1
|
Chérif N, Ghedira K, Agrebi H, Najahi S, Mejri H, Azouz S, Kielbasa M, Armengaud J, Kangethe RT, Wijewardana V, Bouhaouala-Zahar B, Sghaier H. Proteomic profiling of the serological response to a chemically-inactivated nodavirus vaccine in European sea bass Dicentrarchus labrax. Vet Res Commun 2025; 49:125. [PMID: 40035983 DOI: 10.1007/s11259-025-10688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
The analysis of animal responses to immunization is fundamental to vaccine development, enabling the evaluation of immune responses and the elucidation of key mechanisms underlying protective immunity. Such insights are essential for advancing vaccines through clinical trial stages and regulatory approval. Furthermore, understanding the molecular signatures of approved vaccines not only deepens our knowledge of their function but also guides the rational design and improvement of future vaccines. This study aims to elucidate alterations in protein abundance patterns in the sera of European sea bass, D. labrax, following immunization with a chemically-inactivated nodavirus vaccine. The shotgun proteome comparison revealed that in vaccinated animals, compared to controls, there is a modulation of the redox balance favouring reactive oxygen species (ROS), an intricate interaction between coagulation and the immune system resulting in the lower abundance of hematopoiesis-related FLT3, and indications of functional adaptive immunity demonstrated by the lower abundance of pentraxin fusion protein-like and the over-representation of myosins. To the best of our knowledge, this study represents the inaugural investigation of the immune response in fish using a proteomics approach, employing D. labrax as the host and nodavirus as the pathogen used for vaccination and challenge.
Collapse
Affiliation(s)
- Nadia Chérif
- Disease of Aquatic Organism Service, Aquaculture Laboratory (LR16INSTM03), National Institute of Sea Sciences and Technologies, Salammbô, 2025, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, 1002, Tunisia
| | - Houda Agrebi
- Disease of Aquatic Organism Service, Aquaculture Laboratory (LR16INSTM03), National Institute of Sea Sciences and Technologies, Salammbô, 2025, Tunisia
| | - Semah Najahi
- Laboratory of Venoms and Therapeutic Molecules (LR16IPT08), Institut Pasteur Tunis, University Tunis El Manar, Tunis, 1002, Tunisia
| | - Hiba Mejri
- Laboratory of Venoms and Therapeutic Molecules (LR16IPT08), Institut Pasteur Tunis, University Tunis El Manar, Tunis, 1002, Tunisia
| | - Saifeddine Azouz
- Genomic Platform, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, 1086, Tunisia
| | - Mélodie Kielbasa
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, 30200, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols sur Cèze, 30200, France
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, 2444, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, 2444, Austria
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules (LR16IPT08), Institut Pasteur Tunis, University Tunis El Manar, Tunis, 1002, Tunisia.
- Medical School of Tunis, University Tunis El Manar, Tunis, 1007, Tunisia.
| | - Haitham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Tunisia.
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, 2020, Tunisia.
| |
Collapse
|
2
|
Lossius-Cott C, Annoh A, Bens M, Nietzsche S, Hoffmann B, Figge MT, Rauner M, Hofbauer LC, Müller JP. Oncogenic FLT3 internal tandem duplications (ITD) and CD45/PTPRC control osteoclast functions and bone microarchitecture. JBMR Plus 2025; 9:ziae173. [PMID: 39906260 PMCID: PMC11788565 DOI: 10.1093/jbmrpl/ziae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
Activating internal tandem duplications (ITD) in the juxtamembrane domain of receptor tyrosine kinase FLT3 occur frequently in patients with acute myeloid leukemia (AML). Constitutive active FLT3-ITD mutations induce aberrant signaling and promote leukemic cell transformation. Inactivation of the attenuating receptor protein tyrosine phosphatase CD45 (PTPRC) in FLT3-ITD mice resulted in the development of a severe hematopoietic phenotype with characteristics of AML. In addition, abnormal bone structures and ectopic bone formation were observed in these mice, suggesting a previously unknown role of FLT3 to control bone development and remodeling. While Ptprc knockout and Flt3-ITD mutant mice showed a largely normal bone microarchitecture, micro-CT analysis of femurs from Flt3-ITD Ptprc knockout mice revealed trabecularization of the cortical bone. This resulted in increased trabecular bone volume at the metaphysis, while the cortical bone at the diaphysis was thinner and less dense. In the metaphysis, severely reduced osteoclast and osteoblast numbers were observed. Reduced capacity of ex vivo differentiation of CD11b-positive bone marrow stem cells to mature osteoclast was accompanied by their abnormal morphology and reduced size. Transcriptome analysis revealed reduced expression of osteoclastogenic genes. Unexpectedly, cumulative resorption activity of osteoclasts was increased. Size and structure of resorption pits of differentiated osteoclasts remained similar to those observed in osteoclast cultures derived from control animals. Enhanced proliferation of cells in osteoclast cultures derived from FLT3-ITD-expressing mice was mediated by increased expression of STAT5 target genes. Transcriptome analysis of differentiated osteoclasts showed dysregulated signaling pathways influencing their differentiation as well as the coupling of bone resorption and formation. Taken together, inactivation of attenuating CD45 in mice expressing oncogenic FLT3-ITD resulted in marked abnormalities of the osteo-hematopoietic niche, which can be explained by aberrant STAT5 activation.
Collapse
Affiliation(s)
- Carolin Lossius-Cott
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany
| | - Akua Annoh
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany
- Medical Clinic 3, Division of Nephrology, University Dresden, 01307 Dresden, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging—Fritz Lipmann Institute, 07745 Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, 07743 Jena, Germany
| | - Bianca Hoffmann
- Applied Systems Biology, Leibniz Institute for Natural Products, Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Products, Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, University Dresden, 01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, University Dresden, 01307 Dresden, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany
| |
Collapse
|
3
|
Abdel-Aziz AK, Dokla EME, Saadeldin MK. FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review. Crit Rev Oncol Hematol 2023; 191:104139. [PMID: 37717880 DOI: 10.1016/j.critrevonc.2023.104139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mona Kamal Saadeldin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA
| |
Collapse
|
4
|
Rizzo S, Sikorski E, Park S, Im W, Vasquez‐Montes V, Ladokhin AS, Thévenin D. Promoting the activity of a receptor tyrosine phosphatase with a novel pH-responsive transmembrane agonist inhibits cancer-associated phenotypes. Protein Sci 2023; 32:e4742. [PMID: 37515426 PMCID: PMC10461461 DOI: 10.1002/pro.4742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 07/30/2023]
Abstract
Cell signaling by receptor protein tyrosine kinases (RTKs) is tightly controlled by the counterbalancing actions of receptor protein tyrosine phosphatases (RPTPs). Due to their role in attenuating the signal-initiating potency of RTKs, RPTPs have long been viewed as therapeutic targets. However, the development of activators of RPTPs has remained limited. We previously reported that the homodimerization of a representative member of the RPTP family (protein tyrosine phosphatase receptor J or PTPRJ) is regulated by specific transmembrane (TM) residues. Disrupting this interaction by single point mutations promotes PTPRJ access to its RTK substrates (e.g., EGFR and FLT3), reduces RTK's phosphorylation and downstream signaling, and ultimately antagonizes RTK-driven cell phenotypes. Here, we designed and tested a series of first-in-class pH-responsive TM peptide agonists of PTPRJ that are soluble in aqueous solution but insert as a helical TM domain in lipid membranes when the pH is lowered to match that of the acidic microenvironment of tumors. The most promising peptide reduced EGFR's phosphorylation and inhibited cancer cell EGFR-driven migration and proliferation, similar to the PTPRJ's TM point mutations. Developing tumor-selective and TM-targeting peptide binders of critical RPTPs could afford a potentially transformative approach to studying RPTP's selectivity mechanism without requiring less specific inhibitors and represent a novel class of therapeutics against RTK-driven cancers.
Collapse
Affiliation(s)
- Sophie Rizzo
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Eden Sikorski
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| | - Soohyung Park
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Wonpil Im
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Victor Vasquez‐Montes
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Alexey S. Ladokhin
- Department of Biochemistry and Molecular BiologyThe University of Kansas Medical CenterKansas CityKansasUSA
| | - Damien Thévenin
- Department of ChemistryLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
5
|
Chen Y, Zou Z, Găman MA, Xu L, Li J. NADPH oxidase mediated oxidative stress signaling in FLT3-ITD acute myeloid leukemia. Cell Death Discov 2023; 9:208. [PMID: 37391442 PMCID: PMC10313758 DOI: 10.1038/s41420-023-01528-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The internal tandem duplication of the juxtamembrane domain of the FMS-like tyrosine kinase 3 (FLT3-ITD) is the most common genetic change in acute myeloid leukemia (AML), and about 30% of all AMLs harbor a FLT3-ITD mutation. Even though FLT3 inhibitors have displayed encouraging effects in FLT3-ITD-mutated AML, the extent of the clinical response to these compounds is cut short due to the rapid development of drug resistance. Evidence has shown that FLT3-ITD triggered activation of oxidative stress signaling may exert a pivotal role in drug resistance. The downstream pathways of FLT3-ITD, including STAT5, PI3K/AKT, and RAS/MAPK, are considered to be major oxidative stress signaling pathways. These downstream pathways can inhibit apoptosis and promote proliferation and survival by regulating apoptosis-related genes and promoting the generation of reactive oxygen species (ROS) through NADPH oxidase (NOX) or other mechanisms. Appropriate levels of ROS may promote proliferation, but high levels of ROS can lead to oxidative damage to the DNA and increase genomic instability. In addition, post-translational modifications of FLT3-ITD and changes in its subcellular localization can affect downstream signaling which may also be one of the mechanisms leading to drug resistance. In this review, we summarized the research progress on NOX mediated oxidative stress signaling and its relationship with drug resistance in FLT3-ITD AML, and discuss the possible new targets in FLT3-ITD signal blocking to reverse drug resistance in FLT3-ITD-mutated AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Zhenyou Zou
- Institute of Psychosis Prevention, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 542005, China.
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
6
|
Germon ZP, Sillar JR, Mannan A, Duchatel RJ, Staudt D, Murray HC, Findlay IJ, Jackson ER, McEwen HP, Douglas AM, McLachlan T, Schjenken JE, Skerrett-Byrne DA, Huang H, Melo-Braga MN, Plank MW, Alvaro F, Chamberlain J, De Iuliis G, Aitken RJ, Nixon B, Wei AH, Enjeti AK, Huang Y, Lock RB, Larsen MR, Lee H, Vaghjiani V, Cain JE, de Bock CE, Verrills NM, Dun MD. Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies. Sci Signal 2023; 16:eabp9586. [PMID: 36976863 DOI: 10.1126/scisignal.abp9586] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.
Collapse
Affiliation(s)
- Zacary P Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan R Sillar
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dilana Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Heather C Murray
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Holly P McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tabitha McLachlan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Honggang Huang
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marcella N Melo-Braga
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maximilian W Plank
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- GlaxoSmithKline, Abbotsford, Victoria, Australia
| | - Frank Alvaro
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Janis Chamberlain
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Geoff De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anoop K Enjeti
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
- NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Heather Lee
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vijesh Vaghjiani
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Nicole M Verrills
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
7
|
Nasimian A, Al Ashiri L, Ahmed M, Duan H, Zhang X, Rönnstrand L, Kazi JU. A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia. Int J Mol Sci 2023; 24:ijms24043830. [PMID: 36835239 PMCID: PMC9959897 DOI: 10.3390/ijms24043830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Hongzhi Duan
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Xiaoyue Zhang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence: ; Tel.: +46-462226407
| |
Collapse
|
8
|
The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Cells 2022; 12:cells12010008. [PMID: 36611803 PMCID: PMC9818648 DOI: 10.3390/cells12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ), also known as DEP-1, HPTPη, or CD148, belongs to the R3 subfamily of receptor protein tyrosine phosphatases (RPTPs). It was first identified as an antioncogene due to its protein level being significantly downregulated in most epithelial tumors and cancer cell lines (e.g., colon, lung, thyroid, breast, and pancreas). PTPRJ regulates mouse optic nerve projection by inhibiting the phosphorylation of the erythropoietin-producing hepatocellular carcinoma (Eph) receptor and abelson murine leukemia viral oncogene homolog 1 (c-Abl). PTPRJ is crucial for metabolism. Recent studies have demonstrated that PTPRJ dephosphorylates JAK2 at positions Y813 and Y868 to inhibit leptin signaling. Akt is more phosphorylated at the Ser473 and Thr308 sites in Ptprj-/- mice, suggesting that PTPRJ may be a novel negative regulator of insulin signaling. PTPRJ also plays an important role in balancing the pro- and anti-osteoclastogenic activity of the M-CSF receptor (M-CSFR), and in maintaining NFATc1 expression during the late stages of osteoclastogenesis to promote bone-resorbing osteoclast (OCL) maturation. Furthermore, multiple receptor tyrosine kinases (RTKs) as substrates of PTPRJ are probably a potential therapeutic target for many types of diseases, such as cancer, neurodegenerative diseases, and metabolic diseases, by inhibiting their phosphorylation activity. In light of the important roles that PTPRJ plays in many diseases, this review summarizes the structural features of the protein, its expression pattern, and the physiological and pathological functions of PTPRJ, to provide new ideas for treating PTPRJ as a potential therapeutic target for related metabolic diseases and cancer.
Collapse
|
9
|
Schwarz M, Rizzo S, Paz WE, Kresinsky A, Thévenin D, Müller JP. Disrupting PTPRJ transmembrane-mediated oligomerization counteracts oncogenic receptor tyrosine kinase FLT3 ITD. Front Oncol 2022; 12:1017947. [PMID: 36452504 PMCID: PMC9701752 DOI: 10.3389/fonc.2022.1017947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
The receptor protein tyrosine phosphatase (RPTP) PTPRJ (also known as DEP-1) has been identified as a negative regulator of the receptor tyrosine kinase FLT3 signalling in vitro. The inactivation of the PTPRJ gene in mice expressing the constitutively active, oncogenic receptor tyrosine kinase FLT3 ITD aggravated known features of leukaemogenesis, revealing PTPRJ's antagonistic role. FLT3 ITD mutations resulting in constitutively kinase activity and cell transformation frequently occur in patients with acute myeloid leukaemia (AML). Thus, in situ activation of PTPRJ could be used to abrogate oncogenic FLT3 signalling. The activity of PTPRJ is suppressed by homodimerization, which is mediated by transmembrane domain (TMD) interactions. Specific Glycine-to-Leucine mutations in the TMD disrupt oligomerization and inhibit the Epidermal Growth Factor Receptor (EGFR) and EGFR-driven cancer cell phenotypes. To study the effects of PTPRJ TMD mutant proteins on FLT3 ITD activity in cell lines, endogenous PTPRJ was inactivated and replaced by stable expression of PTPRJ TMD mutants. Autophosphorylation of wild-type and ITD-mutated FLT3 was diminished in AML cell lines expressing the PTPRJ TMD mutants compared to wild-type-expressing cells. This was accompanied by reduced FLT3-mediated global protein tyrosine phosphorylation and downstream signalling. Further, PTPRJ TMD mutant proteins impaired the proliferation and in vitro transformation of leukemic cells. Although PTPRJ's TMD mutant proteins showed impaired self-association, the specific phosphatase activity of immunoprecipitated proteins remained unchanged. In conclusion, this study demonstrates that the destabilization of PTPRJ TMD-mediated self-association increases the activity of PTPRJ in situ and impairs FLT3 activity and FLT3-driven cell phenotypes of AML cells. Thus, disrupting the oligomerization of PTPRJ in situ could prove a valuable therapeutic strategy to restrict oncogenic FLT3 activity in leukemic cells.
Collapse
Affiliation(s)
- Marie Schwarz
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Sophie Rizzo
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | | | - Anne Kresinsky
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany,Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, PA, United States
| | - Jörg P. Müller
- Institute for Molecular Cell Biology, CMB - Center for Molecular Biomedicine, University Hospital Jena, Jena, Germany,*Correspondence: Jörg P. Müller,
| |
Collapse
|
10
|
Goob G, Adrian J, Cossu C, Hauck CR. Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ. J Biol Chem 2022; 298:102269. [PMID: 35850306 PMCID: PMC9418913 DOI: 10.1016/j.jbc.2022.102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Carcinoembryonic Antigen-related Cell Adhesion Molecule 3 (CEACAM3) is a human granulocyte receptor mediating the efficient phagocytosis of a subset of human-restricted bacterial pathogens. Its function depends on phosphorylation of a tyrosine-based sequence motif, but the enzyme(s) responsible for reversing this modification are unclear. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as a negative regulator of CEACAM3-mediated phagocytosis. We show depletion of PTPRJ results in a gain-of-function phenotype, while overexpression of a constitutively active PTPRJ phosphatase strongly reduces bacterial uptake via CEACAM3. We also determined that recombinant PTPRJ directly dephosphorylates the cytoplasmic tyrosine residues of purified full-length CEACAM3 and recognizes synthetic CEACAM3-derived phospho-peptides as substrates. Dephosphorylation of CEACAM3 by PTPRJ is also observed in intact cells, thereby limiting receptor-initiated cytoskeletal re-arrangements, lamellipodia formation, and bacterial uptake. Finally, we show that human phagocytes deficient for PTPRJ exhibit exaggerated lamellipodia formation and enhanced opsonin-independent phagocytosis of CEACAM3-binding bacteria. Taken together, our results highlight PTPRJ as a bona fide negative regulator of CEACAM3-initiated phagocyte functions, revealing a potential molecular target to limit CEACAM3-driven inflammatory responses.
Collapse
Affiliation(s)
- Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Chiara Cossu
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
11
|
Demircan MB, Mgbecheta PC, Kresinsky A, Schnoeder TM, Schröder K, Heidel FH, Böhmer FD. Combined Activity of the Redox-Modulating Compound Setanaxib (GKT137831) with Cytotoxic Agents in the Killing of Acute Myeloid Leukemia Cells. Antioxidants (Basel) 2022; 11:antiox11030513. [PMID: 35326163 PMCID: PMC8944474 DOI: 10.3390/antiox11030513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) cells harbor elevated levels of reactive oxygen species (ROS), which promote cell proliferation and cause oxidative stress. Therefore, the inhibition of ROS formation or elevation beyond a toxic level have been considered as therapeutic strategies. ROS elevation has recently been linked to enhanced NADPH oxidase 4 (NOX4) activity. Therefore, the compound Setanaxib (GKT137831), a clinically advanced ROS-modulating substance, which has initially been identified as a NOX1/4 inhibitor, was tested for its inhibitory activity on AML cells. Setanaxib showed antiproliferative activity as single compound, and strongly enhanced the cytotoxic action of anthracyclines such as daunorubicin in vitro. Setanaxib attenuated disease in a mouse model of FLT3-ITD driven myeloproliferation in vivo. Setanaxib did not significantly inhibit FLT3-ITD signaling, including FLT3 autophosphorylation, activation of STAT5, AKT, or extracellular signal regulated kinase 1 and 2 (ERK1/2). Surprisingly, the effects of Setanaxib on cell proliferation appeared to be independent of the presence of NOX4 and were not associated with ROS quenching. Instead, Setanaxib caused elevation of ROS levels in the AML cells and importantly, enhanced anthracycline-induced ROS formation, which may contribute to the combined effects. Further assessment of Setanaxib as potential enhancer of cytotoxic AML therapy appears warranted.
Collapse
Affiliation(s)
- Muhammed Burak Demircan
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Peter C. Mgbecheta
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
| | - Anne Kresinsky
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
| | - Tina M. Schnoeder
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Innere Medizin C, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany;
| | - Florian H. Heidel
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital, 07747 Jena, Germany; (T.M.S.); (F.H.H.)
- Leibniz Institute on Aging—Fritz Lipman Institute, 07745 Jena, Germany
- Innere Medizin C, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Frank D. Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, 07745 Jena, Germany; (M.B.D.); (P.C.M.); (A.K.)
- Correspondence:
| |
Collapse
|
12
|
The translation attenuating arginine-rich sequence in the extended signal peptide of the protein-tyrosine phosphatase PTPRJ/DEP1 is conserved in mammals. PLoS One 2020; 15:e0240498. [PMID: 33296397 PMCID: PMC7725344 DOI: 10.1371/journal.pone.0240498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 11/19/2022] Open
Abstract
The signal peptides, present at the N-terminus of many proteins, guide the proteins into cell membranes. In some proteins, the signal peptide is with an extended N-terminal region. Previously, it was demonstrated that the N-terminally extended signal peptide of the human PTPRJ contains a cluster of arginine residues, which attenuates translation. The analysis of the mammalian orthologous sequences revealed that this sequence is highly conserved. The PTPRJ transcripts in placentals, marsupials, and monotremes encode a stretch of 10–14 arginine residues, positioned 11–12 codons downstream of the initiating AUG. The remarkable conservation of the repeated arginine residues in the PTPRJ signal peptides points to their key role. Further, the presence of an arginine cluster in the extended signal peptides of other proteins (E3 ubiquitin-protein ligase, NOTCH3) is noted and indicates a more general importance of this cis-acting mechanism of translational suppression.
Collapse
|
13
|
Novel Approaches to Target Mutant FLT3 Leukaemia. Cancers (Basel) 2020; 12:cancers12102806. [PMID: 33003568 PMCID: PMC7600363 DOI: 10.3390/cancers12102806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is a haematologic disease in which oncogenic mutations in the receptor tyrosine kinase FLT3 frequently lead to leukaemic development. Potent treatment of AML patients is still hampered by inefficient targeting of leukemic stem cells expressing constitutive active FLT3 mutants. This review summarizes the current knowledge about the regulation of FLT3 activity at cellular level and discusses therapeutical options to affect the tumor cells and the microenvironment to impair the haematological aberrations. Abstract Fms-like tyrosine kinase 3 (FLT3) is a member of the class III receptor tyrosine kinases (RTK) and is involved in cell survival, proliferation, and differentiation of haematopoietic progenitors of lymphoid and myeloid lineages. Oncogenic mutations in the FLT3 gene resulting in constitutively active FLT3 variants are frequently found in acute myeloid leukaemia (AML) patients and correlate with patient’s poor survival. Targeting FLT3 mutant leukaemic stem cells (LSC) is a key to efficient treatment of patients with relapsed/refractory AML. It is therefore essential to understand how LSC escape current therapies in order to develop novel therapeutic strategies. Here, we summarize the current knowledge on mechanisms of FLT3 activity regulation and its cellular consequences. Furthermore, we discuss how aberrant FLT3 signalling cooperates with other oncogenic lesions and the microenvironment to drive haematopoietic malignancies and how this can be harnessed for therapeutical purposes.
Collapse
|
14
|
Chen MJ, Lummertz da Rocha E, Cahan P, Kubaczka C, Hunter P, Sousa P, Mullin NK, Fujiwara Y, Nguyen M, Tan Y, Landry S, Han A, Yang S, Lu YF, Jha DK, Vo LT, Zhou Y, North TE, Zon LI, Daley GQ, Schlaeger TM. Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports 2020; 14:956-971. [PMID: 32302558 PMCID: PMC7220988 DOI: 10.1016/j.stemcr.2020.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Studies of hematopoietic stem cell (HSC) development from pre-HSC-producing hemogenic endothelial cells (HECs) are hampered by the rarity of these cells and the presence of other cell types with overlapping marker expression profiles. We generated a Tg(Runx1-mKO2; Ly6a-GFP) dual reporter mouse to visualize hematopoietic commitment and study pre-HSC emergence and maturation. Runx1-mKO2 marked all intra-arterial HECs and hematopoietic cluster cells (HCCs), including pre-HSCs, myeloid- and lymphoid progenitors, and HSCs themselves. However, HSC and lymphoid potential were almost exclusively found in reporter double-positive (DP) cells. Robust HSC activity was first detected in DP cells of the placenta, reflecting the importance of this niche for (pre-)HSC maturation and expansion before the fetal liver stage. A time course analysis by single-cell RNA sequencing revealed that as pre-HSCs mature into fetal liver stage HSCs, they show signs of interferon exposure, exhibit signatures of multi-lineage differentiation gene expression, and develop a prolonged cell cycle reminiscent of quiescent adult HSCs.
Collapse
Affiliation(s)
- Michael J Chen
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Edroaldo Lummertz da Rocha
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Caroline Kubaczka
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Phoebe Hunter
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patricia Sousa
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathaniel K Mullin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuko Fujiwara
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Minh Nguyen
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuqi Tan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Samuel Landry
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Areum Han
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Song Yang
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yi-Fen Lu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak Kumar Jha
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Linda T Vo
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Zhou
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E North
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Leonard I Zon
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Harvard University, Boston, MA, USA; Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - George Q Daley
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Thorsten M Schlaeger
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Stem Cell Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
15
|
Kellner F, Keil A, Schindler K, Tschongov T, Hünninger K, Loercher H, Rhein P, Böhmer SA, Böhmer FD, Müller JP. Wild-type FLT3 and FLT3 ITD exhibit similar ligand-induced internalization characteristics. J Cell Mol Med 2020; 24:4668-4676. [PMID: 32155324 PMCID: PMC7176853 DOI: 10.1111/jcmm.15132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
Class III receptor tyrosine kinases control the development of hematopoietic stem cells. Constitutive activation of FLT3 by internal tandem duplications (ITD) in the juxtamembrane domain has been causally linked to acute myeloid leukaemia. Oncogenic FLT3 ITD is partially retained in compartments of the biosynthetic route and aberrantly activates STAT5, thereby promoting cellular transformation. The pool of FLT3 ITD molecules in the plasma membrane efficiently activates RAS and AKT, which is likewise essential for cell transformation. Little is known about features and mechanisms of FLT3 ligand (FL)-dependent internalization of surface-bound FLT3 or FLT3 ITD. We have addressed this issue by internalization experiments using human RS4-11 and MV4-11 cells with endogenous wild-type FLT3 or FLT3 ITD expression, respectively, and surface biotinylation. Further, FLT3 wild-type, or FLT3 ITD-GFP hybrid proteins were stably expressed and characterized in 32D cells, and internalization and stability were assessed by flow cytometry, imaging flow cytometry, and immunoblotting. FL-stimulated surface-exposed FLT3 WT or FLT3 ITD protein showed similar endocytosis and degradation characteristics. Kinase inactivation by mutation or FLT3 inhibitor treatment strongly promoted FLT3 ITD surface localization, and attenuated but did not abrogate FL-induced internalization. Experiments with the dynamin inhibitor dynasore suggest that active FLT3 as well as FLT3 ITD is largely endocytosed via clathrin-dependent endocytosis. Internalization of kinase-inactivated molecules occurred through a different yet unidentified mechanism. Our data demonstrate that FLT3 WT and constitutively active FLT3 ITD receptor follow, despite very different biogenesis kinetics, similar internalization and degradation routes.
Collapse
Affiliation(s)
- Fabienne Kellner
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Andreas Keil
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Katrin Schindler
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Todor Tschongov
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Kerstin Hünninger
- Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Hannah Loercher
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Peter Rhein
- Luminex B.V., 's-Hertogenbosch, The Netherlands
| | - Sylvia-Annette Böhmer
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Frank-D Böhmer
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Jörg P Müller
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
16
|
Sillar JR, Germon ZP, De Iuliis GN, Dun MD. The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:ijms20236003. [PMID: 31795243 PMCID: PMC6929020 DOI: 10.3390/ijms20236003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with a poor overall survival. Reactive oxygen species (ROS) have been shown to be elevated in a wide range of cancers including AML. Whilst previously thought to be mere by-products of cellular metabolism, it is now clear that ROS modulate the function of signalling proteins through oxidation of critical cysteine residues. In this way, ROS have been shown to regulate normal haematopoiesis as well as promote leukaemogenesis in AML. In addition, ROS promote genomic instability by damaging DNA, which promotes chemotherapy resistance. The source of ROS in AML appears to be derived from members of the “NOX family” of NADPH oxidases. Most studies link NOX-derived ROS to activating mutations in the Fms-like tyrosine kinase 3 (FLT3) and Ras-related C3 botulinum toxin substrate (Ras). Targeting ROS through either ROS induction or ROS inhibition provides a novel therapeutic target in AML. In this review, we summarise the role of ROS in normal haematopoiesis and in AML. We also explore the current treatments that modulate ROS levels in AML and discuss emerging drug targets based on pre-clinical work.
Collapse
Affiliation(s)
- Jonathan R. Sillar
- Haematology Department, Calvary Mater Hospital, Newcastle, NSW 2298, Australia
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: (J.R.S.); (M.D.D.); Tel.: +612-4921-5693 (M.D.D.)
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: (J.R.S.); (M.D.D.); Tel.: +612-4921-5693 (M.D.D.)
| |
Collapse
|
17
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
18
|
Böhmer A, Barz S, Schwab K, Kolbe U, Gabel A, Kirkpatrick J, Ohlenschläger O, Görlach M, Böhmer FD. Modulation of FLT3 signal transduction through cytoplasmic cysteine residues indicates the potential for redox regulation. Redox Biol 2019; 28:101325. [PMID: 31606550 PMCID: PMC6812047 DOI: 10.1016/j.redox.2019.101325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is frequently mutated in Acute Myeloid Leukemia patients, and resulting oncogenic variants of FLT3 with 'internal tandem duplications (FLT3ITD)' drive production of reactive oxygen in leukemic cells. FLT3 was moderately activated by treatment of intact cells with hydrogen peroxide. Conversely, FLT3ITD signaling was attenuated by cell treatments with agents inhibiting formation of reactive oxygen species. FLT3 and FLT3ITD incorporated DCP-Bio1, a reagent specifically reacting with sulfenic acid residues. Mutation of FLT3ITD cysteines 695 and 790 reduced DCP-Bio1 incorporation, suggesting that these sites are subject to oxidative modification. Functional characterization of individual FLT3ITD cysteine-to-serine mutants of all 8 cytoplasmic cysteines revealed phenotypes in kinase activity, signal transduction and cell transformation. Replacement of cysteines 681, 694, 695, 807, 925, and 945 attenuated signaling and blocked FLT3ITD-mediated cell transformation, whereas mutation of cysteine 790 enhanced activity of both FLT3ITD and wild-type FLT3. These effects were not related to altered FLT3ITD dimerization, but likely caused by changed intramolecular interactions. The findings identify the functional relevance of all cytoplasmic FLT3ITD cysteines, and indicate the potential for redox regulation of this clinically important oncoprotein.
Collapse
Affiliation(s)
- Annette Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Saskia Barz
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Katjana Schwab
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Ulrike Kolbe
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Anke Gabel
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | | | | | - Matthias Görlach
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany.
| |
Collapse
|
19
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Todde G, Friedman R. Activation and Inactivation of the FLT3 Kinase: Pathway Intermediates and the Free Energy of Transition. J Phys Chem B 2019; 123:5385-5394. [PMID: 31244095 DOI: 10.1021/acs.jpcb.9b01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aberrant expression of kinases is often associated with pathologies such as cancer and autoimmune diseases. Like other types of enzymes, kinases can adopt active and inactive states, where a shift toward more stable active state often leads to disease. Dozens of kinase inhibitors are, therefore, used as drugs. Most of these bind to either the inactive or active state. In this work, we study the transitions between these two states in FLT3, an important drug target in leukemias. Kinases are composed of two lobes (N- and C-terminal lobes) with the catalytic site in-between. Through projection of the largest motions obtained through molecular dynamics (MD) simulations, we show that each of the end-states (active or inactive) already possess the ability for transition as the two lobes rotate which initiates the transition. A targeted simulation approach known as essential dynamics sampling (EDS) was used to speed up the transition between the two protein states. Coupling the EDS to implicit-solvent MD was performed to estimate the free energy barriers of the transitions. The activation energies were found in good agreement with previous estimates obtained for other kinases. Finally, we identified FLT3 intermediates that assumed configurations that resemble that of the c-Src nonreceptor tyrosine kinase. The intermediates show better binding to the drug ponatinib than c-Src and the inactive state of FLT3. This suggests that targeting intermediate states can be used to explain the drug-binding patterns of kinases and for rational drug design.
Collapse
Affiliation(s)
- Guido Todde
- Department of Chemistry ad Biomedical Sciences, Faculty of Health and Life Sciences , Linnæus University , 391 82 Kalmar , Sweden.,Linnæus University Centre of Exellence "Biomaterials Chemistry" , 391 82 Kalmar , Sweden
| | - Ran Friedman
- Department of Chemistry ad Biomedical Sciences, Faculty of Health and Life Sciences , Linnæus University , 391 82 Kalmar , Sweden.,Linnæus University Centre of Exellence "Biomaterials Chemistry" , 391 82 Kalmar , Sweden
| |
Collapse
|
21
|
Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation. Oncogene 2019; 38:4773-4787. [DOI: 10.1038/s41388-019-0757-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/12/2018] [Accepted: 02/05/2019] [Indexed: 01/08/2023]
|
22
|
Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018; 8:14684. [PMID: 30279491 PMCID: PMC6168515 DOI: 10.1038/s41598-018-33014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a major cardiovascular risk factor contributing to cardiovascular complications by inducing vascular cell dysfunction. Monocyte dysfunction could contribute to impaired arteriogenesis response in DM patients. DM monocytes show blunted chemotactic responses to arteriogenic stimuli, a condition termed as vascular endothelial growth factor (VEGF) resistance. We hypothesize that methylglyoxal (MG), a glucose metabolite, induces monocyte dysfunction and aimed to elucidate the underlying molecular mechanisms. Human monocytes exposed to MG or monocytes from DM patients or mice (db/db) showed VEGF-resistance secondary to a pro-migratory phenotype. Mechanistically, DM conditions or MG exposure resulted in the upregulation of the expression of SHP-2 phosphatase. This led to the enhanced activity of SHP-2 and aided an interaction with SRC kinase. SHP-2 dephosphorylated the inhibitory phosphorylation site of SRC leading to its abnormal activation and phosphorylation of cytoskeletal protein, paxillin. We demonstrated that MG-induced molecular changes could be reversed by pharmacological inhibitors of SHP-2 and SRC and by genetic depletion of SHP-2. Finally, a SHP-2 inhibitor completely reversed the dysfunction of monocytes isolated from DM patients and db/db mice. In conclusion, we identified SHP-2 as a hitherto unknown target for improving monocyte function in diabetes. This opens novel perspectives for treating diabetic complications associated with impaired monocyte function.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Kallipatti Sanjith Shanmuganathan
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nicolle Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ulrich A Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| |
Collapse
|
23
|
Hendricks WPD, Zismann V, Sivaprakasam K, Legendre C, Poorman K, Tembe W, Perdigones N, Kiefer J, Liang W, DeLuca V, Stark M, Ruhe A, Froman R, Duesbery NS, Washington M, Aldrich J, Neff MW, Huentelman MJ, Hayward N, Brown K, Thamm D, Post G, Khanna C, Davis B, Breen M, Sekulic A, Trent JM. Somatic inactivating PTPRJ mutations and dysregulated pathways identified in canine malignant melanoma by integrated comparative genomic analysis. PLoS Genet 2018; 14:e1007589. [PMID: 30188888 PMCID: PMC6126841 DOI: 10.1371/journal.pgen.1007589] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/24/2018] [Indexed: 01/11/2023] Open
Abstract
Canine malignant melanoma, a significant cause of mortality in domestic dogs, is a powerful comparative model for human melanoma, but little is known about its genetic etiology. We mapped the genomic landscape of canine melanoma through multi-platform analysis of 37 tumors (31 mucosal, 3 acral, 2 cutaneous, and 1 uveal) and 17 matching constitutional samples including long- and short-insert whole genome sequencing, RNA sequencing, array comparative genomic hybridization, single nucleotide polymorphism array, and targeted Sanger sequencing analyses. We identified novel predominantly truncating mutations in the putative tumor suppressor gene PTPRJ in 19% of cases. No BRAF mutations were detected, but activating RAS mutations (24% of cases) occurred in conserved hotspots in all cutaneous and acral and 13% of mucosal subtypes. MDM2 amplifications (24%) and TP53 mutations (19%) were mutually exclusive. Additional low-frequency recurrent alterations were observed amidst low point mutation rates, an absence of ultraviolet light mutational signatures, and an abundance of copy number and structural alterations. Mutations that modulate cell proliferation and cell cycle control were common and highlight therapeutic axes such as MEK and MDM2 inhibition. This mutational landscape resembles that seen in BRAF wild-type and sun-shielded human melanoma subtypes. Overall, these data inform biological comparisons between canine and human melanoma while suggesting actionable targets in both species.
Collapse
Affiliation(s)
- William P. D. Hendricks
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Victoria Zismann
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Karthigayini Sivaprakasam
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Department of Biomedical Informatics, Arizona State University, Phoenix, Arizona, United States of America
| | - Christophe Legendre
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Kelsey Poorman
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Waibhav Tembe
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Nieves Perdigones
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jeffrey Kiefer
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Winnie Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Valerie DeLuca
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Mitchell Stark
- Dermatology Research Centre, The University of Queensland, The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Alison Ruhe
- Veterinary Genetics Laboratory, University of California Davis, Davis, California, United States of America
| | - Roe Froman
- Laboratory of Cancer and Developmental Cell Biology, Van Andel Research Institute (VARI), Grand Rapids, Michigan, United States of America
| | | | - Megan Washington
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Jessica Aldrich
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Mark W. Neff
- Program in Canine Genetics and Genomics, Van Andel Research Institute (VARI), Grand Rapids, Michigan, United States of America
| | - Matthew J. Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Nicholas Hayward
- Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Kevin Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Douglas Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gerald Post
- The Veterinary Cancer Center, Norwalk, Connecticut, United States of America
| | - Chand Khanna
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| | - Barbara Davis
- Innogenics Inc., Harvard, Massachusetts, United States of America
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Alexander Sekulic
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
- Department of Dermatology, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jeffrey M. Trent
- Integrated Cancer Genomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, United States of America
| |
Collapse
|
24
|
Kresinsky A, Bauer R, Schnöder TM, Berg T, Meyer D, Ast V, König R, Serve H, Heidel FH, Böhmer FD, Müller JP. Loss of DEP-1 (Ptprj) promotes myeloproliferative disease in FLT3-ITD acute myeloid leukemia. Haematologica 2018; 103:e505-e509. [PMID: 29880609 DOI: 10.3324/haematol.2017.185306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Anne Kresinsky
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital
| | - Tina M Schnöder
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital.,Leibniz Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena
| | - Tobias Berg
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt
| | - Daria Meyer
- Network modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Volker Ast
- Network modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rainer König
- Network modelling, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt
| | - Florian H Heidel
- Innere Medizin II, Hämatologie und Onkologie, Jena University Hospital.,Leibniz Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital
| |
Collapse
|
25
|
Tsitsipatis D, Jayavelu AK, Müller JP, Bauer R, Schmidt-Arras D, Mahboobi S, Schnöder TM, Heidel F, Böhmer FD. Synergistic killing of FLT3ITD-positive AML cells by combined inhibition of tyrosine-kinase activity and N-glycosylation. Oncotarget 2018; 8:26613-26624. [PMID: 28460451 PMCID: PMC5432283 DOI: 10.18632/oncotarget.15772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) with internal tandem duplications (ITD) is a major oncoprotein in acute myeloid leukemia (AML), and confers an unfavorable prognosis. Interference with FLT3ITD signaling is therefore pursued as a promising therapeutic strategy. In this study we show that abrogation of FLT3ITD glycoprotein maturation using low doses of the N-glycosylation inhibitor tunicamycin has anti-proliferative and pro-apoptotic effects on FLT3ITD-expressing human and murine cell lines. This effect is mediated in part by arresting FLT3ITD in an underglycosylated state and thereby attenuating FLT3ITD-driven AKT and ERK signaling. In addition, tunicamycin caused pronounced endoplasmatic reticulum stress and apoptosis through activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activation of the gene encoding CCAAT-enhancer-binding protein homologous protein (CHOP). PERK inhibition with a small molecule attenuated CHOP induction and partially rescued cells from apoptosis. Combination of tunicamycin with potent FLT3ITD kinase inhibitors caused synergistic cell killing, which was highly selective for cell lines and primary AML cells expressing FLT3ITD. Although tunicamycin is currently not a clinically applicable drug, we propose that mild inhibition of N-glycosylation may have therapeutic potential in combination with FLT3 kinase inhibitors for FLT3ITD-positive AML.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany.,Current address: Institute of Nutrition, Department of Nutrigenomics, Friedrich-Schiller-University, Jena, Germany
| | - Ashok Kumar Jayavelu
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany.,Current address: Max-Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | - Tina M Schnöder
- Innere Medizin II, Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany.,Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Florian Heidel
- Innere Medizin II, Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany.,Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena, Germany
| |
Collapse
|
26
|
The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Sci Rep 2017; 7:13734. [PMID: 29062038 PMCID: PMC5653865 DOI: 10.1038/s41598-017-14033-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
The non-receptor tyrosine kinase LCK belongs to the SRC family of kinases. SRC family kinases are proto-oncogenes that have long been known to play key roles in cell proliferation, motility, morphology and survival. Here we show that LCK regulates the function of the type III receptor tyrosine kinase FLT3 in murine pro-B cells. We observed that expression of LCK significantly enhances the colony forming capacity of the constitutively active FLT3 mutant FLT3-ITD (internal tandem duplication). Furthermore, cells expressing LCK developed tumor earlier compared to cells transfected with empty control vector. Staining of the tissues from mouse xenografts showed higher Ki67 staining in cells expressing LCK suggesting that expression of LCK enhances the FLT3-ITD-mediated proliferative capacity. LCK expression did not affect either FLT3-WT or FLT3-ITD -induced AKT, ERK1/2 or p38 phosphorylation. However, LCK expression significantly enhanced FLT3-ITD-mediated STAT5 phosphorylation. Taken together, our data suggest that LCK cooperates with oncogenic FLT3-ITD in cellular transformation.
Collapse
|
27
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
28
|
Chen X, Zhang J, Yuan L, Lay Y, Wong YK, Lim TK, Ong CS, Lin Q, Wang J, Hua Z. Andrographolide Suppresses MV4-11 Cell Proliferation through the Inhibition of FLT3 Signaling, Fatty Acid Synthesis and Cellular Iron Uptake. Molecules 2017; 22:molecules22091444. [PMID: 28858244 PMCID: PMC6151431 DOI: 10.3390/molecules22091444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Andrographolide (ADR), the main active component of Andrographis paniculata, displays anticancer activity in various cancer cell lines, among which leukemia cell lines exhibit the highest sensitivity to ADR. In particular, ADR was also reported to have reduced drug resistance in multidrug resistant cell lines. However, the mechanism of action (MOA) of ADR’s anticancer and anti-drug-resistance activities remain elusive. Methods: In this study, we used the MV4-11 cell line, a FLT3 positive acute myeloid leukemia (AML) cell line that displays multidrug resistance, as our experimental system. We first evaluated the effect of ADR on MV4-11 cell proliferation. Then, a quantitative proteomics approach was applied to identify differentially expressed proteins in ADR-treated MV4-11 cells. Finally, cellular processes and signal pathways affected by ADR in MV4-11 cell were predicted with proteomic analysis and validated with in vitro assays. Results: ADR inhibits MV4-11 cell proliferation in a dose- and time-dependent manner. With a proteomic approach, we discovered that ADR inhibited fatty acid synthesis, cellular iron uptake and FLT3 signaling pathway in MV4-11 cells. Conclusions: ADR inhibits MV4-11 cell proliferation through inhibition of fatty acid synthesis, iron uptake and protein synthesis. Furthermore, ADR reduces drug resistance by blocking FLT3 signaling.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jianbin Zhang
- Department of Oncology, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Yifei Lay
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Yin Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Chye Sun Ong
- Institute of Mental Health, Education Office, Singapore 539747, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Jigang Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu Target Pharma Laboratories Inc., Changzhou 213164, China.
| |
Collapse
|
29
|
Zhang XF, Tu R, Li K, Ye P, Cui X. Tumor Suppressor PTPRJ Is a Target of miR-155 in Colorectal Cancer. J Cell Biochem 2017; 118:3391-3400. [PMID: 28316102 DOI: 10.1002/jcb.25995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 01/02/2023]
Abstract
PTPRJ is known for its antiproliferative role. Loss of heterozygosity (LOH) of PTPRJ has frequently been observed in various human cancers including colorectal cancer (CRC), lung cancer, and breast cancer. However, the function and mechanism of PTPRJ in CRC are not well understood. At the present study, we show that ectopic expression of PTPRJ inhibits cell growth, migration, and invasiveness in CRC cell line HCT116. Moreover, PTPRJ inhibits the tumorigenecity of HCT116 in a xenograft tumor model. MiR-155, the well-known oncomiR in CRC, is identified as an upstream factor of PTPRJ. MiR-155 directly binds to the 3' untranslated region of PTPRJ mRNA and suppresses the mRNA and protein levels of PTPRJ. Furthermore, the growth-promoting and AKT signaling activation effect of miR-155 was abrogated by PTPRJ overexpression, and vice versa. Our study reveals the crucial role of miR-155/PTPRJ/AKT axis in proliferation and migration of CRC cells and suggests a therapeutic potential of PTPRJ. J. Cell. Biochem. 118: 3391-3400, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430072, P. R. China
| | - Rongfu Tu
- College of Life Sciences, Wuhan University, Wuhan 430070, P. R. China
| | - Keke Li
- College of Life Sciences, Wuhan University, Wuhan 430070, P. R. China
| | - Pengxiang Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430072, P. R. China
| | - Xiaofeng Cui
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430072, P. R. China
| |
Collapse
|
30
|
Rebechi MT, Pratz KW. Genomic instability is a principle pathologic feature of FLT3 ITD kinase activity in acute myeloid leukemia leading to clonal evolution and disease progression. Leuk Lymphoma 2017; 58:1-11. [PMID: 28278729 DOI: 10.1080/10428194.2017.1283031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute Myeloid Leukemia with FLT3 ITD mutations are associated with a poor prognosis characterized by a higher relapse rate, shorter relapse free survival, and decreased likelihood of response to therapy at relapse. FLT3 ITD signaling drives cell proliferation and survival. FLT3 ITD AML disease progression is associated with cytogenetic evolution and acquired tyrosine kinase inhibitor (TKI) resistance suggesting a potential role of genomic instability. There is growing evidence demonstrating a relationship between FLT3 signaling and increased DNA damage, specifically through increased reactive oxygen species (ROS) resulting in double-strand breaks (DSB), as well as impaired DNA repair, involving deficiencies in the non-homologous end joining (NHEJ), alternative non-homologous end joining (ALT NHEJ) and homologous recombination (HR) pathways. The role of genomic instability in the pathogenesis of FLT3 ITD AML warrants further examination as it offers potential therapeutic targets.
Collapse
Affiliation(s)
- Melanie T Rebechi
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| | - Keith W Pratz
- a Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
31
|
Bollu LR, Mazumdar A, Savage MI, Brown PH. Molecular Pathways: Targeting Protein Tyrosine Phosphatases in Cancer. Clin Cancer Res 2017; 23:2136-2142. [PMID: 28087641 DOI: 10.1158/1078-0432.ccr-16-0934] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022]
Abstract
The aberrant activation of oncogenic signaling pathways is a universal phenomenon in cancer and drives tumorigenesis and malignant transformation. This abnormal activation of signaling pathways in cancer is due to the altered expression of protein kinases and phosphatases. In response to extracellular signals, protein kinases activate downstream signaling pathways through a series of protein phosphorylation events, ultimately producing a signal response. Protein tyrosine phosphatases (PTP) are a family of enzymes that hydrolytically remove phosphate groups from proteins. Initially, PTPs were shown to act as tumor suppressor genes by terminating signal responses through the dephosphorylation of oncogenic kinases. More recently, it has become clear that several PTPs overexpressed in human cancers do not suppress tumor growth; instead, they positively regulate signaling pathways and promote tumor development and progression. In this review, we discuss both types of PTPs: those that have tumor suppressor activities as well as those that act as oncogenes. We also discuss the potential of PTP inhibitors for cancer therapy. Clin Cancer Res; 23(9); 2136-42. ©2017 AACR.
Collapse
Affiliation(s)
- Lakshmi Reddy Bollu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle I Savage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
32
|
NOX-driven ROS formation in cell transformation of FLT3-ITD-positive AML. Exp Hematol 2016; 44:1113-1122. [DOI: 10.1016/j.exphem.2016.08.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/28/2016] [Indexed: 12/22/2022]
|
33
|
Schneble N, Müller J, Kliche S, Bauer R, Wetzker R, Böhmer FD, Wang ZQ, Müller JP. The protein-tyrosine phosphatase DEP-1 promotes migration and phagocytic activity of microglial cells in part through negative regulation of fyn tyrosine kinase. Glia 2016; 65:416-428. [DOI: 10.1002/glia.23100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Nadine Schneble
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
- Leibniz Institute on Aging; Beutenberstraße 11 Jena Germany
| | - Julia Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Stefanie Kliche
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University; Leipziger Str. 44 Magdeburg Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Frank-D. Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging; Beutenberstraße 11 Jena Germany
| | - Jörg P. Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital; Hans-Knöll-Straße 2 Jena Germany
| |
Collapse
|
34
|
Abstract
Spatiotemporal aspects of protein-tyrosine phosphatase (PTP) activity and interaction partners for many PTPs are elusive. We describe here an elegant and relatively simple method, in situ proximity ligation assay (in situ PLA), which can be used to address these issues. The possibility to detect endogenous unmodified proteins in situ and to visualize individual interactions with spatial resolution is the major advantage of this technique. We provide protocols suitable to monitor association of the transmembrane PTPs PTPRJ/DEP-1/CD148 and PTPRB/VE-PTP with their substrates, the receptor tyrosine kinases FMS-like tyrosine kinase 3 (FLT3/CD135), and Tie2 and vascular endothelial growth factor receptor 2 (VEGFR2), respectively. Detailed description of method development and reagents as well as highlighting of critical factors will enable the reader to apply the method successfully to other PTP-protein interactions.
Collapse
|
35
|
Xu Q, Malecka KL, Fink L, Jordan EJ, Duffy E, Kolander S, Peterson JR, Dunbrack RL. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Sci Signal 2015; 8:rs13. [PMID: 26628682 DOI: 10.1126/scisignal.aaa6711] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an "autophosphorylation complex." We developed and applied a structural bioinformatics method to identify all such autophosphorylation complexes in x-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which five complexes had not previously been described in the publications describing the crystal structures. These five complexes consist of tyrosine residues in the N-terminal juxtamembrane regions of colony-stimulating factor 1 receptor (CSF1R, Tyr(561)) and ephrin receptor A2 (EPHA2, Tyr(594)), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr(394)) and insulin-like growth factor 1 receptor (IGF1R, Tyr(1166)), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser(142)). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore, we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro(447) to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets.
Collapse
Affiliation(s)
- Qifang Xu
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kimberly L Malecka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lauren Fink
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - E Joseph Jordan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Duffy
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Samuel Kolander
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jeffrey R Peterson
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
36
|
Jayavelu AK, Müller JP, Bauer R, Böhmer SA, Lässig J, Cerny-Reiterer S, Sperr WR, Valent P, Maurer B, Moriggl R, Schröder K, Shah AM, Fischer M, Scholl S, Barth J, Oellerich T, Berg T, Serve H, Frey S, Fischer T, Heidel FH, Böhmer FD. NOX4-driven ROS formation mediates PTP inactivation and cell transformation in FLT3ITD-positive AML cells. Leukemia 2015; 30:473-83. [DOI: 10.1038/leu.2015.234] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 12/21/2022]
|
37
|
The protein tyrosine phosphatase DEP-1/PTPRJ promotes breast cancer cell invasion and metastasis. Oncogene 2015; 34:5536-47. [DOI: 10.1038/onc.2015.9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022]
|
38
|
Zhao S, Sedwick D, Wang Z. Genetic alterations of protein tyrosine phosphatases in human cancers. Oncogene 2014; 34:3885-94. [PMID: 25263441 PMCID: PMC4377308 DOI: 10.1038/onc.2014.326] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are enzymes that remove phosphate from tyrosine residues in proteins. Recent whole-exome sequencing of human cancer genomes reveals that many PTPs are frequently mutated in a variety of cancers. Among these mutated PTPs, protein tyrosine phosphatase T (PTPRT) appears to be the most frequently mutated PTP in human cancers. Beside PTPN11 which functions as an oncogene in leukemia, genetic and functional studies indicate that most of mutant PTPs are tumor suppressor genes. Identification of the substrates and corresponding kinases of the mutant PTPs may provide novel therapeutic targets for cancers harboring these mutant PTPs.
Collapse
Affiliation(s)
- S Zhao
- 1] Division of Gastroenterology and Hepatology and Shanghai Institution of Digestive Disease, Shanghai Jiao-Tong University School of Medicine Renji Hospital, Shanghai, China [2] Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA [3] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - D Sedwick
- 1] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA [2] Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Z Wang
- 1] Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA [2] Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
39
|
Jeon M, Zinn K. R3 receptor tyrosine phosphatases: conserved regulators of receptor tyrosine kinase signaling and tubular organ development. Semin Cell Dev Biol 2014; 37:119-26. [PMID: 25242281 DOI: 10.1016/j.semcdb.2014.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/04/2014] [Indexed: 12/25/2022]
Abstract
R3 receptor tyrosine phosphatases (RPTPs) are characterized by extracellular domains composed solely of long chains of fibronectin type III repeats, and by the presence of a single phosphatase domain. There are five proteins in mammals with this structure, two in Drosophila and one in Caenorhabditis elegans. R3 RPTPs are selective regulators of receptor tyrosine kinase (RTK) signaling, and a number of different RTKs have been shown to be direct targets for their phosphatase activities. Genetic studies in both invertebrate model systems and in mammals have shown that R3 RPTPs are essential for tubular organ development. They also have important functions during nervous system development. R3 RPTPs are likely to be tumor suppressors in a number of types of cancer.
Collapse
Affiliation(s)
- Mili Jeon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Department of Molecular and Cellular Physiology and Structural Biology, Howard Hughes Medical Institute, Stanford School of Medicine, Palo Alto, CA 94305, United States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
40
|
Receptor-type protein tyrosine phosphatase κ directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene 2014; 34:1949-60. [PMID: 24882578 DOI: 10.1038/onc.2014.141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/02/2014] [Accepted: 04/10/2014] [Indexed: 12/21/2022]
Abstract
Although CD133 has been considered to be a molecular marker for cancer stem cells, its functional roles in tumorigenesis remain unclear. We here examined the molecular basis behind CD133-mediated signaling. Knockdown of CD133 resulted in the retardation of xenograft tumor growth of colon cancer-derived HT-29 and LoVo cells accompanied by hypophosphorylation of AKT, which diminished β-catenin/T-cell factor-mediated CD44 expression. As tyrosine residues of CD133 at positions 828 and 852 were phosphorylated in HT-29 and SW480 cells, we further addressed the significance of this phosphorylation in the tumorigenesis of SW480 cells expressing mutant CD133, with substitution of these tyrosine residues by glutamate (CD133-EE) or phenylalanine (CD133-FF). Forced expression of CD133-EE promoted much more aggressive xenograft tumor growth relative to wild-type CD133-expressing cells accompanied by hyperphosphorylation of AKT; however, CD133-FF expression had negligible effects on AKT phosphorylation and xenograft tumor formation. Intriguingly, the tyrosine phosphorylation status of CD133 was closely linked to the growth of SW480-derived spheroids. Using yeast two-hybrid screening, we finally identified receptor-type protein tyrosine phosphatase κ (PTPRK) as a binding partner of CD133. In vitro studies demonstrated that PTPRK associates with the carboxyl-terminal region of CD133 through its intracellular phosphatase domains and also catalyzes dephosphorylation of CD133 at tyrosine-828/tyrosine-852. Silencing of PTPRK elevated the tyrosine phosphorylation of CD133, whereas forced expression of PTPRK reduced its phosphorylation level markedly and abrogated CD133-mediated AKT phosphorylation. Endogenous CD133 expression was also closely associated with higher AKT phosphorylation in primary colon cancer cells, and ectopic expression of CD133 enhanced AKT phosphorylation. Furthermore, lower PTPRK expression significantly correlated with the poor prognosis of colon cancer patients with high expression of CD133. Thus, our present findings strongly indicate that the tyrosine phosphorylation of CD133, which is dephosphorylated by PTPRK, regulates AKT signaling and has a critical role in colon cancer progression.
Collapse
|
41
|
Spring K, Lapointe L, Caron C, Langlois S, Royal I. Phosphorylation of DEP-1/PTPRJ on threonine 1318 regulates Src activation and endothelial cell permeability induced by vascular endothelial growth factor. Cell Signal 2014; 26:1283-93. [DOI: 10.1016/j.cellsig.2014.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/23/2022]
|
42
|
Aya-Bonilla C, Camilleri E, Haupt LM, Lea R, Gandhi MK, Griffiths LR. In silico analyses reveal common cellular pathways affected by loss of heterozygosity (LOH) events in the lymphomagenesis of Non-Hodgkin's lymphoma (NHL). BMC Genomics 2014; 15:390. [PMID: 24885312 PMCID: PMC4041994 DOI: 10.1186/1471-2164-15-390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 05/02/2014] [Indexed: 11/16/2022] Open
Abstract
Background The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin’s lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis. Results Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL. Conclusions The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-15-390) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
43
|
Frijhoff J, Dagnell M, Godfrey R, Ostman A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid Redox Signal 2014; 20:1994-2010. [PMID: 24111825 DOI: 10.1089/ars.2013.5643] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Redox-regulated control of protein tyrosine phosphatases (PTPs) through inhibitory reversible oxidation of their active site is emerging as a novel and general mechanism for control of cell surface receptor-activated signaling. This mechanism allows for a previously unrecognized crosstalk between redox regulators and signaling pathways, governed by, for example, receptor tyrosine kinases and integrins, which control cell proliferation and migration. RECENT ADVANCES A large number of different molecules, in addition to hydrogen peroxide, have been found to induce PTP inactivation, including lipid peroxides, reactive nitrogen species, and hydrogen sulfide. Characterization of oxidized PTPs has identified different types of oxidative modifications that are likely to display differential sensitivity to various reducing systems. Accumulating evidence demonstrates that PTP oxidation occurs in a temporally and spatially restricted manner. Studies in cell and animal models indicate altered PTP oxidation in models of common diseases, such as cancer and metabolic/cardiovascular disease. Novel methods have appeared that allow characterization of global PTP oxidation. CRITICAL ISSUES As the understanding of the molecular and cellular biology of PTP oxidation is developing, it will be important to establish experimental procedures that allow analyses of PTP oxidation, and its regulation, in physiological and pathophysiological settings. Future studies should also aim to establish specific connections between various oxidants, specific PTPs, and defined signaling contexts. FUTURE DIRECTIONS Modulation of PTP activity still appears as a valid strategy for correction or inhibition of dys-regulated cell signaling. Continued studies on PTP oxidation might present yet unrecognized means to exploit this regulatory mechanism for pharmacological purposes.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- 1 Department of Oncology-Pathology, Karolinska Institutet , Stockholm, Sweden
| | | | | | | |
Collapse
|
44
|
Witsenburg JJ, Glauner H, Müller JP, Groenewoud JMM, Roth G, Böhmer FD, Adjobo-Hermans MJW, Brock R. A quantitative assessment of costimulation and phosphatase activity on microclusters in early T cell signaling. PLoS One 2013; 8:e79277. [PMID: 24205378 PMCID: PMC3813591 DOI: 10.1371/journal.pone.0079277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/27/2013] [Indexed: 01/15/2023] Open
Abstract
T cell signaling is triggered through stimulation of the T cell receptor and costimulatory receptors. Receptor activation leads to the formation of membrane-proximal protein microclusters. These clusters undergo tyrosine phosphorylation and organize multiprotein complexes thereby acting as molecular signaling platforms. Little is known about how the quantity and phosphorylation levels of microclusters are affected by costimulatory signals and the activity of specific signaling proteins. We combined micrometer-sized, microcontact printed, striped patterns of different stimuli and simultaneous analysis of different cell strains with image processing protocols to address this problem. First, we validated the stimulation protocol by showing that high expression levels CD28 result in increased cell spreading. Subsequently, we addressed the role of costimulation and a specific phosphotyrosine phosphatase in cluster formation by including a SHP2 knock-down strain in our system. Distinguishing cell strains using carboxyfluorescein succinimidyl ester enabled a comparison within single samples. SHP2 exerted its effect by lowering phosphorylation levels of individual clusters while CD28 costimulation mainly increased the number of signaling clusters and cell spreading. These effects were observed for general tyrosine phosphorylation of clusters and for phosphorylated PLCγ1. Our analysis enables a clear distinction between factors determining the number of microclusters and those that act on these signaling platforms.
Collapse
Affiliation(s)
- J. Joris Witsenburg
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Heike Glauner
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jörg P. Müller
- Institute for Molecular Cell Biology, Jena University Hospital, Jena, Germany
| | - Johannes M. M. Groenewoud
- Department of Medical Technology Assessment, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Günter Roth
- Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK), Albert Ludwigs University, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University, Freiburg, Germany
| | | | - Merel J. W. Adjobo-Hermans
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
45
|
Eriksson A, Kalushkova A, Jarvius M, Hilhorst R, Rickardson L, Kultima HG, de Wijn R, Hovestad L, Fryknäs M, Öberg F, Larsson R, Parrow V, Höglund M. AKN-028 induces cell cycle arrest, downregulation of Myc associated genes and dose dependent reduction of tyrosine kinase activity in acute myeloid leukemia. Biochem Pharmacol 2013; 87:284-91. [PMID: 24200998 DOI: 10.1016/j.bcp.2013.10.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 01/10/2023]
Abstract
AKN-028 is a novel tyrosine kinase inhibitor with preclinical activity in acute myeloid leukemia (AML), presently undergoing investigation in a phase I/II study. It is a potent inhibitor of the FMS-like kinase 3 (FLT3) but shows in vitro activity in a wide range of AML samples. In the present study, we have characterized the effects of AKN-028 on AML cells in more detail. AKN-028 induced a dose-dependent G0/1 arrest in AML cell line MV4-11. Treatment with AKN-028 caused significantly altered gene expression in all AML cell types tested (430 downregulated, 280 upregulated transcripts). Subsequent gene set enrichment analysis revealed enrichment of genes associated with the proto-oncogene and cell cycle regulator c-Myc among the downregulated genes in both AKN-028 and midostaurin treated cells. Kinase activity profiling in AML cell lines and primary AML samples showed that tyrosine kinase activity, but not serine/threonine kinase activity, was inhibited by AKN-028 in a dose dependent manner in all samples tested, reaching approximately the same level of kinase activity. Cells sensitive to AKN-028 showed a higher overall tyrosine kinase activity than more resistant ones, whereas serine/threonine kinase activity was similar for all primary AML samples. In summary, AKN-028 induces cell cycle arrest in AML cells, downregulates Myc-associated genes and affect several signaling pathways. AML cells with high global tyrosine kinase activity seem to be more sensitive to the cytotoxic effect of AKN-028 in vitro.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Antonia Kalushkova
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Riet Hilhorst
- PamGene International B.V., 's-Hertogenbosch, The Netherlands
| | - Linda Rickardson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | - Rik de Wijn
- PamGene International B.V., 's-Hertogenbosch, The Netherlands
| | | | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Fredrik Öberg
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | - Martin Höglund
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
46
|
Kazi JU, Kabir NN, Rönnstrand L. Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Med Oncol 2013; 30:757. [PMID: 24174318 DOI: 10.1007/s12032-013-0757-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
Protein kinase C (PKC) belongs to a family of ten serine/threonine protein kinases encoded by nine genes. This family of proteins plays critical roles in signal transduction which results in cell proliferation, survival, differentiation and apoptosis. Due to differential subcellular localization and tissue distribution, each member displays distinct signaling characteristics. In this review, we have summarized the roles of PKC family members in chronic lymphocytic leukemia (CLL). CLL is a heterogeneous hematological disorder with survival ranging from months to decades. PKC isoforms are differentially expressed in CLL and play critical roles in CLL pathogenesis. Thus, isoform-specific PKC inhibitors may be an attractive option for CLL treatment.
Collapse
Affiliation(s)
- Julhash U Kazi
- Translational Cancer Research, Lund University, Medicon Village, Building 404:C3, 223 63, Lund, Sweden,
| | | | | |
Collapse
|
47
|
Knockout of Density-Enhanced Phosphatase-1 impairs cerebrovascular reserve capacity in an arteriogenesis model in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:802149. [PMID: 24027763 PMCID: PMC3763586 DOI: 10.1155/2013/802149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/27/2013] [Accepted: 07/17/2013] [Indexed: 01/07/2023]
Abstract
Collateral growth, arteriogenesis, represents a proliferative mechanism involving endothelial cells, smooth muscle cells, and monocytes/macrophages. Here we investigated the role of Density-Enhanced Phosphatase-1 (DEP-1) in arteriogenesis in vivo, a protein-tyrosine-phosphatase that has controversially been discussed with regard to vascular cell biology. Wild-type C57BL/6 mice subjected to permanent left common carotid artery occlusion (CCAO) developed a significant diameter increase in distinct arteries of the circle of Willis, especially in the anterior cerebral artery. Analyzing the impact of loss of DEP-1 function, induction of collateralization was quantified after CCAO and hindlimb femoral artery ligation comparing wild-type and DEP-1−/− mice. Both cerebral collateralization assessed by latex perfusion and peripheral vessel growth in the femoral artery determined by microsphere perfusion and micro-CT analysis were not altered in DEP-1−/− compared to wild-type mice. Cerebrovascular reserve capacity, however, was significantly impaired in DEP-1−/− mice. Cerebrovascular transcriptional analysis of proarteriogenic growth factors and receptors showed specifically reduced transcripts of PDGF-B. SiRNA knockdown of DEP-1 in endothelial cells in vitro also resulted in significant PDGF-B downregulation, providing further evidence for DEP-1 in PDGF-B gene regulation. In summary, our data support the notion of DEP-1 as positive functional regulator in vascular cerebral arteriogenesis, involving differential PDGF-B gene expression.
Collapse
|
48
|
Böhmer SA, Weibrecht I, Söderberg O, Böhmer FD. Association of the protein-tyrosine phosphatase DEP-1 with its substrate FLT3 visualized by in situ proximity ligation assay. PLoS One 2013; 8:e62871. [PMID: 23650535 PMCID: PMC3641115 DOI: 10.1371/journal.pone.0062871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
Protein-tyrosine phosphatases (PTPs) are important regulators of signal transduction processes. Essential for the functional characterization of PTPs is the identification of their physiological substrates, and an important step towards this goal is the demonstration of a physical interaction. The association of PTPs with their cellular substrates is, however, often transient and difficult to detect with unmodified proteins at endogenous levels. Density-enhanced phosphatase-1 (DEP-1/PTPRJ) is a regulator of hematopoietic cell functions, and a candidate tumor suppressor. However, association of DEP-1 with any of its proposed substrates at endogenous levels has not yet been shown. We have previously obtained functional and biochemical evidence for a direct interaction of DEP-1 with the hematopoietic receptor-tyrosine kinase Fms-like tyrosine kinase-3 (FLT3). In the current study we have used the method of in situ proximity ligation assay (in situ PLA) to validate this interaction at endogenous levels, and to further characterize it. In situ PLA readily detected association of endogenous DEP-1 and FLT3 in the human acute monocytic leukemia cell line THP-1, which was enhanced by FLT3 ligand (FL) stimulation in a time-dependent manner. Association peaked between 10 and 20 min of stimulation and returned to basal levels at 30 min. This time course was similar to the time course of FLT3 autophosphorylation. FLT3 kinase inhibition and DEP-1 oxidation abrogated association. Consistent with a functional role of DEP-1-FLT3 interaction, stable knockdown of DEP-1 in THP-1 cells enhanced FL-induced ERK1/2 activation. These findings support that FLT3 is a bona fide substrate of DEP-1 and that interaction occurs mainly via an enzyme-substrate complex formation triggered by FLT3 ligand stimulation.
Collapse
Affiliation(s)
- Sylvia-Annette Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Irene Weibrecht
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Söderberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Frank-D. Böhmer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
49
|
Caldarelli A, Müller JP, Paskowski-Rogacz M, Herrmann K, Bauer R, Koch S, Heninger AK, Krastev D, Ding L, Kasper S, Fischer T, Brodhun M, Böhmer FD, Buchholz F. A genome-wide RNAi screen identifies proteins modulating aberrant FLT3-ITD signaling. Leukemia 2013; 27:2301-10. [PMID: 23508117 PMCID: PMC3865536 DOI: 10.1038/leu.2013.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 02/25/2013] [Accepted: 03/06/2013] [Indexed: 12/22/2022]
Abstract
Fms-like tyrosine kinase-3 is a commonly mutated gene in acute myeloid leukemia, with about one-third of patients carrying an internal-tandem duplication of the juxtamembrane domain in the receptor (FLT3-ITD). FLT3-ITD exhibits altered signaling quality, including aberrant activation of STAT5. To identify genes affecting FLT3-ITD-mediated STAT5 signaling, we performed an esiRNA-based RNAi screen utilizing a STAT5-driven reporter assay. Knockdowns that caused reduced FLT3-ITD-mediated STAT5 signaling were enriched for genes encoding proteins involved in protein secretion and intracellular protein transport, indicating that modulation of protein transport processes could potentially be used to reduce constitutive STAT5 signaling in FLT3-ITD-positive cells. The relevance of KDELR1, a component involved in the Golgi-ER retrograde transport, was further analyzed. In FLT3-ITD-expressing leukemic MV4-11 cells, downregulation of KDELR1 resulted in reduced STAT5 activation, proliferation and colony-forming capacity. Stable shRNA-mediated depletion of KDELR1 in FLT3-ITD-expressing 32D cells likewise resulted in reduced STAT5 signaling and cell proliferation. Importantly, these cells also showed a reduced capacity to generate a leukemia-like disease in syngeneic C3H/HeJ mice. Together our data suggest intracellular protein transport as a potential target for FLT3-ITD driven leukemias, with KDELR1 emerging as a positive modulator of oncogenic FLT3-ITD activity.
Collapse
Affiliation(s)
- A Caldarelli
- Department of Medical Systems Biology, University Hospital and Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aya-Bonilla C, Green MR, Camilleri E, Benton M, Keane C, Marlton P, Lea R, Gandhi MK, Griffiths LR. High-resolution loss of heterozygosity screening implicatesPTPRJas a potential tumor suppressor gene that affects susceptibility to non-hodgkin's lymphoma. Genes Chromosomes Cancer 2013; 52:467-79. [DOI: 10.1002/gcc.22044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/16/2012] [Indexed: 01/04/2023] Open
|