1
|
Bauer N, Mao Q, Vashistha A, Seshadri A, Nancy Du YC, Otterbein L, Tan C, de Caestecker MP, Wang B. Compelling Evidence: A Critical Update on the Therapeutic Potential of Carbon Monoxide. Med Res Rev 2025. [PMID: 40302550 DOI: 10.1002/med.22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Carbon monoxide (CO) is an endogenous signaling molecule. It is produced via heme degradation by heme oxygenase (HMOX), releasing stoichiometric amounts of CO, iron, and biliverdin (then bilirubin). The HMOX-CO axis has long been shown to offer beneficial effects by modulating inflammation, proliferation and cell death as they relate to tissue and organ protection. Recent years have seen a large number of studies examining CO pharmacology, its molecular targets, cellular mechanisms of action, pharmacokinetics, and detection methods using various delivery modalities including inhaled CO gas, CO solutions, and various types of CO donors. Unfortunately, one widely used donor type includes four commercially available carbonyl complexes with metal or borane, CORM-2 (Ru2+), CORM-3 (Ru2+), CORM-A1 (BH3), and CORM-401 (Mn+), which have been shown to have minimal and/or unpredictable CO production and extensive CO-independent chemical reactivity and biological activity. As a result, not all "CO biological activities" in the literature can be attributed to CO. In this review, we summarize key findings based on CO gas and CO in solution for the certainty of the active principal and to avoid data contamination resulting from the confirmed or potential reactivities and activities of the "carrier" portion of CORMs. Along a similar line, we discuss interesting potential research areas of CO in the brain including a newly proposed CO/HMOX/dopamine axis and the role of CO in cognitive stimulation and circadian rhythm. This review is critical for the future development of the CO field by steering clear of complications caused by chemically reactive donor molecules.
Collapse
Affiliation(s)
- Nicola Bauer
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Qiyue Mao
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Aditi Vashistha
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Anupamaa Seshadri
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Chieh Nancy Du
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, New York, USA
| | - Leo Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Chalet Tan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Allen TP, Roennfeldt AE, Reckdharajkumar M, Sullivan AE, Liu M, Quinn RJ, Russell DL, Peet DJ, Whitelaw ML, Bersten DC. dFLASH; dual FLuorescent transcription factor activity sensor for histone integrated live-cell reporting and high-content screening. Nat Commun 2025; 16:3298. [PMID: 40195317 PMCID: PMC11977238 DOI: 10.1038/s41467-025-58488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Live-cell transcription factor (TF) activity reporting is crucial for synthetic biology, drug discovery and functional genomics. Here we present dFLASH (dual FLuorescent transcription factor Activity Sensor for Histone-integrated live-cell reporting), a modular, genome-integrated TF sensor. dFLASH homogeneously and specifically detects endogenous Hypoxia Inducible Factor (HIF) and Progesterone Receptor (PGR) activities, as well as coactivator recruitment to synthetic TFs. The dFLASH system produces dual-color nuclear fluorescence, enabling normalized, dynamic, live-cell TF activity sensing with strong signal-to-noise ratios and robust screening performance (Z' = 0.61-0.74). We validate dFLASH for functional genomics and drug screening, demonstrating HIF regulation via CRISPRoff and application to whole-genome CRISPR KO screening. Additionally, we apply dFLASH for drug discovery, identifying HIF pathway modulators from a 1600-compound natural product library using high-content imaging. Together, this versatile platform provides a powerful tool for studying TF activity across diverse applications.
Collapse
Affiliation(s)
- Timothy P Allen
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Alison E Roennfeldt
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | - Adrienne E Sullivan
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Darryl L Russell
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Murray L Whitelaw
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore, 308433, Singapore
| | - David C Bersten
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Lee PWT, Kobayashi M, Dohkai T, Takahashi I, Yoshida T, Harada H. 2-Oxoglutarate-dependent dioxygenases as oxygen sensors: their importance in health and disease. J Biochem 2025; 177:79-104. [PMID: 39679914 DOI: 10.1093/jb/mvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Since low oxygen conditions below physiological levels, hypoxia, are associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxic response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) has attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs. Herein, we present a detailed classification of 2-OGDD superfamily proteins, such as Jumonji C-domain-containing histone demethylases, ten-eleven translocation enzymes, AlkB family of DNA/RNA demethylases and lysyl hydroxylases, and discuss their specific functions and associations with various diseases. By introducing the multifaceted roles of 2-OGDD superfamily proteins in the hypoxic response, this review aims to summarize the accumulated knowledge about the complex mechanisms governing cellular adaptation to hypoxia in various physiological and pathophysiological contexts.
Collapse
Affiliation(s)
- Peter W T Lee
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takakuni Dohkai
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Itsuki Takahashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takumi Yoshida
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Repair Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Ouyang H, How CY, Wang X, Yu C, Luo A, Huang L, Chen Y. Crosslinking-mediated Interactome Analysis Identified PHD2-HIF1α Interaction Hotspots and the Role of PHD2 in Regulating Protein Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628769. [PMID: 39763868 PMCID: PMC11702602 DOI: 10.1101/2024.12.16.628769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Prolyl Hydroxylase Domain protein 2 (PHD2) targets Hypoxia Inducible Factor alpha subunits (HIFα) for oxygen-dependent proline hydroxylation that leads to subsequent ubiquitination and degradation of HIFα. In addition to HIF proteins, growing evidence suggested that PHD2 may exert its multifaceted function through hydroxylase-dependent or independent activities. Given the critical role of PHD2 in diverse biological processes, it is important to comprehensively identify potential PHD2 interacting proteins. In this study, we engineered HeLa cells that stably express HTBH-tagged PHD2 to facilitate the identification of PHD2 interactome. Using DSSO-based cross-linking mass spectrometry (XL-MS) technology and LC-MSn analysis, we mapped PHD2-HIF1α interaction hotspots and identified over 300 PHD2 interacting proteins. Furthermore, we validated the COP9 Signalosome (CSN) complex, a major deneddylase complex, as a novel PHD2 interactor. DMOG treatment promoted interaction between PHD2 and CSN complex and enhanced the deneddylase activity of the CSN complex, resulting in increased level of free Cullin and reduced target protein ubiquitination. This mechanism may serve as a negative feedback regulation of the HIF transcription pathway.
Collapse
Affiliation(s)
- Haiping Ouyang
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Cindy Y. How
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Ang Luo
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, the University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
He W, Gasmi-Seabrook GMC, Ikura M, Lee JE, Ohh M. Time-resolved NMR detection of prolyl-hydroxylation in intrinsically disordered region of HIF-1α. Proc Natl Acad Sci U S A 2024; 121:e2408104121. [PMID: 39231207 PMCID: PMC11406255 DOI: 10.1073/pnas.2408104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.
Collapse
Affiliation(s)
- Wenguang He
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1M1, Canada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Michael Ohh
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
6
|
Alva R, Wiebe JE, Stuart JA. Revisiting reactive oxygen species production in hypoxia. Pflugers Arch 2024; 476:1423-1444. [PMID: 38955833 DOI: 10.1007/s00424-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
7
|
Volkova YL, Jucht AE, Oechsler N, Krishnankutty R, von Kriegsheim A, Wenger RH, Scholz CC. Selective Hypoxia-Sensitive Oxomer Formation by FIH Prevents Binding of the NF-κB Inhibitor IκBβ to NF-κB Subunits. Mol Cell Biol 2024; 44:138-148. [PMID: 38644795 PMCID: PMC11110689 DOI: 10.1080/10985549.2024.2338727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/31/2024] [Indexed: 04/23/2024] Open
Abstract
Pharmacologic inhibitors of cellular hydroxylase oxygen sensors are protective in multiple preclinical in vivo models of inflammation. However, the molecular mechanisms underlying this regulation are only partly understood, preventing clinical translation. We previously proposed a new mechanism for cellular oxygen sensing: oxygen-dependent, (likely) covalent protein oligomer (oxomer) formation. Here, we report that the oxygen sensor factor inhibiting HIF (FIH) forms an oxomer with the NF-κB inhibitor β (IκBβ). The formation of this protein complex required FIH enzymatic activity and was prevented by pharmacologic inhibitors. Oxomer formation was highly hypoxia-sensitive and very stable. No other member of the IκB protein family formed an oxomer with FIH, demonstrating that FIH-IκBβ oxomer formation was highly selective. In contrast to the known FIH-dependent oxomer formation with the deubiquitinase OTUB1, FIH-IκBβ oxomer formation did not occur via an IκBβ asparagine residue, but depended on the amino acid sequence VAERR contained within a loop between IκBβ ankyrin repeat domains 2 and 3. Oxomer formation prevented IκBβ from binding to its primary interaction partners p65 and c-Rel, subunits of NF-κB, the master regulator of the cellular transcriptional response to pro-inflammatory stimuli. We therefore propose that FIH-mediated oxomer formation with IκBβ contributes to the hypoxia-dependent regulation of inflammation.
Collapse
Affiliation(s)
- Yulia L. Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Nina Oechsler
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| | | | | | - Roland H. Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C. Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Bargiela D, Cunha PP, Veliça P, Krause LCM, Brice M, Barbieri L, Gojkovic M, Foskolou IP, Rundqvist H, Johnson RS. The factor inhibiting HIF regulates T cell differentiation and anti-tumour efficacy. Front Immunol 2024; 15:1293723. [PMID: 38690263 PMCID: PMC11058823 DOI: 10.3389/fimmu.2024.1293723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/12/2024] [Indexed: 05/02/2024] Open
Abstract
T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- David Bargiela
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pedro P. Cunha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pedro Veliça
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lena C. M. Krause
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Madara Brice
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Barbieri
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Milos Gojkovic
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Iosifina P. Foskolou
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Helene Rundqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Randall S. Johnson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Fiorini G, Schofield CJ. Biochemistry of the hypoxia-inducible factor hydroxylases. Curr Opin Chem Biol 2024; 79:102428. [PMID: 38330792 DOI: 10.1016/j.cbpa.2024.102428] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The hypoxia-inducible factors are α,β-heterodimeric transcription factors that mediate the chronic response to hypoxia in humans and other animals. Protein hydroxylases belonging to two different structural subfamilies of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase superfamily modify HIFα. HIFα prolyl-hydroxylation, as catalysed by the PHDs, regulates HIFα levels and, consequently, α,β-HIF levels. HIFα asparaginyl-hydroxylation, as catalysed by factor inhibiting HIF (FIH), regulates the transcriptional activity of α,β-HIF. The activities of the PHDs and FIH are regulated by O2 availability, enabling them to act as hypoxia sensors. We provide an overview of the biochemistry of the HIF hydroxylases, discussing evidence that their kinetic and structural properties may be tuned to their roles in the HIF system. Avenues for future research and therapeutic modulation are discussed.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
10
|
Yasan GT, Gunel-Ozcan A. Hypoxia and Hypoxia Mimetic Agents As Potential Priming Approaches to Empower Mesenchymal Stem Cells. Curr Stem Cell Res Ther 2024; 19:33-54. [PMID: 36642875 DOI: 10.2174/1574888x18666230113143234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 01/17/2023]
Abstract
Mesenchymal stem cells (MSC) exhibit self-renewal capacity and multilineage differentiation potential, making them attractive for research and clinical application. The properties of MSC can vary depending on specific micro-environmental factors. MSC resides in specific niches with low oxygen concentrations, where oxygen functions as a metabolic substrate and a signaling molecule. Conventional physical incubators or chemically hypoxia mimetic agents are applied in cultures to mimic the original low oxygen tension settings where MSC originated. This review aims to focus on the current knowledge of the effects of various physical hypoxic conditions and widely used hypoxia-mimetic agents-PHD inhibitors on mesenchymal stem cells at a cellular and molecular level, including proliferation, stemness, differentiation, viability, apoptosis, senescence, migration, immunomodulation behaviors, as well as epigenetic changes.
Collapse
Affiliation(s)
| | - Aysen Gunel-Ozcan
- Department of Stem Cell Sciences, Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Li C, Yang D, Yang W, Wang Y, Li D, Li Y, Xiao B, Zhang H, Zhao H, Dong H, Zhang J, Chu G, Wang A, Jin Y, Liu Y, Chen H. Hypoxia activation attenuates progesterone synthesis in goat trophoblast cells via NR1D1 inhibition of StAR expression†. Biol Reprod 2023; 109:720-735. [PMID: 37552055 DOI: 10.1093/biolre/ioad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023] Open
Abstract
Trophoblast plays a crucial role in gestation maintenance and embryo implantation, partly due to the synthesis of progesterone. It has been demonstrated that hypoxia regulates invasion, proliferation, and differentiation of trophoblast cells. Additionally, human trophoblasts display rhythmic expression of circadian clock genes. However, it remains unclear if the circadian clock system is present in goat trophoblast cells (GTCs), and its involvement in hypoxia regulation of steroid hormone synthesis remains elusive. In this study, immunofluorescence staining revealed that both BMAL1 and NR1D1 (two circadian clock components) were highly expressed in GTCs. Quantitative real-time PCR analysis showed that several circadian clock genes were rhythmically expressed in forskolin-synchronized GTCs. To mimic hypoxia, GTCs were treated with hypoxia-inducing reagents (CoCl2 or DMOG). Quantitative real-time PCR results demonstrated that hypoxia perturbed the mRNA expression of circadian clock genes and StAR. Notably, the increased expression of NR1D1 and the reduction of StAR expression in hypoxic GTCs were also detected by western blotting. In addition, progesterone secretion exhibited a notable decline in hypoxic GTCs. SR9009, an NR1D1 agonist, significantly decreased StAR expression at both the mRNA and protein levels and markedly inhibited progesterone secretion in GTCs. Moreover, SR8278, an NR1D1 antagonist, partially reversed the inhibitory effect of CoCl2 on mRNA and protein expression levels of StAR and progesterone synthesis in GTCs. Our results demonstrate that hypoxia reduces StAR expression via the activation of NR1D1 signaling in GTCs, thus inhibiting progesterone synthesis. These findings provide new insights into the NR1D1 regulation of progesterone synthesis in GTCs under hypoxic conditions.
Collapse
Affiliation(s)
- Chao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanghao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Bonan Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Guiyan Chu
- Laboratory of Animal Fat Deposition & Muscle Development, Department of Animal Genetics Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingqiu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Figg WD, Fiorini G, Chowdhury R, Nakashima Y, Tumber A, McDonough MA, Schofield CJ. Structural basis for binding of the renal carcinoma target hypoxia-inducible factor 2α to prolyl hydroxylase domain 2. Proteins 2023; 91:1510-1524. [PMID: 37449559 PMCID: PMC10952196 DOI: 10.1002/prot.26541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.
Collapse
Affiliation(s)
- William D. Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
- Institute of Natural Medicine, University of ToyamaToyamaJapan
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Michael A. McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos OxfordInstitute for Antimicrobial Research, University of OxfordOxfordUK
| |
Collapse
|
13
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
14
|
Barrera JCA, Ondo-Mendez A, Giera M, Kostidis S. Metabolomic and Lipidomic Analysis of the Colorectal Adenocarcinoma Cell Line HT29 in Hypoxia and Reoxygenation. Metabolites 2023; 13:875. [PMID: 37512582 PMCID: PMC10384744 DOI: 10.3390/metabo13070875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The poor availability of oxygen and nutrients in malignant tumors drives the activation of various molecular responses and metabolic reprogramming in cancer cells. Hypoxic tumor regions often exhibit resistance to chemotherapy and radiotherapy. One approach to enhance cancer therapy is to indirectly increase tumor oxygen availability through targeted metabolic reprogramming. Thus, understanding the underlying metabolic changes occurring during hypoxia and reoxygenation is crucial for improving therapy efficacy. In this study, we utilized the HT29 colorectal adenocarcinoma cell line as a hypoxia-reoxygenation model to investigate central carbon and lipid metabolism. Through quantitative NMR spectroscopy and flow injection analysis - differential mobility spectroscopy-tandem mass spectrometry (FIA-DMS-MS/MS) analysis, we observed alterations in components of mitochondrial metabolism, redox status, specific lipid classes, and structural characteristics of lipids during hypoxia and up to 24 h of reoxygenation. These findings contribute to our understanding of the metabolic changes occurring during reoxygenation and provide the basis for functional studies aimed at metabolic pathways in cancer cells.
Collapse
Affiliation(s)
| | - Alejandro Ondo-Mendez
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
15
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
16
|
You J, Liu M, Li M, Zhai S, Quni S, Zhang L, Liu X, Jia K, Zhang Y, Zhou Y. The Role of HIF-1α in Bone Regeneration: A New Direction and Challenge in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24098029. [PMID: 37175732 PMCID: PMC10179302 DOI: 10.3390/ijms24098029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The process of repairing significant bone defects requires the recruitment of a considerable number of cells for osteogenesis-related activities, which implies the consumption of a substantial amount of oxygen and nutrients. Therefore, the limited supply of nutrients and oxygen at the defect site is a vital constraint that affects the regenerative effect, which is closely related to the degree of a well-established vascular network. Hypoxia-inducible factor (HIF-1α), which is an essential transcription factor activated in hypoxic environments, plays a vital role in vascular network construction. HIF-1α, which plays a central role in regulating cartilage and bone formation, induces vascular invasion and differentiation of osteoprogenitor cells to promote and maintain extracellular matrix production by mediating the adaptive response of cells to changes in oxygen levels. However, the application of HIF-1α in bone tissue engineering is still controversial. As such, clarifying the function of HIF-1α in regulating the bone regeneration process is one of the urgent issues that need to be addressed. This review provides insight into the mechanisms of HIF-1α action in bone regeneration and related recent advances. It also describes current strategies for applying hypoxia induction and hypoxia mimicry in bone tissue engineering, providing theoretical support for the use of HIF-1α in establishing a novel and feasible bone repair strategy in clinical settings.
Collapse
Affiliation(s)
- Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Manxuan Liu
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Minghui Li
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Shaobo Zhai
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Sezhen Quni
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Lu Zhang
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Xiuyu Liu
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Kewen Jia
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Yidi Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
- School of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
17
|
Chan YY, Mbenza NM, Chan MC, Leung IKH. Assays to Study Hypoxia-Inducible Factor Prolyl Hydroxylase Domain 2 (PHD2), a Key Human Oxygen Sensing Protein. Methods Mol Biol 2023; 2648:187-206. [PMID: 37039992 DOI: 10.1007/978-1-0716-3080-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Molecular oxygen is essential for all multicellular life forms. In humans, the hypoxia-inducible factor (HIF) prolyl hydroxylase domain-containing enzymes (PHDs) serve as important oxygen sensors by regulating the activity of HIF, the master regulator that mediates cellular oxygen homeostasis, in an oxygen-dependent manner. In normoxia, PHDs catalyze the prolyl hydroxylation of HIF, which leads to its degradation and prevents cellular hypoxic response to be triggered. PHDs are current inhibition targets for the potential treatments of a number of diseases. In this chapter, we discuss in vitro and cell-based methods to study the modulation of PHD2, the most important human PHD isoform in normoxia and mild hypoxia. These include the production and purification of recombinant PHD2, the use of mass spectrometry to follow PHD2-catalyzed reactions and the studies of HIF stabilization in cells by immunoblotting.
Collapse
Affiliation(s)
- Yan Ying Chan
- Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Naasson M Mbenza
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mun Chiang Chan
- Department of Molecular Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Ivanhoe K H Leung
- School of Chemistry and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
18
|
Wang Z, Cai Y, Zhang Q, Li J, Lin B, Zhao J, Zhang F, Li Y, Yang X, Lu L, Shuai X, Shen J. Upregulating HIF-1α to Boost the Survival of Neural Stem Cells via Functional Peptides-Complexed MRI-Visible Nanomedicine for Stroke Therapy. Adv Healthc Mater 2022; 11:e2201630. [PMID: 36148580 DOI: 10.1002/adhm.202201630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Indexed: 01/28/2023]
Abstract
Neural stem cells (NSCs) transplantation has been considered as a promising strategy for the treatment of ischemic stroke. However, the therapeutic prospect is limited by the poor control over the survival, migration, and maturation of transplanted NSCs. Upregulating hypoxia inducible factor (HIF)-1α expression in stem cells can improve the survival and migration of NSCs grafted for stroke therapy. Functional peptide drugs, which could inhibit endogenous HIF-1α ubiquitination, might be used to effectively upregulate the HIF-1α expression in NSCs, thereby to improve the therapeutic effect in ischemia stroke. Herein, a magnetic resonance imaging (MRI)-visible nanomedicine is developed to codeliver functional peptides and superparamagnetic iron oxide (SPIO) nanoparticles into NSCs. This nanomedicine not only promotes the survival and migration ability of NSCs but also allows an in vivo tracking of transplanted NSCs with MRI. The results demonstrate the great potential of the functional peptides-complexed multifunctional nanomedicine in boosting the therapeutic effect of stem cell-based therapy in stroke.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yujun Cai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qinyuan Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianing Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Bingling Lin
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Junya Zhao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yunhua Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xieqing Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
19
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
20
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Rezaei A, Li Y, Turmaine M, Bertazzo S, Howard CA, Arnett TR, Shakib K, Jell G. Hypoxia mimetics restore bone biomineralisation in hyperglycaemic environments. Sci Rep 2022; 12:13944. [PMID: 35977987 PMCID: PMC9385857 DOI: 10.1038/s41598-022-18067-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
Diabetic patients have an increased risk of fracture and an increased occurrence of impaired fracture healing. Diabetic and hyperglycaemic conditions have been shown to impair the cellular response to hypoxia, via an inhibited hypoxia inducible factor (HIF)-1α pathway. We investigated, using an in vitro hyperglycaemia bone tissue engineering model (and a multidisciplinary bone characterisation approach), the differing effects of glucose levels, hypoxia and chemicals known to stabilise HIF-1α (CoCl2 and DMOG) on bone formation. Hypoxia (1% O2) inhibited bone nodule formation and resulted in discrete biomineralisation as opposed to the mineralised extracellular collagen fibres found in normoxia (20% O2). Unlike hypoxia, the use of hypoxia mimetics did not prevent nodule formation in normal glucose level. Hyperglycaemic conditions (25 mM and 50 mM glucose) inhibited biomineralisation. Interestingly, both hypoxia mimetics (CoCl2 and DMOG) partly restored hyperglycaemia inhibited bone nodule formation. These results highlight the difference in osteoblast responses between hypoxia mimetics and actual hypoxia and suggests a role of HIF-1α stabilisation in bone biomineralisation that extends that of promoting neovascularisation, or other system effects associated with hypoxia and bone regeneration in vivo. This study demonstrates that targeting the HIF pathway may represent a promising strategy for bone regeneration in diabetic patients.
Collapse
Affiliation(s)
- Azadeh Rezaei
- Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK
| | - Yutong Li
- Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK
| | - Mark Turmaine
- Department of Cell & Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Sergio Bertazzo
- Department of Medical Physics & Biomedical Engineering, University College London, London, WC1E 6BT, UK
| | - Christopher A Howard
- Department of Physics & Astronomy, University College London, London, WC1E 6BT, UK
| | - Timothy R Arnett
- Department of Cell & Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Kaveh Shakib
- Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK.
| | - Gavin Jell
- Division of Surgery & Interventional Science, University College London, 9th Floor Royal Free Hospital, London, NW3 2QG, UK.
| |
Collapse
|
22
|
Schützhold V, Gravemeyer J, Bicker A, Hager T, Padberg C, Schäfer J, Wrobeln A, Steinbrink M, Zeynel S, Hankeln T, Becker JC, Fandrey J, Winning S. Knockout of Factor-Inhibiting HIF ( Hif1an) in Colon Epithelium Attenuates Chronic Colitis but Does Not Reduce Colorectal Cancer in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1280-1291. [PMID: 35121641 DOI: 10.4049/jimmunol.2100418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.
Collapse
Affiliation(s)
- Vera Schützhold
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Anne Bicker
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Thomas Hager
- Institut für Pathologie, Universität Duisburg-Essen, Essen, Germany
| | - Claudia Padberg
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Jana Schäfer
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Anna Wrobeln
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | | | - Seher Zeynel
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Thomas Hankeln
- Molekulargenetik und Genomanalyse, Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, Mainz, Germany; and
| | - Jürgen Christian Becker
- Translational Skin Cancer Research, Dermatologie, Universitätsmedizin Essen, Essen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany;
| | - Sandra Winning
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Hudler P, Urbancic M. The Role of VHL in the Development of von Hippel-Lindau Disease and Erythrocytosis. Genes (Basel) 2022; 13:362. [PMID: 35205407 PMCID: PMC8871608 DOI: 10.3390/genes13020362] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Von Hippel-Lindau disease (VHL disease or VHL syndrome) is a familial multisystem neoplastic syndrome stemming from germline disease-associated variants of the VHL tumor suppressor gene on chromosome 3. VHL is involved, through the EPO-VHL-HIF signaling axis, in oxygen sensing and adaptive response to hypoxia, as well as in numerous HIF-independent pathways. The diverse roles of VHL confirm its implication in several crucial cellular processes. VHL variations have been associated with the development of VHL disease and erythrocytosis. The association between genotypes and phenotypes still remains ambiguous for the majority of mutations. It appears that there is a distinction between erythrocytosis-causing VHL variations and VHL variations causing VHL disease with tumor development. Understanding the pathogenic effects of VHL variants might better predict the prognosis and optimize management of the patient.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, Grabloviceva ulica 46, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Wang X, Du H, Li X. Artesunate attenuates atherosclerosis by inhibiting macrophage M1-like polarization and improving metabolism. Int Immunopharmacol 2021; 102:108413. [PMID: 34891003 DOI: 10.1016/j.intimp.2021.108413] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022]
Abstract
OBJECT Atherosclerosis (AS) is caused by chronic inflammation. Artesunate (ART), a sesquiterpene lactone endoperoxide isolated from Chinese herbal medicine, displays excellent anti-inflammatory activity. In this study, we investigated the effects of artesunate on atherosclerosis in ApoE knock-out mice, and used untargeted metabolomics to determine metabolite changes in these mice following ART treatment. METHODS ApoE knock-out mice were fed a western diet and administered ART for eight weeks. Untargeted metabolomics was used to detect differential metabolites following the administration of ART. Oil Red O was used to assess plaque size, western blot and ELISA were used to detect inflammatory factors, and flow cytometry was used to detect the expression of markers on macrophages. RESULTS Results of the in vivo experiment suggested that ART reduced atherosclerotic plaques in murine aortic root. In addition both in vivo and vitro experiments suggested that ART reduced the expression levels of inflammating cytokines, but enhanced those of the anti-inflammatory cytokines in macrophages. Untargeted metabolomic analysis demonstrated that multiple metabolic pathways, which were blocked in AS mice, showed different degrees of improvement following ART treatment. Furthermore, bioinformatic analyses showed that the HIF-1α pathway was altered in the AS mice and the ART treatment mice. In vitro experiments confirmed that LPS-induced upregulation of HIF-1α expression and activation of the NF-κB signaling pathways was significantly inhibited by ART treatment. CONCLUSION These results suggest that ART exerts anti-atherosclerosis effects by inhibiting M1 macrophage polarization. One of the molecular mechanisms is that ART inhibits M1-like macrophage polarization via regulating HIF-1α and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Hongjiao Du
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xiaodong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
25
|
HIF-1α Hydroxyprolines Modulate Oxygen-Dependent Protein Stability Via Single VHL Interface With Comparable Effect on Ubiquitination Rate. J Mol Biol 2021; 433:167244. [PMID: 34537235 DOI: 10.1016/j.jmb.2021.167244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022]
Abstract
The basic molecular mechanism underlying mammalian oxygen-dependent regulation of hypoxia-inducible factor (HIF) via the von Hippel-Lindau E3 ubiquitin ligase is well established. The principal step in this critical cellular process is the hydroxylation of either or both of the two conserved proline residues P402 and P564 within the oxygen-dependent degradation domain (ODD) of HIF-1α subunit via prolyl hydroxylases, which is necessary for binding VHL. However, the significance of the two prolines has remained unclear considering that only one hydroxyproline is sufficient for the recruitment of VHL. Here, we show using biophysical analyses that both hydroxyprolines bind to the same interface on VHL with similar affinity; VHL binding affinity to HIF-1α ODD remains relatively unchanged regardless of whether the ODD contains one or two hydroxyprolines; ODD with two hydroxyprolines can accommodate two VHLs; and the rate of in vitro ubiquitination of ODD with one hydroxyproline via VHL E3 ligase is comparable to the rate observed with ODD containing two hydroxyprolines. However, the two hydroxyprolines show distinct contributions to the intracellular stability of HIF-1α ODD. These results demonstrate for the first time that the graduated HIF-1α stability profile observed over a range of oxygen tension is not attributed to the binding of or ubiquitination via VHL per se, but is likely due to the preceding events such as the efficacy of oxygen-dependent prolyl hydroxylase-mediated hydroxylation of HIF-1α.
Collapse
|
26
|
Bae WY, Choi JS, Nam S, Jeong JW. β-arrestin 2 stimulates degradation of HIF-1α and modulates tumor progression of glioblastoma. Cell Death Differ 2021; 28:3092-3104. [PMID: 34007068 PMCID: PMC8563934 DOI: 10.1038/s41418-021-00802-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/04/2023] Open
Abstract
The basic function of β-arrestin 2 (Arrb2) is to negatively regulate the G-protein-coupled receptor signaling pathway through facilitating receptor desensitization and internalization. Arrb2 has also been reported to play various roles in cancer pathology including the proliferation, migration, invasion, metastasis, and apoptosis of solid tumors. However, the molecular mechanisms underlying the tumorigenic capacities of Arrb2 have not been elucidated. Here, we show a novel function of Arrb2: Arrb2 facilitates the degradation of HIF-1α, which is a master regulator of oxygen homeostasis. We also demonstrate that Arrb2 interacts with HIF-1α and stimulates ubiquitin-mediated 26S proteasomal degradation of HIF-1α by recruiting PHD2 and pVHL. Overexpression of Arrb2 in human glioblastoma cells suppresses HIF-1α signaling, tumor growth, and angiogenesis. Consistent with this antitumorigenic effect of Arrb2, low Arrb2 expression levels correlate with high HIF-1α expression and poor glioblastoma patient survival. These results collectively reveal a novel function of Arrb2 in the oxygen-sensing mechanism that directly regulates HIF-1α stability in human cancers and suggest Arrb2 as a new potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Woom-Yee Bae
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Sun Choi
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon, Republic of Korea
- Department of Life Sciences, Gachon University, Seongnam, Republic of Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Mbenza NM, Nasarudin N, Vadakkedath PG, Patel K, Ismail AZ, Hanif M, Wright LJ, Sarojini V, Hartinger CG, Leung IKH. Carbon Monoxide is an Inhibitor of HIF Prolyl Hydroxylase Domain 2. Chembiochem 2021; 22:2521-2525. [PMID: 34137488 DOI: 10.1002/cbic.202100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Indexed: 11/11/2022]
Abstract
Hypoxia-inducible factor prolyl hydroxylase domain 2 (PHD2) is an important oxygen sensor in animals. By using the CO-releasing molecule-2 (CORM-2) as an in situ CO donor, we demonstrate that CO is an inhibitor of PHD2. This report provides further evidence about the emerging role of CO in oxygen sensing and homeostasis.
Collapse
Affiliation(s)
- Naasson M Mbenza
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Nawal Nasarudin
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Praveen G Vadakkedath
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Kamal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - A Z Ismail
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Department of Chemistry, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Muhammad Hanif
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - L James Wright
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag, 92019, Victoria Street West, Auckland, 1142, New Zealand
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
28
|
Daly LA, Brownridge PJ, Batie M, Rocha S, Sée V, Eyers CE. Oxygen-dependent changes in binding partners and post-translational modifications regulate the abundance and activity of HIF-1α/2α. Sci Signal 2021; 14:eabf6685. [PMID: 34285132 DOI: 10.1126/scisignal.abf6685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular adaptation to low-oxygen environments is mediated in part by the hypoxia-inducible factors (HIFs). Like other transcription factors, the stability and transcriptional activity of HIFs-and consequently, the hypoxic response-are regulated by post-translational modifications (PTMs) and changes in protein-protein interactions. Our current understanding of PTM-mediated regulation of HIFs is primarily based on in vitro protein fragment-based studies typically validated in fragment-expressing cells treated with hypoxia-mimicking compounds. Here, we used immunoprecipitation-based mass spectrometry to characterize the PTMs and binding partners for full-length HIF-1α and HIF-2α under normoxic (21% oxygen) and hypoxic (1% oxygen) conditions. Hypoxia substantially altered the complexity and composition of the HIFα protein interaction networks, particularly for HIF-2α, with the hypoxic networks of both isoforms being enriched for mitochondrial proteins. Moreover, both HIFα isoforms were heavily covalently modified. We identified ~40 PTM sites composed of 13 different types of modification on both HIFα isoforms, including multiple cysteine modifications and an unusual phosphocysteine. More than 80% of the PTMs identified were not previously known and about half exhibited oxygen dependency. We further characterized an evolutionarily conserved phosphorylation of Ser31 in HIF-1α as a regulator of its transcriptional function, and we propose functional roles for Thr406, Thr528, and Ser581 in HIF-2α. These data will help to delineate the different physiological roles of these closely related isoforms in fine-tuning the hypoxic response.
Collapse
Affiliation(s)
- Leonard A Daly
- Department of Biochemistry and System Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - Philip J Brownridge
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - Michael Batie
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sonia Rocha
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Violaine Sée
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Centre for Cell Imaging, University of Liverpool, Liverpool L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry and System Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
29
|
Wu Y, Li Z, McDonough MA, Schofield CJ, Zhang X. Inhibition of the Oxygen-Sensing Asparaginyl Hydroxylase Factor Inhibiting Hypoxia-Inducible Factor: A Potential Hypoxia Response Modulating Strategy. J Med Chem 2021; 64:7189-7209. [PMID: 34029087 DOI: 10.1021/acs.jmedchem.1c00415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a JmjC domain 2-oxogluarate and Fe(II)-dependent oxygenase that catalyzes hydroxylation of specific asparagines in the C-terminal transcriptional activation domain of hypoxia-inducible factor alpha (HIF-α) isoforms. This modification suppresses the transcriptional activity of HIF by reducing its interaction with the transcriptional coactivators p300/CBP. By contrast with inhibition of the HIF prolyl hydroxylases (PHDs), inhibitors of FIH, which accepts multiple non-HIF substrates, are less studied; they are of interest due to their potential ability to alter metabolism (either in a HIF-dependent and/or -independent manner) and, provided HIF is upregulated, to modulate the course of the HIF-mediated hypoxic response. Here we review studies on the mechanism and inhibition of FIH. We discuss proposed biological roles of FIH including its regulation of HIF activity and potential roles of FIH-catalyzed oxidation of non-HIF substrates. We highlight potential therapeutic applications of FIH inhibitors.
Collapse
Affiliation(s)
- Yue Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihong Li
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
30
|
Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050468. [PMID: 33923349 PMCID: PMC8146675 DOI: 10.3390/biomedicines9050468] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
31
|
Wan TL, Ge L, Pan Y, Yuan Q, Liu L, Sarina S, Kou L. Catalysis based on ferroelectrics: controllable chemical reaction with boosted efficiency. NANOSCALE 2021; 13:7096-7107. [PMID: 33889916 DOI: 10.1039/d1nr00847a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalysts, which can accelerate chemical reactions, show promising potential to alleviate environmental pollution and the energy crisis. However, their wide application is severely limited by their low efficiency and poor selectivity due to the recombination of photogenerated electron-hole pairs, the back-reaction of interactants. Accordingly, ferroelectrics have emerged as promising catalysts to address these issues with the advantages of promoted light adsorption, boosted catalytic efficiency as a result of their intrinsic polarization, suppressed electron-hole pair recombination, and superior selectivity via the ferroelectric switch. This review summarizes the recent research progress of catalytic studies based on ferroelectric materials and highlights the controllability of catalytic activity by the ferroelectric switch. More importantly, we also comprehensively highlight the underlying working mechanism of ferroelectric-controlled catalysis to facilitate a deep understanding of this novel chemical reaction and guide future experiments. Finally, the perspectives of catalysis based on ferroelectrics and possible research opportunities are discussed. This review is expected to inspire wide research interests and push ferroelectric catalysis to practical applications.
Collapse
Affiliation(s)
- Tsz Lok Wan
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, 4000, Australia.
| | | | | | | | | | | | | |
Collapse
|
32
|
Tumor Hypoxia as a Barrier in Cancer Therapy: Why Levels Matter. Cancers (Basel) 2021; 13:cancers13030499. [PMID: 33525508 PMCID: PMC7866096 DOI: 10.3390/cancers13030499] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia is a common feature of solid tumors and associated with poor outcome in most cancer types and treatment modalities, including radiotherapy, chemotherapy, surgery and, most likely, immunotherapy. Emerging strategies, such as proton therapy and combination therapies with radiation and hypoxia targeted drugs, provide new opportunities to overcome the hypoxia barrier and improve therapeutic outcome. Hypoxia is heterogeneously distributed both between and within tumors and shows large variations across patients not only in prevalence, but importantly, also in level. To best exploit the emerging strategies, a better understanding of how individual hypoxia levels from mild to severe affect tumor biology is vital. Here, we discuss our current knowledge on this topic and how we should proceed to gain more insight into the field. Abstract Hypoxia arises in tumor regions with insufficient oxygen supply and is a major barrier in cancer treatment. The distribution of hypoxia levels is highly heterogeneous, ranging from mild, almost non-hypoxic, to severe and anoxic levels. The individual hypoxia levels induce a variety of biological responses that impair the treatment effect. A stronger focus on hypoxia levels rather than the absence or presence of hypoxia in our investigations will help development of improved strategies to treat patients with hypoxic tumors. Current knowledge on how hypoxia levels are sensed by cancer cells and mediate cellular responses that promote treatment resistance is comprehensive. Recently, it has become evident that hypoxia also has an important, more unexplored role in the interaction between cancer cells, stroma and immune cells, influencing the composition and structure of the tumor microenvironment. Establishment of how such processes depend on the hypoxia level requires more advanced tumor models and methodology. In this review, we describe promising model systems and tools for investigations of hypoxia levels in tumors. We further present current knowledge and emerging research on cellular responses to individual levels, and discuss their impact in novel therapeutic approaches to overcome the hypoxia barrier.
Collapse
|
33
|
Hsu KF, Wilkins SE, Hopkinson RJ, Sekirnik R, Flashman E, Kawamura A, McCullagh JS, Walport LJ, Schofield CJ. Hypoxia and hypoxia mimetics differentially modulate histone post-translational modifications. Epigenetics 2021; 16:14-27. [PMID: 32609604 PMCID: PMC7889154 DOI: 10.1080/15592294.2020.1786305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Post-translational modifications (PTMs) to the tails of the core histone proteins are critically involved in epigenetic regulation. Hypoxia affects histone modifications by altering the activities of histone-modifying enzymes and the levels of hypoxia-inducible factor (HIF) isoforms. Synthetic hypoxia mimetics promote a similar response, but how accurately the hypoxia mimetics replicate the effects of limited oxygen availability on the levels of histone PTMs is uncertain. Here we report studies on the profiling of the global changes to PTMs on intact histones in response to hypoxia/hypoxia-related stresses using liquid chromatography-mass spectrometry (LC-MS). We demonstrate that intact protein LC-MS profiling is a relatively simple and robust method for investigating potential effects of drugs on histone modifications. The results provide insights into the profiles of PTMs associated with hypoxia and inform on the extent to which hypoxia and hypoxia mimetics cause similar changes to histones. These findings imply chemically-induced hypoxia does not completely replicate the substantial effects of physiological hypoxia on histone PTMs, highlighting that caution should be used in interpreting data from their use.
Collapse
Affiliation(s)
- Kuo-Feng Hsu
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sarah E. Wilkins
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Richard J. Hopkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, UK
| | - Rok Sekirnik
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Emily Flashman
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, BHF Centre of Research Excellence, Wellcome Trust Centre for Human Genetics, Oxford, UK
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Louise J. Walport
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | | |
Collapse
|
34
|
Derry PJ, Vo ATT, Gnanansekaran A, Mitra J, Liopo AV, Hegde ML, Tsai AL, Tour JM, Kent TA. The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Front Cell Neurosci 2020; 14:603043. [PMID: 33363457 PMCID: PMC7755086 DOI: 10.3389/fncel.2020.603043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.
Collapse
Affiliation(s)
- Paul J Derry
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Anh Tran Tram Vo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Aswini Gnanansekaran
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, The Houston Methodist Research Institute, Houston, TX, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, United States.,Department of Computer Science, George R. Brown School of Engineering, Rice University, Houston, TX, United States.,Department of Materials Science and NanoEngineering, George R. Brown School of Engineering, Rice University, Houston, TX, United States
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Department of Translational Medical Sciences, Institute of Biosciences and Technology, College of Medicine, Texas A&M Health Science Center, Houston, TX, United States.,Department of Chemistry, Rice University, Houston, TX, United States.,Stanley H. Appel Department of Neurology, Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
35
|
Wang Y, Li G, Deng M, Liu X, Huang W, Zhang Y, Liu M, Chen Y. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: From mechanisms to therapeutics. Pharmacol Ther 2020; 221:107783. [PMID: 33307143 DOI: 10.1016/j.pharmthera.2020.107783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia is a hallmark of cancer. Hypoxia-inducible factor (HIF), a master player for sensing and adapting to hypoxia, profoundly influences genome instability, tumor progression and metastasis, metabolic reprogramming, and resistance to chemotherapies and radiotherapies. High levels and activity of HIF result in poor clinical outcomes in cancer patients. Thus, HIFs provide ideal therapeutic targets for cancers. However, HIF biology is sophisticated, and currently available HIF inhibitors have limited clinical utility owing to their low efficacy or side effects. RNA helicases, which are master players in cellular RNA metabolism, are usually highly expressed in tumors to meet the increased oncoprotein biosynthesis demand. Intriguingly, recent findings provide convincing evidence that RNA helicases are crucial for the adaptive cellular response to hypoxia via a mutual regulation with HIFs. More importantly, some RNA helicase inhibitors may suppress HIF signaling by blocking the translation of HIF-responsive genes. Therefore, RNA helicase inhibitors may work synergistically with HIF inhibitors in cancer to improve treatment efficacy. In this review, we discuss current knowledge of how cells sense and adapt to hypoxia through HIFs. However, our primary focus is on the multiple functions of RNA helicases in the adaptive response to hypoxia. We also highlight how these hypoxia-related RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guangqiang Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Mingxia Deng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yan Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
36
|
McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett 2020; 502:189-199. [PMID: 33278499 DOI: 10.1016/j.canlet.2020.11.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Tissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies. Induction of hypoxia inducible factors (HIFs) mediates many proteomic and genomic changes associated with tumor hypoxia. In breast cancers, HIFs not only predict poor prognosis, but also promote metastasis and drug resistance. Several studies have proposed HIF-1α as a druggable target in drug-resistant breast cancers, leading to the synthesis and development of small molecule inhibitors. Disappointingly, however, none of these small molecule inhibitors have progressed to clinical use. In this review, we briefly discuss the role of HIF-1α in breast cancer drug resistance and summarize the current and future approaches to targeting this transcription factor in breast cancer treatment.
Collapse
Affiliation(s)
- Courtney E McAleese
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Chandra Choudhury
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
37
|
Moulis JM. Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry. Biomolecules 2020; 10:E1584. [PMID: 33233467 PMCID: PMC7700505 DOI: 10.3390/biom10111584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Transition metals interact with a large proportion of the proteome in all forms of life, and they play mandatory and irreplaceable roles. The dynamics of ligand binding to ions of transition metals falls within the realm of Coordination Chemistry, and it provides the basic principles controlling traffic, regulation, and use of metals in cells. Yet, the cellular environment stands out against the conditions prevailing in the test tube when studying metal ions and their interactions with various ligands. Indeed, the complex and often changing cellular environment stimulates fast metal-ligand exchange that mostly escapes presently available probing methods. Reducing the complexity of the problem with purified proteins or in model organisms, although useful, is not free from pitfalls and misleading results. These problems arise mainly from the absence of the biosynthetic machinery and accessory proteins or chaperones dealing with metal / metal groups in cells. Even cells struggle with metal selectivity, as they do not have a metal-directed quality control system for metalloproteins, and serendipitous metal binding is probably not exceptional. The issue of metal exchange in biology is reviewed with particular reference to iron and illustrating examples in patho-physiology, regulation, nutrition, and toxicity.
Collapse
Affiliation(s)
- Jean-Marc Moulis
- Alternative Energies and Atomic Energy Commission—Fundamental Research Division—Interdisciplinary Research Institute of Grenoble (CEA-IRIG), University of Grenoble Alpes, F-38000 Grenoble, France;
- National Institute of Health and Medical Research, University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Inserm U1055, F-38000 Grenoble, France
| |
Collapse
|
38
|
Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression. Int J Mol Sci 2020; 21:ijms21218162. [PMID: 33142830 PMCID: PMC7663541 DOI: 10.3390/ijms21218162] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. The key molecules of the hypoxia/oxygen-sensing signaling include the transcriptional regulator hypoxia-inducible factor (HIF) which widely controls oxygen responsive genes, the central members of the 2-oxoglutarate (2-OG)-dependent dioxygenases, such as prolyl hydroxylase (PHD or EglN), and an E3 ubiquitin ligase component for HIF degeneration called von Hippel–Lindau (encoding protein pVHL). In this review, we summarize the current knowledge about the canonical hypoxia signaling, HIF transcription factors, and pVHL. In addition, the role of 2-OG-dependent enzymes, such as DNA/RNA-modifying enzymes, JmjC domain-containing enzymes, and prolyl hydroxylases, in gene regulation of cancer progression, is specifically reviewed. We also discuss the therapeutic advancement of targeting hypoxia and oxygen sensing pathways in cancer.
Collapse
|
39
|
Abstract
Oxygen is of fundamental importance for most living organisms, and the maintenance of oxygen homeostasis is a key physiological challenge for all large animals. Oxygen deprivation, hypoxia, is a critical component of many human diseases including cancer, heart disease, stroke, vascular disease, and anaemia. The discovery of oxygen sensing provides fundamental knowledge of a stunningly elegant molecular machinery; it also promises development of new therapeutics for serious diseases such as cancer. As a result of their impressive contributions to our understanding of the mechanisms by which cells sense oxygen and signal in hypoxia, Gregg Semenza, Peter Ratcliffe, and William Kaelin were awarded the Nobel Prize in 2019.
Collapse
Affiliation(s)
- Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Beijer, and SciLifeLab Laboratories, Uppsala, Sweden
- CONTACT Lena Claesson-Welsh Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Beijer, and SciLifeLab Laboratories, Dag Hammarskjöldsv 20, 751 85Uppsala, Sweden
| |
Collapse
|
40
|
Vaughan ME, Wallace M, Handzlik MK, Chan AB, Metallo CM, Lamia KA. Cryptochromes Suppress HIF1α in Muscles. iScience 2020; 23:101338. [PMID: 32683313 PMCID: PMC7371909 DOI: 10.1016/j.isci.2020.101338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Muscles preferentially utilize glycolytic or oxidative metabolism depending on the intensity of physical activity. Transcripts required for carbohydrate and lipid metabolism undergo circadian oscillations of expression in muscles, and both exercise capacity and the metabolic response to exercise are influenced by time of day. The circadian repressors CRY1 and CRY2 repress peroxisome proliferator-activated receptor delta (PPARδ), a major driver of oxidative metabolism and exercise endurance. CRY-deficient mice exhibit enhanced PPARδ activation and greater maximum speed when running on a treadmill but no increase in exercise endurance. Here we demonstrate that CRYs limit hypoxia-responsive transcription via repression of HIF1α-BMAL1 heterodimers. Furthermore, CRY2 appeared to be more effective than CRY1 in the reduction of HIF1α protein steady-state levels in primary myotubes and quadriceps in vivo. Finally, CRY-deficient myotubes exhibit metabolic alterations consistent with cryptochrome-dependent suppression of HIF1α, which likely contributes to circadian modulation of muscle metabolism. CRY2 plays a unique role in regulating HIF1α protein accumulation in muscle HIF1α and BMAL1 heterodimers are transcriptionally active CRY1/2 represses transcription driven by HIF1α/BMAL1 heterodimers Cryptochromes influence skeletal muscle substrate preference and utilization
Collapse
Affiliation(s)
- Megan E Vaughan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michal K Handzlik
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alanna B Chan
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katja A Lamia
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Liu Y, Wang J, Chen D, Kam WR, Sullivan DA. The Role of Hypoxia-Inducible Factor 1α in the Regulation of Human Meibomian Gland Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32150252 PMCID: PMC7401459 DOI: 10.1167/iovs.61.3.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose We recently discovered that a hypoxic environment is beneficial for meibomian gland (MG) function. The mechanisms underlying this effect are unknown, but we hypothesize that it is due to an increase in the levels of hypoxia-inducible factor 1α (HIF1α). In other tissues, HIF1α is the primary regulator of cellular responses to hypoxia, and HIF1α expression can be induced by multiple stimuli, including hypoxia and hypoxia-mimetic agents. The objective of this study was to test our hypothesis. Methods Human eyelid tissues were stained for HIF1α. Immortalized human MG epithelial cells (IHMGECs) were cultured for varying time periods under normoxic (21% O2) or hypoxic (1% O2) conditions, in the presence or absence of the hypoxia-mimetic agent roxadustat (Roxa). IHMGECs were then processed for the analysis of cell number, HIF1α expression, lipid-containing vesicles, neutral and polar lipid content, DNase II activity, and intracellular pH. Results Our results show that HIF1α protein is present in human MG acinar epithelial cells in vivo. Our findings also demonstrate that exposure to 1% O2 or to Roxa increases the expression of HIF1α, the number of lipid-containing vesicles, the content of neutral lipids, and the activity of DNase II and decreases the pH in IHMGECs in vitro. Conclusions Our data support our hypothesis that the beneficial effect of hypoxia on the MG is mediated through an increased expression of HIF1α.
Collapse
|
42
|
Kostyuk AI, Kokova AD, Podgorny OV, Kelmanson IV, Fetisova ES, Belousov VV, Bilan DS. Genetically Encoded Tools for Research of Cell Signaling and Metabolism under Brain Hypoxia. Antioxidants (Basel) 2020; 9:E516. [PMID: 32545356 PMCID: PMC7346190 DOI: 10.3390/antiox9060516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/08/2023] Open
Abstract
Hypoxia is characterized by low oxygen content in the tissues. The central nervous system (CNS) is highly vulnerable to a lack of oxygen. Prolonged hypoxia leads to the death of brain cells, which underlies the development of many pathological conditions. Despite the relevance of the topic, different approaches used to study the molecular mechanisms of hypoxia have many limitations. One promising lead is the use of various genetically encoded tools that allow for the observation of intracellular parameters in living systems. In the first part of this review, we provide the classification of oxygen/hypoxia reporters as well as describe other genetically encoded reporters for various metabolic and redox parameters that could be implemented in hypoxia studies. In the second part, we discuss the advantages and disadvantages of the primary hypoxia model systems and highlight inspiring examples of research in which these experimental settings were combined with genetically encoded reporters.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.D.K.); (O.V.P.); (I.V.K.); (E.S.F.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
43
|
Taheem DK, Jell G, Gentleman E. Hypoxia Inducible Factor-1α in Osteochondral Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:105-115. [PMID: 31774026 PMCID: PMC7166133 DOI: 10.1089/ten.teb.2019.0283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Damage to osteochondral (OC) tissues can lead to pain, loss of motility, and progress to osteoarthritis. Tissue engineering approaches offer the possibility of replacing damaged tissues and restoring joint function; however, replicating the spatial and functional heterogeneity of native OC tissue remains a pressing challenge. Chondrocytes in healthy cartilage exist in relatively low-oxygen conditions, while osteoblasts in the underlying bone experience higher oxygen pressures. Such oxygen gradients also exist in the limb bud, where they influence OC tissue development. The cellular response to these spatial variations in oxygen pressure, which is mediated by the hypoxia inducible factor (HIF) pathway, plays a central role in regulating osteo- and chondrogenesis by directing progenitor cell differentiation and promoting and maintaining appropriate extracellular matrix production. Understanding the role of the HIF pathway in OC tissue development may enable new approaches to engineer OC tissue. In this review, we discuss strategies to spatially and temporarily regulate the HIF pathway in progenitor cells to create functional OC tissue for regenerative therapies. Impact statement Strategies to engineer osteochondral (OC) tissue are limited by the complex and varying microenvironmental conditions in native bone and cartilage. Indeed, native cartilage experiences low-oxygen conditions, while the underlying bone is relatively normoxic. The cellular response to these low-oxygen conditions, which is mediated through the hypoxia inducible factor (HIF) pathway, is known to promote and maintain the chondrocyte phenotype. By using tissue engineering scaffolds to spatially and temporally harness the HIF pathway, it may be possible to improve OC tissue engineering strategies for the regeneration of damaged cartilage and its underlying subchondral bone.
Collapse
Affiliation(s)
- Dheraj K. Taheem
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Gavin Jell
- Division of Surgery and Interventional Sciences, University College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
44
|
Domene C, Jorgensen C, Schofield CJ. Mechanism of Molecular Oxygen Diffusion in a Hypoxia-Sensing Prolyl Hydroxylase Using Multiscale Simulation. J Am Chem Soc 2020; 142:2253-2263. [DOI: 10.1021/jacs.9b09236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmen Domene
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom
- Department of Chemistry, Britannia House, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
- Department of Chemistry, University of Bath, Claverton Down Bath BA2 7AY, United Kingdom
| | - Christian Jorgensen
- Department of Chemistry, Britannia House, King’s College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Mansfield Road, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
45
|
Luo Z, Zeng W, Du G, Chen J, Zhou J. Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1. BIORESOURCE TECHNOLOGY 2020; 295:122248. [PMID: 31627065 DOI: 10.1016/j.biortech.2019.122248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Dissolved oxygen (DO) supply plays essential roles in microbial organic acid production. Candida glabrata, as a dominant strain for producing pyruvic acid, principally converts glucose to pyruvic acid through glycolysis. However, this process relies excessively on high extracellular DO content. In this study, in combination with specific motif analysis of gene promoters, hypoxia-inducible factor 1 (HIF1) was engineered to improve the transcription level of some enzymes related to pyruvic acid synthesis under low DO level and directly led to increased pyruvic acid production and glycolysis efficiency. Moreover, the intracellular stability of HIF1 was further optimized from different aspects to maximize pyruvic acid accumulation. Finally, the pyruvic acid titer in a 5-L batch bioreactor with 10% DO level reached 53.1 g/L. As pyruvic acid is involved in the biosynthesis of various products, these findings suggest that HIF1-enabled regulation method has significant potential for increasing the synthesis of other chemicals in microorganisms.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
46
|
Vetrovoy O, Sarieva K, Lomert E, Nimiritsky P, Eschenko N, Galkina O, Lyanguzov A, Tyulkova E, Rybnikova E. Pharmacological HIF1 Inhibition Eliminates Downregulation of the Pentose Phosphate Pathway and Prevents Neuronal Apoptosis in Rat Hippocampus Caused by Severe Hypoxia. J Mol Neurosci 2019; 70:635-646. [PMID: 31865524 DOI: 10.1007/s12031-019-01469-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023]
Abstract
The pentose phosphate pathway (PPP) of glucose metabolism in the brain serves as a primary source of NADPH which in turn plays a crucial role in multiple cellular processes, including maintenance of redox homeostasis and antioxidant defense. In our model of protective mild hypobaric hypoxia in rats (3MHH), an inverse correlation between hypoxia-inducible factor-1 (HIF1) activity and mRNA levels of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of PPP, was observed. In the present study, it was demonstrated that severe hypobaric hypoxia (SH) induced short-term upregulation of HIF1 alpha-subunit (HIF1α) in the hippocampal CA1 subfield and decreased the activity of G6PD. The levels of NADPH were also reduced, promoting oxidative stress, triggering apoptosis, and neuronal loss. Injection of a HIF1 inhibitor (HIF1i), topotecan hydrochloride (5 mg/kg, i.p.), before SH prevented the upregulation of HIF1α and normalized G6PD activity. In addition, HIF1i injection caused an increase in NADPH levels, normalization of total glutathione levels and of the cellular redox status as well as suppression of free-radical and apoptotic processes. These results demonstrate a new molecular mechanism of post-hypoxic cerebral pathology development which involves HIF1-dependent PPP depletion and support a recently suggested injurious role of HIF1 activation in the acute phase of cerebral hypoxia/ischemia. Application of PPP stimulators in early post-hypoxic/ischemic period might represent a promising neuroprotective strategy. Graphical abstract HIF1-dependent down-regulation of the pentose phosphate pathway contributes to the hypoxia-induced oxidative stress and neuronal apoptosis in the rat hippocampus.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia. .,Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia.
| | - Kseniia Sarieva
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| | - Ekaterina Lomert
- Laboratory of Cell Biology in Culture, Institute of Cytology, Russian Academy of Sciences, Tihoretsky pr. 4, 194064, Saint Petersburg, Russia
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosov Ave. 27-10, 119192, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Lomonosov Ave. 31-5, 119192, Moscow, Russia
| | - Natalia Eschenko
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Olga Galkina
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Andrey Lyanguzov
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya emb. 7-9, 199034, Saint Petersburg, Russia
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| | - Elena Rybnikova
- Laboratory of Regulation of Brain Neuron Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova emb. 6, 199034, Saint Petersburg, Russia
| |
Collapse
|
47
|
Sulser P, Pickel C, Günter J, Leissing TM, Crean D, Schofield CJ, Wenger RH, Scholz CC. HIF hydroxylase inhibitors decrease cellular oxygen consumption depending on their selectivity. FASEB J 2019; 34:2344-2358. [PMID: 31908020 DOI: 10.1096/fj.201902240r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
Pharmacologic HIF hydroxylase inhibitors (HIs) are effective for the treatment of anemia in chronic kidney disease patients and may also be beneficial for the treatment of diseases such as chronic inflammation and ischemia-reperfusion injury. The selectivities of many HIs for HIF hydroxylases and possible off-target effects in cellulo are unclear, delaying the translation from preclinical studies to clinical trials. We developed a novel assay that discriminates between the inhibition of HIF-α prolyl-4-hydroxylase domain (PHD) enzymes and HIF-α asparagine hydroxylase factor inhibiting HIF (FIH). We characterized 15 clinical and preclinical HIs, categorizing them into pan-HIF-α hydroxylase (broad spectrum), PHD-selective, and FIH-selective inhibitors, and investigated their effects on HIF-dependent transcriptional regulation, erythropoietin production, and cellular energy metabolism. While energy homeostasis was generally maintained following HI treatment, the pan-HIs led to a stronger increase in pericellular pO2 than the PHD/FIH-selective HIs. Combined knockdown of FIH and PHD-selective inhibition did not further increase pericellular pO2 . Hence, the additional increase in pericellular pO2 by pan- over PHD-selective HIs likely reflects HIF hydroxylase independent off-target effects. Overall, these analyses demonstrate that HIs can lead to oxygen redistribution within the cellular microenvironment, which should be considered as a possible contributor to HI effects in the treatment of hypoxia-associated diseases.
Collapse
Affiliation(s)
- Pascale Sulser
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Julia Günter
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Daniel Crean
- School of Veterinary Medicine & UCD Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| |
Collapse
|
48
|
Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WD, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 2019; 8:e46490. [PMID: 31500697 PMCID: PMC6739866 DOI: 10.7554/elife.46490] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Collapse
Affiliation(s)
| | - Kerstin Lippl
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Ya-Min Tian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - William D Figg
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Ratcliffe
- The Francis Crick InstituteLondonUnited Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
49
|
Mechanisms of hypoxia signalling: new implications for nephrology. Nat Rev Nephrol 2019; 15:641-659. [PMID: 31488900 DOI: 10.1038/s41581-019-0182-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Abstract
Studies of the regulation of erythropoietin (EPO) production by the liver and kidneys, one of the classical physiological responses to hypoxia, led to the discovery of human oxygen-sensing mechanisms, which are now being targeted therapeutically. The oxygen-sensitive signal is generated by 2-oxoglutarate-dependent dioxygenases that deploy molecular oxygen as a co-substrate to catalyse the post-translational hydroxylation of specific prolyl and asparaginyl residues in hypoxia-inducible factor (HIF), a key transcription factor that regulates transcriptional responses to hypoxia. Hydroxylation of HIF at different sites promotes both its degradation and inactivation. Under hypoxic conditions, these processes are suppressed, enabling HIF to escape destruction and form active transcriptional complexes at thousands of loci across the human genome. Accordingly, HIF prolyl hydroxylase inhibitors stabilize HIF and stimulate expression of HIF target genes, including the EPO gene. These molecules activate endogenous EPO gene expression in diseased kidneys and are being developed, or are already in clinical use, for the treatment of renal anaemia. In this Review, we summarize information on the molecular circuitry of hypoxia signalling pathways underlying these new treatments and highlight some of the outstanding questions relevant to their clinical use.
Collapse
|
50
|
Intrabody against prolyl hydroxylase 2 promotes angiogenesis by stabilizing hypoxia-inducible factor-1α. Sci Rep 2019; 9:11861. [PMID: 31413262 PMCID: PMC6694103 DOI: 10.1038/s41598-019-47891-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/25/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor (HIF)-1α is a crucial transcription factor that regulates the expression of target genes involved in angiogenesis. Prolyl hydroxylase 2 (PHD2) dominantly hydroxylates two highly conserved proline residues of HIF-1α to promote its degradation. This study was designed to construct an intrabody against PHD2 that can inhibit PHD2 activity and promote angiogenesis. Single-chain variable fragment (scFv) against PHD2, INP, was isolated by phage display technique and was modified with an endoplasmic reticulum (ER) sequence to obtain ER-retained intrabody against PHD2 (ER-INP). ER-INP was efficiently expressed and bound to PHD2 in cells, significantly increased the levels of HIF-1α, and decreased hydroxylated HIF-1α in human embryonic kidney cell line (HEK293) cells and mouse mononuclear macrophage leukaemia cell line (RAW264.7) cells. ER-INP has shown distinct angiogenic activity both in vitro and in vivo, as ER-INP expression significantly promoted the migration and tube formation of human umbilical vein endothelial cells (HUVECs) and enhanced angiogenesis of chick chorioallantoic membranes (CAMs). Furthermore, ER-INP promoted distinct expression and secretion of a range of angiogenic factors. To the best of our knowledge, this is the first study to report an ER-INP intrabody enhancing angiogenesis by blocking PHD2 activity to increase HIF-1α abundance and activity. These results indicate that ER-INP may play a role in the clinical treatment of tissue injury and ischemic diseases in the future.
Collapse
|