1
|
Kim Y, Song J, Kim N, Sim T. Recent progress in emerging molecular targeted therapies for intrahepatic cholangiocarcinoma. RSC Med Chem 2025:d4md00881b. [PMID: 39925737 PMCID: PMC11800140 DOI: 10.1039/d4md00881b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/11/2025] [Indexed: 02/11/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a diverse group of epithelial malignant tumors arising from the biliary tract, characterized by high molecular heterogeneity. It is classified into intrahepatic (iCCA) and extrahepatic CCA (eCCA) based on the location of the primary tumor. CCA accounts for approximately 15% of all primary liver cancers, with iCCA comprising 10-20% of all CCAs. iCCA is especially known for its characteristic aggressiveness and refractoriness, leading to poor prognosis. Despite the increasing global incidence and mortality rates, surgery remains the only available standard treatment approach for a subset (25%) of patients with early-stage, resectable iCCA. The paucity of effective systemic medical therapies restricts therapeutic options for patients with advanced or metastatic iCCA. In the past decade, advances in the understanding of the molecular complexity of these tumors have provided fruitful insights for the identification of promising new druggable targets and the development of feasible therapeutic strategies that may improve treatment outcomes for patients with iCCA. In this review, we aim to highlight critical up-to-date studies and medicinal chemistry aspects, focusing on novel targeted approaches utilizing promising candidates for molecular targeted therapy in iCCA. These candidates include aberrations in isocitrate dehydrogenase (IDH) 1/2, fibroblast growth factor receptor (FGFR), B-Raf proto-oncogene (BRAF), neurotrophic tyrosine receptor kinase (NTRK), human epidermal growth factor receptor 2 (HER2), and programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1). Furthermore, this review provides an overview of potential inhibitors aimed at overcoming acquired drug resistance in these actionable targets for iCCA.
Collapse
Affiliation(s)
- Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
| | - Jaewon Song
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| | - Namkyoung Kim
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Anam-ro, Seongbuk-gu Seoul 02841 Korea
- Department of Biomedical Sciences, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +822 2228 0797
- Clinical Candidate Discovery & Development Institute, Yonsei University College of Medicine Seoul Korea
- Graduate School of Clinical Drug Discovery & Development, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
2
|
Tian G, Chen Z, Shi K, Wang X, Xie L, Yang F. The evolution of small-molecule Akt inhibitors from hit to clinical candidate. Eur J Med Chem 2024; 279:116906. [PMID: 39353238 DOI: 10.1016/j.ejmech.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Akt, a key regulator of cell survival, proliferation, and metabolism, has become a prominent target for treatment of cancer and inflammatory diseases. The journey of small-molecule Akt inhibitors from discovery to the clinic has faced numerous challenges, with a significant emphasis on optimization throughout the development process. Early discovery efforts identified various classes of inhibitors, including ATP-competitive and allosteric modulators. However, during preclinical and clinical development, several issues arose, including poor specificity, limited bioavailability, and toxicity. Optimization efforts have been central to overcoming these hurdles. Researchers focused on enhancing the selectivity of inhibitors to target Akt isoforms more precisely, reducing off-target effects, and improving pharmacokinetic properties to ensure better bioavailability and distribution. Structural modifications and the design of prodrugs have played a crucial role in refining the efficacy and safety profile of these inhibitors. Additionally, efforts have been made to optimize the therapeutic window, balancing effective dosing with minimal adverse effects. The review highlights how these optimization strategies have been key in advancing small-molecule Akt inhibitors toward clinical success and underscores the importance of continued refinement in their development.
Collapse
Affiliation(s)
- Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Keqing Shi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lijuan Xie
- Department of Vascularsurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Dall'Acqua S, Yagi S, Sut S, Uba AI, Ponniya SKM, Koyuncu I, Toprak K, Balos MM, Kaplan A, Çakılcıoğlu U, Zengin G. Combining chemical profiles and biological abilities of different extracts from Tanacetum nitens (Boiss. & Noë) Grierson using network pharmacology. Arch Pharm (Weinheim) 2024; 357:e2400194. [PMID: 38877616 DOI: 10.1002/ardp.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024]
Abstract
Tanacetum nitens (Boiss. & Noë) Grierson is an aromatic perennial herb used in Turkish traditional medicine to treat headache, fever, and skin diseases. This study aimed to investigate the chemical composition, antioxidant, enzyme inhibition, and cytotoxic properties of T. nitens aerial parts. Organic solvent extracts were prepared by sequential maceration in hexane, dichloromethane, ethyl acetate, and methanol while aqueous extracts were obtained by maceration or infusion. Nuclear magnetic resonance (NMR) and LC-DAD-MS analysis allowed the identification and quantification of different phytoconstituents including parthenolide, tanacetol B, tatridin B, quinic acid derivatives, β-sitosterol, and glycoside derivatives of quercetin and luteolin. The type and amount of these phytochemicals recovered by each solvent were variable and significant enough to impact the biological activities of the plant. Methanolic and aqueous extracts displayed the highest scavenging and ions-reducing properties while the dichloromethane and ethyl acetate extracts exerted the best total antioxidant activity and metal chelating power. Results of enzyme inhibition activity showed that the hexane, ethyl acetate, and dichloromethane extracts had comparable anti-acetylcholinesterase activity and the latter extract revealed the highest anti-butyrylcholinesterase activity. The best α-amylase and α-glucosidase inhibition activities were obtained from the hexane extract. The dichloromethane and ethyl acetate extracts exhibited the highest cytotoxic effect against the prostate carcinoma DU-145 cells. In conclusion, these findings indicated that T. nitens can be a promising source of biomolecules with potential therapeutic applications.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
- Le Laboratoire Agronomie et Environnement, Université de Lorraine, INRAE, LAE, Nancy, France
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kenan Toprak
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Mehmet Maruf Balos
- Sanlıurfa Provincial Directorate of National Education, Sanlıurfa, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, Batman, Turkey
| | - Uğur Çakılcıoğlu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | - Gokhan Zengin
- Department of Faculty, Faculty of Science, Selcuk University, Konya, Turkey
| |
Collapse
|
4
|
Zhang Y, Yin XL, Ji M, Chen Y, Chai Z. Decoupling the dynamic mechanism revealed by FGFR2 mutation-induced population shift. J Biomol Struct Dyn 2024; 42:1940-1951. [PMID: 37254996 DOI: 10.1080/07391102.2023.2217924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
The fibroblast growth factor receptor 2 (FGFR2) is a key component in cellular signaling networks, and its dysfunctional activation has been implicated in various diseases including cancer and developmental disorders. Mutations at the activation loop (A-loop) have been suggested to trigger an increased basal kinase activity. However, the molecular mechanism underlying this highly dynamic process has not been fully understood due to the limitation of static structural information. Here, we conducted multiple, large-scale Gaussian accelerated molecular dynamics simulations of five (K659E, K659N, K659M, K659Q, and K659T) FGFR2 mutants at the A-loop, and comprehensively analyzed the dynamic molecular basis of FGFR2 activation. The results quantified the population shift of each system, revealing that all mutants had a higher proportion of active-like states. Using Markov state models, we extracted the representative structure of different conformational states and identified key residues related to the increased kinase activity. Furthermore, community network analysis showed enhanced information connections in the mutants, highlighting the long-range allosteric communication between the A-loop and the hinge region. Our findings may provide insights into the dynamic mechanism for FGFR2 dysfunctional activation and allosteric drug discovery.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Lan Yin
- Department of Radiotherapy, Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Shanghai, China
| | - Mingfei Ji
- Department of Urology, The Second Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Yi Chen
- Department of Ultrasound interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Zongtao Chai
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hepatic Surgery, Shanghai Geriatric Medical Center, Shanghai, China
| |
Collapse
|
5
|
Fayez S, Fahmy NM, Zengin G, Yagi S, Uba AI, Eldahshan OA, Koyuncu I, Temiz E, Dall'Acqua S, Sut S, Selvi S. LC-MS/MS and GC-MS profiling, antioxidant, enzyme inhibition, and antiproliferative activities of Thymus leucostomus H ausskn. & V elen. extracts. Arch Pharm (Weinheim) 2023; 356:e2300444. [PMID: 37754205 DOI: 10.1002/ardp.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that ɣ-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.
Collapse
Affiliation(s)
- Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Centre of Drug Discovery Research and Development, Ain Shams University, Cairo, Abbassia, Egypt
| | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Selami Selvi
- Department of Plant and Animal Production, Altınoluk Vocational School, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
6
|
Lazarova I, Zengin G, Piatti D, Uba AI, Sagratini G, Caprioli G, Emre G, Ponniya SKM, Rengasamy KR, Paradis NJ, Koyuncu I, Şeker F, Wu C, Nilofar, Flores GA, Cusumano G, Angelini P, Venanzoni R. Appraisals on the chemical characterization and biological potentials of Ranunculus constantinopolitanus extracts using chromatographic, computational, and molecular network approaches. Food Chem Toxicol 2023; 181:114064. [PMID: 37793470 DOI: 10.1016/j.fct.2023.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
In this context, phytochemicals were extracted from Ranunculus constantinopolitanus using ethyl acetate (EA), ethanol, ethanol/water (70%), and water solvent. The analysis encompassed quantification of total phenolic and flavonoid content using spectrophotometric assays, chemical profiling via high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) for the extracts, and assessment of antioxidant activity via 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), metal chelating (MCA), and phosphomolybdenum (PBD) assays. Moreover, antimicrobial activity was assessed against four different bacterial strains, as well as various yeasts. Enzyme inhibitory activities were evaluated against five types of enzymes. Additionally, the extracts were examined for their anticancer and protective effects on several cancer cell lines and the human normal cell line. All of the extracts exhibited significant levels of ferulic acid, kaempferol, and caffeic acid. All tested extracts demonstrated antimicrobial activity, with Escherichia coli and Pseudomonas aeruginosa being most sensitive to EA and ethanol extracts. Molecular docking studies revealed that kaempferol-3-O-glucoside strong interactions with AChE, BChE and tyrosinase. In addition, network pharmacology showed an association between gastric cancer and kaempferol-3-O-glucoside. Based on the results, R. constantinopolitanus can be a potential reservoir of bioactive compounds for future bioproduct innovation and pharmaceutical industries.
Collapse
Affiliation(s)
- Irina Lazarova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Diletta Piatti
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Gianni Sagratini
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gizem Emre
- Department of Pharmaceutical Botany, Pharmacy Faculty, Marmara University, Istanbul, Turkey
| | - Sathish Kumar M Ponniya
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | - Kannan Rr Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Fatma Şeker
- Department of Biology, Science Arts Faculty, Harran University, Sanliurfa, Turkey
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Nilofar
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey; Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Giancarlo Angeles Flores
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| |
Collapse
|
7
|
Ma L, Li Y, Luo R, Wang Y, Cao J, Fu W, Qian B, Zheng L, Tang L, Lv X, Zheng L, Liang G, Chen L. Discovery of a Selective and Orally Bioavailable FGFR2 Degrader for Treating Gastric Cancer. J Med Chem 2023. [PMID: 37220310 DOI: 10.1021/acs.jmedchem.3c00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Abnormal activation of fibroblast growth factor receptors (FGFRs) results in the development and progression of human cancers. FGFR2 is frequently amplified or mutated in cancers; therefore, it is an attractive target for tumor therapy. Despite the development of several pan-FGFR inhibitors, their long-term therapeutic efficacy is hindered by acquired mutations and low isoform selectivity. Herein, we report the discovery of an efficient and selective FGFR2 proteolysis-targeting chimeric molecule, LC-MB12, that incorporates an essential rigid linker. LC-MB12 preferentially internalizes and degrades membrane-bound FGFR2 among the four FGFR isoforms; this may promote greater clinical benefits. LC-MB12 exhibits superior potency in FGFR signaling suppression and anti-proliferative activity compared to the parental inhibitor. Furthermore, LC-MB12 is orally bioavailable and shows significant antitumor effects in FGFR2-dependent gastric cancer in vivo. Taken together, LC-MB12 is a candidate FGFR2 degrader for alternative FGFR2-targeting strategies and offers a promising starting point for drug development.
Collapse
Affiliation(s)
- Lin Ma
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Yingying Li
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Ruixiang Luo
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Yuhan Wang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Jiaqi Cao
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Weitao Fu
- Department of Computer-Aided Drug Design, Jiangsu Vcare PharmaTech Co. Ltd., Nanjing 211800, China
| | - Bolan Qian
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Lei Zheng
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Longguang Tang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang 322000, China
| | - Xinting Lv
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Guang Liang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| | - Lingfeng Chen
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310012 Zhejiang, China
| |
Collapse
|
8
|
Aarhus TI, Eickhoff J, Klebl B, Unger A, Boros J, Choidas A, Zischinsky ML, Wolowczyk C, Bjørkøy G, Sundby E, Hoff BH. A highly selective purine-based inhibitor of CSF1R potently inhibits osteoclast differentiation. Eur J Med Chem 2023; 255:115344. [PMID: 37141705 DOI: 10.1016/j.ejmech.2023.115344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) plays an important role in the regulation of many inflammatory processes, and overexpression of the kinase is implicated in several disease states. Identifying selective, small-molecule inhibitors of CSF1R may be a crucial step toward treating these disorders. Through modelling, synthesis, and a systematic structure-activity relationship study, we have identified a number of potent and highly selective purine-based inhibitors of CSF1R. The optimized 6,8-disubstituted antagonist, compound 9, has enzymatic IC50 of 0.2 nM, and displays a strong affinity toward the autoinhibited form of CSF1R, contrasting that of other previously reported inhibitors. As a result of its binding mode, the inhibitor shows excellent selectivity (Selectivity score: 0.06), evidenced by profiling towards a panel of 468 kinases. In cell-based assays, this inhibitor shows dose-dependent blockade of CSF1-mediated downstream signalling in murine bone marrow-derived macrophages (IC50 = 106 nM) as well as disruption of osteoclast differentiation at nanomolar levels. In vivo experiments, however, indicate that improve metabolic stability is needed in order to further progress this compound class.
Collapse
Affiliation(s)
- Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Joanna Boros
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Mia-Lisa Zischinsky
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Camilla Wolowczyk
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Geir Bjørkøy
- Department of Biomedical Laboratory Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
9
|
Wu X, Liu Z, Gan C, Wei W, Zhang Q, Liu H, Que H, Su X, Yue L, He H, Ouyang L, Ye T. Design, synthesis and biological evaluation of a series of novel pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as FGFRs-dominant multi-target receptor tyrosine kinase inhibitors for the treatment of gastric cancer. Bioorg Chem 2022; 127:105965. [PMID: 35759882 DOI: 10.1016/j.bioorg.2022.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer is the second most lethal cancer across the world. With the progress in therapeutic approaches, the 5-year survival rate of early gastric cancer can reach > 95%. However, the prognosis and survival time of advanced gastric cancer is still somber. Therefore, more effective targeted therapies for gastric cancer treatment are urgently needed. FGFR, VEGFR and other receptor tyrosine kinases have recently been suggested as potential targets for gastric cancer treatment. We herein report the discovery of pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as a new class of FGFRs-dominant multi-target receptor tyrosine kinase inhibitors. SAR assessment identified the most active compounds 8f and 8k, which showed excellent inhibitory activity against a variety of receptor tyrosine kinases. Moreover, 8f and 8k displayed excellent potency in the SNU-16 gastric cancer cell line. Furthermore, 8f and 8k could inhibit FGFR1 phosphorylation and downstream signaling pathways as well as induce cell apoptosis. In vivo, 8f and 8k suppress tumor growth in the SNU-16 xenograft model without inducing obvious toxicity. These findings raise the possibility that compounds 8f and 8k might serve as potential agents for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Liu
- Laboratory of Emergency Medicine, Department of Emergency Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cailin Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianyu Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualong He
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Chen L, Zhang Y, Yin L, Cai B, Huang P, Li X, Liang G. Fibroblast growth factor receptor fusions in cancer: opportunities and challenges. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:345. [PMID: 34732230 PMCID: PMC8564965 DOI: 10.1186/s13046-021-02156-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play critical roles in many biological processes and developmental functions. Chromosomal translocation of FGFRs result in the formation of chimeric FGFR fusion proteins, which often cause aberrant signaling leading to the development and progression of human cancer. Due to the high recurrence rate and carcinogenicity, oncogenic FGFR gene fusions have been identified as promising therapeutic targets. Erdafitinib and pemigatinib, two FGFR selective inhibitors targeting FGFR fusions, have been approved by the U.S. Food and Drug Administration (FDA) to treat patients with urothelial cancer and cholangiocarcinoma, respectively. Futibatinib, a third-generation FGFR inhibitor, is under phase III clinical trials in patients with FGFR gene rearrangements. Herein, we review the current understanding of the FGF/FGFRs system and the oncogenic effect of FGFR fusions, summarize promising inhibitors under clinical development for patients with FGFR fusions, and highlight the challenges in this field.
Collapse
Affiliation(s)
- Lingfeng Chen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China.
| | - Yanmei Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guang Liang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China. .,School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, China. .,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
11
|
Li C, Cui Y, Ren J, Zou J, Kuang W, Sun X, Hu X, Yan Y, Ling X. Novel Cells-Based Electrochemical Sensor for Investigating the Interactions of Cancer Cells with Molecules and Screening Multitarget Anticancer Drugs. Anal Chem 2021; 93:1480-1488. [PMID: 33356172 DOI: 10.1021/acs.analchem.0c03566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel, effective, and label-free electrochemical sensor was constructed for investigating the interactions between cancer cells and molecules, based on targeted cancer cells immobilized on a bilayer architecture of N-doped graphene-Pt nanoparticles-chitosan (NGR-Pt-CS) and polyaniline (PANI). The interactions between folic acid (FA, positive control) and dimethyl sulfoxide (DMSO, negative control) and the choice of targeted cells, HepG2 and A549 cells, were investigated by measuring the current change of the sensor to [Fe(CN)6]3-/4- before and after interactions, and the binding constants were calculated to be 1.37 × 105 and 1.92 × 105 M-1 by sensing kinetics. Furthermore, 18 main components from Aidi injection (ADI) were studied to screen compounds that have interactions with different targeted cancer cells including HepG2 and A549 cells. The potential target groups of the interactions between screened active compounds and targeted cancer cells were analyzed through computer-aided molecular docking. In this sensing system, molecules did not require electrochemical activity, and different targeted cancer cells could be immobilized on the modified electrode surface, truly reflecting the categories and numbers of targets. Additionally, the proposed sensor specifically circumvented the current paradigm in most cells-based electrochemical sensors for screening drugs, in which the changes in cell behavior induced by drugs are monitored. This study provided a novel, simple, and generally applicable method for exploring the interaction of molecules with cancer cells and screening multitarget drugs.
Collapse
Affiliation(s)
- Cong Li
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Yinzhu Cui
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jinyu Ren
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Juncheng Zou
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Wen Kuang
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiaozhi Sun
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xin Hu
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Youqi Yan
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiaomei Ling
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| |
Collapse
|
12
|
Singh M, Malhotra L, Haque MA, Kumar M, Tikhomirov A, Litvinova V, Korolev AM, Ethayathulla AS, Das U, Shchekotikhin AE, Kaur P. Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie 2021; 182:152-165. [PMID: 33417980 DOI: 10.1016/j.biochi.2020.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
The quest for effective anticancer therapeutics continues to be extensively pursued. Over the past century, several drugs have been developed, however, a majority of these drugs have a poor therapeutic index and increased toxicity profile. Hence, there still exists ample opportunity to discover safe and effective anticancer drugs. Aurora Kinase B (AurB), a member of the Aurora kinase family and a key regulator of mitotic cell division, is found to be frequently overexpressed in a variety of human cancers and has thus emerged as an attractive target for the design of anticancer therapeutics. In the present study, a structure-based scaffold hopping approach was utilized to modify the heterocyclic moiety of (S)-3-(3-aminopyrrolidine-1-carbonyl)-4,11-dihydroxy-2-methylanthra [2,3-b]furan-5,10-dione (anthrafuran 1) to generate a series of heteroarene-fused anthraquinone derivatives, which were then subjected to virtual screening for the identification of potential AurB inhibitors. The obtained hits were subsequently synthesized and evaluated by using a combination of in silico and biophysical techniques for elucidating their in vitro binding and inhibition activity with recombinantly expressed AurB. Four identified hits presented an improved binding profile as compared to their parent analog anthrafuran 1. One derivative, anthrathiophene 2 demonstrated excellent in vitro inhibition of AurB (7.3 μM).
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Alexander Tikhomirov
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Valeria Litvinova
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alexander M Korolev
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
13
|
Chen Q, Zhu M, Xie J, Dong Z, Khushafah F, Yun D, Fu W, Wang L, Wei T, Liu Z, Qiu P, Wu J, Li W. Design and Synthesis of Novel Nordihydroguaiaretic Acid (NDGA) Analogues as Potential FGFR1 Kinase Inhibitors With Anti-Gastric Activity and Chemosensitizing Effect. Front Pharmacol 2020; 11:518068. [PMID: 33041789 PMCID: PMC7517944 DOI: 10.3389/fphar.2020.518068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant fibroblast growth factor receptor-1 (FGFR1), a key driver promoting gastric cancer (GC) progression and chemo-resistance, has been increasingly recognized as a potential therapeutic target in GC. Hereon, we designed and synthesized a series of asymmetric analogues using Af23 and NDGA as lead compounds by retaining the basic structural framework (bisaryl-1,4-dien-3-one) and the unilateral active functional groups (3,4-dihydroxyl). Thereinto, Y14 showed considerable inhibitory activity against FGFR1. Next, pharmacological experiments showed that Y14 could significantly inhibit the phosphorylation of FGFR1 and its downstream kinase AKT and ERK, thus inhibiting the growth, survival, and migration of gastric cancer cells. Furthermore, compared with 5-FU treatment alone, the combination of Y14 and 5-FU significantly reduced the phosphorylation level of FGFR1, and enhanced the anti-cancer effect by inhibiting the viability and colony formation in two gastric cancer cell lines. These results confirmed that Y14 exerted anti-gastric activity and chemosensitizing effect by inhibiting FGFR1 phosphorylation and its downstream signaling pathway in vitro. This work also provides evidence that Y14, an effective FGFR1 inhibitor, could be used alone or in combination with chemotherapy to treat gastric cancer in the future.
Collapse
Affiliation(s)
- Qian Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Zhu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingwen Xie
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhaojun Dong
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fatehi Khushafah
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Di Yun
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weitao Fu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ledan Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Wei
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiguo Liu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peihong Qiu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Markosyan AI, Airapetyan KK, Gabrielyan SA, Mamyan SS, Shirinyan VZ, Zakharov AV, Arsenyan FG, Avakimyan DA, Stepanyan GM. Synthesis and Antitumor and Antibacterial Activity of Novel Dihydronaphthaline and Dihydrobenzo[H]Quinazoline Derivatives. Pharm Chem J 2019. [DOI: 10.1007/s11094-019-01948-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Ikram N, Mirza MU, Vanmeert M, Froeyen M, Salo-Ahen OMH, Tahir M, Qazi A, Ahmad S. Inhibition of Oncogenic Kinases: An In Vitro Validated Computational Approach Identified Potential Multi-Target Anticancer Compounds. Biomolecules 2019; 9:E124. [PMID: 30925835 PMCID: PMC6523505 DOI: 10.3390/biom9040124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Tumorigenesis in humans is a multistep progression that imitates genetic changes leading to cell transformation and malignancy. Oncogenic kinases play a central role in cancer progression, rendering them putative targets for the design of anti-cancer drugs. The presented work aims to identify the potential multi-target inhibitors of oncogenic receptor tyrosine kinases (RTKs) and serine/threonine kinases (STKs). For this, chemoinformatics and structure-based virtual screening approaches were combined with an in vitro validation of lead hits on both cancerous and non-cancerous cell lines. A total of 16 different kinase structures were screened against ~739,000 prefiltered compounds using diversity selection, after which the top hits were filtered for promising pharmacokinetic properties. This led to the identification of 12 and 9 compounds against RTKs and STKs, respectively. Molecular dynamics (MD) simulations were carried out to better comprehend the stability of the predicted hit kinase-compound complexes. Two top-ranked compounds against each kinase class were tested in vitro for cytotoxicity, with compound F34 showing the most promising inhibitory activity in HeLa, HepG2, and Vero cell lines with IC50 values of 145.46 μM, 175.48 μM, and 130.52 μM, respectively. Additional docking of F34 against various RTKs was carried out to support potential multi-target inhibition. Together with reliable MD simulations, these results suggest the promising potential of identified multi-target STK and RTK scaffolds for further kinase-specific anti-cancer drug development toward combinatorial therapies.
Collapse
Affiliation(s)
- Nazia Ikram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Usman Mirza
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Michiel Vanmeert
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, Medicinal Chemistry, University of Leuven, B-3000 Leuven, Belgium.
| | - Outi M H Salo-Ahen
- Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland.
| | - Muhammad Tahir
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
| | - Aamer Qazi
- Centre for Research in Molecular Medicine, The University of Lahore, 54000 Lahore, Pakistan.
| | - Sarfraz Ahmad
- Institute of Pharmaceutical Sciences, Riphah University, 54000 Lahore, Pakistan.
- Department of Chemistry, Faculty of Sciences, University Malaya, 59100, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Markosyan AI, Hayrapetyan KK, Gabrielyan SH, Shirinyan VZ, Mamyan SS, Avakimyan JA, Stepanyan GM. Some Transformations of 2-(Chloromethyl)-5,5-dimethyl-5,6-dihydrobenzo[h]quinazolin-4(3H)-one. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018040152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Tumor and circulating biomarkers in patients with second-line hepatocellular carcinoma from the randomized phase II study with tivantinib. Oncotarget 2018; 7:72622-72633. [PMID: 27579536 PMCID: PMC5341932 DOI: 10.18632/oncotarget.11621] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/20/2016] [Indexed: 02/06/2023] Open
Abstract
ARQ 197-215 was a randomized placebo-controlled phase II study testing the MET inhibitor tivantinib in second-line hepatocellular carcinoma (HCC) patients. It identified tumor MET as a key biomarker in HCC.Aim of this research was to study the prognostic and predictive value of tumor (MET, the receptor tyrosine kinase encoded by the homonymous MNNG-HOS transforming gene) and circulating (MET, hepatocyte growth factor [HGF], alpha-fetoprotein [AFP], vascular endothelial growth factor [VEGF]) biomarkers in second-line HCC. Tumor MET-High status was centrally assessed by immunohistochemistry. Circulating biomarkers were centrally analyzed on serum samples collected at baseline and every 4-8 weeks, using medians as cut-off to determine High/Low status. Tumor MET, tested in 77 patients, was more frequently High after (82%) versus before (40%) sorafenib. A significant interaction (p = 0.04) between tivantinib and baseline tumor MET in terms of survival was observed. Baseline circulating MET and HGF (102 patients) High status correlated with shorter survival (HR 0.61, p = 0.03, and HR 0.60, p = 0.02, respectively), while the association between AFP (104 patients) or VEGF (103 patients) status and survival was non-significant. CONCLUSIONS Tumor MET levels were higher in patients treated with sorafenib. Circulating biomarkers such as MET and HGF may be prognostic in second-line HCC. These results need to be confirmed in larger randomized clinical trials.
Collapse
|
18
|
Wu J, Du X, Li W, Zhou Y, Bai E, Kang Y, Chen Q, Fu W, Yun D, Xu Q, Qiu P, Jin R, Cai Y, Liang G. A novel non-ATP competitive FGFR1 inhibitor with therapeutic potential on gastric cancer through inhibition of cell proliferation, survival and migration. Apoptosis 2018; 22:852-864. [PMID: 28315172 DOI: 10.1007/s10495-017-1361-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1), belonging to receptor tyrosine kinases (RTKs), possesses various biological functions. Over-expression of FGFR1 has been observed in multiple human malignancies. Hence, targeting FGFR1 is an attractive prospect for the advancement of cancer treatment options. Here, we present a novel small molecular FGFR1 inhibitor L16H50, which can inhibit FGFR1 kinase in an ATP-independent manner. It potently inhibits FGFR1-mediated signaling in a gastric cancer cell line, resulting in inhibition of cell growth, survival and migration. It also displays an outstanding anti-tumor activity in a gastric cancer xenograft tumor model by targeting FGFR1 signaling. These results show that L16H50 is a potent non-ATP-competitive FGFR1 inhibitor and may provide strong rationale for its evaluation in gastric cancer patients.
Collapse
Affiliation(s)
- Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Xiaojing Du
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wulan Li
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- College of Information Science and Computer Engineering, the First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yangyang Zhou
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Encheng Bai
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yanting Kang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuxiang Chen
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weitao Fu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Di Yun
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| | - Qing Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Peihong Qiu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Rong Jin
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Yuepiao Cai
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
19
|
Balek L, Gudernova I, Vesela I, Hampl M, Oralova V, Kunova Bosakova M, Varecha M, Nemec P, Hall T, Abbadessa G, Hatch N, Buchtova M, Krejci P. ARQ 087 inhibits FGFR signaling and rescues aberrant cell proliferation and differentiation in experimental models of craniosynostoses and chondrodysplasias caused by activating mutations in FGFR1, FGFR2 and FGFR3. Bone 2017; 105:57-66. [PMID: 28826843 DOI: 10.1016/j.bone.2017.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/16/2023]
Abstract
Tyrosine kinase inhibitors are being developed for therapy of malignancies caused by oncogenic FGFR signaling but little is known about their effect in congenital chondrodysplasias or craniosynostoses that associate with activating FGFR mutations. Here, we investigated the effects of novel FGFR inhibitor, ARQ 087, in experimental models of aberrant FGFR3 signaling in cartilage. In cultured chondrocytes, ARQ 087 efficiently rescued all major effects of pathological FGFR3 activation, i.e. inhibition of chondrocyte proliferation, loss of extracellular matrix and induction of premature senescence. In ex vivo tibia organ cultures, ARQ 087 restored normal growth plate architecture and eliminated the suppressing FGFR3 effect on chondrocyte hypertrophic differentiation, suggesting that it targets the FGFR3 pathway specifically, i.e. without interference with other pro-growth pathways. Moreover, ARQ 087 inhibited activity of FGFR1 and FGFR2 mutants associated with Pfeiffer, Apert and Beare-Stevenson craniosynostoses, and rescued FGFR-driven excessive osteogenic differentiation in mouse mesenchymal micromass cultures or in ex vivo calvarial organ cultures. Our data warrant further development of ARQ 087 for clinical use in skeletal disorders caused by activating FGFR mutations.
Collapse
Affiliation(s)
- Lukas Balek
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Vesela
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Marek Hampl
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Veronika Oralova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic
| | | | - Miroslav Varecha
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Pavel Nemec
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | | | | | - Nan Hatch
- University of Michigan School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marcela Buchtova
- Institute of Experimental Biology, Faculty of Sciences, Masaryk University, 62500 Brno, Czech Republic; Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200 Brno, Czech Republic.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.
| |
Collapse
|
20
|
Shi Y, Liu X, Fredimoses M, Song M, Chen H, Liu K, Lee MH, Dong Z. FGFR2 regulation by picrasidine Q inhibits the cell growth and induces apoptosis in esophageal squamous cell carcinoma. J Cell Biochem 2017; 119:2231-2239. [PMID: 28857247 DOI: 10.1002/jcb.26385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor receptor (FGFR) 2 and its downstream signaling cascades, PI3 K/AKT/mTOR is playing an important role in cell survival and proliferations. In this study, we firstly found that picrasidine Q (PQ), an alkaloid component extracted from Angelica keiskei species, has the capacity of anti-cell transformation and anti-cancer. After ligand shape similarity approach of PQ, we found that PQ targeted FGFR 2 and verified by FGFR2 kinase assay as well as computational docking model. FGFR2 highly expressed in esophageal cancer tissues and PQ inhibited fibroblast growth factor (FGF)-induced cell transformation. Furthermore, PQ inhibited cell proliferation and induced cell cycle arrest and apoptosis in KYSE30, KYSE410, and KYSE450 esophageal squamous cell carcinoma (ESCC) cells. It was confirmed by detecting of biological markers such as cyclinD1, cyclinD3 and cyclinB1 for cell cycle or cleaved caspase-7, caspase-3, and PARP for apoptosis. PQ targeting of FGFR2 kinase activities suppressed downstream target proteins including phosphorylation of AKT and mTOR but not MEK/ERK signaling pathways. Taken together, our results are the first to identify that PQ might be a chemopreventive and chemotherapeutic agent by direct targeting FGFR2 and inhibiting cell proliferation of ESCC cells.
Collapse
Affiliation(s)
- Yuanyuan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China
| | - Xuejiao Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China
| | | | - Mengqiu Song
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, P.R. China.,The Hormel Institute, University of Minnesota, Austin, Minnesota
| |
Collapse
|
21
|
Wangkanont K, Winton VJ, Forest KT, Kiessling LL. Conformational Control of UDP-Galactopyranose Mutase Inhibition. Biochemistry 2017; 56:3983-3992. [PMID: 28608671 PMCID: PMC5739916 DOI: 10.1021/acs.biochem.7b00189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
UDP-galactopyranose mutase (Glf or UGM) catalyzes the formation of uridine 5'-diphosphate-α-d-galactofuranose (UDP-Galf) from UDP-galactopyranose (UDP-Galp). The enzyme is required for the production of Galf-containing glycans. UGM is absent in mammals, but members of the Corynebacterineae suborder require UGM for cell envelope biosynthesis. The need for UGM in some pathogens has prompted the search for inhibitors that could serve as antibiotic leads. Optimizing inhibitor potency, however, has been challenging. The UGM from Klebsiella pneumoniae (KpUGM), which is not required for viability, is more effectively impeded by small-molecule inhibitors than are essential UGMs from species such as Mycobacterium tuberculosis or Corynebacterium diphtheriae. Why KpUGM is more susceptible to inhibition than other orthologs is not clear. One potential source of difference is UGM ortholog conformation. We previously determined a structure of CdUGM bound to a triazolothiadiazine inhibitor in the open form, but it was unclear whether the small-molecule inhibitor bound this form or to the closed form. By varying the terminal tag (CdUGM-His6 and GSG-CdUGM), we crystallized CdUGM to capture the enzyme in different conformations. These structures reveal a pocket in the active site that can be exploited to augment inhibitor affinity. Moreover, they suggest the inhibitor binds the open form of most prokaryotic UGMs but can bind the closed form of KpUGM. This model and the structures suggest strategies for optimizing inhibitor potency by exploiting UGM conformational flexibility.
Collapse
Affiliation(s)
- Kittikhun Wangkanont
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Valerie J. Winton
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Bacteriology University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| | - Laura L. Kiessling
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Corresponding authors: Katrina T. Forest (Tel. 608-265-3566, ) and Laura L. Kiessling (Tel. 608-262-0541, )
| |
Collapse
|
22
|
Chen H, Marsiglia WM, Cho MK, Huang Z, Deng J, Blais SP, Gai W, Bhattacharya S, Neubert TA, Traaseth NJ, Mohammadi M. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases. eLife 2017; 6:e21137. [PMID: 28166054 PMCID: PMC5293489 DOI: 10.7554/elife.21137] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/02/2017] [Indexed: 01/07/2023] Open
Abstract
Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the 'molecular brake', 'DFG latch', 'A-loop plug', and 'αC tether'. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs.
Collapse
Affiliation(s)
- Huaibin Chen
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | | | - Min-Kyu Cho
- Department of Chemistry, New York University, New York, United States
| | | | - Jingjing Deng
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Steven P Blais
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Weiming Gai
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | | | - Thomas A Neubert
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | | | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| |
Collapse
|
23
|
Ying S, Du X, Fu W, Yun D, Chen L, Cai Y, Xu Q, Wu J, Li W, Liang G. Synthesis, biological evaluation, QSAR and molecular dynamics simulation studies of potential fibroblast growth factor receptor 1 inhibitors for the treatment of gastric cancer. Eur J Med Chem 2017; 127:885-899. [DOI: 10.1016/j.ejmech.2016.10.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023]
|
24
|
Cheng W, Wang M, Tian X, Zhang X. An overview of the binding models of FGFR tyrosine kinases in complex with small molecule inhibitors. Eur J Med Chem 2016; 126:476-490. [PMID: 27914362 DOI: 10.1016/j.ejmech.2016.11.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 11/26/2022]
Abstract
The fibroblast growth factor receptor (FGFR) family receptor tyrosine kinase (RTK) includes four structurally related members, termed as FGFR1, FGFR2, FGFR3, and FGFR4. Given its intimate role in the progression of several solid tumors, excessive FGFR signaling provides an opportunity for anticancer therapy. Along with extensive pharmacological studies validating the therapeutic potential of targeting the FGFRs for cancer treatment, co-crystal structures of FGFRs/inhibitors are continuously coming up to study the mechanism of actions and explore new inhibitors. Herein, we review the reported co-crystals of FGFRs in complex with the corresponding inhibitors, main focusing our attention on the binding models and the pharmacological activities of the inhibitors.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mixiang Wang
- Department of Pharmacy, The First Affiliated Hospital of Nanyang Medical College, Nanyang 473000, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
25
|
Moghadasi M, Ilghari D, Sirati-Sabet M, Amini A, Asghari H, Gheibi N. Structural characterization of recombinant human fibroblast growth factor receptor 2b kinase domain upon interaction with omega fatty acids. Chem Phys Lipids 2016; 202:21-27. [PMID: 27871884 DOI: 10.1016/j.chemphyslip.2016.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/09/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Abstract
The mutated recombinant kinase domain of human fibroblast growth factor receptor 2b (hFGFR2b) is overexpressed and purified, and its structural changes upon the interaction with three unsaturated fatty acids (UFAs), oleic, linoleic and α-linolenic are studied. This interaction is investigated to find out about the folding and unfolding effect of unsaturated fatty acids on the kinase domain structure of hFGFR2b. Recombinant pLEICS-01 vectors, containing the mutated coding region of hFGFR2b, are expressed in the standard Escherichia coli BL21 (DE3) host cells and purified by Ni2+-NTA affinity chromatography. While polyacrylamide gel electrophoresis characterizes the functionality of recombinant protein, its structural changes are studied in the presence and absence of various concentrations of oleic, α-linolenic and linoleic acids using circular dichroism (CD) and fluorescence spectroscopy. Far ultraviolet CD results show that unsaturated fatty acids do not change the secondary structure of the recombinant kinase domain of hFGFR2b. However, chemical denaturation analysis confirms that all three UFAs destabilize the tertiary structure of recombinant protein. A decrease in the fluorescence intensity without any significant red or blue shift (336±1nm) reflects a variation in the tertiary structure of protein. The direct interaction of the studied UFAs with hFGFR2b reduces the conformational stability of their kinase domains. The structural changes in hFGFR2b in the presence of UFAs may be necessary for hFGFR2b to adjust the signal transduction and regulate the key cellular processes.
Collapse
Affiliation(s)
- Masoumeh Moghadasi
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Dariush Ilghari
- College of Pharmacy, University of Texas at Austin, Austin, TX 78712, USA
| | - Majid Sirati-Sabet
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Amini
- Centre for Infrastructure Engineering, Western Sydney University, Bld Y, Locked Bag 1797, NSW 2751, Australia; Department of Mechanical Engineering, Australian College of Kuwait, Mishrif, Kuwait City, Kuwait.
| | - Hamideh Asghari
- Department of Biotechnology, School of Para Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, P.O. Box 34199-15315, Qazvin, Iran.
| |
Collapse
|
26
|
Auld DS, Jimenez M, Yue K, Busby S, Chen YC, Bowes S, Wendel G, Smith T, Zhang JH. Matrix-Based Activity Pattern Classification as a Novel Method for the Characterization of Enzyme Inhibitors Derived from High-Throughput Screening. ACTA ACUST UNITED AC 2016; 21:1075-1089. [DOI: 10.1177/1087057116667255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the central questions in the characterization of enzyme inhibitors is determining the mode of inhibition (MOI). Classically, this is done with a number of low-throughput methods in which inhibition models are fitted to the data. The ability to rapidly characterize the MOI for inhibitors arising from high-throughput screening in which hundreds to thousands of primary inhibitors may need to be characterized would greatly help in lead selection efforts. Here we describe a novel method for determining the MOI of a compound without the need for curve fitting of the enzyme inhibition data. We provide experimental data to demonstrate the utility of this new high-throughput MOI classification method based on nonparametric analysis of the activity derived from a small matrix of substrate and inhibitor concentrations (e.g., from a 4S × 4I matrix). Lists of inhibitors from four different enzyme assays are studied, and the results are compared with the previously described IC50-shift method for MOI classification. The MOI results from this method are in good agreement with the known MOI and compare favorably with those from the IC50-shift method. In addition, we discuss some advantages and limitations of the method and provide recommendations for utilization of this MOI classification method.
Collapse
Affiliation(s)
- Douglas S. Auld
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| | - Marta Jimenez
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| | - Kimberley Yue
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| | - Scott Busby
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| | - Yu-Chi Chen
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
- National Center for Advancing Translational Sciences, Bethesda, MD, USA
| | - Scott Bowes
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| | - Greg Wendel
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| | - Thomas Smith
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| | - Ji-Hu Zhang
- Novartis Institutes for Biomedical Research, Center for Proteomic Chemistry, Cambridge, MA, USA
| |
Collapse
|
27
|
Hall TG, Yu Y, Eathiraj S, Wang Y, Savage RE, Lapierre JM, Schwartz B, Abbadessa G. Preclinical Activity of ARQ 087, a Novel Inhibitor Targeting FGFR Dysregulation. PLoS One 2016; 11:e0162594. [PMID: 27627808 PMCID: PMC5023172 DOI: 10.1371/journal.pone.0162594] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of Fibroblast Growth Factor Receptor (FGFR) signaling through amplifications, mutations, and gene fusions has been implicated in a broad array of cancers (e.g. liver, gastric, ovarian, endometrial, and bladder). ARQ 087 is a novel, ATP competitive, small molecule, multi-kinase inhibitor with potent in vitro and in vivo activity against FGFR addicted cell lines and tumors. Biochemically, ARQ 087 exhibited IC50 values of 1.8 nM for FGFR2, and 4.5 nM for FGFR1 and 3. In cells, inhibition of FGFR2 auto-phosphorylation and other proteins downstream in the FGFR pathway (FRS2α, AKT, ERK) was evident by the response to ARQ 087 treatment. Cell proliferation studies demonstrated ARQ 087 has anti-proliferative activity in cell lines driven by FGFR dysregulation, including amplifications, fusions, and mutations. Cell cycle studies in cell lines with high levels of FGFR2 protein showed a positive relationship between ARQ 087 induced G1 cell cycle arrest and subsequent induction of apoptosis. In addition, ARQ 087 was effective at inhibiting tumor growth in vivo in FGFR2 altered, SNU-16 and NCI-H716, xenograft tumor models with gene amplifications and fusions. ARQ 087 is currently being studied in a phase 1/2 clinical trial that includes a sub cohort for intrahepatic cholangiocarcinoma patients with confirmed FGFR2 gene fusions (NCT01752920).
Collapse
Affiliation(s)
- Terence G. Hall
- ArQule, Inc., Burlington, MA, United States of America
- * E-mail:
| | - Yi Yu
- ArQule, Inc., Burlington, MA, United States of America
| | | | - Yunxia Wang
- ArQule, Inc., Burlington, MA, United States of America
| | | | | | | | | |
Collapse
|
28
|
Srivastava AK, Hollingshead MG, Weiner J, Navas T, Evrard YA, Khin SA, Ji JJ, Zhang Y, Borgel S, Pfister TD, Kinders RJ, Bottaro DP, Linehan WM, Tomaszewski JE, Doroshow JH, Parchment RE. Pharmacodynamic Response of the MET/HGF Receptor to Small-Molecule Tyrosine Kinase Inhibitors Examined with Validated, Fit-for-Clinic Immunoassays. Clin Cancer Res 2016; 22:3683-94. [PMID: 27001313 PMCID: PMC7802886 DOI: 10.1158/1078-0432.ccr-15-2323] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Rational development of targeted MET inhibitors for cancer treatment requires a quantitative understanding of target pharmacodynamics, including molecular target engagement, mechanism of action, and duration of effect. EXPERIMENTAL DESIGN Sandwich immunoassays and specimen handling procedures were developed and validated for quantifying full-length MET and its key phosphospecies (pMET) in core tumor biopsies. MET was captured using an antibody to the extracellular domain and then probed using antibodies to its C-terminus (full-length) and epitopes containing pY1234/1235, pY1235, and pY1356. Using pMET:MET ratios as assay endpoints, MET inhibitor pharmacodynamics were characterized in MET-amplified and -compensated (VEGFR blockade) models. RESULTS By limiting cold ischemia time to less than two minutes, the pharmacodynamic effects of the MET inhibitors PHA665752 and PF02341066 (crizotinib) were quantifiable using core needle biopsies of human gastric carcinoma xenografts (GTL-16 and SNU5). One dose decreased pY1234/1235 MET:MET, pY1235-MET:MET, and pY1356-MET:MET ratios by 60% to 80% within 4 hours, but this effect was not fully sustained despite continued daily dosing. VEGFR blockade by pazopanib increased pY1235-MET:MET and pY1356-MET:MET ratios, which was reversed by tivantinib. Full-length MET was quantifiable in 5 of 5 core needle samples obtained from a resected hereditary papillary renal carcinoma, but the levels of pMET species were near the assay lower limit of quantitation. CONCLUSIONS These validated immunoassays for pharmacodynamic biomarkers of MET signaling are suitable for studying MET responses in amplified cancers as well as compensatory responses to VEGFR blockade. Incorporating pharmacodynamic biomarker studies into clinical trials of MET inhibitors could provide critical proof of mechanism and proof of concept for the field. Clin Cancer Res; 22(14); 3683-94. ©2016 AACR.
Collapse
Affiliation(s)
- Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jennifer Weiner
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tony Navas
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yvonne A Evrard
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sonny A Khin
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jiuping Jay Ji
- National Clinical Target Validation Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yiping Zhang
- National Clinical Target Validation Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Suzanne Borgel
- In Vivo Evaluation Group, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas D Pfister
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert J Kinders
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | | | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Ralph E Parchment
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
29
|
Lapierre JM, Eathiraj S, Vensel D, Liu Y, Bull CO, Cornell-Kennon S, Iimura S, Kelleher EW, Kizer DE, Koerner S, Makhija S, Matsuda A, Moussa M, Namdev N, Savage RE, Szwaya J, Volckova E, Westlund N, Wu H, Schwartz B. Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): An Orally Bioavailable, Selective, and Potent Allosteric AKT Inhibitor. J Med Chem 2016; 59:6455-69. [PMID: 27305487 DOI: 10.1021/acs.jmedchem.6b00619] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The work in this paper describes the optimization of the 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine chemical series as potent, selective allosteric inhibitors of AKT kinases, leading to the discovery of ARQ 092 (21a). The cocrystal structure of compound 21a bound to full-length AKT1 confirmed the allosteric mode of inhibition of this chemical class and the role of the cyclobutylamine moiety. Compound 21a demonstrated high enzymatic potency against AKT1, AKT2, and AKT3, as well as potent cellular inhibition of AKT activation and the phosphorylation of the downstream target PRAS40. Compound 21a also served as a potent inhibitor of the AKT1-E17K mutant protein and inhibited tumor growth in a human xenograft mouse model of endometrial adenocarcinoma.
Collapse
Affiliation(s)
- Jean-Marc Lapierre
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Sudharshan Eathiraj
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - David Vensel
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Yanbin Liu
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Cathy O Bull
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | | | - Shin Iimura
- Daiichi Sankyo Co., Shinagawa R&D Center, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eugene W Kelleher
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Darin E Kizer
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Steffi Koerner
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Sapna Makhija
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Akihisa Matsuda
- Daiichi Sankyo Co., Shinagawa R&D Center, 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Magdi Moussa
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Nivedita Namdev
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Ronald E Savage
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Jeff Szwaya
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Erika Volckova
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Neil Westlund
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Hui Wu
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| | - Brian Schwartz
- ArQule Inc. , One Wall Street, Burlington, Massachusetts 01803, United States
| |
Collapse
|
30
|
Wu J, Ji J, Weng B, Qiu P, Kanchana K, Wei T, Wang Y, Cai Y, Li X, Liang G. Discovery of novel non-ATP competitive FGFR1 inhibitors and evaluation of their anti-tumor activity in non-small cell lung cancer in vitro and in vivo. Oncotarget 2015; 5:4543-53. [PMID: 24980830 PMCID: PMC4147344 DOI: 10.18632/oncotarget.2122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that high expression of FGFR1 is closely related to the development of lung cancer especially in non-small cell lung cancers (NSCLC), to which non-ATP competitive inhibitors represent an effective therapeutical approach due to their good specificity. Herein, a series of NDGA analogues with the framework of bisaryl-1,4-dien-3-one as novel FGFR1 inhibitors have been designed and screened. Among them Aea4 and Aea25 showed strong FGFR1 ‵inhibition and high selectivity over other receptor kinases. The kinase inhibitory assay in different ATP concentrations and computer-assistant molecular docking showed that the FGFR1 inhibition mode of both Aea4 and Aea25 was non-ATP-competitive. The in vitro and in vivo study on anticancer efficacy of Aea4 and Aea25 against non-small cell lung cancer involves inhibition of cell proliferation, apoptosis induction and cell cycle arrest with no toxicity. Thus, these two novel non-ATP competitive inhibitors derived from NDGA may have a great therapeutic potential in the treatment of NSCLC. This work also provides a structural lead for the design of new non-ATP-competitive FGFR1 inhibitors.
Collapse
Affiliation(s)
- Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China. These Authors contributed equally to this work
| | - Jiansong Ji
- Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China. These Authors contributed equally to this work
| | - Bixia Weng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Karvannan Kanchana
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Tao Wei
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Yuepiao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Xiaokun Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, WenzhouMedical Universtiy, Wenzhou zhejiang China
| |
Collapse
|
31
|
Wu J, Wei T, Tang Q, Weng B, Li W, Jiang X, Ding T, Li X, Liang G, Cai Y, Ji J. Discovery and anti-cancer evaluation of two novel non-ATP-competitive FGFR1 inhibitors in non-small-cell lung cancer. BMC Cancer 2015; 15:276. [PMID: 25880284 PMCID: PMC4410475 DOI: 10.1186/s12885-015-1307-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor 1 (FGFR1) is correlated closely with the occurrence and development of lung cancer. FGFR1 kinase inhibitors have exhibited significant therapeutic effects against non-small-cell lung cancer. Recently, non-ATP competitive FGFR1 inhibitors have attracted extensive attention due to their low side effects. METHODS Caliper Mobility Shift Assay was used for FGFR1 inhibition test and kinase inhibitory mode study. Hoechst staining and Annexin V/PI staining were used to evaluate the cell apoptosis induction. Western blot were then performed to confirm the intracellular FGFR1 inhibition and apoptotic protein expression. Finally, the anti-tumor effect and mechanism of Af23 and Ad23 was evaluated in vivo. RESULTS In this study, we designed, synthesized and discovered two novel non-ATP competitive FGFR1 inhibitors, Af23 and Ad23, using NDGA as a leading compound. They had IC50 values of 0.6 μM and 1.4 μM against FGFR1 kinase, respectively. The kinase inhibitory assay carried at different ATP concentrations showed that the FGFR1 inhibition mode of both Ad23 and Af23 was non-ATP-competitive. Further, Af23 and Ad23 significantly suppressed FGFR1 phosphorylation and cell proliferation in non-small-cell lung cancer (NSLCLC) H460 cells and induced cell apoptosis. Af23 and Ad23 also showed significant anti-tumor activity in the H460 xenograft mouse model, accompanied with the inhibition of FGFR1, ERK, and AKT phosphorylation without exhibiting toxicity. CONCLUSIONS These results indicate that Ad23 and Af23 are potential agents for the treatment of non-small-cell lung cancer. This work also provides a structural lead for the design of new non-ATP-competitive FGFR1 inhibitors.
Collapse
Affiliation(s)
- Jianzhang Wu
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Tao Wei
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Qinqin Tang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Bixia Weng
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Wulan Li
- College of Information Science and Computer Engineering, Wenzhou Medical Universtiy, Wenzhou, Zhejiang, 325035, China.
| | - Xin Jiang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Ting Ding
- Department of Pharmacy, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
| | - Xiaokun Li
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yuepiao Cai
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jiansong Ji
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China. .,Department of Interventional Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
32
|
The therapeutic potential of a novel non-ATP-competitive fibroblast growth factor receptor 1 inhibitor on gastric cancer. Anticancer Drugs 2015; 26:379-87. [DOI: 10.1097/cad.0000000000000195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Molecular modeling study of the induced-fit effect on kinase inhibition: the case of fibroblast growth factor receptor 3 (FGFR3). J Comput Aided Mol Des 2015; 29:619-41. [DOI: 10.1007/s10822-015-9841-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
|
34
|
Huang Z, Tan L, Wang H, Liu Y, Blais S, Deng J, Neubert TA, Gray NS, Li X, Mohammadi M. DFG-out mode of inhibition by an irreversible type-1 inhibitor capable of overcoming gate-keeper mutations in FGF receptors. ACS Chem Biol 2015; 10:299-309. [PMID: 25317566 PMCID: PMC4301177 DOI: 10.1021/cb500674s] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Drug-resistance
acquisition through kinase gate-keeper mutations is a major hurdle
in the clinic. Here, we determined the first crystal structures of
the human FGFR4 kinase domain (FGFR4K) alone and complexed with ponatinib,
a promiscuous type-2 (DFG-out) kinase inhibitor, and an oncogenic
FGFR4K harboring the V550L gate-keeper mutation bound to FIIN-2, a
new type-1 irreversible inhibitor. Remarkably, like ponatinib, FIIN-2
also binds in the DFG-out mode despite lacking a functional group
necessary to occupy the pocket vacated upon the DFG-out flip. Structural
analysis reveals that the covalent bond between FIIN-2 and a cysteine,
uniquely present in the glycine-rich loop of FGFR kinases, facilitates
the DFG-out conformation, which together with the internal flexibility
of FIIN-2 enables FIIN-2 to avoid the steric clash with the gate-keeper
mutation that causes the ponatinib resistance. The structural data
provide a blueprint for the development of next generation anticancer
inhibitors through combining the salient inhibitory mechanisms of
ponatinib and FIIN-2.
Collapse
Affiliation(s)
- Zhifeng Huang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Tan
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Huiyan Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | | | | | | | | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | | |
Collapse
|
35
|
Structural Analysis of the Human Fibroblast Growth Factor Receptor 4 Kinase. J Mol Biol 2014; 426:3744-3756. [DOI: 10.1016/j.jmb.2014.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 11/20/2022]
|
36
|
Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci 2014; 15:13768-801. [PMID: 25110867 PMCID: PMC4159824 DOI: 10.3390/ijms150813768] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK-TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK-TKIs have been developed for the treatment of cancer patients. Specific/selective RTK-TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK-TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm 17176, Sweden.
| |
Collapse
|
37
|
Discovery and identification of new non-ATP competitive FGFR1 inhibitors with therapeutic potential on non-small-cell lung cancer. Cancer Lett 2014; 344:82-89. [DOI: 10.1016/j.canlet.2013.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/26/2013] [Accepted: 10/18/2013] [Indexed: 11/23/2022]
|
38
|
Klein T, Tucker J, Holdgate GA, Norman RA, Breeze AL. FGFR1 Kinase Inhibitors: Close Regioisomers Adopt Divergent Binding Modes and Display Distinct Biophysical Signatures. ACS Med Chem Lett 2014; 5:166-71. [PMID: 24900792 PMCID: PMC4027782 DOI: 10.1021/ml4004205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022] Open
Abstract
The binding of a ligand to its target protein is often accompanied by conformational changes of both the protein and the ligand. This is of particular interest, since structural rearrangements of the macromolecular target and the ligand influence the free energy change upon complex formation. In this study, we use X-ray crystallography, isothermal titration calorimetry, and surface-plasmon resonance biosensor analysis to investigate the binding of pyrazolylaminopyrimidine inhibitors to FGFR1 tyrosine kinase, an important anticancer target. Our results highlight that structurally close analogs of this inhibitor series interact with FGFR1 with different binding modes, which are a consequence of conformational changes in both the protein and the ligand as well as the bound water network. Together with the collected kinetic and thermodynamic data, we use the protein-ligand crystal structure information to rationalize the observed inhibitory potencies on a molecular level.
Collapse
Affiliation(s)
- Tobias Klein
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K.
| | | | - Geoffrey A. Holdgate
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K.
| | - Richard A. Norman
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K.
| | - Alexander L. Breeze
- Discovery Sciences, AstraZeneca R&D, Alderley Park, Macclesfield, Cheshire, SK10 4TG, U.K.
| |
Collapse
|
39
|
Studies on substituted benzo[h]quinazolines, benzo[g]indazoles, pyrazoles, 2,6-diarylpyridines as anti-tubercular agents. Bioorg Med Chem Lett 2013; 23:5844-9. [DOI: 10.1016/j.bmcl.2013.08.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/24/2013] [Accepted: 08/27/2013] [Indexed: 11/23/2022]
|
40
|
Liang G, Chen G, Wei X, Zhao Y, Li X. Small molecule inhibition of fibroblast growth factor receptors in cancer. Cytokine Growth Factor Rev 2013; 24:467-75. [PMID: 23830577 DOI: 10.1016/j.cytogfr.2013.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/02/2013] [Accepted: 05/21/2013] [Indexed: 01/29/2023]
Abstract
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs), which are a sub-family of the superfamily of receptor tyrosine kinases, to regulate human development and metabolism. Uncontrolled FGF signaling is responsible for diverse array of developmental disorders, most notably skeletal syndromes due to FGFR gain-of-function mutations. Studies in the last few years have provided significant evidence for the importance of FGF signaling in the pathogenesis of diverse cancers, including endometrial and bladder cancers. FGFs are both potent mitogenic and angiogenic factors and can contribute to carcinogenesis by stimulating cell proliferation and tumor angiogenesis. Gene knockout and pharmacological inhibition of FGFRs in in vivo and in vitro models validate FGFRs as a target for cancer treatment. Considerable efforts are being expended to develop specific, small-molecule inhibitors for treating FGFR-driven cancers. Recent reviews on the FGF/FGFR system have focused primarily on signaling, pathophysiology, and functions in cancer. In this article, we review the key roles of FGFR in cancer, provide an update on the status of clinical trials with small-molecule FGFR inhibitors, and discuss how the current structural data on FGFR kinases guide the design and characterization of new FGFR inhibitors.
Collapse
Affiliation(s)
- Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical College, Wenzhou 325035, China.
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Liang G, Liu Z, Wu J, Cai Y, Li X. Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol Sci 2012; 33:531-41. [PMID: 22884522 DOI: 10.1016/j.tips.2012.07.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/28/2012] [Accepted: 07/10/2012] [Indexed: 01/25/2023]
Abstract
The fibroblast growth factor receptor (FGFR) family includes four highly conserved receptor tyrosine kinases: FGFR1-4. Upon ligand binding, FGFRs activate an array of downstream signaling pathways, such as the mitogen activated protein kinase (MAPK) and the phosphoinositide-3-kinase (PI3K)/Akt pathways. These FGFR cascades play crucial roles in tumor cell proliferation, angiogenesis, migration, and survival. The combination of knockdown studies and pharmaceutical inhibition in preclinical models demonstrates that FGFRs are attractive targets for therapeutic intervention in cancer. Multiple FGFR inhibitors with various structural skeletons have been designed, synthesized, and evaluated. Reviews on FGFRs have recently focused on FGFR signaling, pathophysiology, and functions in cancer or other diseases. In this article, we review recent advances in structure-activity relationships (SAR) of FGFR inhibitors, as well as the FGFR-targeting drug design strategies currently employed in targeting deregulated FGFRs by antibodies and small molecule inhibitors.
Collapse
Affiliation(s)
- Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical College, Wenzhou 325035, China.
| | | | | | | | | |
Collapse
|
43
|
Ashwell MA, Lapierre JM, Brassard C, Bresciano K, Bull C, Cornell-Kennon S, Eathiraj S, France DS, Hall T, Hill J, Kelleher E, Khanapurkar S, Kizer D, Koerner S, Link J, Liu Y, Makhija S, Moussa M, Namdev N, Nguyen K, Nicewonger R, Palma R, Szwaya J, Tandon M, Uppalapati U, Vensel D, Volak LP, Volckova E, Westlund N, Wu H, Yang RY, Chan TCK. Discovery and optimization of a series of 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amines: orally bioavailable, selective, and potent ATP-independent Akt inhibitors. J Med Chem 2012; 55:5291-310. [PMID: 22533986 DOI: 10.1021/jm300276x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes the implementation of a biochemical and biophysical screening strategy to identify and optimize small molecule Akt1 inhibitors that act through a mechanism distinct from that observed for kinase domain ATP-competitive inhibitors. With the aid of an unphosphorylated Akt1 cocrystal structure of 12j solved at 2.25 Å, it was possible to confirm that as a consequence of binding these novel inhibitors, the ATP binding cleft contained a number of hydrophobic residues that occlude ATP binding as expected. These Akt inhibitors potently inhibit intracellular Akt activation and its downstream target (PRAS40) in vitro. In vivo pharmacodynamic and pharmacokinetic studies with two examples, 12e and 12j, showed the series to be similarly effective at inhibiting the activation of Akt and an additional downstream effector (p70S6) following oral dosing in mice.
Collapse
Affiliation(s)
- Mark A Ashwell
- ArQule Inc., 19 Presidential Way, Woburn, Massachusetts 01801, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Norman RA, Toader D, Ferguson AD. Structural approaches to obtain kinase selectivity. Trends Pharmacol Sci 2012; 33:273-8. [PMID: 22503441 DOI: 10.1016/j.tips.2012.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 11/25/2022]
Abstract
One of the grand challenges in kinase drug discovery is the design of small-molecule inhibitors with selectivity profiles that will ultimately be efficacious in the clinic. Current medicinal chemistry strategies make heavy use of structural, biophysical and computational approaches to achieve this multi-faceted goal. Here we review structure-based approaches underlying the development of several molecules that are currently in clinical trials, including the cMet inhibitor ARQ197 and the Bcr-Abl inhibitor ponatinib. We highlight the challenge posed by the emergence of resistance mutants and discuss promising lead generation strategies to obtain selective inhibitors of protein and lipid kinases such as targeting of specific sites, the use of fragment-based approaches and new chemical probes based on metal complexes.
Collapse
Affiliation(s)
- Richard A Norman
- Discovery Sciences, AstraZeneca, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| | | | | |
Collapse
|
45
|
Previdi S, Abbadessa G, Dalò F, France DS, Broggini M. Breast cancer-derived bone metastasis can be effectively reduced through specific c-MET inhibitor tivantinib (ARQ 197) and shRNA c-MET knockdown. Mol Cancer Ther 2011; 11:214-23. [PMID: 22027690 DOI: 10.1158/1535-7163.mct-11-0277] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer exhibits a propensity to metastasize to bone, resulting in debilitating skeletal complications associated with significant morbidity and poor prognosis. The cross-talk between metastatic cancer cells and bone is critical to the development and progression of bone metastases. We have shown the involvement of the HGF/c-MET system in tumor-bone interaction contributing to human breast cancer metastasis. Therefore, disruption of HGF/c-MET signaling is a potential targeted approach to treating metastatic bone disease. In this study, we evaluated the effects of c-MET inhibition by both an oral, selective, small-molecule c-MET inhibitor, tivantinib, and a specific short hairpin RNA (shRNA) against c-MET in a mouse model of human breast cancer. Tivantinib exhibited dose-dependent antimetastatic activity in vivo, and the 120 mg/kg dose, proven to be suboptimal in reducing subcutaneous tumor growth, induced significant inhibition of metastatic growth of breast cancer cells in bone and a noteworthy reduction of tumor-induced osteolysis. shRNA-mediated c-MET silencing did not affect in vitro proliferation of bone metastatic cells, but significantly reduced their migration, and this effect was further enhanced by tivantinib. Both observations were confirmed in vivo. Indeed, more pronounced tumor growth suppression with concomitant marked decreases of lytic lesions and prolongation of survival were achieved by dual c-MET inhibition using both tivantinib and RNA interference strategies. Overall, our findings highlighted the effectiveness of c-MET inhibition in delaying the onset and progression of bone metastases and strongly suggest that targeting c-MET may have promising therapeutic value in the treatment of bone metastases from breast cancer.
Collapse
Affiliation(s)
- Sara Previdi
- Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | |
Collapse
|
46
|
Auld D, Lea W, Davis MI, Simeonov A. Literature Search and Review. Assay Drug Dev Technol 2011. [DOI: 10.1089/adt.2011.0904.lr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Doug Auld
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | | | | |
Collapse
|