1
|
Hu Q, Sitsel O, Bågenholm V, Grønberg C, Lyu P, Pii Svane AS, Andersen KR, Laursen NS, Meloni G, Nissen P, Juhl DW, Nielsen JT, Nielsen NC, Gourdon P. Transition metal transporting P-type ATPases: terminal metal-binding domains serve as sensors for autoinhibitory tails. FEBS J 2025; 292:1654-1674. [PMID: 39609265 PMCID: PMC11970713 DOI: 10.1111/febs.17330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/09/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
Copper is an essential micronutrient and yet is highly toxic to cells at elevated concentrations. P1B-ATPase proteins are critical for this regulation, providing active extrusion across cellular membranes. One unique molecular adaptation of P1B-ATPases compared to other P-type ATPases is the presence of metal-binding domains (MBDs) at the cytosolic termini, which however are poorly characterized with an elusive mechanistic role. Here we present the MBD architecture in metal-free and metal-bound forms of the archetype Cu+-specific P1B-ATPase LpCopA, determined using NMR. The MBD is composed of a flexible tail and a structured core with a metal ion binding site defined by three sulfur atoms, one of which is pertinent to the so-called CXXC motif. Furthermore, we demonstrate that the MBD rather than being involved in ion delivery likely serves a regulatory role, which is dependent on the classical P-type ATPase E1-E2 transport mechanism. Specifically, the flexible tail appears responsible for autoinhibition while the metal-binding core is used for copper sensing. This model is validated by a conformation-sensitive and MBD-targeting nanobody that can structurally and functionally replace the flexible tail. We propose that autoinhibition of Cu+-ATPases occurs at low copper conditions via MBD-mediated interference with the soluble domains of the ATPase core and that metal transport is enabled when copper levels rise, through metal-induced dissociation of the MBD. This allows P1B-ATPase 'vacuum cleaners' to tune their own activity, balancing the levels of critical micronutrients in the cells.
Collapse
Affiliation(s)
- Qiaoxia Hu
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | - Oleg Sitsel
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
- Present address:
Marine Structural Biology UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| | | | | | - Pin Lyu
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
| | - Anna Sigrid Pii Svane
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | | | - Nick Stub Laursen
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
| | - Gabriele Meloni
- Department of Chemistry and BiochemistryThe University of Texas at DallasRichardsonTXUSA
| | - Poul Nissen
- Department of Molecular Biology and GeneticsAarhus UniversityDenmark
| | - Dennis W. Juhl
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Jakob Toudahl Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Niels Chr. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of ChemistryAarhus UniversityDenmark
| | - Pontus Gourdon
- Department of Biomedical SciencesUniversity of CopenhagenDenmark
- Department of Experimental Medical ScienceLund UniversitySweden
| |
Collapse
|
2
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Zeng F, Feng Y, Wang T, Ma X, Jiao S, Yang S, Shao M, Ma Z, Mao J, Chen B. The asymmetric expression of plasma membrane H +-ATPase family genes in response to pulvinus-driven leaf phototropism movement in Vitis vinifera. PHYSIOLOGIA PLANTARUM 2024; 176:e14380. [PMID: 38894644 DOI: 10.1111/ppl.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
Phototropism movement is crucial for plants to adapt to various environmental changes. Plant P-type H+-ATPase (HA) plays diverse roles in signal transduction during cell expansion, regulation of cellular osmotic potential and stomatal opening, and circadian movement. Despite numerous studies on the genome-wide analysis of Vitis vinifera, no research has been done on the P-type H+-ATPase family genes, especially concerning pulvinus-driven leaf movement. In this study, 55 VvHAs were identified and classified into nine distinct subgroups (1 to 9). Gene members within the same subgroups exhibit similar features in motif, intron/exon, and protein tertiary structures. Furthermore, four pairs of genes were derived by segmental duplication in grapes. Cis-acting element analysis identified numerous light/circadian-related elements in the promoters of VvHAs. qRT-PCR analysis showed that several genes of subgroup 7 were highly expressed in leaves and pulvinus during leaf movement, especially VvHA14, VvHA15, VvHA16, VvHA19, VvHA51, VvHA52, and VvHA54. Additionally, we also found that the VvHAs genes were asymmetrically expressed on both sides of the extensor and flexor cell of the motor organ, the pulvinus. The expression of VvHAs family genes in extensor cells was significantly higher than that in flexor cells. Overall, this study serves as a foundation for further investigations into the functions of VvHAs and contributes to the complex mechanisms underlying grapevine pulvinus growth and development.
Collapse
Affiliation(s)
- Fanwei Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Yongqing Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Tian Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Xiyuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Shuzhen Jiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Shangwen Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Miao Shao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| |
Collapse
|
4
|
Fuji S, Yamauchi S, Sugiyama N, Kohchi T, Nishihama R, Shimazaki KI, Takemiya A. Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H +-ATPase. Nat Commun 2024; 15:1195. [PMID: 38378726 PMCID: PMC10879506 DOI: 10.1038/s41467-024-45236-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Plasma membrane H+-ATPase provides the driving force for light-induced stomatal opening. However, the mechanisms underlying the regulation of its activity remain unclear. Here, we show that the phosphorylation of two Thr residues in the C-terminal autoinhibitory domain is crucial for H+-ATPase activation and stomatal opening in Arabidopsis thaliana. Using phosphoproteome analysis, we show that blue light induces the phosphorylation of Thr-881 within the C-terminal region I, in addition to penultimate Thr-948 in AUTOINHIBITED H+-ATPASE 1 (AHA1). Based on site-directed mutagenesis experiments, phosphorylation of both Thr residues is essential for H+ pumping and stomatal opening in response to blue light. Thr-948 phosphorylation is a prerequisite for Thr-881 phosphorylation by blue light. Additionally, red light-driven guard cell photosynthesis induces Thr-881 phosphorylation, possibly contributing to red light-dependent stomatal opening. Our findings provide mechanistic insights into H+-ATPase activation that exploits the ion transport across the plasma membrane and light signalling network in guard cells.
Collapse
Affiliation(s)
- Saashia Fuji
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan
| | - Shota Yamauchi
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Naoyuki Sugiyama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ken-Ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8512, Japan.
| |
Collapse
|
5
|
Hayashi Y, Fukatsu K, Takahashi K, Kinoshita SN, Kato K, Sakakibara T, Kuwata K, Kinoshita T. Phosphorylation of plasma membrane H +-ATPase Thr881 participates in light-induced stomatal opening. Nat Commun 2024; 15:1194. [PMID: 38378616 PMCID: PMC10879185 DOI: 10.1038/s41467-024-45248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Plasma membrane (PM) H+-ATPase is crucial for light-induced stomatal opening and phosphorylation of a penultimate residue, Thr948 (pen-Thr, numbering according to Arabidopsis AHA1) is required for enzyme activation. In this study, a comprehensive phosphoproteomic analysis using guard cell protoplasts from Vicia faba shows that both red and blue light increase the phosphorylation of Thr881, of PM H+-ATPase. Light-induced stomatal opening and the blue light-induced increase in stomatal conductance are reduced in transgenic Arabidopsis plants expressing mutant AHA1-T881A in aha1-9, whereas the blue light-induced phosphorylation of pen-Thr is unaffected. Auxin and photosynthetically active radiation induce the phosphorylation of both Thr881 and pen-Thr in etiolated seedlings and leaves, respectively. The dephosphorylation of phosphorylated Thr881 and pen-Thr are mediated by type 2 C protein phosphatase clade D isoforms. Taken together, Thr881 phosphorylation, in addition of the pen-Thr phosphorylation, are important for PM H+-ATPase function during physiological responses, such as light-induced stomatal opening in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yuki Hayashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Kohei Fukatsu
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Koji Takahashi
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | | | - Kyohei Kato
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Taku Sakakibara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan.
| |
Collapse
|
6
|
Guarini N, Saliba E, André B. Phosphoregulation of the yeast Pma1 H+-ATPase autoinhibitory domain involves the Ptk1/2 kinases and the Glc7 PP1 phosphatase and is under TORC1 control. PLoS Genet 2024; 20:e1011121. [PMID: 38227612 PMCID: PMC10817110 DOI: 10.1371/journal.pgen.1011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/26/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
Plasma membrane (PM) H+-ATPases of the P-type family are highly conserved in yeast, other fungi, and plants. Their main role is to establish an H+ gradient driving active transport of small ions and metabolites across the PM and providing the main component of the PM potential. Furthermore, in both yeast and plant cells, conditions have been described under which active H+-ATPases promote activation of TORC1, the rapamycin-sensitive kinase complex controlling cell growth. Fungal and plant PM H+-ATPases are self-inhibited by their respective cytosolic carboxyterminal tails unless this domain is phosphorylated at specific residues. In the yeast H+-ATPase Pma1, neutralization of this autoinhibitory domain depends mostly on phosphorylation of the adjacent Ser911 and Thr912 residues, but the kinase(s) and phosphatase(s) controlling this tandem phosphorylation remain unknown. In this study, we show that S911-T912 phosphorylation in Pma1 is mediated by the largely redundant Ptk1 and Ptk2 kinase paralogs. Dephosphorylation of S911-T912, as occurs under glucose starvation, is dependent on the Glc7 PP1 phosphatase. Furthermore, proper S911-T912 phosphorylation in Pma1 is required for optimal TORC1 activation upon H+ influx coupled amino-acid uptake. We finally show that TORC1 controls S911-T912 phosphorylation in a manner suggesting that activated TORC1 promotes feedback inhibition of Pma1. Our results shed important new light on phosphoregulation of the yeast Pma1 H+-ATPase and on its interconnections with TORC1.
Collapse
Affiliation(s)
- Nadia Guarini
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, Gosselies, Belgium
| | - Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), Biopark, Gosselies, Belgium
| |
Collapse
|
7
|
McDonald TR, Rizvi MF, Ruiter BL, Roy R, Reinders A, Ward JM. Posttranslational regulation of transporters important for symbiotic interactions. PLANT PHYSIOLOGY 2022; 188:941-954. [PMID: 34850211 PMCID: PMC8825328 DOI: 10.1093/plphys/kiab544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.
Collapse
Affiliation(s)
- Tami R McDonald
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Madeeha F Rizvi
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Bretton L Ruiter
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Rahul Roy
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, St. Paul, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Author for communication:
| |
Collapse
|
8
|
Pertl-Obermeyer H, Gimeno A, Kuchler V, Servili E, Huang S, Fang H, Lang V, Sydow K, Pöckl M, Schulze WX, Obermeyer G. pH modulates interaction of 14-3-3 proteins with pollen plasma membrane H+ ATPases independently from phosphorylation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:168-181. [PMID: 34467995 DOI: 10.1093/jxb/erab387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pollen grains transport the sperm cells through the style tissue via a fast-growing pollen tube to the ovaries where fertilization takes place. Pollen tube growth requires a precisely regulated network of cellular as well as molecular events including the activity of the plasma membrane H+ ATPase, which is known to be regulated by reversible protein phosphorylation and subsequent binding of 14-3-3 isoforms. Immunodetection of the phosphorylated penultimate threonine residue of the pollen plasma membrane H+ ATPase (LilHA1) of Lilium longiflorum pollen revealed a sudden increase in phosphorylation with the start of pollen tube growth. In addition to phosphorylation, pH modulated the binding of 14-3-3 isoforms to the regulatory domain of the H+ ATPase, whereas metabolic components had only small effects on 14-3-3 binding, as tested with in vitro assays using recombinant 14-3-3 isoforms and phosphomimicking substitutions of the threonine residue. Consequently, local H+ influxes and effluxes as well as pH gradients in the pollen tube tip are generated by localized regulation of the H+ ATPase activity rather than by heterogeneous localized distribution in the plasma membrane.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- MorphoPhysics, Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria
| | - Ana Gimeno
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Verena Kuchler
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Evrim Servili
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Inst. Recherche Experimentale & Clinique, University of Louvain, Ave. Hippocrate, Woluwe-Saint Lambert, Belgium
| | - Shuai Huang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Southern University of Science and Technology, Shenzen, PR China
| | - Han Fang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- Spinal Chord Injury & Tissue Regeneration Centre, Paracelsus Medical University, Strubergasse, Salzburg, Austria
| | - Veronika Lang
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
- STRATEC GmbH, Sonystraße 20, Anif, Austria
| | - Katharina Sydow
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Magdalena Pöckl
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- Plant Systems Biology, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Gerhard Obermeyer
- Membrane Biophysics, Department of Biosciences, University of Salzburg, Billrothstr. 11, 5020 Salzburg, Austria
| |
Collapse
|
9
|
Navarre C, Chaumont F. Production of Recombinant Glycoproteins in Nicotiana tabacum BY-2 Suspension Cells. Methods Mol Biol 2022; 2480:81-88. [PMID: 35616858 DOI: 10.1007/978-1-0716-2241-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This protocol describes a robust method to obtain transgenic Nicotiana tabacum BY-2 cells that produce glycoproteins of interest via Agrobacterium tumefaciens transformation. Compared to biolistics-based transformation, this procedure requires only standard laboratory equipment.
Collapse
Affiliation(s)
- Catherine Navarre
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
10
|
Saliba E, Primo C, Guarini N, André B. A plant plasma-membrane H +-ATPase promotes yeast TORC1 activation via its carboxy-terminal tail. Sci Rep 2021; 11:4788. [PMID: 33637787 PMCID: PMC7910539 DOI: 10.1038/s41598-021-83525-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
The Target of Rapamycin Complex 1 (TORC1) involved in coordination of cell growth and metabolism is highly conserved among eukaryotes. Yet the signals and mechanisms controlling its activity differ among taxa, according to their biological specificities. A common feature of fungal and plant cells, distinguishing them from animal cells, is that their plasma membrane contains a highly abundant H+-ATPase which establishes an electrochemical H+ gradient driving active nutrient transport. We have previously reported that in yeast, nutrient-uptake-coupled H+ influx elicits transient TORC1 activation and that the plasma-membrane H+-ATPase Pma1 plays an important role in this activation, involving more than just establishment of the H+ gradient. We show here that the PMA2 H+-ATPase from the plant Nicotiana plumbaginifolia can substitute for Pma1 in yeast, to promote H+-elicited TORC1 activation. This H+-ATPase is highly similar to Pma1 but has a longer carboxy-terminal tail binding 14-3-3 proteins. We report that a C-terminally truncated PMA2, which remains fully active, fails to promote H+-elicited TORC1 activation. Activation is also impaired when binding of PMA2 to 14-3-3 s is hindered. Our results show that at least some plant plasma-membrane H+-ATPases share with yeast Pma1 the ability to promote TORC1 activation in yeast upon H+-coupled nutrient uptake.
Collapse
Affiliation(s)
- Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Cecilia Primo
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Nadia Guarini
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles (ULB), 6041, Biopark, Gosselies, Belgium.
| |
Collapse
|
11
|
Dyla M, Kjærgaard M, Poulsen H, Nissen P. Structure and Mechanism of P-Type ATPase Ion Pumps. Annu Rev Biochem 2020; 89:583-603. [PMID: 31874046 DOI: 10.1146/annurev-biochem-010611-112801] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P-type ATPases are found in all kingdoms of life and constitute a wide range of cation transporters, primarily for H+, Na+, K+, Ca2+, and transition metal ions such as Cu(I), Zn(II), and Cd(II). They have been studied through a wide range of techniques, and research has gained very significant insight on their transport mechanism and regulation. Here, we review the structure, function, and dynamics of P2-ATPases including Ca2+-ATPases and Na,K-ATPase. We highlight mechanisms of functional transitions that are associated with ion exchange on either side of the membrane and how the functional cycle is regulated by interaction partners, autoregulatory domains, and off-cycle states. Finally, we discuss future perspectives based on emerging techniques and insights.
Collapse
Affiliation(s)
- Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Hanne Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; .,Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, 8000 Aarhus, Denmark
| |
Collapse
|
12
|
Xu Z, Marowa P, Liu H, Du H, Zhang C, Li Y. Genome-Wide Identification and Analysis of P-Type Plasma Membrane H +-ATPase Sub-Gene Family in Sunflower and the Role of HHA4 and HHA11 in the Development of Salt Stress Resistance. Genes (Basel) 2020; 11:genes11040361. [PMID: 32230880 PMCID: PMC7231311 DOI: 10.3390/genes11040361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
The P-type plasma membrane (PM) H+-ATPase plays a major role during the growth and development of a plant. It is also involved in plant resistance to a variety of biotic and abiotic factors, including salt stress. The PM H+-ATPase gene family has been well characterized in Arabidopsis and other crop plants such as rice, cucumber, and potato; however, the same cannot be said in sunflower (Helianthus annuus). In this study, a total of thirteen PM H+-ATPase genes were screened from the recently released sunflower genome database with a comprehensive genome-wide analysis. According to a systematic phylogenetic classification with a previously reported species, the sunflower PM H+-ATPase genes (HHAs) were divided into four sub-clusters (I, II, IV, and V). In addition, systematic bioinformatics analyses such as gene structure analysis, chromosome location analysis, subcellular localization predication, conserved motifs, and Cis-acting elements of promoter identification were also done. Semi-quantitative PCR analysis data of HHAs in different sunflower tissues revealed the specificity of gene spatiotemporal expression and sub-cluster grouping. Those belonging to sub-cluster I and II exhibited wide expression in almost all of the tissues studied while sub-cluster IV and V seldom showed expression. In addition, the expression of HHA4, HHA11, and HHA13 was shown to be induced by salt stress. The transgenic plants overexpressing HHA4 and HHA11 showed higher salinity tolerance compared with wild-type plants. Further analysis showed that the Na+ content of transgenic Arabidopsis plants decreased under salt stress, which indicates that PM H+ ATPase participates in the physiological process of Na+ efflux, resulting in salt resistance of the plants. This study is the first to identify and analyze the sunflower PM H+ ATPase gene family. It does not only lay foundation for future research but also demonstrates the role played by HHAs in salt stress tolerance.
Collapse
Affiliation(s)
- Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.X.); (C.Z.)
| | - Prince Marowa
- Crop Science Department, University of Zimbabwe, Harare 00263, Zimbabwe;
| | - Han Liu
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (H.D.)
| | - Haina Du
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China; (H.L.); (H.D.)
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.X.); (C.Z.)
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.X.); (C.Z.)
- Correspondence: ; Tel.: +86-0532-6671-5597
| |
Collapse
|
13
|
The Oligomeric State of the Plasma Membrane H⁺-ATPase from Kluyveromyces lactis. Molecules 2019; 24:molecules24050958. [PMID: 30857224 PMCID: PMC6429222 DOI: 10.3390/molecules24050958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 01/15/2023] Open
Abstract
The plasma membrane H+-ATPase was purified from the yeast K. lactis. The oligomeric state of the H+-ATPase is not known. Size exclusion chromatography displayed two macromolecular assembly states (MASs) of different sizes for the solubilized enzyme. Blue native electrophoresis (BN-PAGE) showed the H+-ATPase hexamer in both MASs as the sole/main oligomeric state—in the aggregated and free state. The hexameric state was confirmed in dodecyl maltoside-treated plasma membranes by Western-Blot. Tetramers, dimers, and monomers were present in negligible amounts, thus depicting the oligomerization pathway with the dimer as the oligomerization unit. H+-ATPase kinetics was cooperative (n~1.9), and importantly, in both MASs significant differences were determined in intrinsic fluorescence intensity, nucleotide affinity and Vmax; hence suggesting the large MAS as the activated state of the H+-ATPase. It is concluded that the quaternary structure of the H+-ATPase is the hexamer and that a relationship seems to exist between ATPase function and the aggregation state of the hexamer.
Collapse
|
14
|
Nguyen TT, Sabat G, Sussman MR. In vivo cross-linking supports a head-to-tail mechanism for regulation of the plant plasma membrane P-type H +-ATPase. J Biol Chem 2018; 293:17095-17106. [PMID: 30217814 DOI: 10.1074/jbc.ra118.003528] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/30/2018] [Indexed: 11/06/2022] Open
Abstract
In higher plants, a P-type proton-pumping ATPase generates the proton-motive force essential for the function of all other transporters and for proper growth and development. X-ray crystallographic studies of the plant plasma membrane proton pump have provided information on amino acids involved in ATP catalysis but provided no information on the structure of the C-terminal regulatory domain. Despite progress in elucidating enzymes involved in the signaling pathways that activate or inhibit this pump, the site of interaction of the C-terminal regulatory domain with the catalytic domains remains a mystery. Genetic studies have pointed to amino acids in various parts of the protein that may be involved, but direct chemical evidence for which ones are specifically interacting with the C terminus is lacking. In this study, we used in vivo cross-linking experiments with a photoreactive unnatural amino acid, p-benzoylphenylalanine, and tandem MS to obtain direct evidence that the C-terminal regulatory domain interacts with amino acids located within the N-terminal actuator domain. Our observations are consistent with a mechanism in which intermolecular, rather than intramolecular, interactions are involved. Our model invokes a "head-to-tail" organization of ATPase monomers in which the C-terminal domain of one ATPase molecule interacts with the actuator domain of another ATPase molecule. This model serves to explain why cross-linked peptides are found only in dimers and trimers, and it is consistent with prior studies suggesting that within the membrane the protein can be organized as homopolymers, including dimers, trimers, and hexamers.
Collapse
Affiliation(s)
- Thao T Nguyen
- From the Biotechnology Center and.,Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | | | - Michael R Sussman
- From the Biotechnology Center and .,Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Lefèvre F, Fourmeau J, Pottier M, Baijot A, Cornet T, Abadía J, Álvarez-Fernández A, Boutry M. The Nicotiana tabacum ABC transporter NtPDR3 secretes O-methylated coumarins in response to iron deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4419-4431. [PMID: 29893871 PMCID: PMC6093371 DOI: 10.1093/jxb/ery221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Although iron is present in large amounts in the soil, its poor solubility means that plants have to use various strategies to facilitate its uptake. In this study, we show that expression of NtPDR3/NtABCG3, a Nicotiana tabacum plasma-membrane ABC transporter in the pleiotropic drug resistance (PDR) subfamily, is strongly induced in the root epidermis under iron deficiency conditions. Prevention of NtPDR3 expression resulted in N. tabacum plants that were less tolerant to iron-deficient conditions, displaying stronger chlorosis and slower growth than those of the wild-type when not supplied with iron. Metabolic profiling of roots and root exudates revealed that, upon iron deficiency, secretion of catechol-bearing O-methylated coumarins such as fraxetin, hydroxyfraxetin, and methoxyfraxetin to the rhizosphere was compromised in NtPDR3-silenced plants. However, exudation of flavins such as riboflavin was not markedly affected by NtPDR3-silencing. Expression of NtPDR3 in N. tabacum Bright Yellow-2 (BY-2) cells resulted in altered intra- and extracellular coumarin pools, supporting coumarin transport by this transporter. The results demonstrate that N. tabacum secretes both coumarins and flavins in response to iron deficiency and that NtPDR3 plays an essential role in the plant response to iron deficiency by mediating secretion of O-methylated coumarins to the rhizosphere.
Collapse
Affiliation(s)
- François Lefèvre
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Justine Fourmeau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Mathieu Pottier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Amandine Baijot
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Thomas Cornet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Javier Abadía
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Ana Álvarez-Fernández
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
Stritzler M, Muñiz García MN, Schlesinger M, Cortelezzi JI, Capiati DA. The plasma membrane H+-ATPase gene family in Solanum tuberosum L. Role of PHA1 in tuberization. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4821-4837. [PMID: 28992210 PMCID: PMC5853856 DOI: 10.1093/jxb/erx284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study presents the characterization of the plasma membrane (PM) H+-ATPases in potato, focusing on their role in stolon and tuber development. Seven PM H+-ATPase genes were identified in the Solanum tuberosum genome, designated PHA1-PHA7. PHA genes show distinct expression patterns in different plant tissues and under different stress treatments. Application of PM H+-ATPase inhibitors arrests stolon growth, promotes tuber induction, and reduces tuber size, indicating that PM H+-ATPases are involved in tuberization, acting at different stages of the process. Transgenic potato plants overexpressing PHA1 were generated (PHA1-OE). At early developmental stages, PHA1-OE stolons elongate faster and show longer epidermal cells than wild-type stolons; this accelerated growth is accompanied by higher cell wall invertase activity, lower starch content, and higher expression of the sucrose-H+ symporter gene StSUT1. PHA1-OE stolons display an increased branching phenotype and develop larger tubers. PHA1-OE plants are taller and also present a highly branched phenotype. These results reveal a prominent role for PHA1 in plant growth and development. Regarding tuberization, PHA1 promotes stolon elongation at early stages, and tuber growth later on. PHA1 is involved in the sucrose-starch metabolism in stolons, possibly providing the driving force for sugar transporters to maintain the apoplastic sucrose transport during elongation.
Collapse
Affiliation(s)
- Margarita Stritzler
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - María Noelia Muñiz García
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Mariana Schlesinger
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Juan Ignacio Cortelezzi
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
| | - Daniela Andrea Capiati
- Institute of Genetic Engineering and Molecular Biology ‘Dr. Héctor Torres’ (INGEBI), National Research Council (CONICET), Vuelta de Obligado, Buenos Aires, Argentina
- Biochemistry Department, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
- Correspondence: or
| |
Collapse
|
17
|
Han N, Ji XL, Du YP, He X, Zhao XJ, Zhai H. Identification of a Novel Alternative Splicing Variant of VvPMA1 in Grape Root under Salinity. FRONTIERS IN PLANT SCIENCE 2017; 8:605. [PMID: 28484478 PMCID: PMC5399082 DOI: 10.3389/fpls.2017.00605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
It has been well-demonstrated that the control of plasma membrane H+-ATPase (PM H+-ATPase) activity is important to plant salt tolerance. This study found a significant increase in PM H+-ATPase (PMA) activity in grape root exposed to NaCl. Furthermore, 7 Vitis vinifera PM H+-ATPase genes (VvPMAs) were identified within the grape genome and the expression response of these VvPMAs in grape root under salinity was analyzed. Two VvPMAs (VvPMA1 and VvPMA3) were expressed more strongly in roots than the other five VvPMAs. Moreover, roots exhibited diverse patterns of gene expression of VvPMA1 and VvPMA3 responses to salt stress. Interestingly, two transcripts of VvPMA1, which were created through alternative splicing (AS), were discovered and isolated from salt stressed root. Comparing the two VvPMA1 cDNA sequences (designated VvPMA1α and VvPMA1β) with the genomic sequence revealed that the second intron was retained in the VvPMA1β cDNA. This intron retention was predicted to generate a novel VvPMA1 through N-terminal truncation because of a 5'- terminal frame shift. Yeast complementation assays of the two splice variants showed that VvPMA1β could enhance the ability to complement Saccharomyces cerevisiae deficient in PM H+-ATPase activity. In addition, the expression profiles of VvPMA1α and VvPMA1β differed under salinity. Our data suggests that through AS, the N-terminal length of VvPMA1 may be regulated to accurately modulate PM H+-ATPase activity of grape root in salt stress.
Collapse
Affiliation(s)
- Ning Han
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Xing-Long Ji
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| | - Yuan-Peng Du
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| | - Xi He
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Xin-Jie Zhao
- Shandong Provincial Key Laboratory of Microbial Engineering, School of Biologic Engineering, Qi Lu University of TechnologyJinan, China
| | - Heng Zhai
- Department of Pomology, College of Horticulture Science and Engineering, Shandong Agricultural UniversityTaian, China
| |
Collapse
|
18
|
Niczyj M, Champagne A, Alam I, Nader J, Boutry M. Expression of a constitutively activated plasma membrane H +-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion. PLANTA 2016; 244:1109-1124. [PMID: 27444008 DOI: 10.1007/s00425-016-2571-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION Increased acidification of the external medium by an activated H + -ATPase results in cell expansion, in the absence of upstream activating signaling. The plasma membrane H+-ATPase couples ATP hydrolysis with proton transport outside the cell, and thus creates an electrochemical gradient, which energizes secondary transporters. According to the acid growth theory, this enzyme is also proposed to play a major role in cell expansion, by acidifying the external medium and so activating enzymes that are involved in cell wall-loosening. However, this theory is still debated. To challenge it, we made use of a plasma membrane H+-ATPase isoform from Nicotiana plumbaginifolia truncated from its C-terminal auto-inhibitory domain (ΔCPMA4), and thus constitutively activated. This protein was expressed in Nicotiana tabacum BY-2 suspension cells using a heat shock inducible promoter. The characterization of several independent transgenic lines showed that the expression of activated ΔCPMA4 resulted in a reduced external pH by 0.3-1.2 units, as well as in an increased H+-ATPase activity by 77-155 % (ATP hydrolysis), or 70-306 % (proton pumping) of isolated plasma membranes. In addition, ΔCPMA4-expressing cells were 17-57 % larger than the wild-type cells and displayed abnormal shapes. A proteomic comparison of plasma membranes isolated from ΔCPMA4-expressing and wild-type cells revealed the altered abundance of several proteins involved in cell wall synthesis, transport, and signal transduction. In conclusion, the data obtained in this work showed that H+-ATPase activation is sufficient to induce cell expansion and identified possible actors which intervene in this process.
Collapse
Affiliation(s)
- Marta Niczyj
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Antoine Champagne
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Iftekhar Alam
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Joseph Nader
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Institute of Life Sciences, University of Louvain, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
19
|
López-Coria M, Sánchez-Nieto S. Trichoderma asperellum Induces Maize Seedling Growth by Activating the Plasma Membrane H +-ATPase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:797-806. [PMID: 27643387 DOI: 10.1094/mpmi-07-16-0138-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although Trichoderma spp. have beneficial effects on numerous plants, there is not enough knowledge about the mechanism by which they improves plant growth. In this study, we evaluated the participation of plasma membrane (PM) H+-ATPase, a key enzyme involved in promoting cell growth, in the elongation induced by T. asperellum and compared it with the effect of 10 μM indol acetic acid (IAA) because IAA promotes elongation and PM H+-ATPase activation. Two seed treatments were tested: biopriming and noncontact. In neither were the tissues colonized by T. asperellum; however, the seedlings were longer than the control seedlings, which also accumulated IAA and increased root acidification. An auxin transport inhibitor (2,3,5 triiodobenzoic acid) reduced the plant elongation induced by Trichoderma spp. T. asperellum seed treatment increased the PM H+-ATPase activity in plant roots and shoots. Additionally, the T. asperellum extracellular extract (TE) activated the PM H+-ATPase activity of microsomal fractions of control plants, although it contained 0.3 μM IAA. Furthermore, the mechanism of activation of PM H+-ATPase was different for IAA and TE; in the latter, the activation depends on the phosphorylation state of the enzyme, suggesting that, in addition to IAA, T. asperellum excretes other molecules that stimulate PM H+-ATPase to induce plant growth.
Collapse
Affiliation(s)
- M López-Coria
- 1 Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán. México 04510, D.F., México; and
| | - S Sánchez-Nieto
- 1 Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán. México 04510, D.F., México; and
| |
Collapse
|
20
|
Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology. MOLECULAR PLANT 2016; 9:323-337. [PMID: 26584714 DOI: 10.1016/j.molp.2015.11.002] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 05/21/2023]
Abstract
The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase.
Collapse
Affiliation(s)
- Janus Falhof
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jesper Torbøl Pedersen
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, University of Copenhagen, 1871 Frederiksberg, Denmark.
| |
Collapse
|
21
|
Haruta M, Gray WM, Sussman MR. Regulation of the plasma membrane proton pump (H(+)-ATPase) by phosphorylation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:68-75. [PMID: 26476298 PMCID: PMC4679459 DOI: 10.1016/j.pbi.2015.09.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/04/2023]
Abstract
In plants and fungi, energetics at the plasma membrane is provided by a large protonmotive force (PMF) generated by the family of P-type ATPases specialized for proton transport (commonly called PM H(+)-ATPases or, in Arabidopsis, AHAs for Arabidopsis H(+)-ATPases). Studies have demonstrated that this 100-kDa protein is essential for plant growth and development. Posttranslational modifications of the H(+)-ATPase play crucial roles in its regulation. Phosphorylation of several Thr and Ser residues within the carboxy terminal regulatory domain composed of ∼100 amino acids change in response to environmental stimuli, endogenous hormones, and nutrient conditions. Recently developed mass spectrometric technologies provide a means to carefully quantify these changes in H(+)-ATPase phosphorylation at the different sites. These chemical modifications can then be genetically tested in planta by complementing the loss-of-function aha mutants with phosphomimetic mutations. Interestingly, recent data suggest that phosphatase-mediated changes in PM H(+)-ATPase phosphorylation are important in mediating auxin-regulated growth. Thus, as with another hormone (abscisic acid), dephosphorylation by phosphatases, rather than kinase mediated phosphorylation, may be an important focal point for regulation during plant signal transduction. Although interactions with other proteins have also been implicated in ATPase regulation, the very hydrophobic nature and high concentration of this polytopic protein presents special challenges in evaluating the biological significance of these interactions. Only by combining biochemical and genetic experiments can we attempt to meet these challenges to understand the essential molecular details by which this protein functions in planta.
Collapse
Affiliation(s)
- Miyoshi Haruta
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States
| | - William M Gray
- Department of Plant Biology, University of Minnesota, United States
| | - Michael R Sussman
- Biotechnology Center and Department of Biochemistry, University of Wisconsin-Madison, United States.
| |
Collapse
|
22
|
Nguyen TT, Volkening JD, Rose CM, Venkateshwaran M, Westphall MS, Coon JJ, Ané JM, Sussman MR. Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots. FEBS Lett 2015; 589:2186-93. [PMID: 26188545 PMCID: PMC5991090 DOI: 10.1016/j.febslet.2015.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
In plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells.
Collapse
Affiliation(s)
- Thao T Nguyen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jeremy D Volkening
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Christopher M Rose
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Muthusubramanian Venkateshwaran
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States; School of Agriculture, University of Wisconsin-Platteville, Platteville, WI 53818, United States
| | - Michael S Westphall
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
23
|
Zhan X, Yi X, Yue L, Fan X, Xu G, Xing B. Cytoplasmic pH-Stat during Phenanthrene Uptake by Wheat Roots: A Mechanistic Consideration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6037-6044. [PMID: 25923043 DOI: 10.1021/acs.est.5b00697] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dietary intake of plant-based foods is a major contribution to the total exposure of polycyclic aromatic hydrocarbons (PAHs). However, the mechanisms underlying PAH uptake by roots remain poorly understood. This is the first study, to our knowledge, to reveal cytoplasmic pH change and regulation in response to PAH uptake by wheat roots. An initial drop of cytoplasmic pH, which is concentration-dependent upon exposure to phenanthrene (a model PAH), was followed by a slow recovery, indicating the operation of a powerful cytoplasmic pH regulating system. Intracellular buffers are prevalent and act in the first few minutes of acidification. Phenanthrene activates plasmalemma and tonoplast H(+) pump. Cytolasmic acidification is also accompanied by vacuolar acidification. In addition, phenanthrene decreases the activity of phosphoenolpyruvate carboxylase and malate concentration. Moreover, phenanthrene stimulates nitrate reductase. Therefore, it is concluded that phenanthrene uptake induces cytoplasmic acidification, and cytoplasmic pH recovery is achieved via physicochemical buffering, proton transport outside cytoplasm into apoplast and vacuole, and malate decarboxylation along with nitrate reduction. Our results provide a novel insight into PAH uptake by wheat roots, which is relevant to strategies for reducing PAH accumulation in wheat for food safety and improving phytoremediation of PAH-contaminated soils or water by agronomic practices.
Collapse
Affiliation(s)
- Xinhua Zhan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xiu Yi
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Le Yue
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Xiaorong Fan
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Guohua Xu
- †College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Baoshan Xing
- ‡Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Fuglsang AT, Kristensen A, Cuin TA, Schulze WX, Persson J, Thuesen KH, Ytting CK, Oehlenschlæger CB, Mahmood K, Sondergaard TE, Shabala S, Palmgren MG. Receptor kinase-mediated control of primary active proton pumping at the plasma membrane. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:951-64. [PMID: 25267325 DOI: 10.1111/tpj.12680] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 05/22/2023]
Abstract
Acidification of the cell wall space outside the plasma membrane is required for plant growth and is the result of proton extrusion by the plasma membrane-localized H+-ATPases. Here we show that the major plasma membrane proton pumps in Arabidopsis, AHA1 and AHA2, interact directly in vitro and in planta with PSY1R, a receptor kinase of the plasma membrane that serves as a receptor for the peptide growth hormone PSY1. The intracellular protein kinase domain of PSY1R phosphorylates AHA2/AHA1 at Thr-881, situated in the autoinhibitory region I of the C-terminal domain. When expressed in a yeast heterologous expression system, the introduction of a negative charge at this position caused pump activation. Application of PSY1 to plant seedlings induced rapid in planta phosphorylation at Thr-881, concomitant with an instantaneous increase in proton efflux from roots. The direct interaction between AHA2 and PSY1R observed might provide a general paradigm for regulation of plasma membrane proton transport by receptor kinases.
Collapse
Affiliation(s)
- Anja T Fuglsang
- Department of Plant and Environmental Science, Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, University of Copenhagen, DK-1871, Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lang V, Pertl-Obermeyer H, Safiarian MJ, Obermeyer G. Pump up the volume - a central role for the plasma membrane H(+) pump in pollen germination and tube growth. PROTOPLASMA 2014; 251:477-88. [PMID: 24097309 DOI: 10.1007/s00709-013-0555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 05/10/2023]
Abstract
The plasma membrane H(+) ATPase is a member of the P-ATPase family transporting H(+) from the cytosol to the extracellular space and thus energizing the plasma membrane for the uptake of ions and nutrients. As a housekeeping gene, this protein can be detected in almost every plant cell including the exclusive expression of specific isoforms in pollen grains and tubes where its activity is a prerequisite for successful germination and growth of pollen tubes. This review summarizes the current knowledge on pollen PM H(+) ATPases and hypothesizes a central role for pollen-specific isoforms of this protein in tube growth. External as well as cytosolic signals from signal transduction and metabolic pathways are integrated by the PM H(+) ATPase and directly translated to tube growth rates, allocating the PM H(+) ATPase to an essential node in the signalling network of pollen tubes in their race to the ovule.
Collapse
Affiliation(s)
- Veronika Lang
- Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstr. 11, 5020, Salzburg, Austria
| | | | | | | |
Collapse
|
26
|
The basidiomycete Ustilago maydis has two plasma membrane H+-ATPases related to fungi and plants. J Bioenerg Biomembr 2013; 45:477-90. [DOI: 10.1007/s10863-013-9520-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/20/2013] [Indexed: 11/26/2022]
|
27
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
28
|
|
29
|
Conde A, Chaves MM, Gerós H. Membrane transport, sensing and signaling in plant adaptation to environmental stress. PLANT & CELL PHYSIOLOGY 2011; 52:1583-602. [PMID: 21828102 DOI: 10.1093/pcp/pcr107] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved. Among the plant arsenal to maintain homeostasis are efficient stress sensing and signaling mechanisms, plant cell detoxification systems, compatible solute and osmoprotectant accumulation and a vital rearrangement of solute transport and compartmentation. The key role of solute transport systems and signaling proteins in cellular homeostasis is addressed in the present work. The full understanding of the plant cell complex defense mechanisms under stress may allow for the engineering of more tolerant plants or the optimization of cultivation practices to improve yield and productivity, which is crucial at the present time as food resources are progressively scarce.
Collapse
Affiliation(s)
- Artur Conde
- Centro de Investigacão e de Tecnologias Agro-Ambientais e Biológicas, Portugal
| | | | | |
Collapse
|