.
Collapse
|
36
|
Watanabe T, Ishibashi Y, Ito M. Physiological Significance of Glycolipid Catabolism in Cryptococcus neoformans. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1504.1e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
37
|
Watanabe T, Ishibashi Y, Ito M. Physiological Significance of Glycolipid Catabolism in Cryptococcus neoformans (Jpn. Ed.). TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1504.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
38
|
Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum. Biochem Biophys Res Commun 2014; 455:165-71. [PMID: 25449268 DOI: 10.1016/j.bbrc.2014.10.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023]
Abstract
Glucosylceramides (GlcCers) are important lipid components of the membrane systems of eukaryotes. Recent studies have suggested the roles for GlcCers in regulating fungal growth and pathogenesis. In this study, we report the identification and functional characterization of PdGcs1, a gene encoding GlcCer synthase (GCS) essential for the biosynthesis of GlcCers, in Penicilliumdigitatum genome. We demonstrated that the deletion of PdGcs1 in P. digitatum resulted in the complete loss of production of GlcCer (d18:1/18:0 h) and GlcCer (d18:2/18:0 h), a decrease in vegetation growth and sporulation, and a delay in spore germination. The virulence of the PdGcs1 deletion mutant on citrus fruits was also impaired, as evidenced by the delayed occurrence of water soaking lesion and the formation of smaller size of lesion. These results suggest that PdGcs1 is a bona fide GCS that plays an important role in regulating cell growth, differentiation, and virulence of P. digitatum by controlling the biosynthesis of GlcCers.
Collapse
|
39
|
Wewer V, Brands M, Dörmann P. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:398-412. [PMID: 24888347 DOI: 10.1111/tpj.12566] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 05/04/2023]
Abstract
Arbuscular mycorrhiza formation with fungi of the Glomeromycota represents a widespread symbiotic interaction of vascular plants. Different signaling events and metabolic adaptations are required for the close interaction between the two partners. Membrane lipid synthesis is a prerequisite for symbiosis, and membrane properties depend on lipid composition. Lipid profiling was performed by liquid chromatography mass spectrometry to study the role of triacylglycerol, diacylglycerol, phospholipids, galactolipids, sterols and sphingolipids during the colonization of Lotus japonicus roots with Rhizophagus irregularis (syn. Glomus intraradices). Mycorrhization leads to an increased phosphate supply and suppresses the increase in galactolipids commonly observed in phosphate-deprived plants. In addition to free sterols and sterol esters, R. irregularis contains sterol glucosides and acylated sterol glucosides. Glycosylated sphingolipids (glucosylceramide, dihexosylceramide) and inositolphosphorylceramide were detected in the fungus. Lyso-phosphatidylcholine, a lipid previously implicated in mycorrhiza signaling, is present in low amounts in mock-infected and mycorrhized roots. The composition of fungal phospholipids changes after mycorrhization because molecular species with palmitvaccenic (di-16:1) or tetracosenoic (24:1) acyl groups decrease in intraradical mycelium. This adaptation of lipid metabolism during intraradical growth is likely a prerequisite for symbiosis, achieving functional compatibility between the fungal and the periarbuscular membrane. Data mining in genomic and transcript databases revealed the presence of genes encoding enzymes of lipid biosynthesis in R. irregularis. However, no gene encoding multidomain fatty acid de novo synthase was detected in the genome sequence of this obligate biotrophic fungus.
Collapse
Affiliation(s)
- Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | | | | |
Collapse
|
40
|
Klug L, Tarazona P, Gruber C, Grillitsch K, Gasser B, Trötzmüller M, Köfeler H, Leitner E, Feussner I, Mattanovich D, Altmann F, Daum G. The lipidome and proteome of microsomes from the methylotrophic yeast Pichia pastoris. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:215-26. [PMID: 24246743 DOI: 10.1016/j.bbalip.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 11/28/2022]
Abstract
The methylotrophic yeast Pichia pastoris is a popular yeast expression system for the production of heterologous proteins in biotechnology. Interestingly, cell organelles which play an important role in this process have so far been insufficiently investigated. For this reason, we started a systematic approach to isolate and characterize organelles from P. pastoris. In this study, we present a procedure to isolate microsomal membranes at high purity. These samples represent endoplasmic reticulum (ER) fractions which were subjected to molecular analysis of lipids and proteins. Organelle lipidomics included a detailed analysis of glycerophospholipids, fatty acids, sterols and sphingolipids. The microsomal proteome analyzed by mass spectrometry identified typical proteins of the ER known from other cell types, especially Saccharomyces cerevisiae, but also a number of unassigned gene products. The lipidome and proteome analysis of P. pastoris microsomes are prerequisite for a better understanding of functions of this organelle and for modifying this compartment for biotechnological applications.
Collapse
|
41
|
Aguilera-Romero A, Gehin C, Riezman H. Sphingolipid homeostasis in the web of metabolic routes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:647-56. [DOI: 10.1016/j.bbalip.2013.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
42
|
Isolation and characterization of the plasma membrane from the yeast Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1889-97. [PMID: 24680652 DOI: 10.1016/j.bbamem.2014.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/12/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.
Collapse
|
43
|
Hanada K. Co-evolution of sphingomyelin and the ceramide transport protein CERT. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:704-19. [PMID: 23845852 DOI: 10.1016/j.bbalip.2013.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Life creates many varieties of lipids. The choline-containing sphingophospholipid sphingomyelin (SM) exists ubiquitously or widely in vertebrates and lower animals, but is absent or rare in bacteria, fungi, protists, and plants. In the biosynthesis of SM, ceramide, which is synthesized in the endoplasmic reticulum, is transported to the Golgi region by the ceramide transport protein CERT, probably in a non-vesicular manner, and is then converted to SM by SM synthase, which catalyzes the reaction of phosphocholine transfer from phosphatidylcholine (PtdCho) to ceramide. Recent advances in genomics and lipidomics indicate that the phylogenetic occurrence of CERT and its orthologs is nearly parallel to that of SM. Based on the chemistry of lipids together with evolutionary aspects of SM and CERT, several concepts are here proposed. SM may serve as a chemically inert and robust, but non-covalently interactive lipid class at the outer leaflet of the plasma membrane. The functional domains and peptidic motifs of CERT are separated by exon units, suggesting an exon-shuffling mechanism for the generation of an ancestral CERT gene. CERT may have co-evolved with SM to bypass a competing metabolic reaction at the bifurcated point in the anabolism of ceramide. Human CERT is identical to the splicing variant of human Goodpasture antigen-binding protein (GPBP) annotated as an extracellular non-canonical serine/threonine protein kinase. The relationship between CERT and GPBP has also been discussed from an evolutionary aspect. Moreover, using an analogy of "compatible (or osmoprotective) solutes" that can accumulate to very high concentrations in the cytosol without denaturing proteins, choline phospholipids such as PtdCho and SM may act as compatible phospholipids in biomembranes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
44
|
Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB. Plant sphingolipids: function follows form. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:350-7. [PMID: 23499054 DOI: 10.1016/j.pbi.2013.02.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/09/2013] [Accepted: 02/19/2013] [Indexed: 05/20/2023]
Abstract
Plant sphingolipids are structurally diverse molecules that are important as membrane components and bioactive molecules. An appreciation of the relationship between structural diversity and functional significance of plant sphingolipids is emerging through characterization of Arabidopsis mutants coupled with advanced analytical methods. It is increasingly apparent that modifications such as hydroxylation and desaturation of the sphingolipid nonpolar long-chain bases and fatty acids influence their metabolic routing to particular complex sphingolipid classes and their functions in signaling pathways and other cellular processes, such as membrane protein targeting. Here, we review recent reports investigating some of the more prevalent sphingolipid structural modifications and their functional importance in plants.
Collapse
Affiliation(s)
- Jennifer E Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | | | | | | | | |
Collapse
|
45
|
Yang Q, Li X, Lin X, Zhou Y, Yuan J, Wang H, Cheng J, Mao C, Zhu Z. Characterization of free endogenous sphingoid bases in the golden apple snailPomacea canaliculata: involvement in snail development and nutrient limitation. INVERTEBR REPROD DEV 2013. [DOI: 10.1080/07924259.2013.774297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Bal J, Lee HJ, Cheon SA, Lee KJ, Oh DB, Kim JY. Ylpex5 mutation partially suppresses the defective hyphal growth of a Yarrowia lipolytica ceramide synthase mutant, Yllac1, by recovering lipid raft polarization and vacuole morphogenesis. Fungal Genet Biol 2012. [PMID: 23200743 DOI: 10.1016/j.fgb.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sphingolipids are involved in cell differentiation and morphogenesis in eukaryotic cells. In this study, YlLac1p, a ceramide synthase required for glucosylceramide (GlcCer) synthesis, was found to be essential for hyphal growth in Yarrowia lipolytica. Y. lipolytica GlcCer was shown to be composed of a C16:0 fatty acid, which is hydroxylated at C2, and a C18:2 long chain base, which is unsaturated at both C4 and C8 and methylated at C9. Domain swapping analysis revealed that the entire TRAM/Lag1/CLN8 (TLC) domain, not the Lag1 motif, is crucial for the function of YlLac1p. YlDes1p, the C4 desaturase of the ceramide synthesized by YlLac1p, was also required for Y. lipolytica morphogenesis. Both Yllac1Δ and Yldes1Δ mutants neither polarize lipid rafts nor form normal vacuoles. Interestingly, mutation in YlPEX5, which encode a peroxisomal targeting signal receptor, partially suppressed the defective hyphal growth of Yllac1Δ. The Yllac1ΔYlpex5Δ mutant restored the ability to polarize lipid rafts and to form normal vacuoles, although it could not synthesize GlcCer. Taken together, our results suggest that GlcCer or GlcCer derivatives may be involved in hyphal morphogenesis in Y. lipolytica, at least in part, by affecting polarization of lipid rafts and vacuole morphogenesis.
Collapse
Affiliation(s)
- Jyotiranjan Bal
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
47
|
Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans 2012; 40:547-54. [PMID: 22616865 DOI: 10.1042/bst20110769] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SLs (sphingolipids) are composed of fatty acids and a polar head group derived from L-serine. SLs are essential components of all eukaryotic and many prokaryotic membranes but S1P (sphingosine 1-phosphate) is also a potent signalling molecule. Recent efforts have sought to inventory the large and chemically complex family of SLs (LIPID MAPS Consortium). Detailed understanding of SL metabolism may lead to therapeutic agents specifically directed at SL targets. We have studied the enzymes involved in SL biosynthesis; later stages are species-specific, but all core SLs are synthesized from the condensation of L-serine and a fatty acid thioester such as palmitoyl-CoA that is catalysed by SPT (serine palmitoyltransferase). SPT is a PLP (pyridoxal 5'-phosphate)-dependent enzyme that forms 3-KDS (3-ketodihydrosphingosine) through a decarboxylative Claisen-like condensation reaction. Eukaryotic SPTs are membrane-bound multi-subunit enzymes, whereas bacterial enzymes are cytoplasmic homodimers. We use bacterial SPTs (e.g. from Sphingomonas) to probe their structure and mechanism. Mutations in human SPT cause a neuropathy [HSAN1 (hereditary sensory and autonomic neuropathy type 1)], a rare SL metabolic disease. How these mutations perturb SPT activity is subtle and bacterial SPT mimics of HSAN1 mutants affect the enzyme activity and structure of the SPT dimer. We have also explored SPT inhibition using various inhibitors (e.g. cycloserine). A number of new subunits and regulatory proteins that have a direct impact on the activity of eukaryotic SPTs have recently been discovered. Knowledge gained from bacterial SPTs sheds some light on the more complex mammalian systems. In the present paper, we review historical aspects of the area and highlight recent key developments.
Collapse
|
48
|
Yeast as a model system for studying lipid homeostasis and function. FEBS Lett 2012; 586:2858-67. [DOI: 10.1016/j.febslet.2012.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/11/2012] [Indexed: 12/14/2022]
|
49
|
Chen M, Markham JE, Cahoon EB. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:769-81. [PMID: 22023480 DOI: 10.1111/j.1365-313x.2011.04829.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants contain a large diversity of sphingolipid structures, arising in part from C4 hydroxylation and Δ4 and Δ8 desaturation of the component long-chain bases (LCBs). Typically, 85-90% of sphingolipid LCBs in Arabidopsis leaves contain a cis or transΔ8 double bond produced by sphingoid LCB Δ8 desaturase (SLD). To understand the metabolic and physiological significance of Δ8 unsaturation, studies were performed using mutants of the Arabidopsis SLD genes AtSLD1 and AtSLD2. Our studies revealed that both genes are constitutively expressed, the corresponding polypeptides are ER-localized, and expression of these genes in Saccharomyces cerevisiae yields mixtures of cis/transΔ8 desaturation products, predominantly as trans isomers. Consistent in part with the higher expression of AtSLD1 in Arabidopsis plants, AtSLD1 T-DNA mutants showed large reductions in Δ8 unsaturated LCBs in all organs examined, whereas AtSLD2 mutants showed little change in LCB unsaturation. Double mutants of AtSLD1 and AtSLD2 showed no detectable LCB Δ8 unsaturation. Comprehensive analysis of sphingolipids in rosettes of these mutants revealed a 50% reduction in glucosylceramide levels and a corresponding increase in glycosylinositolphosphoceramides that were restored by complementation with a wild-type copy of AtSLD1. Double sld1 sld2 mutants lacked apparent growth phenotypes under optimal conditions, but displayed altered responses to certain stresses, including prolonged exposure to low temperatures. These results are consistent with a role for LCB Δ8 unsaturation in selective channeling of ceramides for the synthesis of complex sphingolipids and the physiological performance of Arabidopsis.
Collapse
Affiliation(s)
- Ming Chen
- Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
50
|
Cheon SA, Bal J, Song Y, Hwang HM, Kim AR, Kang WK, Kang HA, Hannibal-Bach HK, Knudsen J, Ejsing CS, Kim JY. Distinct roles of two ceramide synthases, CaLag1p and CaLac1p, in the morphogenesis of Candida albicans. Mol Microbiol 2012; 83:728-45. [PMID: 22211636 DOI: 10.1111/j.1365-2958.2011.07961.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lag1p and Lac1p catalyse ceramide synthesis in Saccharomyces cerevisiae. This study shows that Lag1 family proteins are generally required for polarized growth in hemiascomycetous yeast. However, in contrast to S. cerevisiae where these proteins are functionally redundant, C. albicans Lag1p (CaLag1p) and Lac1p (CaLac1p) are functionally distinct. Lack of CaLag1p, but not CaLac1p, caused severe defects in the growth and hyphal morphogenesis of C. albicans. Deletion of CaLAG1 decreased expression of the hypha-specific HWP1 and ECE1 genes. Moreover, overexpression of CaLAG1 induced pseudohyphal growth in this organism under non-hypha-inducing conditions, suggesting that CaLag1p is necessary for relaying signals to induce hypha-specific gene expression. Analysis of ceramide and sphingolipid composition revealed that CaLag1p predominantly synthesizes ceramides with C24:0/C26:0 fatty acid moieties, which are involved in generating inositol-containing sphingolipids, whereas CaLac1p produces ceramides with C18:0 fatty acid moieties, which are precursors for glucosylsphingolipids. Thus, our study demonstrates that CaLag1p and CaLac1p have distinct substrate specificities and physiological roles in C. albicans.
Collapse
Affiliation(s)
- Seon Ah Cheon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|