1
|
Qin Y, Teng Y, Yang Y, Mao Z, Zhao S, Zhang N, Li X, Niu W. Advancements in inhibitors of crucial enzymes in the cysteine biosynthetic pathway: Serine acetyltransferase and O-acetylserine sulfhydrylase. Chem Biol Drug Des 2024; 104:e14573. [PMID: 38965664 DOI: 10.1111/cbdd.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Infectious diseases have been jeopardized problem that threaten public health over a long period of time. The growing prevalence of drug-resistant pathogens and infectious cases have led to a decrease in the number of effective antibiotics, which highlights the urgent need for the development of new antibacterial agents. Serine acetyltransferase (SAT), also known as CysE in certain bacterial species, and O-acetylserine sulfhydrylase (OASS), also known as CysK in select bacteria, are indispensable enzymes within the cysteine biosynthesis pathway of various pathogenic microorganisms. These enzymes play a crucial role in the survival of these pathogens, making SAT and OASS promising targets for the development of novel anti-infective agents. In this comprehensive review, we present an introduction to the structure and function of SAT and OASS, along with an overview of existing inhibitors for SAT and OASS as potential antibacterial agents. Our primary focus is on elucidating the inhibitory activities, structure-activity relationships, and mechanisms of action of these inhibitors. Through this exploration, we aim to provide insights into promising strategies and prospects in the development of antibacterial agents that target these essential enzymes.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, China
| | - Yan Yang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Xu Li
- Institute of Chemistry Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
2
|
R R, Thakur P, Kumar N, Saini N, Banerjee S, Singh RP, Patel M, Kumaran S. Multi-oligomeric and catalytically compromised serine acetyltransferase and cysteine regulatory complex of Mycobacterium tuberculosis. Biochimie 2024; 221:110-124. [PMID: 38311199 DOI: 10.1016/j.biochi.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
l-cysteine, a primary building block of mycothiol, plays an essential role in the defense mechanism of Mycobacterium tuberculosis (Mtb). However, it is unclear how Mtb regulates cysteine biosynthesis as no study has reported the cysteine regulatory complex (CRC) in Mtb. Serine acetyltransferase (SAT) and cysteine synthase (CS) interact to form CRC. Although MtCS has been characterized well, minimal information is available on MtSAT, which synthesizes, O-acetylserine (OAS), the precursor of cysteine. This study fills the gap and provides experimental evidence for the presence of MtCRC and a non-canonical multi-oligomeric MtSAT. We employed multiple analytical methods to characterize the oligomeric and kinetic properties of MtSAT and MtCRC. Results show that MtSAT, lacking >75 N-terminal amino acids exists in three different assembly states; trimer, hexamer, and dodecamer, compared to the single hexameric state of SAT of other bacteria. While hexamers display the highest catalytic turnover, the trimer is the least active. The predominance of trimers at low physiologically relevant concentrations suggests that MtSAT displays the lowest catalytic potential known. Further, the catalytic potential of MtSAT is also significantly reduced in CRC state, in contrast to enhanced activity of SAT in CRC of other organisms. Our study provides insights into multi-oligomeric MtSAT with reduced catalytic potential and demonstrates that both MtSAT and MtCS of Mycobacterium interact to form CRC, although with altered catalytic properties. We discuss our results in light of the altered biochemistry of the last step of canonical sulfate-dependent cysteine biosynthesis of Mycobacterium.
Collapse
Affiliation(s)
- Rahisuddin R
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Payal Thakur
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Narender Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Neha Saini
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Shrijta Banerjee
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Ravi Pratap Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Madhuri Patel
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - S Kumaran
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
3
|
Ma H, Song Y, Zhang Y, Guo H, Lv G, Chen H, Liu J, Liu X, An Z, Wang L, Xu Q, Jiao C, Chen P. Critical Sites of Serine Acetyltransferase in Lathyrus sativus L. Affecting Its Enzymatic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7858-7865. [PMID: 37163296 DOI: 10.1021/acs.jafc.3c00678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
LsSAT2 (serine acetyltransferase in Lathyrus sativus) is the rate-limiting enzyme in biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP), a neuroactive metabolite distributed widely in several plant species including Panax notoginseng, Panax ginseng, and L. sativus. The enzymatic activity of LsSAT2 is post-translationally regulated by its involvement in the cysteine regulatory complex in mitochondria via interaction with β-CAS (β-cyanoalanine synthase). In this study, the binding sites of LsSAT2 with the substrate Ser were first determined as Glu290, Arg316, and His317 and the catalytic sites were determined as Asp267, Asp281, and His282 via site-directed/truncated mutagenesis, in vitro enzymatic activity assay, and functional complementation of the SAT-deficient Escherichia coli strain JM39. Furthermore, the C-terminal 10-residue peptide of LsSAT2 is confirmed to be critical to interact with LsCAS, and Ile336 in C10 peptide is the critical amino acid. These results will enhance our understanding of the regulation of LsSAT2 activities and the biosynthesis of β-ODAP in L. sativus.
Collapse
Affiliation(s)
- Hao Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaoyao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiying Guo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guowen Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoning Liu
- School of Medicine, Huanghe S&T University, Zhengzhou, Henan 450063, China
| | - Zhenfeng An
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengjin Jiao
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, Gansu 741000, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Tuszewska H, Szczepański J, Mandziuk S, Trotsko N. Thiazolidin-4-one-based derivatives - Efficient tools for designing antiprotozoal agents. A review of the last decade. Bioorg Chem 2023; 133:106398. [PMID: 36739686 DOI: 10.1016/j.bioorg.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/25/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Thiazolidin-4-one derivatives have a wide range of therapeutic implementations and clinical significance for medicinal chemistry. This heterocyclic ring has been reported to possess a variety of biological activities, including antiprotozoal activities that have inspired scientists to integrate this scaffold with different pharmacophoric fragments to design novel and effective antiprotozoal compounds. There are reviews describing thiazolidin-4-ones small molecules as good candidates with a single type of antiprotozoal activity, but none of these show collected news associated with the antiprotozoal activity of thiazolidin-4-ones and their SAR analysis from the last decade. In this review we are focusing on the antitoxoplasmic, anti-trypanosomal, antimalarial, antileishmanial, and antiamoebic activity of these derivatives, we attempt to summarize and analyze the recent developments with regard to the antiprotozoal potential of 4-TZD covering the structure-activity relationship and main molecular targets. The importance of various structural modifications at C2, N3, and C5 of the thiazolidine-4-one core has also been discussed in this review. We hope that all information concluded in this review can be useful for other researchers in constructing new effective antiprotozoal agents.
Collapse
Affiliation(s)
- Helena Tuszewska
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Jacek Szczepański
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland
| | - Sławomir Mandziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8, Jaczewski Str., 20-090 Lublin, Poland
| | - Nazar Trotsko
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4a, Chodzki Str., 20-093 Lublin, Poland.
| |
Collapse
|
5
|
Idrees D, Naqvi AAT, Hassan MI, Ahmad F, Gourinath S. Insight into the Conformational Transitions of Serine Acetyl Transferase Isoforms in E. histolytica: Implications for Structural and Functional Balance. ACS OMEGA 2022; 7:24626-24637. [PMID: 35874230 PMCID: PMC9301732 DOI: 10.1021/acsomega.2c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Serine acetyl transferase (SAT) is one of the crucial enzymes in the cysteine biosynthetic pathway and an essential enzyme for the survival of Entamoeba histolytica, the causative agent of amoebiasis. E. histolytica expresses three isoforms of SAT, where SAT1 and SAT2 are inhibited by the final product cysteine, while SAT3 is not inhibited. SAT3 has a slightly elongated C-terminus compared to SAT1. To understand the stability and conformational transition between two secondary structures of proteins, we measured the effect of urea, a chemical denaturant, on two isoforms of SAT (SAT1 and SAT3) of E. histolytica. The effect of urea on the structure and stability of SAT1 and SAT3 was determined by measuring changes in their far-UV circular dichroism (CD), Trp fluorescence, and near-UV absorption spectra. The urea-induced normal transition curves suggested that the structural transition is reversible and follows a two-state process. Analysis of the urea-induced transition of all optical properties for the stability parameters ΔG D° (Gibbs free energy change (ΔG D) in the absence of urea), m (dependence of ΔG D on urea concentration), and C m (midpoint of urea transition) suggested that SAT1 is more stable than SAT3. Characterization of the end product of the urea-induced transition of both proteins by the far-UV CD and Trp-fluorescence and near-UV absorbance suggested that urea causes α-helix to β-sheet transition and burial of Trp residues, respectively. To support the in vitro findings, 100 ns molecular dynamics simulations (in silico study) were performed. Both the spectroscopic and molecular dynamics approaches clearly indicated that SAT1 is more stable than SAT3. SAT3 has evolved to escape the feedback inhibition to keep producing cysteine, but in the process, it compromises its structural stability relative to SAT1.
Collapse
Affiliation(s)
- Danish Idrees
- School
of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Faculty
of Allied Health Sciences, Shree Guru Gobind
Tricentenary University, Gurugram, Harayana 122505, India
| | | | - Md Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Department
of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Samudrala Gourinath
- School
of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Dharavath S, Kumari K, Kumar S, Gourinath S. Structural and functional studies of serine acetyltransferase isoform from Entamoeba histolytica reveals novel role of the C-terminal tail in loss of regulation from feedback inhibition. Int J Biol Macromol 2022; 217:689-700. [PMID: 35853506 DOI: 10.1016/j.ijbiomac.2022.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022]
Abstract
Serine acetyltransferase (SAT) catalyzes the acetylation of l-serine in the first step of the two-step pathway to synthesize L-cysteine in bacteria, protozoans and plants. L-cysteine is known to be involved in feedback regulation of SAT. However, in E. histolytica, SAT exists in three isoforms where third isoform SAT3 is nearly insensitive to feedback inhibition. Here, we explored the previously unknown precise mechanism of the insensitivity of EhSAT3 to L-cysteine. The C-terminal deletion mutants of EhSAT3 were inhibited completely by L-cysteine in contrast to the wildtype EhSAT3. The crystal structure of EhSAT3ΔC22 in complex with cysteine revealed that C-terminal region swaps over the neighboring monomer in the trimer. This structure combined with the modeled C-terminal residues suggests that EhSAT3 C-terminal end interacts with the active site and play crucial role in feedback inhibition. The interacting distances between sulfur of cysteine and protein indicate cysteine is in deprotonated (S-) state, thus making stronger interactions than serine. In the full length SAT3, C-terminal tail provides an acidic environment at the active site pocket, so that cysteine can't be deprotonated and bind strongly at the active site. These results conveyed a unique role of the C-terminal region of EhSAT3 in regulating the feedback inhibition.
Collapse
Affiliation(s)
| | - Khushboo Kumari
- School of Life sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudhir Kumar
- Department of Biotechnology, H.N.B. Garhwal University, Srinagar Garhwal, Uttarakhand, India.
| | | |
Collapse
|
7
|
Serine acetyltransferase from Neisseria gonorrhoeae; structural and biochemical basis of inhibition. Biochem J 2021; 479:57-74. [PMID: 34890451 PMCID: PMC8786284 DOI: 10.1042/bcj20210564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Serine acetyltransferase (SAT) catalyzes the first step in the two-step pathway to synthesize L-cysteine in bacteria and plants. SAT synthesizes O-acetylserine from substrates L‑serine and acetyl coenzyme A and is a key enzyme for regulating cellular cysteine levels by feedback inhibition of L-cysteine, and its involvement in the cysteine synthase complex. We have performed extensive structural and kinetic characterization of the SAT enzyme from the antibiotic-resistant pathogen Neisseria gonorrhoeae. Using X-ray crystallography, we have solved the structures of NgSAT with the non-natural ligand, L-malate (present in the crystallization screen) to 2.01 Å and with the natural substrate L-serine (2.80 Å) bound. Both structures are hexamers, with each monomer displaying the characteristic left-handed parallel β-helix domain of the acyltransferase superfamily of enzymes. Each structure displays both extended and closed conformations of the C-terminal tail.  L‑malate bound in the active site results in an interesting mix of open and closed active site conformations, exhibiting a structural change mimicking the conformation of cysteine (inhibitor) bound structures from other organisms. Kinetic characterization shows competitive inhibition of L-cysteine with substrates L-serine and acetyl coenzyme A. The SAT reaction represents a key point for the regulation of cysteine biosynthesis and controlling cellular sulfur due to feedback inhibition by L-cysteine and formation of the cysteine synthase complex. Data presented here provide the structural and mechanistic basis for inhibitor design and given this enzyme is not present in humans could be explored to combat the rise of extensively antimicrobial-resistant N. gonorrhoeae.
Collapse
|
8
|
Verma D, Gupta V. New insights into the structure and function of an emerging drug target CysE. 3 Biotech 2021; 11:373. [PMID: 34367865 DOI: 10.1007/s13205-021-02891-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
The antimicrobial resistant strains of several pathogens are major culprits of hospital-acquired nosocomial infections. An active and urgent action is necessary against these pathogens for the development of unique therapeutics. The cysteine biosynthetic pathway or genes (that are absent in humans) involved in the production of L-cysteine appear to be an attractive target for developing novel antibiotics. CysE, a Serine Acetyltransferase (SAT), catalyzes the first step of cysteine synthesis and is reported to be essential for the survival of persistence in several microbes including Mycobacterium tuberculosis. Structure determination provides fundamental insight into structure and function of protein and aid in drug design/discovery efforts. This review focuses on the overview of current knowledge of structure function, regulatory mechanism, and potential inhibitors (active site as well as allosteric site) of CysE. Despite having conserved structure, slight modification in CysE structure lead to altered the regulatory mechanism and hence affects the cysteine production. Due to its possible role in virulence and vital metabolism of pathogens makes it a potential target in the quest to develop novel therapeutics to treat multi-drug-resistant bacteria.
Collapse
Affiliation(s)
- Deepali Verma
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh 201309 India
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh 201309 India
| |
Collapse
|
9
|
Devi S, Tomar P, Faisal Tarique K, Gourinath S. Inhibiting Pyridoxal Kinase of Entamoeba histolytica Is Lethal for This Pathogen. Front Cell Infect Microbiol 2021; 11:660466. [PMID: 33937101 PMCID: PMC8085340 DOI: 10.3389/fcimb.2021.660466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
Pyridoxal 5’-phosphate (PLP) functions as a cofactor for hundreds of different enzymes that are crucial to the survival of microorganisms. PLP-dependent enzymes have been extensively characterized and proposed as drug targets in Entamoeba histolytica. This pathogen is unable to synthesize vitamin B6via de-novo pathway and relies on the uptake of vitamin B6 vitamers from the host which are then phosphorylated by the enzyme pyridoxal kinase to produce PLP, the active form of vitamin B6. Previous studies from our lab shows that EhPLK is essential for the survival and growth of this protozoan parasite and its active site differs significantly with respect to its human homologue making it a potential drug target. In-silico screening of EhPLK against small molecule libraries were performed and top five ranked molecules were shortlisted on the basis of docking scores. These compounds dock into the PLP binding site of the enzyme such that binding of these compounds hinders the binding of substrate. Of these five compounds, two compounds showed inhibitory activity with IC50 values between 100-250 μM when tested in-vitro. The effect of these compounds proved to be extremely lethal for Entamoeba trophozoites in cultured cells as the growth was hampered by 91.5% and 89.5% when grown in the presence of these compounds over the period of 72 hours.
Collapse
Affiliation(s)
- Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priya Tomar
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Khaja Faisal Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Magalhães J, Franko N, Raboni S, Annunziato G, Tammela P, Bruno A, Bettati S, Armao S, Spadini C, Cabassi CS, Mozzarelli A, Pieroni M, Campanini B, Costantino G. Discovery of Substituted (2-Aminooxazol-4-yl)Isoxazole-3-carboxylic Acids as Inhibitors of Bacterial Serine Acetyltransferase in the Quest for Novel Potential Antibacterial Adjuvants. Pharmaceuticals (Basel) 2021; 14:ph14020174. [PMID: 33672408 PMCID: PMC7931047 DOI: 10.3390/ph14020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Many bacteria and actinomycetales use L-cysteine biosynthesis to increase their tolerance to antibacterial treatment and establish a long-lasting infection. In turn, this might lead to the onset of antimicrobial resistance that currently represents one of the most menacing threats to public health worldwide. The biosynthetic machinery required to synthesise L-cysteine is absent in mammals; therefore, its exploitation as a drug target is particularly promising. In this article, we report a series of inhibitors of Salmonella thyphimurium serine acetyltransferase (SAT), the enzyme that catalyzes the rate-limiting step of L-cysteine biosynthesis. The development of such inhibitors started with the virtual screening of an in-house library of compounds that led to the selection of seven structurally unrelated hit derivatives. A set of molecules structurally related to hit compound 5, coming either from the original library or from medicinal chemistry efforts, were tested to determine a preliminary structure–activity relationship and, especially, to improve the inhibitory potency of the derivatives, that was indeed ameliorated by several folds compared to hit compound 5 Despite these progresses, at this stage, the most promising compound failed to interfere with bacterial growth when tested on a Gram-negative model organism, anticipating the need for further research efforts.
Collapse
Affiliation(s)
- Joana Magalhães
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
| | - Nina Franko
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Samanta Raboni
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
| | - Giannamaria Annunziato
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland;
| | - Agostino Bruno
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
| | - Stefano Bettati
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Stefano Armao
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Costanza Spadini
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (C.S.); (C.S.C.)
| | - Clotilde Silvia Cabassi
- Operative Unit of Animals Infectious Diseases, Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126 Parma, Italy; (C.S.); (C.S.C.)
| | - Andrea Mozzarelli
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
- Institute of Biophysics, CNR, 56124 Pisa, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Marco Pieroni
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-0521-905054
| | - Barbara Campanini
- Laboratory of Biochemistry and Molecular Biology, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.F.); (S.R.); (S.A.); (A.M.); (B.C.)
| | - Gabriele Costantino
- P4T Group, Department of Food and Drug, University of Parma, 43124 Parma, Italy; (J.M.); (G.A.); (A.B.); (G.C.)
- Centro Interdipartimentale Misure (CIM) ‘G. Casnati’, University of Parma, 43124 Parma, Italy
| |
Collapse
|
11
|
Singh RK, Kumar D, Gourinath S. Phosphoserine aminotransferase has conserved active site from microbes to higher eukaryotes with minor deviations. Protein Pept Lett 2021; 28:996-1008. [PMID: 33588715 DOI: 10.2174/0929866528666210215140231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
Serine is ubiquitously synthesized in all living organisms from the glycolysis intermediate 3-phosphoglycerate (PGA) by phosphoserine biosynthetic pathway, consisting of three different enzymes, namely: 3-phosphoglycerate dehydrogenase (PGDH), phosphoserine aminotransferase (PSAT), and phosphoserine phosphatase (PSP). Any functional defect or mutation in these enzymes may cause deliberating conditions, such as colon cancer progression and chemoresistance in humans. Phosphoserine aminotransferase (PSAT) is the second enzyme in this pathway that converts phosphohydroxypyruvate (PHP) to O-phospho-L-serine (OPLS). Humans encode two isoforms of this enzyme: PSAT1 and PSAT2. PSAT1 exists as a functional dimer, where each protomer has a large and a small domain; each large domain contains a Lys residue that covalently binds PLP. The PLP-binding site of human PSAT1 and most of its active site residues are highly conserved in all known PSAT structures except for Cys-80. Interestingly, Two PSAT structures from different organisms show halide binding near their active site. While the human PSAT1 shows a water molecule at this site with different interacting residues, suggesting the inability of halide binding in the human enzyme. Analysis of the human PSAT1 structure showed a big patch of positive charge around the active site, in contrast to the bacterial PSATs. Compared to human PSAT1, the PSAT2 isoform lacks 46 residues at its C-terminal tail. This tail region is present at the opening of the active site as observed in the other PSAT structures. Further structural work on human PSAT2 may reveal the functional importance of these 46 residues.
Collapse
Affiliation(s)
- Rohit Kumar Singh
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110067. India
| | - Devbrat Kumar
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110067. India
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi - 110067. India
| |
Collapse
|
12
|
Synthesis of metronidazole based thiazolidinone analogs as promising antiamoebic agents. Bioorg Med Chem Lett 2020; 30:127549. [DOI: 10.1016/j.bmcl.2020.127549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
|
13
|
Gupta S, Gupta V. Homology modeling, structural insights and in-silico screening for selective inhibitors of mycobacterial CysE. J Biomol Struct Dyn 2020; 39:1547-1560. [PMID: 32093568 DOI: 10.1080/07391102.2020.1734089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tuberculosis posses a major threat for health practitioners due to lengthy treatment regimen, increase in the drug-resistant strains of Mycobacterium tuberculosis (M. tb) and unavailability of drugs for its persistent form. Therefore, there is an urgent need for discovery of new and improved anti-tubercular drugs. In M. tb, the two step de novo biosynthesis of L-cysteine, an essential metabolic pathway is reported to be up-regulated in the persistent phase of the organism, involves two enzymes CysE and CysK. Although, structural insights for rational drug discovery are available for the later, not much information is known for the former. This study proposes a 3-dimensional model of M. tb CysE followed by in-silico screening of 67,030 anti-tuberculosis bioactive compounds. Subsequently, post-processing of 1000 best hits was carried out and top 200 compounds thus obtained were docked into the active site cleft of E. coli homologue as a control, but revealed unexpected results. Differences in the active site architectures and comparative analysis of molecular electrostatic potentials between the two CysEs provide molecular basis for the compounds C1, C3, C4 and C7 exhibiting preferential binding for M. tb CysE. In addition, shorter N-terminus along with positive and irregular trimeric base of M. tb CysE indicates its biological assembly as trimer. Based on mapping of residues involved in cysteine sensitivity on to the model structure of M. tb CysE, it is hypothesized that feedback inhibition of this homologue by cysteine may be affected.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sunita Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Vibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
14
|
Crystal structure of O-Acetylserine sulfhydralase (OASS) isoform 3 from Entamoeba histolytica: Pharmacophore-based virtual screening and validation of novel inhibitors. Eur J Med Chem 2020; 192:112157. [PMID: 32145643 DOI: 10.1016/j.ejmech.2020.112157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
The l-cysteine is crucial for growth, survival, defense against oxidative stress, and pathogenesis of Entamoeba histolytica. The de novo biosynthesis of l-cysteine in E. histolytica, has a two-step pathway, where O-acetylserine sulfhydrylase (OASS) catalyses the last step by converting OAS to l-cysteine. This pathway is absent in humans and hence represents a promising target for novel therapeutics. E. histolytica expresses three isoforms of OASS and knockdown studies showed the importance of these enzymes for the survival of the pathogen. Here, we report the crystal structure of OASS isoform 3 from E. histolytica to 1.54 Å resolution. The active site geometries and kinetics of EhOASS3 and EhOASS1 structures were found to be very similar. Small-molecule libraries were screened against EhOASS3 and compounds were shortlisted based on the docking scores. F3226-1387 showed best inhibition with IC50 of 38 μM against EhOASS3 and was able to inhibit the growth of the organism to 72%.
Collapse
|
15
|
Allosteric inhibition and kinetic characterization of Klebsiella pneumoniae CysE: An emerging drug target. Int J Biol Macromol 2019; 151:1240-1249. [PMID: 31751684 DOI: 10.1016/j.ijbiomac.2019.10.170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Abstract
The emergence and spread of multidrug-resistant strains of Klebsiella pneumoniae is a major concern that necessitates the development of unique therapeutics. The essential requirement of serine acetyltransferase (SAT/CysE) for survival of several human pathogens makes it a very promising target for inhibitor designing and drug discovery. In this study, as an initial step to structure-based drug discovery, CysE from K. pneumonia was structurally and biochemically characterized. Subsequently, blind docking of selected natural products into the X-ray crystallography determined 3D structure of the target was carried out. Experimental validation of the inhibitory potential of the top-scorers established quercetin as an uncompetitive inhibitor of Kpn CysE. Molecular dynamics simulations carried out to elucidate the binding mode of quercetin reveal that this small molecule binds at the trimer-trimer interface of hexameric CysE, a site physically distinct from the active site of the enzyme. Detailed analysis of conformational differences incurred in Kpn CysE structure on binding to quercetin provides mechanistic understanding of allosteric modulation. Binding of quercetin to CysE leads to conformation changes in the active site loops and proximal loops that affect its internal dynamics and consequently its affinity for substrate/co-factor binding, justifying the reduced enzyme activity.
Collapse
|
16
|
Devi S, Tarique KF, Ali MF, Abdul Rehman SA, Gourinath S. Identification and characterization of Helicobacter pylori O-acetylserine-dependent cystathionine β-synthase, a distinct member of the PLP-II family. Mol Microbiol 2019; 112:718-739. [PMID: 31132312 DOI: 10.1111/mmi.14315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 02/02/2023]
Abstract
O-acetylserine sulfhydrylase (OASS) and cystathionine β-synthase (CBS) are members of the PLP-II family, and involved in L-cysteine production. OASS produces L-cysteine via a de novo pathway while CBS participates in the reverse transsulfuration pathway. O-acetylserine-dependent CBS (OCBS) was previously identified as a new member of the PLP-II family, which are predominantly seen in bacteria. The bacterium Helicobacter pylori possess only one OASS (hp0107) gene and we showed that the protein coded by this gene actually functions as an OCBS and utilizes L-homocysteine and O-acetylserine (OAS) to produce cystathionine. HpOCBS did not show CBS activity with the substrate L-serine and required OAS exclusively. The HpOCBS structure in complex with methionine showed a closed cleft state, explaining the initial mode of substrate binding. Sequence and structural analyses showed differences between the active sites of OCBS and CBS, and explain their different substrate preferences. We identified three hydrophobic residues near the active site of OCBS, corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant (Y158F/Y226V) did not display activity with L-serine, indicating indispensability of these polar residues for selecting substrate L-serine, however, did show activity with OAS.
Collapse
Affiliation(s)
- Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khaja Faisal Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Public Health Research Institute, Rutgers, Newark, NJ, USA
| | - Mohammad Farhan Ali
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Arif Abdul Rehman
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
17
|
Structural and functional characterisation of phosphoserine phosphatase, that plays critical role in the oxidative stress response in the parasite Entamoeba histolytica. J Struct Biol 2019; 206:254-266. [DOI: 10.1016/j.jsb.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 02/02/2023]
|
18
|
Chen C, Yan Q, Tao M, Shi H, Han X, Jia L, Huang Y, Zhao L, Wang C, Ma X, Ma Y. Characterization of serine acetyltransferase (CysE) from methicillin-resistant Staphylococcus aureus and inhibitory effect of two natural products on CysE. Microb Pathog 2019; 131:218-226. [PMID: 30974158 DOI: 10.1016/j.micpath.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 01/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital-acquired infective pathogen that has developed resistance to many antibiotics. It is imperious to develop novel anti-MRSA drugs to control the emergence of drug resistance. The biosynthesis of cysteine in bacteria is catalyzed by CysE and CysK. CysE was predicted to be important for bacterial viability, it could be a potential drug target. The serine acetyltransferase activity of CysE was detected and its catalytic properties were also determined. CysE homology model was built to investigate interaction sites between CysE and substrate L-Ser or inhibitors by molecular docking. Docking data showed that residues Asp94 and His95 were essential for serine acetyltransferase activity of CysE, which were confirmed by site-directed mutagenesis. Colorimetric assay was used to screen natural products and six compounds which inhibited CysE activity (IC50 ranging from 29.83 μM to 203.13 μM) were found. Inhibition types of two compounds 4 (11-oxo-ebracteolatanolide B) and 30 ((4R,4aR)-dihydroxy-3-hydroxymethyl-7,7,10a-trimethyl-2,4,4a,5,6,6a,7,8,9,10,10a,l0b-dodecahydrophenanthro[3,2-b]furan-2-one) on CysE were determined. Compounds 4 and 30 showed inhibitory effect on MRSA growth (MIC at 12.5 μg/ml and 25 μg/ml) and mature biofilm. The established colorimetric assay will facilitate further high-throughput screening of CysE inhibitors from different compound libraries. The compounds 4 and 30 may offer structural basis for developing new anti-MRSA drugs.
Collapse
Affiliation(s)
- Changming Chen
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Qiulong Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Mengxing Tao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Huaying Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Yukun Huang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Lizhe Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
19
|
N-terminal residues are crucial for quaternary structure and active site conformation for the phosphoserine aminotransferase from enteric human parasite E. histolytica. Int J Biol Macromol 2019; 132:1012-1023. [PMID: 30959130 DOI: 10.1016/j.ijbiomac.2019.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 11/24/2022]
Abstract
Phosphoserine aminotransferase (PSAT) is a pyridoxal-5'phosphate (PLP)-dependent enzyme that catalyzes the second reversible step in the phosphoserine biosynthetic pathway producing serine. The crystal structure of E. histolytica PSAT (EhPSAT) complexed with PLP was elucidated at 3.0 Å resolution and the structures of its mutants, EhPSAT_Δ45 and EhPSAT_Δ4, at 1.8 and 2.4 Å resolution respectively. Deletion of 45 N-terminal residues (EhPSAT_Δ45) resulted in an inactive protein, the structure showed a dimeric arrangement drastically different from that of the wild-type protein, with the two monomers translated and rotated by almost 180° with respect to each other; causing a rearrangement of the active site to which PLP was unable to bind. Deletion of first N-terminal 15 (EhPSAT_Δ15) and four 11th to 14th residues (EhPSAT_Δ4) yielded up to 98% and 90% decrease in the activity respectively. Absence of aldimine linkage between PLP-Lys in the crystal structure of EhPSAT_Δ4 mutant explains for such decrease in activity and describes the importance of these N-terminal residues. Furthermore, a halide-binding site was found in close proximity to the active site. A stretch of six amino acids (146-NNTIYG-151) only conserved in the Entamoeba genus, contributes to halide binding may explain that the halide inhibition could be specific to Entamoeba.
Collapse
|
20
|
Insights into multifaceted activities of CysK for therapeutic interventions. 3 Biotech 2019; 9:44. [PMID: 30675454 DOI: 10.1007/s13205-019-1572-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023] Open
Abstract
CysK (O-acetylserine sulfhydrylase) is a pyridoxal-5' phosphate-dependent enzyme which catalyzes the second step of the de novo cysteine biosynthesis pathway by converting O-acetyl serine (OAS) into l-cysteine in the presence of sulfide. The first step of the cysteine biosynthesis involves formation of OAS from serine and acetyl CoA by CysE (serine acetyltransferase). Apart from role of CysK in cysteine biosynthesis, recent studies have revealed various additional roles of this enzyme in bacterial physiology. Other than the suggested regulatory role in cysteine production, other activities of CysK include involvement of CysK-in contact-dependent toxin activation in Gram-negative pathogens, as a transcriptional regulator of CymR by stabilizing the CymR-DNA interactions, in biofilm formation by providing cysteine and via another mechanism not yet understood, in ofloxacin and tellurite resistance as well as in cysteine desulfurization. Some of these activities involve binding of CysK to another cellular partner, where the complex is regulated by the availability of OAS and/or sulfide (H2S). The aim of this study is to present an overview of current knowledge of multiple functions performed by CysK and identifying structural features involved in alternate functions. Due to possible role in disease, promoting or inhibiting a "moonlighting" function of CysK could be a target for developing novel therapeutic interventions.
Collapse
|
21
|
Yeon JY, Yoo SJ, Takagi H, Kang HA. A Novel Mitochondrial Serine O-Acetyltransferase, OpSAT1, Plays a Critical Role in Sulfur Metabolism in the Thermotolerant Methylotrophic Yeast Ogataea parapolymorpha. Sci Rep 2018; 8:2377. [PMID: 29402922 PMCID: PMC5799214 DOI: 10.1038/s41598-018-20630-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/22/2018] [Indexed: 12/03/2022] Open
Abstract
In most bacteria and plants, direct biosynthesis of cysteine from sulfide via O-acetylserine (OAS) is essential to produce sulfur amino acids from inorganic sulfur. Here, we report the functional analysis of a novel mitochondrial serine O-acetyltransferase (SAT), responsible for converting serine into OAS, in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Domain analysis of O. parapolymorpha SAT (OpSat1p) and other fungal SATs revealed that these proteins possess a mitochondrial targeting sequence (MTS) at the N-terminus and an α/β hydrolase 1 domain at the C-terminal region, which is quite different from the classical SATs of bacteria and plants. Noticeably, OpSat1p is functionally interchangeable with Escherichia coli SAT, CysE, despite that it displays much less enzymatic activity, with marginal feedback inhibition by cysteine, compared to CysE. The Opsat1Δ-null mutant showed remarkably reduced intracellular levels of cysteine and glutathione, implying OAS generation defect. The MTS of OpSat1p directs the mitochondrial targeting of a reporter protein, thus, supporting the localization of OpSat1p in the mitochondria. Intriguingly, the OpSat1p variant lacking MTS restores the OAS auxotrophy, but not the cysteine auxotrophy of the Opsat1Δ mutant strain. This is the first study on a mitochondrial SAT with critical function in sulfur assimilatory metabolism in fungal species.
Collapse
Affiliation(s)
- Ji Yoon Yeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
22
|
Jeelani G, Sato D, Soga T, Nozaki T. Genetic, metabolomic and transcriptomic analyses of the de novo L-cysteine biosynthetic pathway in the enteric protozoan parasite Entamoeba histolytica. Sci Rep 2017; 7:15649. [PMID: 29142277 PMCID: PMC5688106 DOI: 10.1038/s41598-017-15923-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022] Open
Abstract
The de novo L-cysteine biosynthetic pathway is critical for the growth, antioxidative stress defenses, and pathogenesis of bacterial and protozoan pathogens, such as Salmonella typhimurium and Entamoeba histolytica. This pathway involves two key enzymes, serine acetyltransferase (SAT) and cysteine synthase (CS), which are absent in mammals and therefore represent rational drug targets. The human parasite E. histolytica possesses three SAT and CS isozymes; however, the specific roles of individual isoforms and significance of such apparent redundancy remains unclear. In the present study, we generated E. histolytica cell lines in which CS and SAT expression was knocked down by transcriptional gene silencing. The strain in which CS1, 2 and 3 were simultaneously silenced and the SAT3 gene-silenced strain showed impaired growth when cultured in a cysteine lacking BI-S-33 medium, whereas silencing of SAT1 and SAT2 had no effects on growth. Combined transcriptomic and metabolomic analyses revealed that, CS and SAT3 are involved in S-methylcysteine/cysteine synthesis. Furthermore, silencing of the CS1-3 or SAT3 caused upregulation of various iron-sulfur flavoprotein genes. Taken together, these results provide the first direct evidence of the biological importance of SAT3 and CS isoforms in E. histolytica and justify the exploitation of these enzymes as potential drug targets.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Dan Sato
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan.
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
23
|
Devi S, Abdul Rehman SA, Tarique KF, Gourinath S. Structural characterization and functional analysis of cystathionine β-synthase: an enzyme involved in the reverse transsulfuration pathway of Bacillus anthracis. FEBS J 2017; 284:3862-3880. [PMID: 28921884 DOI: 10.1111/febs.14273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 01/29/2023]
Abstract
The reverse transsulfuration pathway has been reported to produce cysteine from homocysteine in eukaryotes ranging from protozoans to mammals while bacteria and plants produce cysteine via a de novo pathway. Interestingly, the bacterium Bacillus anthracis includes enzymes of the reverse transsulfuration pathway viz. cystathionine β-synthase [BaCBS, previously annotated to be an O-acetylserine sulfhydrylase (OASS)] and cystathionine γ-lyase. Here, we report the structure of BaCBS at a resolution of 2.2 Å. The enzyme was found to show CBS activity only with activated serine (O-acetylserine) and not with serine, and was also observed to display OASS activity but not serine sulfhydrylase activity. BaCBS was also found to produce hydrogen sulfide (H2 S) upon reaction of cysteine and homocysteine. A mutational study revealed Glu 220, conserved in CBS, to be necessary for generating H2 S. Structurally, BaCBS display a considerably more open active site than has been found for any other CBS or OASS, which was attributed to the presence of a helix at the junction of the C- and N-terminal domains. The root-mean-square deviation (RMSD) between the backbone Cα carbon atoms of BaCBS and those of other CBSs and OASSs were calculated to be greater than 3.0 Å. The pyridoxal 5'-phosphate at the active site was not traced, and appeared to be highly flexible due to the active site being wide open. Phylogenetic analysis revealed the presence of an O-acetylserine-dependent CBS in the bacterial domain and making separate clade from CBS and OASS indicating its evolution for specific function. DATABASE Structural data are available in the PDB under the accession number 5XW3.
Collapse
Affiliation(s)
- Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Syed A Abdul Rehman
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Khaja F Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Public Health Research Institute, Rutgers, Newark, NJ, USA
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
24
|
Kaushik A, Ekka MK, Kumaran S. Two Distinct Assembly States of the Cysteine Regulatory Complex of Salmonella typhimurium Are Regulated by Enzyme-Substrate Cognate Pairs. Biochemistry 2017; 56:2385-2399. [PMID: 28414426 DOI: 10.1021/acs.biochem.6b01204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS), which catalyze the last two steps of cysteine biosynthesis, interact and form the cysteine regulatory complex (CRC). The current model of Salmonella typhimurium predicts that CRC is composed of one [SAT]hexamer unit and two molecules of [OASS]dimer. However, it is not clear why [SAT]hexamer cannot engage all of its six high-affinity binding sites. We examined the assembly state(s) of CRC by size exclusion chromatography, analytical ultracentrifugation (AUC), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) approaches. We show that CRC exists in two major assembly states, low-molecular weight (CRC1; 1[SAT]hexamer + 2[OASS]dimer) and high-molecular weight (CRC2; 1[SAT]hexamer + 4[OASS]dimer) states. Along with AUC results, ITC and SPR studies show that [OASS]dimer binds to [SAT]hexamer in a stepwise manner but the formation of fully saturated CRC3 (1[SAT]hexamer + 6[OASS]dimer) is not favorable. The fraction of CRC2 increases as the [OASS]dimer/[SAT]hexamer ratio increases to >4-fold, but CRC2 can be selectively dissociated into either CRC1 or free enzymes, in the presence of OAS and sulfide, in a concentration-dependent manner. Together, we show that CRC is a regulatable multienzyme assembly, sensitive to OASS-substrate(s) levels but subject to negative cooperativity and steric hindrance. Our results constitute the first report of the dual-assembly-state nature of CRC and suggest that physiological conditions, which limit sulfate uptake, would favor CRC1 over CRC2.
Collapse
Affiliation(s)
- Abhishek Kaushik
- G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH) , Sector 39-A, Chandigarh 160036, India
| | - Mary Krishna Ekka
- G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH) , Sector 39-A, Chandigarh 160036, India
| | - Sangaralingam Kumaran
- G. N. Ramachandran Protein Center, Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology (IMTECH) , Sector 39-A, Chandigarh 160036, India
| |
Collapse
|
25
|
Structure-based mutational studies of O-acetylserine sulfhydrylase reveal the reason for the loss of cysteine synthase complex formation in Brucella abortus. Biochem J 2017; 474:1221-1239. [PMID: 28126739 DOI: 10.1042/bcj20161062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 11/17/2022]
Abstract
Cysteine biosynthesis takes place via a two-step pathway in bacteria, fungi, plants and protozoan parasites, but not in humans, and hence, the machinery of cysteine biosynthesis is an opportune target for therapeutics. The decameric cysteine synthase complex (CSC) is formed when the C-terminal tail of serine acetyltransferase (SAT) binds in the active site of O-acetylserine sulfydrylase (OASS), playing a role in the regulation of this pathway. Here, we show that OASS from Brucella abortus (BaOASS) does not interact with its cognate SAT C-terminal tail. Crystal structures of native BaOASS showed that residues Gln96 and Tyr125 occupy the active-site pocket and interfere with the entry of the SAT C-terminal tail. The BaOASS (Q96A-Y125A) mutant showed relatively strong binding (Kd = 32.4 μM) to BaSAT C-terminal peptides in comparison with native BaOASS. The mutant structure looks similar except that the active-site pocket has enough space to bind the SAT C-terminal end. Surface plasmon resonance results showed a relatively strong (7.3 μM Kd) interaction between BaSAT and the BaOASS (Q96A-Y125A), but no interaction with native BaOASS. Taken together, our observations suggest that the CSC does not form in B. abortus.
Collapse
|
26
|
Singh K, Singh KP, Equbal A, Suman SS, Zaidi A, Garg G, Pandey K, Das P, Ali V. Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani. Biochimie 2016; 131:29-44. [PMID: 27638321 DOI: 10.1016/j.biochi.2016.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 01/14/2023]
Abstract
Leishmania possess a unique trypanothione redox metabolism with undebated roles in protection from oxidative damage and drug resistance. The biosynthesis of trypanothione depends on l-cysteine bioavailability which is regulated by cysteine biosynthesis pathway. The de novo cysteine biosynthesis pathway is comprised of serine O-acetyltransferase (SAT) and cysteine synthase (CS) enzymes which sequentially mediate two consecutive steps of cysteine biosynthesis, and is absent in mammalian host. However, despite the apparent dependency of redox metabolism on cysteine biosynthesis pathway, the role of SAT and CS in redox homeostasis has been unexplored in Leishmania parasites. Herein, we have characterized CS and SAT to investigate their interaction and relative abundance of these proteins in promastigote vs. amastigote growth stages of L. donovani. CS and SAT genes of L. donovani (LdCS and LdSAT) were cloned, expressed, and fusion proteins purified to homogeneity with affinity column chromatography. Purified LdCS contains PLP as cofactor and showed optimum enzymatic activity at pH 7.5. Enzyme kinetics showed that LdCS catalyses the synthesis of cysteine using O-acetylserine and sulfide with a Km of 15.86 mM and 0.17 mM, respectively. Digitonin fractionation and indirect immunofluorescence microscopy showed that LdCS and LdSAT are localized in the cytoplasm of promastigotes. Size exclusion chromatography, co-purification, pull down and immuno-precipitation assays demonstrated a stable complex formation between LdCS and LdSAT proteins. Furthermore, LdCS and LdSAT proteins expression/activity was upregulated in amastigote growth stage of the parasite. Thus, the stage specific differential expression of LdCS and LdSAT suggests that it may have a role in the redox homeostasis of Leishmania.
Collapse
Affiliation(s)
- Kuljit Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur, 844102, India
| | - Krishn Pratap Singh
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Shashi S Suman
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Amir Zaidi
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Gaurav Garg
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur, 844102, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India
| | - Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, 800007, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, EPIP Complex, Hajipur, 844102, India.
| |
Collapse
|
27
|
Ansari MF, Siddiqui SM, Ahmad K, Avecilla F, Dharavath S, Gourinath S, Azam A. Synthesis, antiamoebic and molecular docking studies of furan-thiazolidinone hybrids. Eur J Med Chem 2016; 124:393-406. [PMID: 27597415 DOI: 10.1016/j.ejmech.2016.08.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 11/28/2022]
Abstract
In continuation of our previous work, a series of furan-thiazolidinone hybrids was prepared by Knoevenagel condensation of 3-(furan-2-ylmethyl)-2-(phenylimino)-1, 3-thiazolidin-4-one with different aryl aldehydes in presence of strong base. Some members of the series exhibited remarkable antiamoebic activity and cell viability. Three compounds (3, 6 and 11) showed excellent binding energy for Entamoeba histolytica O-acetyle-l-serine sulfohydrolase and Entamoeba histolytica thioredoxin reductase. These compounds demonstrated significant inhibition of O-acetyle-l-serine sulfohydrolase. The promising antiamoebic activity and enzymatic assay of 3, 6 and 11 make them promising molecules for further lead optimization in the development of novel antiamoebic agents.
Collapse
Affiliation(s)
- Mohammad Fawad Ansari
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, 110 025, New Delhi, India
| | - Shadab Miyan Siddiqui
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, 110 025, New Delhi, India
| | - Kamal Ahmad
- Centre for Interdisciplinary Research in Basic Science, Jamia Nagar, 110 025, New Delhi, India
| | - Fernando Avecilla
- Departamento de Química Fundamental, Universidade da Coruña, Campus da Zapateira, 15071, A Coruña, Spain
| | - Sudhaker Dharavath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, 110 025, New Delhi, India.
| |
Collapse
|
28
|
Structural investigation and inhibitory response of halide on phosphoserine aminotransferase from Trichomonas vaginalis. Biochim Biophys Acta Gen Subj 2016; 1860:1508-18. [PMID: 27102280 DOI: 10.1016/j.bbagen.2016.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/04/2016] [Accepted: 04/17/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Phosphoserine aminotransferase (PSAT) catalyses the second reversible step of the phosphoserine biosynthetic pathway in Trichomonas vaginalis, which is crucial for the synthesis of serine and cysteine. METHODS PSAT from T. vaginalis (TvPSAT) was analysed using X-ray crystallography, enzyme kinetics, and molecular dynamics simulations. RESULTS The crystal structure of TvPSAT was determined to 2.15Å resolution, and is the first protozoan PSAT structure to be reported. The active site of TvPSAT structure was found to be in a closed conformation, and at the active site PLP formed an internal aldimine linkage to Lys 202. In TvPSAT, Val 340 near the active site while it is Arg in most other members of the PSAT family, might be responsible in closing the active site. Kinetic studies yielded Km values of 54 μM and 202 μM for TvPSAT with OPLS and AKG, respectively. Only iodine inhibited the TvPSAT activity while smaller halides could not inhibit. CONCLUSION Results from the structure, comparative molecular dynamics simulations, and the inhibition studies suggest that iodine is the only halide that can bind TvPSAT strongly and may thus inhibit the activity of TvPSAT. The long loop between β8 and α8 at the opening of the TvPSAT active site cleft compared to other PSATs, suggests that this loop may help control the access of substrates to the TvPSAT active site and thus influences the enzyme kinetics. GENERAL SIGNIFICANCE Our structural and functional studies have improved our understanding of how PSAT helps this organism persists in the environment.
Collapse
|
29
|
Jeelani G, Nozaki T. Entamoeba thiol-based redox metabolism: A potential target for drug development. Mol Biochem Parasitol 2016; 206:39-45. [PMID: 26775086 DOI: 10.1016/j.molbiopara.2016.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023]
Abstract
Amebiasis is an intestinal infection widespread throughout the world caused by the human pathogen Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its low efficacy against asymptomatic cyst carriers and emergence of resistance in other protozoa with similar anaerobic metabolism. Therefore, identification and characterization of specific targets is urgently needed to design new therapeutics for improved treatment against amebiasis. Toward this goal, thiol-dependent redox metabolism is of particular interest. The thiol-dependent redox metabolism in E. histolytica consists of proteins including peroxiredoxin, rubrerythrin, Fe-superoxide dismutase, flavodiiron proteins, NADPH: flavin oxidoreductase, and amino acids including l-cysteine, S-methyl-l-cysteine, and thioprolines (thiazolidine-4-carboxylic acids). E. histolytica completely lacks glutathione and its metabolism, and l-cysteine is the major intracellular low molecular mass thiol. Moreover, this parasite possesses a functional thioredoxin system consisting of thioredoxin and thioredoxin reductase, which is a ubiquitous oxidoreductase system with antioxidant and redox regulatory roles. In this review, we summarize and highlight the thiol-based redox metabolism and its control mechanisms in E. histolytica, in particular, the features of the system unique to E. histolytica, and its potential use for drug development against amebiasis.
Collapse
Affiliation(s)
- Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
30
|
Mori M, Jeelani G, Masuda Y, Sakai K, Tsukui K, Waluyo D, Tarwadi, Watanabe Y, Nonaka K, Matsumoto A, Ōmura S, Nozaki T, Shiomi K. Identification of natural inhibitors of Entamoeba histolytica cysteine synthase from microbial secondary metabolites. Front Microbiol 2015; 6:962. [PMID: 26441896 PMCID: PMC4568418 DOI: 10.3389/fmicb.2015.00962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Amebiasis is a common worldwide diarrheal disease, caused by the protozoan parasite, Entamoeba histolytica. Metronidazole has been a drug of choice against amebiasis for decades despite its known side effects and low efficacy against asymptomatic cyst carriers. E. histolytica is also capable of surviving sub-therapeutic levels of metronidazole in vitro. Novel drugs with different mode of action are therefore urgently needed. The sulfur assimilatory de novo L-cysteine biosynthetic pathway is essential for various cellular activities, including the proliferation and anti-oxidative defense of E. histolytica. Since the pathway, consisting of two reactions catalyzed by serine acetyltransferase (SAT) and cysteine synthase (CS, O-acetylserine sulfhydrylase), does not exist in humans, it is a rational drug target against amebiasis. To discover inhibitors against the CS of E. histolytica (EhCS), the compounds of Kitasato Natural Products Library were screened against two recombinant CS isozymes: EhCS1 and EhCS3. Nine compounds inhibited EhCS1 and EhCS3 with IC50 values of 0.31-490 μM. Of those, seven compounds share a naphthoquinone moiety, indicating the structural importance of the moiety for binding to the active site of EhCS1 and EhCS3. We further screened >9,000 microbial broths for CS inhibition and purified two compounds, xanthofulvin and exophillic acid from fungal broths. Xanthofulvin inhibited EhCS1 and EhCS3. Exophillic acid showed high selectivity against EhCS1, but exhibited no inhibition against EhCS3. In vitro anti-amebic activity of the 11 EhCS inhibitors was also examined. Deacetylkinamycin C and nanaomycin A showed more potent amebicidal activity with IC50 values of 18 and 0.8 μM, respectively, in the cysteine deprived conditions. The differential sensitivity of trophozoites against deacetylkinamycin C in the presence or absence of L-cysteine in the medium and the IC50 values against EhCS suggest the amebicidal effect of deacetylkinamycin C is due to CS inhibition.
Collapse
Affiliation(s)
- Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Ghulam Jeelani
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
| | - Yui Masuda
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Kazunari Sakai
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Kumiko Tsukui
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
| | - Danang Waluyo
- Biotech Center, Badan Pengkajian Dan Penerapan TeknologiBanten, Indonesia
| | - Tarwadi
- Biotech Center, Badan Pengkajian Dan Penerapan TeknologiBanten, Indonesia
| | - Yoshio Watanabe
- Research and Development Division, MicroBiopharm Japan Co. LtdIwata, Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Atsuko Matsumoto
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| | - Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious DiseasesTokyo, Japan
- Graduate School of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato UniversityTokyo, Japan
| |
Collapse
|
31
|
Yadava U, Shukla BK, Roychoudhury M, Kumar D. Pyrazolo[3,4-d]pyrimidines as novel inhibitors of O-acetyl-l-serine sulfhydrylase of Entamoeba histolytica: an in silico study. J Mol Model 2015; 21:96. [DOI: 10.1007/s00894-015-2631-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 02/22/2015] [Indexed: 11/27/2022]
|
32
|
Campanini B, Benoni R, Bettati S, Beck CM, Hayes CS, Mozzarelli A. Moonlighting O-acetylserine sulfhydrylase: New functions for an old protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1184-93. [PMID: 25731080 DOI: 10.1016/j.bbapap.2015.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
O-acetylserine sulfhydrylase A (CysK) is the pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final reaction of cysteine biosynthesis in bacteria. CysK was initially identified in a complex with serine acetyltransferase (CysE), which catalyzes the penultimate reaction in the synthetic pathway. This "cysteine synthase" complex is stabilized by insertion of the CysE C-terminus into the active-site of CysK. Remarkably, the CysK/CysE binding interaction is conserved in most bacterial and plant systems. For the past 40years, CysK was thought to function exclusively in cysteine biosynthesis, but recent studies have revealed a repertoire of additional "moonlighting" activities for this enzyme. CysK and its paralogs influence transcription in both Gram-positive bacteria and the nematode Caenorhabditis elegans. CysK also activates an antibacterial nuclease toxin produced by uropathogenic Escherichia coli. Intriguingly, each moonlighting activity requires a binding partner that invariably mimics the C-terminus of CysE to interact with the CysK active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
| | - Roberto Benoni
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Bettati
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Christina M Beck
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Andrea Mozzarelli
- Dipartimento di Farmacia, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy; Institute of Biophysics, CNR, Pisa, Italy
| |
Collapse
|
33
|
Tavares S, Wirtz M, Beier MP, Bogs J, Hell R, Amâncio S. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:74. [PMID: 25741355 PMCID: PMC4330696 DOI: 10.3389/fpls.2015.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/28/2015] [Indexed: 05/08/2023]
Abstract
In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription.
Collapse
Affiliation(s)
- Sílvia Tavares
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Marcel P. Beier
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- Studiengang Weinbau und Oenologie, Dienstleistungszentrum Laendlicher Raum RheinpfalzNeustadt, Germany
- Fachbereich 1, Life Sciences and Engineering, Fachhochschule BingenBingen am Rhein, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- *Correspondence: Sara Amâncio, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal e-mail:
| |
Collapse
|
34
|
Singh RK, Raj I, Pujari R, Gourinath S. Crystal structures and kinetics of Type III 3-phosphoglycerate dehydrogenase reveal catalysis by lysine. FEBS J 2014; 281:5498-512. [PMID: 25294608 DOI: 10.1111/febs.13091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/11/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
D-Phosphoglycerate dehydrogenase (PGDH) catalyzes the first committed step of the phosphorylated serine biosynthesis pathway. Here, we report for the first time, the crystal structures of Type IIIK PGDH from Entamoeba histolytica in the apo form, as well as in complexes with substrate (3-phosphoglyceric acid) and cofactor (NAD(+) ) to 2.45, 1.8 and 2.2 Å resolution, respectively. Comparison of the apo structure with the substrate-bound structure shows that the substrate-binding domain is rotated by ~ 20° to close the active-site cleft. The cofactor-bound structure also shows a closed-cleft conformation, in which NAD(+) is bound to the nucleotide-binding domain and a formate ion occupies the substrate-binding site. Superposition of the substrate- and cofactor-bound structures represents a snapshot of the enzyme in the active form, where C2 of the substrate and C4N of the cofactor are 2.2 Å apart, and the amino group of Lys263 is close enough to the substrate to remove the proton from the hydroxyl group of PGA, indicating the role of Lys in the catalysis. Mutation of Lys263 to Ala yields just 0.8% of the specific activity of the wild-type enzyme, revealing that Lys263 indeed plays an integral role in the catalytic activity. The detectable activity of the mutant, however, indicates that after 20° rotation of the substrate-binding domain, the resulting positions of the substrate and cofactor are sufficiently close to make a productive reaction.
Collapse
Affiliation(s)
- Rohit K Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | |
Collapse
|
35
|
Kumar S, Kumar N, Alam N, Gourinath S. Crystal structure of serine acetyl transferase from Brucella abortus and its complex with coenzyme A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1741-8. [PMID: 25058332 DOI: 10.1016/j.bbapap.2014.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/09/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Brucella abortus is the major cause of premature foetal abortion in cattle, can be transmitted from cattle to humans, and is considered a powerful biological weapon. De novo cysteine biosynthesis is one of the essential pathways reported in bacteria, protozoa, and plants. Serine acetyltransferase (SAT) initiates this reaction by catalyzing the formation of O-acetylserine (OAS) using l-serine and acetyl coenzyme A as substrates. Here we report kinetic and crystallographic studies of this enzyme from B. abortus. The kinetic studies indicate that cysteine competitively inhibits the binding of serine to B. abortus SAT (BaSAT) and noncompetitively inhibits the binding of acetyl coenzyme A. The crystal structures of BaSAT in its apo state and in complex with coenzyme A (CoA) were determined to 1.96Å and 1.87Å resolution, respectively. BaSAT was observed as a trimer in a size exclusion column; however, it was seen as a hexamer in dynamic light scattering (DLS) studies and in the crystal structure, indicating it may exist in both states. The complex structure shows coenzyme A bound to the C-terminal region, making mostly hydrophobic contacts from the center of the active site extending up to the surface of the protein. There is no conformational difference in the enzyme between the apo and the complexed states, indicating lock and key binding and the absence of an induced fit mechanism.
Collapse
Affiliation(s)
- Sudhir Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Nitesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Neelima Alam
- Technology Bhavan, Ministry of Science and Technology, New Mehrauli Road, New Delhi 110016, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India.
| |
Collapse
|
36
|
Faisal Tarique K, Arif Abdul Rehman S, Gourinath S. Structural elucidation of a dual-activity PAP phosphatase-1 from Entamoeba histolytica capable of hydrolysing both 3'-phosphoadenosine 5'-phosphate and inositol 1,4-bisphosphate. ACTA ACUST UNITED AC 2014; 70:2019-31. [PMID: 25004978 DOI: 10.1107/s1399004714010268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/06/2014] [Indexed: 12/28/2022]
Abstract
The enzyme 3'-phosphoadenosine 5'-phosphatase-1 (PAP phosphatase-1) is a member of the Li(+)-sensitive Mg(2+)-dependent phosphatase superfamily, or inositol monophosphatase (IMPase) superfamily, and is an important regulator of the sulfate-activation pathway in all living organisms. Inhibition of this enzyme leads to accumulation of the toxic byproduct 3'-phosphoadenosine 5'-phosphate (PAP), which could be lethal to the organism. Genomic analysis of Entamoeba histolytica suggests the presence of two isoforms of PAP phosphatase. The PAP phosphatase-1 isoform of this organism is shown to be active over wide ranges of pH and temperature. Interestingly, this enzyme is inhibited by submillimolar concentrations of Li(+), while being insensitive to Na(+). Interestingly, the enzyme showed activity towards both PAP and inositol 1,4-bisphosphate and behaved as an inositol polyphosphate 1-phosphatase. Crystal structures of this enzyme in its native form and in complex with adenosine 5'-monophosphate have been determined to 2.1 and 2.6 Å resolution, respectively. The PAP phosphatase-1 structure is divided into two domains, namely α+β and α/β, and the substrate and metal ions bind between them. This is a first structure of any PAP phosphatase to be determined from a human parasitic protozoan. This enzyme appears to function using a mechanism involving three-metal-ion assisted catalysis. Comparison with other structures indicates that the sensitivity to alkali-metal ions may depend on the orientation of a specific catalytic loop.
Collapse
Affiliation(s)
| | | | - S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
37
|
Mfotie Njoya E, Weber C, Hernandez-Cuevas NA, Hon CC, Janin Y, Kamini MFG, Moundipa PF, Guillén N. Bioassay-guided fractionation of extracts from Codiaeum variegatum against Entamoeba histolytica discovers compounds that modify expression of ceramide biosynthesis related genes. PLoS Negl Trop Dis 2014; 8:e2607. [PMID: 24416462 PMCID: PMC3887121 DOI: 10.1371/journal.pntd.0002607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
Leaves of Codiaeum variegatum ("garden croton") are used against bloody diarrhoea by local populations in Cameroon. This study aims to search for the active components from C. variegatum against Entamoeba histolytica, and thereby initiate the study of their mechanism of action. A bioassay-guided screening of the aqueous extracts from C. variegatum leaves and various fractions was carried out against trophozoites of E. histolytica axenic culture. We found that the anti-amoebic activity of extracts changed with respect to the collection criteria of leaves. Thereby, optimal conditions were defined for leaves' collection to maximise the anti-amoebic activity of the extracts. A fractionation process was performed, and we identified several sub-fractions (or isolated compounds) with significantly higher anti-amoebic activity compared to the unfractionated aqueous extract. Anti-amoebic activity of the most potent fraction was confirmed with the morphological characteristics of induced death in trophozoites, including cell rounding and lysis. Differential gene expression analysis using high-throughput RNA sequencing implies the potential mechanism of its anti-amoebic activity by targeting ceramide, a bioactive lipid involved in disturbance of biochemical processes within the cell membrane including differentiation, proliferation, cell growth arrest and apoptosis. Regulation of ceramide biosynthesis pathway as a target for anti-amoebic compounds is a novel finding which could be an alternative for drug development against E. histolytica.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- University of Yaoundé I, Faculty of Science, Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Yaoundé, Cameroon
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Christian Weber
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | | | - Chung-Chau Hon
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
| | - Yves Janin
- Institut Pasteur, Unité de Chimie et Biocatalyse, Paris, France
| | - Melanie F. G. Kamini
- University of Yaoundé I, Faculty of Science, Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Yaoundé, Cameroon
| | - Paul F. Moundipa
- University of Yaoundé I, Faculty of Science, Department of Biochemistry, Laboratory of Pharmacology and Toxicology, Yaoundé, Cameroon
- * E-mail: (PFM); (NG)
| | - Nancy Guillén
- Institut Pasteur, Cell Biology of Parasitism Unit, Paris, France
- INSERM U786, Paris, France
- * E-mail: (PFM); (NG)
| |
Collapse
|
38
|
Yi H, Dey S, Kumaran S, Lee SG, Krishnan HB, Jez JM. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone. J Biol Chem 2013; 288:36463-72. [PMID: 24225955 PMCID: PMC3868759 DOI: 10.1074/jbc.m113.527143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Indexed: 01/03/2023] Open
Abstract
Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase. Formation of the cysteine regulatory complex (CRC) is a critical biochemical control feature in plant sulfur metabolism. Here we present the 1.75-3.0 Å resolution x-ray crystal structures of soybean (Glycine max) SAT (GmSAT) in apoenzyme, serine-bound, and CoA-bound forms. The GmSAT-serine and GmSAT-CoA structures provide new details on substrate interactions in the active site. The crystal structures and analysis of site-directed mutants suggest that His(169) and Asp(154) form a catalytic dyad for general base catalysis and that His(189) may stabilize the oxyanion reaction intermediate. Glu(177) helps to position Arg(203) and His(204) and the β1c-β2c loop for serine binding. A similar role for ionic interactions formed by Lys(230) is required for CoA binding. The GmSAT structures also identify Arg(253) as important for the enhanced catalytic efficiency of SAT in the CRC and suggest that movement of the residue may stabilize CoA binding in the macromolecular complex. Differences in the effect of cold on GmSAT activity in the isolated enzyme versus the enzyme in the CRC were also observed. A role for CRC formation as a molecular chaperone to maintain SAT activity in response to an environmental stress is proposed for this multienzyme complex in plants.
Collapse
Affiliation(s)
- Hankuil Yi
- From the Department of Biological Sciences, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon 305-764, Korea
| | - Sanghamitra Dey
- the Department of Biological Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Sangaralingam Kumaran
- the Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Soon Goo Lee
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Hari B. Krishnan
- the Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Department of Agronomy, University of Missouri, Columbia, Missouri 65211
| | - Joseph M. Jez
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| |
Collapse
|
39
|
Raj I, Mazumder M, Gourinath S. Molecular basis of ligand recognition by OASS from E. histolytica: insights from structural and molecular dynamics simulation studies. Biochim Biophys Acta Gen Subj 2013; 1830:4573-83. [PMID: 23747298 DOI: 10.1016/j.bbagen.2013.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/08/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND O-acetyl serine sulfhydrylase (OASS) is a pyridoxal phosphate (PLP) dependent enzyme catalyzing the last step of the cysteine biosynthetic pathway. Here we analyze and investigate the factors responsible for recognition and different conformational changes accompanying the binding of various ligands to OASS. METHODS X ray crystallography was used to determine the structures of OASS from Entamoeba histolytica in complex with methionine (substrate analog), isoleucine (inhibitor) and an inhibitory tetra-peptide to 2.00Å, 2.03Å and 1.87Å resolutions, respectively. Molecular dynamics simulations were used to investigate the reasons responsible for the extent of domain movement and cleft closure of the enzyme in presence of different ligands. RESULTS Here we report for the first time an OASS-methionine structure with an unmutated catalytic lysine at the active site. This is also the first OASS structure with a closed active site lacking external aldimine formation. The OASS-isoleucine structure shows the active site cleft in open state. Molecular dynamics studies indicate that cofactor PLP, N88 and G192 form a triad of energy contributors to close the active site upon ligand binding and orientation of the Schiff base forming nitrogen of the ligand is critical for this interaction. CONCLUSIONS Methionine proves to be a better binder to OASS than isoleucine. The β branching of isoleucine does not allow it to reorient itself in suitable conformation near PLP to cause active site closure. GENERAL SIGNIFICANCE Our findings have important implications in designing better inhibitors against OASS across all pathogenic microbial species.
Collapse
Affiliation(s)
- Isha Raj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
40
|
Entamoeba histolytica: identification of thioredoxin-targeted proteins and analysis of serine acetyltransferase-1 as a prototype example. Biochem J 2013; 451:277-88. [PMID: 23398389 DOI: 10.1042/bj20121798] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entamoeba histolytica, the causative agent of amoebiasis, possesses the dithiol-containing redox proteins Trx (thioredoxin) and TrxR (Trx reductase). Both proteins were found to be covalently modified and inactivated by metronidazole, a 5-nitroimidazole drug that is commonly used to treat infections with microaerophilic protozoan parasites in humans. Currently, very little is known about enzymes and other proteins participating in the Trx-dependent redox network of the parasite that could be indirectly affected by metronidazole treatment. On the basis of the disulfide/dithiol-exchange mechanism we constructed an active-site mutant of Trx, capable of binding interacting proteins as a stable mixed disulfide intermediate to screen the target proteome of Trx in E. histolytica. By applying Trx affinity chromatography, two-dimensional gel electrophoresis and MS, peroxiredoxin and 15 further potentially redox-regulated proteins were identified. Among them, EhSat1 (E. histolytica serine acetyltransferase-1), an enzyme involved in the L-cysteine biosynthetic pathway, was selected for detailed analysis. Binding of Trx to EhSat1 was verified by Far-Western blot analysis. Trx was able to restore the activity of the oxidatively damaged EhSat1 suggesting that the TrxR/Trx system protects sensitive proteins against oxidative stress in E. histolytica. Furthermore, the activity of peroxiredoxin, which is dependent on a functioning TrxR/Trx system, was strongly reduced in metronidazole-treated parasites.
Collapse
|
41
|
The cysteine regulatory complex from plants and microbes: what was old is new again. Curr Opin Struct Biol 2013; 23:302-10. [DOI: 10.1016/j.sbi.2013.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/16/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
|
42
|
Kumar S, Mazumder M, Dharavath S, Gourinath S. Single residue mutation in active site of serine acetyltransferase isoform 3 from Entamoeba histolytica assists in partial regaining of feedback inhibition by cysteine. PLoS One 2013; 8:e55932. [PMID: 23437075 PMCID: PMC3578862 DOI: 10.1371/journal.pone.0055932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/03/2013] [Indexed: 11/19/2022] Open
Abstract
The cysteine biosynthetic pathway is essential for survival of the protist pathogen Entamoeba histolytica, and functions by producing cysteine for countering oxidative attack during infection in human hosts. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS) are involved in cysteine biosynthesis and are present in three isoforms each. While EhSAT1 and EhSAT2 are feedback inhibited by end product cysteine, EhSAT3 is nearly insensitive to such inhibition. The active site residues of EhSAT1 and of EhSAT3 are identical except for position 208, which is a histidine residue in EhSAT1 and a serine residue in EhSAT3. A combination of comparative modeling, multiple molecular dynamics simulations and free energy calculation studies showed a difference in binding energies of native EhSAT3 and of a S208H-EhSAT3 mutant for cysteine. Mutants have also been generated in vitro, replacing serine with histidine at position 208 in EhSAT3 and replacing histidine 208 with serine in EhSAT1. These mutants showed decreased affinity for substrate serine, as indicated by Km, compared to the native enzymes. Inhibition kinetics in the presence of physiological concentrations of serine show that IC50 of EhSAT1 increases by about 18 folds from 9.59 µM for native to 169.88 µM for H208S-EhSAT1 mutant. Similar measurements with EhSAT3 confirm it to be insensitive to cysteine inhibition while its mutant (S208H-EhSAT3) shows a gain of cysteine inhibition by 36% and the IC50 of 3.5 mM. Histidine 208 appears to be one of the important residues that distinguish the serine substrate from the cysteine inhibitor.
Collapse
Affiliation(s)
- Sudhir Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Sudhaker Dharavath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - S. Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
- * E-mail:
| |
Collapse
|
43
|
Raj I, Kumar S, Gourinath S. The narrow active-site cleft ofO-acetylserine sulfhydrylase fromLeishmania donovaniallows complex formation with serine acetyltransferases with a range of C-terminal sequences. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:909-19. [DOI: 10.1107/s0907444912016459] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/16/2012] [Indexed: 05/26/2023]
|
44
|
Nagpal I, Raj I, Subbarao N, Gourinath S. Virtual screening, identification and in vitro testing of novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica. PLoS One 2012; 7:e30305. [PMID: 22355310 PMCID: PMC3280239 DOI: 10.1371/journal.pone.0030305] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 12/13/2011] [Indexed: 11/18/2022] Open
Abstract
The explosive epidemicity of amoebiasis caused by the facultative gastrointestinal protozoan parasite Entamoeba histolytica is a major public health problem in developing countries. Multidrug resistance and side effects of various available antiamoebic drugs necessitate the design of novel antiamobeic agents. The cysteine biosynthetic pathway is the critical target for drug design due to its significance in the growth, survival and other cellular activities of E. histolytica. Here, we have screened 0.15 million natural compounds from the ZINC database against the active site of the EhOASS enzyme (PDB ID. 3BM5, 2PQM), whose structure we previously determined to 2.4 Å and 1.86 Å resolution. For this purpose, the incremental construction algorithm of GLIDE and the genetic algorithm of GOLD were used. We analyzed docking results for top ranking compounds using a consensus scoring function of X-Score to calculate the binding affinity and using ligplot to measure protein-ligand interactions. Fifteen compounds that possess good inhibitory activity against EhOASS active site were identified that may act as potential high affinity inhibitors. In vitro screening of a few commercially available compounds established their biological activity. The first ranked compound ZINC08931589 had a binding affinity of ∼8.05 µM and inhibited about 73% activity at 0.1 mM concentration, indicating good correlation between in silico prediction and in vitro inhibition studies. This compound is thus a good starting point for further development of strong inhibitors.
Collapse
Affiliation(s)
- Isha Nagpal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Isha Raj
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (SG); (NS)
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (SG); (NS)
| |
Collapse
|
45
|
Wang T, Leyh TS. Three-stage assembly of the cysteine synthase complex from Escherichia coli. J Biol Chem 2011; 287:4360-7. [PMID: 22179612 DOI: 10.1074/jbc.m111.288423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of sulfur metabolism in plants and bacteria is linked, in significant measure, to the behavior of the cysteine synthase complex (CSC). The complex is comprised of the two enzymes that catalyze the final steps in cysteine biosynthesis: serine O-acetyltransferase (SAT, EC 2.3.1.30), which produces O-acetyl-L-serine, and O-acetyl-L-serine sulfhydrylase (OASS, EC 2.5.1.47), which converts it to cysteine. SAT (a dimer of homotrimers) binds a maximum of two molecules of OASS (a dimer) in an interaction believed to involve docking of the C terminus from a protomer in an SAT trimer into an OASS active site. This interaction inactivates OASS catalysis and prevents further binding to the trimer; thus, the system exhibits a contact-induced inactivation of half of each biomolecule. To better understand the dynamics and energetics that underlie formation of the CSC, the interactions of OASS and SAT from Escherichia coli were studied at equilibrium and in the pre-steady state. Using an experimental strategy that initiates dissociation of the CSC at different points in the CSC-forming reaction, three stable forms of the complex were identified. Comparison of the binding behaviors of SAT and its C-terminal peptide supports a mechanism in which SAT interacts with OASS in a non-allosteric interaction involving its C terminus. This early docking event appears to fasten the proteins in close proximity and thus prepares the system to engage in a series of subsequent, energetically favorable isomerizations that inactivate OASS and produce the fully isomerized CSC.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, The Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|