1
|
Balgera F, Tijani MK, Wennerberg J, Persson KEM, Nordlander E, Ferreira RJ. Evaluation of Au(III) complexes as Plasmodium falciparum aquaglyceroporin (PfAQP) inhibitors by in silico and in vitro methods. J Biol Inorg Chem 2024; 29:821-836. [PMID: 39579246 DOI: 10.1007/s00775-024-02081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/20/2024] [Indexed: 11/25/2024]
Abstract
The onset of resistance to artemisinin for malaria treatment has stimulated the quest for novel antimalarial drugs. Herein, the gold(III) coordination complexes Aubipy [Au(bipy)Cl]+ (bipy = 2,2'-bipyridine), Auphen [Au(phen)Cl]+ (phen = phenanthroline), Auterpy [Au(terpy)Cl]2+ (terpy = 2,2';6',2″-terpyridine), and corresponding hydrolyzed species, have been investigated as inhibitors of the Plasmodium falciparum aquaglyceroporin (PfAQP) protein by computational methods. Through an in-silico approach using an Umbrella Sampling protocol to sample how Aubipy, Auphen, and Auterpy permeate through the PfAQP, their permeability coefficients were estimated using the Inhomogeneous Solubility Diffusion (ISD) model with promising results. The efficacy of the gold complexes was then probed by an in vitro assay testing the growth inhibition in chloroquine sensitive and resistant P. falciparum strains. In accordance with the computational data, Auterpy achieved the highest efficiency with an IC50 in the nanomolar range (590 nM) on resistant strain cultures, additionally revealing a good selectivity as compared to its activity against the human aquaglyceroporin 3.
Collapse
Affiliation(s)
- Federico Balgera
- Red Glead Discovery AB, Medicon Village, Scheelevägen 10, 223 63, Lund, Sweden
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | | | - Johan Wennerberg
- Red Glead Discovery AB, Medicon Village, Scheelevägen 10, 223 63, Lund, Sweden
- Organic Chemistry, Faculty of Engineering, Lund University, Box 124, 221 00, Lund, Sweden
| | - Kristina E M Persson
- Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Chemistry and Pharmacology, Laboratory Medicine, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Ricardo J Ferreira
- Red Glead Discovery AB, Medicon Village, Scheelevägen 10, 223 63, Lund, Sweden.
| |
Collapse
|
2
|
Wang J, Qu Z, Ma X, Olajide JS, Cai J. Cloning, expression, and functional identification of aquaporin genes from Eimeria tenella. Vet Parasitol 2024; 328:110153. [PMID: 38452532 DOI: 10.1016/j.vetpar.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Avian coccidiosis, caused by Eimeria spp., is one of the major parasitic diseases in chicken. Aquaporins (AQP) are essential mediators of water regulation and nutritional intake in parasites, and it may be a suitable molecule for chemotherapeutic target and vaccine candidate. We identified two aquaporin genes in Eimeria tenella (EtAQP1 and EtAQP2) with their full sequence, and the expression profiles were analyzed across different stages of E. tenella life cycle. The expression of EtAQP1 and EtAQP2 in Xenopus oocytes renders them highly permeable for both water and glycerol. Sugar alcohols up to five carbons and urea pass the pore. The immunohistochemical analysis confirms the restriction of antiserum staining to the surface of transfected Xenopus oocytes. Like other AQP family, EtAQPs are transmembrane proteins that are likely important molecules that facilitate solute uptake for parasite intracellular growth and therapeutic targets.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Zigang Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xueting Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Joshua Seun Olajide
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianping Cai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Desai SA. Novel Ion Channel Genes in Malaria Parasites. Genes (Basel) 2024; 15:296. [PMID: 38540355 PMCID: PMC10970509 DOI: 10.3390/genes15030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
Ion channels serve many cellular functions including ion homeostasis, volume regulation, signaling, nutrient acquisition, and developmental progression. Although the complex life cycles of malaria parasites necessitate ion and solute flux across membranes, the whole-genome sequencing of the human pathogen Plasmodium falciparum revealed remarkably few orthologs of known ion channel genes. Contrasting with this, biochemical studies have implicated the channel-mediated flux of ions and nutritive solutes across several membranes in infected erythrocytes. Here, I review advances in the cellular and molecular biology of ion channels in malaria parasites. These studies have implicated novel parasite genes in the formation of at least two ion channels, with additional ion channels likely present in various membranes and parasite stages. Computational approaches that rely on homology to known channel genes from higher organisms will not be very helpful in identifying the molecular determinants of these activities. Given their unusual properties, novel molecular and structural features, and essential roles in pathogen survival and development, parasite channels should be promising targets for therapy development.
Collapse
Affiliation(s)
- Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
4
|
Bailey AJ, Ukegbu CV, Giorgalli M, Besson TRB, Christophides GK, Vlachou D. Intracellular Plasmodium aquaporin 2 is important for sporozoite production in the mosquito vector and malaria transmission. Proc Natl Acad Sci U S A 2023; 120:e2304339120. [PMID: 37883438 PMCID: PMC10622946 DOI: 10.1073/pnas.2304339120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/09/2023] [Indexed: 10/28/2023] Open
Abstract
Malaria remains a devastating disease and, with current measures failing to control its transmission, there is a need for novel interventions. A family of proteins that have long been pursued as potential intervention targets are aquaporins, which are channels facilitating the movement of water and other solutes across membranes. We identify an aquaporin in malaria parasites and demonstrate that it is important for completion of Plasmodium development in the mosquito vector. Disruption of AQP2 in the human parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei blocks sporozoite production inside oocysts established on mosquito midguts, greatly limiting parasite infection of salivary glands and transmission to a new host. In vivo epitope tagging of AQP2 in P. berghei, combined with immunofluorescence assays, reveals that the protein is localized in vesicle-like organelles found in the cytoplasm of gametocytes, ookinetes, and sporozoites. The number of these organelles varies between individual parasites and lifecycle stages suggesting that they are likely part of a dynamic endomembrane system. Phylogenetic analysis confirms that AQP2 is unique to malaria and closely related parasites and most closely resembles intracellular aquaporins. Structure prediction analyses identify several unusual features, including a large accessory extracellular loop and an arginine-to-phenylalanine substitution in the selectivity filter principally determining pore function, a unique feature among known aquaporins. This in conjunction with the importance of AQP2 for malaria transmission suggests that AQP2 may be a fruitful target of antimalarial interventions.
Collapse
Affiliation(s)
- Alexander J. Bailey
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | - Maria Giorgalli
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| | | | | | - Dina Vlachou
- Department of Life Sciences, Imperial College London, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Jeuken K, Jaeger E, Matthews E, Beitz E. Methylthiosulfonate-Based Cysteine Modifiers as Alternative Inhibitors of Mercurial-Sensitive Aquaporins. Cells 2023; 12:1742. [PMID: 37443776 PMCID: PMC10340331 DOI: 10.3390/cells12131742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Several members of the ubiquitous aquaporin family, AQP, of water and neutral solute channels carry a cysteine residue in the selectivity filter region. Traditionally, toxic mercury-containing compounds are used to bind to the cysteine as covalent AQP inhibitors for physiological studies or analysis of structure-function relationships. (2) Methods: We tested thiol-reactive methylthiosulfonate reagents, MTS, as alternative Cys modifiers for AQP inhibition. Three MTS reagents transferring S-alkyl moieties of increasing size, i.e., S-methyl, S-n-propyl, and S-benzyl, were used with yeast-expressed water-selective AQP1 and the aquaglyceroporin AQP9. Respective Cys-to-Ala variants and mouse erythrocytes that naturally express AQP1 and AQP9 served as controls. (3) Results: Both wildtype AQP isoforms were inhibited by the Cys modifiers in a size-dependent manner, whereas the Cys-to-Ala-variants exhibited resistance. Sub-millimolar concentrations and incubation times in the minute range were sufficient. The modifications were reversible by treatment with the thiol reagents acetylcysteine, ACC, and dithiothreitol, DTT. (4) Conclusions: MTS reagents represent a valid alternative of low toxicity for the inhibition of mercurial-sensitive AQPs.
Collapse
Affiliation(s)
| | | | | | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany; (K.J.); (E.J.); (E.M.)
| |
Collapse
|
6
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
7
|
Kumari J, Kumar V, Behl A, Kumar Sah R, Kumari G, Garg S, Gupta A, Nazar Mohomed Mohaideen. S, Shafi S, Pati S, Samby K, Burrows J, Mohandas N, Singh S. ‘Erythritol’, a safe natural sweetener exhibits multi-stage anti-malarial activity by permeating into Plasmodium falciparum through aquaglyceroporin channel. Biochem Pharmacol 2022; 205:115287. [DOI: 10.1016/j.bcp.2022.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022]
|
8
|
Köpnick AL, Jansen A, Geistlinger K, Epalle NH, Beitz E. Basigin drives intracellular accumulation of l-lactate by harvesting protons and substrate anions. PLoS One 2021; 16:e0249110. [PMID: 33770122 PMCID: PMC7996999 DOI: 10.1371/journal.pone.0249110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Transmembrane transport of l-lactate by members of the monocarboxylate transporter family, MCT, is vital in human physiology and a malignancy factor in cancer. Interaction with an accessory protein, typically basigin, is required to deliver the MCT to the plasma membrane. It is unknown whether basigin additionally exerts direct effects on the transmembrane l-lactate transport of MCT1. Here, we show that the presence of basigin leads to an intracellular accumulation of l-lactate 4.5-fold above the substrate/proton concentrations provided by the external buffer. Using basigin truncations we localized the effect to arise from the extracellular Ig-I domain. Identification of surface patches of condensed opposite electrostatic potential, and experimental analysis of charge-affecting Ig-I mutants indicated a bivalent harvesting antenna functionality for both, protons and substrate anions. From these data, and determinations of the cytosolic pH with a fluorescent probe, we conclude that the basigin Ig-I domain drives lactate uptake by locally increasing the proton and substrate concentration at the extracellular MCT entry site. The biophysical properties are physiologically relevant as cell growth on lactate media was strongly promoted in the presence of the Ig-I domain. Lack of the domain due to shedding, or misfolding due to breakage of a stabilizing disulfide bridge reversed the effect. Tumor progression according to classical or reverse Warburg effects depends on the transmembrane l-lactate distribution, and this study shows that the basigin Ig-I domain is a pivotal determinant.
Collapse
Affiliation(s)
- Anna-Lena Köpnick
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Annika Jansen
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Katharina Geistlinger
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nathan Hugo Epalle
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
9
|
Gezelle J, Saggu G, Desai SA. Promises and Pitfalls of Parasite Patch-clamp. Trends Parasitol 2021; 37:414-429. [PMID: 33640269 DOI: 10.1016/j.pt.2021.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Protozoan parasites acquire essential ions, nutrients, and other solutes from their insect and vertebrate hosts by transmembrane uptake. For intracellular stages, these solutes must cross additional membranous barriers. At each step, ion channels and transporters mediate not only this uptake but also the removal of waste products. These transport proteins are best isolated and studied with patch-clamp, but these methods remain accessible to only a few parasitologists due to specialized instrumentation and the required training in both theory and practice. Here, we provide an overview of patch-clamp, describing the advantages and limitations of the technology and highlighting issues that may lead to incorrect conclusions. We aim to help non-experts understand and critically assess patch-clamp data in basic research studies.
Collapse
Affiliation(s)
- Jeanine Gezelle
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Gagandeep Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sanjay A Desai
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
10
|
Rodriguez RA, Chan R, Liang H, Chen LY. Quantitative study of unsaturated transport of glycerol through aquaglyceroporin that has high affinity for glycerol. RSC Adv 2020; 10:34203-34214. [PMID: 32944226 PMCID: PMC7494219 DOI: 10.1039/d0ra05262k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
The structures of several aquaglyceroporins have been resolved to atomic resolution showing two or more glycerols bound inside a channel and confirming a glycerol-facilitator's affinity for its substrate glycerol. However, the kinetics data of glycerol transport experiments all point to unsaturated transport that is characteristic of low substrate affinity in terms of the Michaelis-Menten kinetics. In this article, we present an in silico-in vitro research focused on AQP3, one of the human aquaglyceroporins that is natively expressed in the abundantly available erythrocytes. We conducted 2.1 μs in silico simulations of AQP3 embedded in a model erythrocyte membrane with intracellular-extracellular asymmetries in leaflet lipid compositions and compartment salt ions. From the equilibrium molecular dynamics (MD) simulations, we elucidated the mechanism of glycerol transport at high substrate concentrations. From the steered MD simulations, we computed the Gibbs free-energy profile throughout the AQP3 channel. From the free-energy profile, we quantified the kinetics of glycerol transport that is unsaturated due to glycerol-glycerol interactions mediated by AQP3 resulting in the concerted movement of two glycerol molecules for the transport of one glycerol molecule across the cell membrane. We conducted in vitro experiments on glycerol uptake into human erythrocytes for a wide range of substrate concentrations and various temperatures. The experimental data quantitatively validated our theoretical-computational conclusions on the unsaturated glycerol transport through AQP3 that has high affinity for glycerol.
Collapse
Affiliation(s)
- Roberto A. Rodriguez
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Ruth Chan
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
- Department of Pharmacology, The University of Texas Health Science Center at San AntonioSan AntonioTexas 78229USA
| | - Liao Y. Chen
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| |
Collapse
|
11
|
Walloch P, Henke B, Häuer S, Bergmann B, Spielmann T, Beitz E. Introduction of Scaffold Nitrogen Atoms Renders Inhibitors of the Malarial l-Lactate Transporter, PfFNT, Effective against the Gly107Ser Resistance Mutation. J Med Chem 2020; 63:9731-9741. [DOI: 10.1021/acs.jmedchem.0c00852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Walloch
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Björn Henke
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Susan Häuer
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Bärbel Bergmann
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Tobias Spielmann
- Bernhard-Nocht-Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
12
|
Neumann LSM, Dias AHS, Skaf MS. Molecular Modeling of Aquaporins from Leishmania major. J Phys Chem B 2020; 124:5825-5836. [PMID: 32551664 DOI: 10.1021/acs.jpcb.0c03550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aquaporins are membrane proteins responsible for permeating water, ions, dissolved gases, and other small molecular weight compounds through the protective cell membranes of living organisms. These proteins have been gaining increased importance as targets for treating a variety of parasitic diseases, since they control key physiological processes in the life cycle of parasitic protozoans, such as the uptake of nutrients, release of metabolites, and alleviation of osmotic stress. In this work, we use homology modeling to build three-dimensional structures for the four main aquaporins encoded and expressed by Leishmania major, a protozoan that causes leishmaniasis and affects millions of people worldwide. Physico-chemical properties of the proposed models for LmAQP1, LmAQPα, LmAQPβ, and LmAQPγ are then investigated using molecular dynamics simulations and the reference interaction site model (RISM) molecular theory of solvation. Pore characteristics, water permeation, and potential of mean force across the AQP channels for water, methanol, urea, ammonia, and carbon dioxide are examined and compared with results obtained for a protozoan (Plasmodium falciparum) aquaporin for which a crystal structure is available.
Collapse
Affiliation(s)
- Lucas S M Neumann
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| | - Artur H S Dias
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| |
Collapse
|
13
|
Di Gregorio E, Ferrauto G, Schwarzer E, Gianolio E, Valente E, Ulliers D, Aime S, Skorokhod O. Relaxometric studies of erythrocyte suspensions infected by Plasmodium falciparum: a tool for staging infection and testing anti-malarial drugs. Magn Reson Med 2020; 84:3366-3378. [PMID: 32602953 DOI: 10.1002/mrm.28387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE Malaria is a global health problem with the most malignant form caused by Plasmodium falciparum (P. falciparum). Parasite maturation in red blood cells (RBCs) is accompanied by changes including the formation of paramagnetic hemozoin (HZ) nanocrystals, and increased metabolism and variation in membrane lipid composition. Herein, MR relaxometry (MRR) was applied to investigate water exchange across RBCs' membrane and HZ formation in parasitized RBCs. METHODS Transverse water protons relaxation rate constants (R2 = 1/T2 ) were measured for assessing HZ formation in P. falciparum-parasitized human RBCs. Moreover, water exchange lifetimes across the RBC membrane (τi ) were assessed by measuring longitudinal relaxation rate constants (R1 = 1/T1 ) at 21.5 MHz in the presence of a gadolinium complex dissolved in the suspension medium. RESULTS τi increased after invasion of parasites (ring stage, mean τi / τ i 0 = 1.234 ± 0.022) and decreased during maturation to late trophozoite (mean τi / τ i 0 = 0.960 ± 0.075) and schizont stages (mean τi / τ i 0 = 1.019 ± 0.065). The HZ accumulation in advanced stages was revealed by T2 -shortening. The curves reporting R2 (1/T2 ) vs. magnetic field showed different slopes for non-parasitized RBCs (npRBCs) and parasitized RBCs (pRBCs), namely 0.003 ± 0.001 for npRBCs, 0.009 ± 0.002, 0.028 ± 0.004 and 0.055 ± 0.002 for pRBCs at ring-, early trophozoite-, and late trophozoite stage, respectively. Antimalarial molecules dihydroartemisinin and chloroquine elicited measurable changes in parasitized RBCs, namely dihydroartemisinin modified τi , whereas the interference of chloroquine with HZ formation was detectable by a significant T2 increase. CONCLUSIONS MRR can be considered a useful tool for reporting on P. falciparum blood stages and for screening potential antimalarial molecules.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | | | - Eliana Gianolio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Elena Valente
- Department of Oncology, University of Torino, Torino, Italy
| | | | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Torino, Italy
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Moss FJ, Mahinthichaichan P, Lodowski DT, Kowatz T, Tajkhorshid E, Engel A, Boron WF, Vahedi-Faridi A. Aquaporin-7: A Dynamic Aquaglyceroporin With Greater Water and Glycerol Permeability Than Its Bacterial Homolog GlpF. Front Physiol 2020; 11:728. [PMID: 32695023 PMCID: PMC7339978 DOI: 10.3389/fphys.2020.00728] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/04/2020] [Indexed: 12/27/2022] Open
Abstract
Xenopus oocytes expressing human aquaporin-7 (AQP7) exhibit greater osmotic water permeability and 3H-glycerol uptake vs. those expressing the bacterial glycerol facilitator GlpF. AQP7-expressing oocytes exposed to increasing extracellular [glycerol] under isosmolal conditions exhibit increasing swelling rates, whereas GlpF-expressing oocytes do not swell at all. To provide a structural basis for these observed physiological differences, we performed X-ray crystallographic structure determination of AQP7 and molecular-dynamics simulations on AQP7 and GlpF. The structure reveals AQP7 tetramers containing two monomers with 3 glycerols, and two monomers with 2 glycerols in the pore. In contrast to GlpF, no glycerol is bound at the AQP7 selectivity filter (SF), comprising residues F74, G222, Y223, and R229. The AQP7 SF is resolved in its closed state because F74 blocks the passage of small solutes. Molecular dynamics simulations demonstrate that F74 undergoes large and rapid conformational changes, allowing glycerol molecules to permeate without orientational restriction. The more rigid GlpF imposes orientational constraints on glycerol molecules passing through the SF. Moreover, GlpF-W48 (analogous to AQP7-F74) undergoes rare but long-lasting conformational changes that block the pore to H2O and glycerol.
Collapse
Affiliation(s)
- Fraser J. Moss
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Paween Mahinthichaichan
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - David T. Lodowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas Kowatz
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Center for Biophysics and Quantitative Biology, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Andreas Engel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Walter F. Boron
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Ardeschir Vahedi-Faridi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Chen LY. Application of the Brown dynamics fluctuation-dissipation theorem to the study of Plasmodium berghei transporter protein PbAQP. FRONTIERS IN PHYSICS 2020; 8:119. [PMID: 32457897 PMCID: PMC7250396 DOI: 10.3389/fphy.2020.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, the Brownian dynamics fluctuation-dissipation theorem (BD-FDT) is applied to the study of transport of neutral solutes across the cellular membrane of Plasmodium berghei (Pb), a disease-causing parasite. Pb infects rodents and causes symptoms in laboratory mice that are comparable to human malaria caused by Plasmodium falciparum (Pf). Due to the relative ease of its genetic engineering, P. berghei has been exploited as a model organism for the study of human malaria. P. berghei expresses one type of aquaporin (AQP), PbAQP, and, in parallel, P. falciparum expresses PfAQP. Either PbAQP or PfAQP is a multifunctional channel protein in the plasma membrane of the rodent/human malarial parasite for homeostasis of water, uptake of glycerol, and excretion of some metabolic wastes across the cell membrane. This FDT-study of the channel protein PbAQP is to elucidate how and how strongly it interacts with water, glycerol, and erythritol. It is found that erythritol, which binds deep inside the conducting pore of PbAQP/PfAQP, inhibits the channel protein's functions of conducting water, glycerol etc. This points to the possibility that erythritol, a sugar substitute, may inhibit the malarial parasites in rodents and in humans.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
17
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
18
|
Rodriguez RA, Liang H, Chen LY, Plascencia-Villa G, Perry G. Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:768-775. [PMID: 30659792 PMCID: PMC6382548 DOI: 10.1016/j.bbamem.2019.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 11/23/2022]
Abstract
For its fundamental relevance, transport of water and glycerol across the erythrocyte membrane has long been investigated before and after the discovery of aquaporins (AQPs), the membrane proteins responsible for water and glycerol transport. AQP1 is abundantly expressed in the human erythrocyte for maintaining its hydrohomeostasis where AQP3 is also expressed (at a level ~30-folds lower than AQP1) facilitating glycerol transport. This research is focused on two of the remaining questions: How permeable is AQP3 to water? What is the glycerol-AQP3 affinity under near-physiological conditions? Through atomistic modelling and large-scale simulations, we found that AQP3 is two to three times more permeable to water than AQP1 and that the glycerol-AQP3 affinity is approximately 500/M. Using these computed values along with the data from the latest literature on AQP1 and on erythrocyte proteomics, we estimated the water and glycerol transport rates across the membrane of an entire erythrocyte. We used these rates to predict the time courses of erythrocyte swelling-shrinking in response to inward and outward osmotic gradients. Experimentally, we monitored the time course of human erythrocytes when subject to an osmotic or glycerol gradient with light scattering in a stopped-flow spectrometer. We observed close agreement between the experimentally measured and the computationally predicted time courses of erythrocytes, which corroborated our computational conclusions on the AQP3 water-permeability and the glycerol-AQP3 affinity.
Collapse
Affiliation(s)
- Roberto A Rodriguez
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Huiyun Liang
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Liao Y Chen
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX 78249, United States of America.
| | - Germán Plascencia-Villa
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| |
Collapse
|
19
|
Rojas V, Ortiz YY, Rodríguez S, Araque V, Rodríguez-Acosta A, Figarella K, Uzcátegui NL. Rhinella marina oocytes: a suitable alternative expression system for functional characterization of aquaglyceroporins. Sci Rep 2019; 9:18. [PMID: 30631140 PMCID: PMC6328568 DOI: 10.1038/s41598-018-37069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
Amphibian oocytes have been extensively used for heterologous expression of membrane proteins for studying their biochemical and biophysical properties. So far, Xenopus laevis is the main amphibian used as oocytes source to express aquaglyceroporins in order to assess water and solutes permeability. However, this well-established amphibian model represents a threat to the biodiversity in many countries, especially in those from tropical regions. For that reason, the import of Xenopus laevis is subjected to strict control, which essentially has restricted its use in these regions. Therefore, a wider variety of expression systems for aquaglyceroporins is needed. Rhinella marina is extensively distributed in the Americas and its native range spreads from South America to Texas, US. Here we report the use of Rhinella marina oocytes as an alternative expression system for aquaglyceroporins and demonstrated its suitability to determine the permeability to water and non-ionic solutes. Rhinella marina oocytes were able to functionally express channels from human and the protozoan pathogen Trypanosoma brucei, two very distant organisms on the evolutionary scale. Permeability values obtained from Rhinella marina oocytes expressing members of aquaporin family were similar and comparable to those values reported in the literature for the same channels expressed in Xenopus laevis oocytes.
Collapse
Affiliation(s)
- Vania Rojas
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Yulexi Y Ortiz
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Sheridan Rodríguez
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Vladimir Araque
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela
| | - Katherine Figarella
- Institute of Physiology, Department of Neurophysiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Néstor L Uzcátegui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo", Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
20
|
Uzcátegui NL, Figarella K, Segnini A, Marsiccobetre S, Lang F, Beitz E, Rodríguez-Acosta A, Bertl A. Trypanosoma brucei aquaglyceroporins mediate the transport of metabolic end-products: Methylglyoxal, D-lactate, L-lactate and acetate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2252-2261. [DOI: 10.1016/j.bbamem.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/26/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
|
21
|
Posfai D, Sylvester K, Reddy A, Ganley JG, Wirth J, Cullen QE, Dave T, Kato N, Dave SS, Derbyshire ER. Plasmodium parasite exploits host aquaporin-3 during liver stage malaria infection. PLoS Pathog 2018; 14:e1007057. [PMID: 29775485 PMCID: PMC5979039 DOI: 10.1371/journal.ppat.1007057] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/31/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Within the liver a single Plasmodium parasite transforms into thousands of blood-infective forms to cause malaria. Here, we use RNA-sequencing to identify host genes that are upregulated upon Plasmodium berghei infection of hepatocytes with the hypothesis that host pathways are hijacked to benefit parasite development. We found that expression of aquaporin-3 (AQP3), a water and glycerol channel, is significantly induced in Plasmodium-infected hepatocytes compared to uninfected cells. This aquaglyceroporin localizes to the parasitophorous vacuole membrane, the compartmental interface between the host and pathogen, with a temporal pattern that correlates with the parasite’s expansion in the liver. Depletion or elimination of host AQP3 expression significantly reduces P. berghei parasite burden during the liver stage and chemical disruption by a known AQP3 inhibitor, auphen, reduces P. falciparum asexual blood stage and P. berghei liver stage parasite load. Further use of this inhibitor as a chemical probe suggests that AQP3-mediated nutrient transport is an important function for parasite development. This study reveals a previously unknown potential route for host-dependent nutrient acquisition by Plasmodium which was discovered by mapping the transcriptional changes that occur in hepatocytes throughout P. berghei infection. The dataset reported may be leveraged to identify additional host factors that are essential for Plasmodium liver stage infection and highlights Plasmodium’s dependence on host factors within hepatocytes. Plasmodium parasites undergo an obligatory morphogenesis and replication within the liver before they invade red blood cells and cause malaria. The liver stage is clinically silent but essential for the Plasmodium parasite to complete its life cycle. During this time, the parasite relies on the host cell to support a massive replication event, yet host factors that are critical to this expansion are largely unknown. We identify human aquaporin-3 (AQP3), a water and glycerol channel, as essential for the proper development of the parasite within the liver cell. AQP3 localizes to the parasitophorous vacuole membrane, the interface between the host cytoplasm and the parasite, possibly aiding in the nutritional uptake for the parasite. Genetic disruption or treatment with the AQP3 inhibitor auphen, reduces parasite load in liver and blood cells.
Collapse
Affiliation(s)
- Dora Posfai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, North Carolina, United States of America
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, North Carolina, United States of America
| | - Anupama Reddy
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jack G. Ganley
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Johannes Wirth
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Quinlan E. Cullen
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Tushar Dave
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nobutaka Kato
- The Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts, United States of America
| | - Sandeep S. Dave
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Emily R. Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, North Carolina, United States of America
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kumar S, Bhardwaj TR, Prasad DN, Singh RK. Drug targets for resistant malaria: Historic to future perspectives. Biomed Pharmacother 2018; 104:8-27. [PMID: 29758416 DOI: 10.1016/j.biopha.2018.05.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/22/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
New antimalarial targets are the prime need for the discovery of potent drug candidates. In order to fulfill this objective, antimalarial drug researches are focusing on promising targets in order to develop new drug candidates. Basic metabolism and biochemical process in the malaria parasite, i.e. Plasmodium falciparum can play an indispensable role in the identification of these targets. But, the emergence of resistance to antimalarial drugs is an escalating comprehensive problem with the progress of antimalarial drug development. The development of resistance has highlighted the need for the search of novel antimalarial molecules. The pharmaceutical industries are committed to new drug development due to the global recognition of this life threatening resistance to the currently available antimalarial therapy. The recent developments in the understanding of parasite biology are exhilarating this resistance issue which is further being ignited by malaria genome project. With this background of information, this review was aimed to highlights and provides useful information on various present and promising treatment approaches for resistant malaria, new progresses, pursued by some innovative targets that have been explored till date. This review also discusses modern and futuristic multiple approaches to antimalarial drug discovery and development with pictorial presentations highlighting the various targets, that could be exploited for generating promising new drugs in the future for drug resistant malaria.
Collapse
Affiliation(s)
- Sahil Kumar
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - T R Bhardwaj
- School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences & Technology, Baddi, Dist. Solan, 173205, Himachal Pradesh, India
| | - D N Prasad
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India
| | - Rajesh K Singh
- Department of Pharmaceutical Chemistry, Shivalik College of Pharmacy, Nangal, Dist. Rupnagar, 140126, Punjab, India.
| |
Collapse
|
23
|
Meier A, Erler H, Beitz E. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem 2018; 6:88. [PMID: 29637069 PMCID: PMC5881087 DOI: 10.3389/fchem.2018.00088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Collapse
Affiliation(s)
- Anna Meier
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
24
|
Functional characterization of an aquaporin from a microsporidium, Nosema bombycis. PLoS One 2017; 12:e0181703. [PMID: 28749993 PMCID: PMC5531513 DOI: 10.1371/journal.pone.0181703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/04/2017] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are a diverse group of eukaryotic organisms, capable of causing parasitic infections in both vertebrates and invertebrates. During the germination process, there is an increase in the osmotic pressure of microsporidian spores. As part of this study, we cloned a homologous aquaporin gene in Nosema bombycis, and named it Nosema bombycis aquaporin (NbAQP). Sequence analysis revealed that the NbAQP contains an open reading frame with a length of 750 bp and encodes a polypeptide of 249 amino acids. Amino acid sequence homology was greater than 50% that of five aquaporins from other microsporidian species. Indirect immunofluorescence (IFA) and immunogold electron microscopy showed NbAQP to be located predominantly in the spore wall of N. bombycis spores. The results of qRT-PCR analysis revealed that NbAQP expression remained high 0 h after inoculation and decreased sharply to 24 h, increased gradually from 2 days and peaked at 6 days. After expression of NbAQP in Xenopus laevis oocytes, it was observed that NbAQP can promote rapid penetration of water into oocytes. The associated permeation rate was 2–3 times that of the water-injected and uninjected oocytes. Antibody blocking experiments showed that the inhibition rate of spore germination was approximately 28% after antibody blocking. The difference in germination rate between the control group and the NbAQP group was significant (P < 0.05). This study shows for the first time that N. bombycis contains functional water channel proteins and provides a platform suitable for further research into the mechanisms underlying the regulation of NbAQP protein expression. Further study of NbAQP and their inhibitors may have significance for prevention of microsporidiosis.
Collapse
|
25
|
Wiechert M, Erler H, Golldack A, Beitz E. A widened substrate selectivity filter of eukaryotic formate-nitrite transporters enables high-level lactate conductance. FEBS J 2017; 284:2663-2673. [PMID: 28544379 DOI: 10.1111/febs.14117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
Bacterial formate-nitrite transporters (FNT) regulate the metabolic flow of small weak mono-acids derived from anaerobic mixed-acid fermentation, such as formate, and further transport nitrite and hydrosulfide. The eukaryotic Plasmodium falciparumFNT is vital for the malaria parasite by its ability to release the larger l-lactate substrate as the metabolic end product of anaerobic glycolysis in symport with protons preventing cytosolic acidification. However, the molecular basis for substrate discrimination by FNTs has remained unclear. Here, we identified a size-selective FNT substrate filter region around an invariant lysine at the bottom of the periplasmic/extracellular vestibule. The selectivity filter is reminiscent of the aromatic/arginine constriction of aquaporin water and solute channels regarding composition, location in the protein, and the size-selection principle. Bioinformatics support an adaptation of the eukaryotic FNT selectivity filter to accommodate larger physiologically relevant substrates. Mutations that affect the diameter at the filter site predictably modulated substrate selectivity. The shape of the vestibule immediately above the filter region further affects selectivity. This study indicates that eukaryotic FNTs evolved to transport larger mono-acid substrates, especially l-lactic acid as a product of energy metabolism.
Collapse
Affiliation(s)
- Marie Wiechert
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - André Golldack
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Germany
| |
Collapse
|
26
|
Ni ZX, Cui JM, Zhang NZ, Fu BQ. Structural and evolutionary divergence of aquaporins in parasites (Review). Mol Med Rep 2017; 15:3943-3948. [PMID: 28440467 PMCID: PMC5436202 DOI: 10.3892/mmr.2017.6505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 02/28/2017] [Indexed: 11/05/2022] Open
Abstract
Aquaporins are ubiquitous proteins that belong to the major intrinsic protein family. Previous studies have indicated that aquaporins are involved in multiple physiological processes in parasites, such as nutrient absorption and end product efflux, and thus, would be promising pharmacological agents in the fight against parasite infection. In the present paper, the authors analyzed the evolutionary relationship of parasitic aquaporins by re‑constructing of a phylogenic tree using neighbor‑joining and maximum likelihood methods. In addition, the authors discussed the variation of the conserved functional sites impacting on the transportation of water molecules. The protein was concluded to be a potential drug target in parasites.
Collapse
Affiliation(s)
- Zi-Xin Ni
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, P.R. China
| | - Jian-Min Cui
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, P.R. China
| |
Collapse
|
27
|
Marsiccobetre S, Rodríguez-Acosta A, Lang F, Figarella K, Uzcátegui NL. Aquaglyceroporins Are the Entry Pathway of Boric Acid in Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:679-685. [PMID: 28087364 DOI: 10.1016/j.bbamem.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 11/17/2022]
Abstract
The boron element possesses a range of different effects on living beings. It is essential to beneficial at low concentrations, but toxic at excessive concentrations. Recently, some boron-based compounds have been identified as promising molecules against Trypanosoma brucei, the causative agent of sleeping sickness. However, until now, the boron metabolism and its access route into the parasite remained elusive. The present study addressed the permeability of T. brucei aquaglyceroporins (TbAQPs) for boric acid, the main natural boron species. To this end, the three TbAQPs were expressed in Saccharomyces cerevisiae and Xenopus laevis oocytes. Our findings in both expression systems showed that all three TbAQPs are permeable for boric acid. Especially TbAQP2 is highly permeable for this compound, displaying one of the highest conductances reported for a solute in these channels. Additionally, T. brucei aquaglyceroporin activities were sensitive to pH. Taken together, these results establish that TbAQPs are channels for boric acid and are highly efficient entry pathways for boron into the parasite. Our findings stress the importance of studying the physiological functions of boron and their derivatives in T. brucei, as well as the pharmacological implications of their uptake by trypanosome aquaglyceroporins.
Collapse
Affiliation(s)
- Sabrina Marsiccobetre
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela
| | - Florian Lang
- Department of Physiology I, University of Tubingen, Tubingen, Germany
| | - Katherine Figarella
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela.
| | - Néstor L Uzcátegui
- Laboratory of Immunochemistry and Ultrastructure, Institute of Anatomy, Central University of Venezuela, Caracas, Venezuela; Department of Physiology I, University of Tubingen, Tubingen, Germany.
| |
Collapse
|
28
|
Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis. Fungal Biol 2016; 121:95-102. [PMID: 28007220 DOI: 10.1016/j.funbio.2016.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/25/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
Carbon transport in arbuscular mycorrhizal (AM) symbiosis is of fundamental importance. However, the role of glycerol transport in AM symbiosis has not yet been resolved. Glycerol transport across the cell membrane is mediated by aquaglyceroporins (AQGPs), whereas our previous study revealed that it was disfavoured by GintAQPF2, an AQGP from AM fungi (AMF). Here, we analysed the function of two amino acid residues in the aromatic/arginine (ar/R) constriction known as the major selectivity filter in AQGPs. Replacement of phenylalanine-94 (Phe-94) by alanine (Ala) enlarged the diameter of the ar/R constriction and resulted in an increased intracellular glycerol accumulation and thus survival rate of yeast cells at high glycerol levels, while individual or joint replacement of Phe-94 and Ala-234 by tryptophan and glycine induced a closed state of GintAQPF2, suggesting that the potential double gates (Phe94-Phe243 and arginine-249) of the ar/R constriction also likely determined solute permeability. To figure out whether GintAQPF2 functions were relevant to the establishment of AM symbiosis, genomic analyses of four representative fungi with different lifestyles were performed. We found that glycerol facilitators existed in the facultative fungi (the ectomycorrhizal fungus Laccaria bicolor and hemibiotrophic pathogen Magnaporthe oryzae), but not in the obligatory fungi (the AMF Rhizophagus irregularis and necrotrophic pathogen Fusarium verticillioides), revealing a conserved pattern of glycerol transport in symbionts and pathogens. Our results suggested that glycerol blocks due to the special structural features of the ar/R constriction in the only AMF AQGP could potentially play a role in the establishment of AM symbiosis.
Collapse
|
29
|
Yu L, Rodriguez RA, Chen LL, Chen LY, Perry G, McHardy SF, Yeh CK. 1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins. Protein Sci 2016; 25:433-41. [PMID: 26481430 DOI: 10.1002/pro.2832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 01/10/2023]
Abstract
Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all-atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3-propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro-homeostasis indirectly by altering the osmotic gradients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - L Laurie Chen
- Medical School, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - Stanton F McHardy
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio & GRECC, South Texas Veterans Health Care System, San Antonio, Texas 78229
| |
Collapse
|
30
|
Holm-Bertelsen J, Bock S, Helmstetter F, Beitz E. High-level cell-free production of the malarial lactate transporter PfFNT as a basis for crystallization trials and directional transport studies. Protein Expr Purif 2016; 126:109-114. [PMID: 27345711 DOI: 10.1016/j.pep.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023]
Abstract
The malaria parasite Plasmodium falciparum relies on the function of channel and transport proteins for the uptake of nutrients and the release of metabolic waste products. Inhibition of vital transport processes is an unexploited means for developing novel antimalarial drugs. The recently discovered plasmodial lactate transporter, PfFNT, represents a promising new drug target since the parasite's energy generation by anaerobic glycolysis depends on the rapid secretion of lactate. Yet, membrane proteins, in particular those of malaria parasites, are notoriously difficult to produce and purify in the native, functional form hampering crystallization and biophysical studies. Here, we show synthesis of milligram quantities of correctly folded PfFNT in a cell-free system. Solubilized PfFNT maintained its oligomeric, largely SDS-resistant quaternary structure and appears suitable for setting up crystallization trials. After reconstitution into proteoliposomes, PfFNT was functional as a transporter for formate, acetate, and lactate as determined by a light-scattering assay. Analysis of the accessibility of a protease cleavage site at the N-terminus revealed an even outside-in orientation of the total proteoliposomal PfFNT population that may be due to membrane curvature restrictions. Contrary to previous studies using heterologous expression in cell systems with oppositely oriented PfFNT, the proteoliposomes eventually allow for biophysical transport studies in the native, physiological direction.
Collapse
Affiliation(s)
- Julia Holm-Bertelsen
- Christian-Albrechts-University of Kiel, Department of Medicinal and Pharmaceutical Chemistry, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Sinja Bock
- Christian-Albrechts-University of Kiel, Department of Medicinal and Pharmaceutical Chemistry, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Folknand Helmstetter
- Christian-Albrechts-University of Kiel, Department of Medicinal and Pharmaceutical Chemistry, Gutenbergstraße 76, 24118 Kiel, Germany
| | - Eric Beitz
- Christian-Albrechts-University of Kiel, Department of Medicinal and Pharmaceutical Chemistry, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
31
|
Wang F, Ye B. Bioinformatics analysis and construction of phylogenetic tree of aquaporins from Echinococcus granulosus. Parasitol Res 2016; 115:3499-511. [DOI: 10.1007/s00436-016-5114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
|
32
|
Hirota A, Takiya Y, Sakamoto J, Shiojiri N, Suzuki M, Tanaka S, Okada R. Molecular Cloning of cDNA Encoding an Aquaglyceroporin, AQP-h9, in the Japanese Tree Frog, Hyla japonica: Possible Roles of AQP-h9 in Freeze Tolerance. Zoolog Sci 2015; 32:296-306. [PMID: 26402924 DOI: 10.2108/zs140246] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In order to study the freeze-tolerance mechanism in the Japanese tree frog, Hyla japonica, wecloned a eDNA encoding aquaporin (AQP) 9 from its liver. The predicted amino acid sequence ofH. japonica AQP9 (AQP-h9) contained six putative transmembrane domains and two conservedAsn-Pro-Aia motifs, which are characteristic of AQPs. A swelling assay using Xenopus laevisoocytes injected with AQP-h9 cRNA showed that AQP-h9 facilitated water and glycerol permeation,confirming its property as an aquaglyceroporin. Subsequently, glycerol concentrations in serumand tissue extracts were compared among tree frogs that were hibernating, frozen, or thawed afterfreezing. Serum glycerol concentration of thawed frogs was significantly higher than that of hibernatingfrogs. Glycerol content in the liver did not change in the freezing experiment, whereas thatin the skeletal muscle was elevated in thawed frogs as compared with hibernating or frozen frogs. Histological examination of the liver showed that erythrocytes aggregated in the sinusoids during hibernation and freezing, and immunoreactive AQP-h9 protein was detected over the erythrocytes. The AQP-h9 labeling was more intense in frozen frogs than in hibernating frogs, but nearly undetectable in thawed frogs. For the skeletal muscle, weak labels for AQP-h9 were observed in the cytoplasm of myocytes of hibernating frogs. AQP-h9 labeling was markedly enhanced by freezing and was decreased by thawing. These results indicate that glycerol may act as a c;:ryoprotectant in H. japonica and that during hibernation, particularly during freezing, AQP-h9 may be involved in glycerol uptake in erythrocytes in the liver and in intracellular glycerol transport in the skeletal muscle cells.
Collapse
Affiliation(s)
- Atsushi Hirota
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422~8529, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Spillman NJ, Kirk K. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:149-62. [PMID: 26401486 PMCID: PMC4559606 DOI: 10.1016/j.ijpddr.2015.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/28/2022]
Abstract
The intraerythrocytic malaria parasite, Plasmodium falciparum, maintains a low cytosolic Na(+) concentration and the plasma membrane P-type cation translocating ATPase 'PfATP4' has been implicated as playing a key role in this process. PfATP4 has been the subject of significant attention in recent years as mutations in this protein confer resistance to a growing number of new antimalarial compounds, including the spiroindolones, the pyrazoles, the dihydroisoquinolones, and a number of the antimalarial agents in the Medicines for Malaria Venture's 'Malaria Box'. On exposure of parasites to these compounds there is a rapid disruption of cytosolic Na(+). Whether, and if so how, such chemically distinct compounds interact with PfATP4, and how such interactions lead to parasite death, is not yet clear. The fact that multiple different chemical classes have converged upon PfATP4 highlights its significance as a potential target for new generation antimalarial agents. A spiroindolone (KAE609, now known as cipargamin) has progressed through Phase I and IIa clinical trials with favourable results. In this review we consider the physiological role of PfATP4, summarise the current repertoire of antimalarial compounds for which PfATP4 is implicated in their mechanism of action, and provide an outlook on translation from target identification in the laboratory to patient treatment in the field.
Collapse
Affiliation(s)
- Natalie Jane Spillman
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia ; Department of Medicine (Infectious Diseases), Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
34
|
Beitz E, Golldack A, Rothert M, von Bülow J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol Ther 2015; 155:22-35. [PMID: 26277280 DOI: 10.1016/j.pharmthera.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aquaporin (AQP) water and solute channels have basic physiological functions throughout the human body. AQP-facilitated water permeability across cell membranes is required for rapid reabsorption of water from pre-urine in the kidneys and for sustained near isosmolar water fluxes e.g. in the brain, eyes, inner ear, and lungs. Cellular water permeability is further connected to cell motility. AQPs of the aquaglyceroporin subfamily are necessary for lipid degradation in adipocytes and glycerol uptake into the liver, as well as for skin moistening. Modulation of AQP function is desirable in several pathophysiological situations, such as nephrogenic diabetes insipidus, Sjögren's syndrome, Menière's disease, heart failure, or tumors to name a few. Attempts to design or to find effective small molecule AQP inhibitors have yielded only a few hits. Challenges reside in the high copy number of AQP proteins in the cell membranes, and spatial restrictions in the protein structure. This review gives an overview on selected physiological and pathophysiological conditions in which modulation of AQP functions appears beneficial and discusses first achievements in the search of drug-like AQP inhibitors.
Collapse
Affiliation(s)
- Eric Beitz
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany.
| | - André Golldack
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Monja Rothert
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Julia von Bülow
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| |
Collapse
|
35
|
Subudhi AK, Boopathi PA, Pandey I, Kaur R, Middha S, Acharya J, Kochar SK, Kochar DK, Das A. Disease specific modules and hub genes for intervention strategies: A co-expression network based approach for Plasmodium falciparum clinical isolates. INFECTION GENETICS AND EVOLUTION 2015; 35:96-108. [PMID: 26247716 DOI: 10.1016/j.meegid.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/19/2022]
Abstract
Systems biology approaches that are based on gene expression and bioinformatics analysis have been successful in predicting the functions of many genes in Plasmodium falciparum, a protozoan parasite responsible for most of the deaths due to malaria. However, approaches that can provide information about the biological processes that are active in this parasite in vivo during complicated malaria conditions have been scarcely deployed. Here we report the analysis of a weighted gene co-expression based network for P. falciparum, from non-cerebral clinical complications. Gene expression profiles of 20 P. falciparum clinical isolates were utilized to construct the same. A total of 20 highly interacting modules were identified post network creation. In 12 of these modules, at least 10% of the member genes, were found to be differentially regulated in parasites from patient isolates showing complications, when compared with those from patients with uncomplicated disease. Enrichment analysis helped identify biological processes like oxidation-reduction, electron transport chain, protein synthesis, ubiquitin dependent catabolic processes, RNA binding and purine nucleotide metabolic processes as associated with these modules. Additionally, for each module, highly connected hub genes were identified. Detailed functional analysis of many of these, which have known annotated functions underline their importance in parasite development and survival. This suggests, that other hub genes with unknown functions may also be playing crucial roles in parasite biology, and, are potential candidates for intervention strategies.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Pon Arunachalam Boopathi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Isha Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Ramandeep Kaur
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Sheetal Middha
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Jyoti Acharya
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Sanjay K Kochar
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Dhanpat K Kochar
- Rajasthan University of Health Sciences, Jaipur, Rajasthan, India.
| | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
36
|
Von Bülow J, Beitz E. Number and regulation of protozoan aquaporins reflect environmental complexity. THE BIOLOGICAL BULLETIN 2015; 229:38-46. [PMID: 26338868 DOI: 10.1086/bblv229n1p38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protozoa are a diverse group of unicellular eukaryotes. Evidence has accumulated that protozoan aquaporin water and solute channels (AQP) contribute to adaptation in changing environments. Intracellular protozoan parasites live a well-sheltered life. Plasmodium spp. express a single AQP, Toxoplasma gondii two, while Trypanosoma cruzi and Leishamnia spp. encode up to five AQPs. Their AQPs are thought to import metabolic precursors and simultaneously to dispose of waste and to help parasites survive osmotic stress during transmission to and from the insect vector or during kidney passages. Trypanosoma brucei is a protozoan parasite that swims freely in the human blood. Expression and intracellular localization of the three T. brucei AQPs depend on the stage of differentiation during the life cycle, suggesting distinct roles in energy generation, metabolism, and cell motility. Free-living amoebae are in direct contact with the environment, encountering severe and sudden changes in the availability of nutrition, and in the osmotic conditions due to rainfall or drought. Amoeba proteus expresses a single AQP that is present in the contractile vacuole complex required for osmoregulation, whereas Dictyostelium discoideum expresses four AQPs, of which two are present in the single-celled amoeboidal stage and two more in the later multicellular stages preceding spore formation. The number and regulation of protozoan aquaporins may reflect environmental complexity. We highlight the gated AqpB from D. discoideum as an example of how life in the wild is challenged by a complex AQP structure-function relationship.
Collapse
Affiliation(s)
- Julia Von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany
| |
Collapse
|
37
|
Subudhi AK, Boopathi PA, Pandey I, Kohli R, Karwa R, Middha S, Acharya J, Kochar SK, Kochar DK, Das A. Plasmodium falciparum complicated malaria: Modulation and connectivity between exportome and variant surface antigen gene families. Mol Biochem Parasitol 2015; 201:31-46. [PMID: 26022315 DOI: 10.1016/j.molbiopara.2015.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
In temperate and sub-tropical regions of Asia and Latin America, complicated malaria manifested as hepatic dysfunction or renal dysfunction is seen in all age groups. There has been a concerted focus on understanding the patho-physiological and molecular basis of complicated malaria in children, much less is known about it in adults. We report here, the analysis of data from a custom, cross strain microarray (Agilent Platform) using material from adult patient samples, showing hepatic dysfunction or renal failure. These are the most common manifestations seen in adults along with cerebral malaria. The data has been analyzed with reference to variant surface antigens, encoded by the var, rifin and stevor gene families. The differential regulation profiles of key genes (comparison between Plasmodium falciparum complicated and uncomplicated isolates) have been observed. The exportome has been analyzed using similar parameters. Gene ontology term based functional enrichment of differentially regulated genes identified, up-regulated genes statistically enriched (P<0.05) to critical biological processes like generation of precursor metabolite and energy, chromosome organization and electron transport chain. Systems network based functional enrichment of overall differentially regulated genes yielded a similar result. We are reporting here, up-regulation of var group B and C genes whose proteins are predicted to interact with CD36 receptor in the host, the up-regulation of domain cassette 13 (DC13) containing var group A, as also the up-regulation of group A rifins and many of the stevors. This is contrary to most other reports from pediatric patients, with cerebral malaria where the up-regulation of mostly var A group genes have been seen. A protein-protein interaction based network has been created and analysis performed. This co-expression and text mining based network has shown overall connectivity between the variant surface antigens (VSA) and the exportome. The up-regulation of var group B and C genes encoding PfEMP1 with different domain architecture would be important for deciding strategies for disease prevention.
Collapse
Affiliation(s)
- Amit Kumar Subudhi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - P A Boopathi
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Isha Pandey
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Ramandeep Kohli
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Rohan Karwa
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| | - Sheetal Middha
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Jyoti Acharya
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Sanjay K Kochar
- Department of Medicine, S.P. Medical College, Bikaner, Rajasthan, India.
| | - Dhanpat K Kochar
- Rajasthan University of Health Sciences, Jaipur, Rajasthan, India.
| | - Ashis Das
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India.
| |
Collapse
|
38
|
Basore K, Cheng Y, Kushwaha AK, Nguyen ST, Desai SA. How do antimalarial drugs reach their intracellular targets? Front Pharmacol 2015; 6:91. [PMID: 25999857 PMCID: PMC4419668 DOI: 10.3389/fphar.2015.00091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
Drugs represent the primary treatment available for human malaria, as caused by Plasmodium spp. Currently approved drugs and antimalarial drug leads generally work against parasite enzymes or activities within infected erythrocytes. To reach their specific targets, these chemicals must cross at least three membranes beginning with the host cell membrane. Uptake at each membrane may involve partitioning and diffusion through the lipid bilayer or facilitated transport through channels or carriers. Here, we review the features of available antimalarials and examine whether transporters may be required for their uptake. Our computational analysis suggests that most antimalarials have high intrinsic membrane permeability, obviating the need for uptake via transporters; a subset of compounds appear to require facilitated uptake. We also review parasite and host transporters that may contribute to drug uptake. Broad permeability channels at the erythrocyte and parasitophorous vacuolar membranes of infected cells relax permeability constraints on antimalarial drug design; however, this uptake mechanism is prone to acquired resistance as the parasite may alter channel activity to reduce drug uptake. A better understanding of how antimalarial drugs reach their intracellular targets is critical to prioritizing drug leads for antimalarial development and may reveal new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine Basore
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| | - Yang Cheng
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| | - Ambuj K Kushwaha
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| | | | - Sanjay A Desai
- The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD, USA
| |
Collapse
|
39
|
Penkler G, du Toit F, Adams W, Rautenbach M, Palm DC, van Niekerk DD, Snoep JL. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum. FEBS J 2015; 282:1481-511. [PMID: 25693925 DOI: 10.1111/febs.13237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED The enzymes in the Embden-Meyerhof-Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download. DATABASE The mathematical models described in the present study have been submitted to the JWS Online Cellular Systems Modelling Database (http://jjj.bio.vu.nl/database/penkler). The investigation and complete experimental data set is available on SEEK (10.15490/seek.1. INVESTIGATION 56).
Collapse
Affiliation(s)
- Gerald Penkler
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa; Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Identity of a Plasmodium lactate/H(+) symporter structurally unrelated to human transporters. Nat Commun 2015; 6:6284. [PMID: 25669138 DOI: 10.1038/ncomms7284] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/12/2015] [Indexed: 11/09/2022] Open
Abstract
Maintenance of a high glycolytic flow rate is critical for the rapid growth and virulence of malarial parasites. The parasites release two moles of lactic acid per mole of glucose as the anaerobic end product. However, the molecular identity of the Plasmodium lactate transporter is unknown. Here we show that a member of the microbial formate-nitrite transporter family, PfFNT, acts as a lactate/proton symporter in Plasmodium falciparum. Besides L-lactate, PfFNT transports physiologically relevant D-lactate, as well as pyruvate, acetate and formate, and is inhibited by the antiplasmodial compounds phloretin, furosemide and cinnamate derivatives, but not by p-chloromercuribenzene sulfonate (pCMBS). Our data on PfFNT monocarboxylate transport are consistent with those obtained with living parasites. Moreover, PfFNT is the only transporter of the plasmodial glycolytic pathway for which structure information is available from crystals of homologous proteins, rendering it amenable to further evaluation as a novel antimalarial drug target.
Collapse
|
41
|
Osmosensing and osmoregulation in unicellular eukaryotes. World J Microbiol Biotechnol 2015; 31:435-43. [DOI: 10.1007/s11274-015-1811-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
42
|
von Bülow J, Golldack A, Albers T, Beitz E. The amoeboidalDictyosteliumaquaporin AqpB is gated via Tyr216 andaqpBgene deletion affects random cell motility. Biol Cell 2015; 107:78-88. [DOI: 10.1111/boc.201400070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/22/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Julia von Bülow
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| | - André Golldack
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| | - Tineke Albers
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| | - Eric Beitz
- Pharmaceutical and Medicinal Chemistry; Christian-Albrechts-University of Kiel; Kiel 24118 Germany
| |
Collapse
|
43
|
Chen LY. Erythritol predicted to inhibit permeation of water and solutes through the conducting pore of P. falciparum aquaporin. Biophys Chem 2015; 198:14-21. [PMID: 25637890 DOI: 10.1016/j.bpc.2015.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Abstract
Plasmodium falciparum aquaporin (PfAQP) is a multifunctional channel protein in the plasma membrane of the malarial parasite that causes the most severe form of malaria infecting more than a million people a year. This channel protein facilitates transport of water and several solutes across the cell membrane. In order to better elucidate the fundamental interactions between PfAQP and its permeants and among the permeants, I conducted over three microseconds in silico experiments of atomistic models of the PfAQP-membrane system to obtain the free-energy profiles of five permeants (erythritol, water, glycerol, urea, and ammonia) throughout the amphipathic conducting pore of PfAQP. The profiles are analyzed in light of and shown to be consistent with the existent in vitro data. The binding affinities are computed using the free-energy profiles and the permeant fluctuations inside the channel. On this basis, it is predicted that erythritol, a permeant of PfAQP itself having a deep ditch in its permeation passageway, inhibits PfAQP's functions of transporting water and other solutes with an IC50 in the range of high nanomolars. This leads to the possibility that erythritol, a sweetener generally considered safe, may inhibit or kill the malarial parasite in vivo without causing undesired side effects. Experimental studies are hereby called for to directly test this theoretical prediction of erythritol strongly inhibiting PfAQP in vitro and possibly inhibiting P. falciparum in vivo.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
44
|
|
45
|
Bi-functionality of Opisthorchis viverrini aquaporins. Biochimie 2014; 108:149-59. [PMID: 25461277 DOI: 10.1016/j.biochi.2014.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQP) are essential mediators of water regulation in all living organisms and members of the major intrinsic protein (MIP) superfamily of integral membrane proteins. They are potential vehicles or targets for chemotherapy, e.g. in Trypanosoma brucei melarsoprol and pentamidine uptake is facilitated by TbAQP-2. Transcriptome data suggests that there are at least three active aquaporins in the human liver fluke, Opisthorchis viverrini, OvAQP-1, 2 and 3, and crude RNA silencing of OvAQP-1 and 2 has recently been shown to affect parasite swelling in destilled water. In the present work we demonstrate that OvAQP-3 is a major water-conducting channel of the parasite, that it can be detected from the newly excysted juvenile to the adult stage and that it is present in major tissues of the parasite. Furthermore, a comparative functional characterization of the three parasite AQPs was performed by using Xenopus oocyte swelling and yeast phenotypic assays. OvAQP-1, OvAQP-2, and OvAQP-3 were found to conduct water and glycerol while only the latter two were also able to conduct urea. In addition, all OvAQPs were found to transport ammonia and methylamine. Our findings demonstrate that the sequence-based classification into orthodox aquaporins and glycerol-conducting aquaglyceroporins is not functionally conserved in the parasite and implicate a broder range of functions for these channels.
Collapse
|
46
|
Nehls U, Dietz S. Fungal aquaporins: cellular functions and ecophysiological perspectives. Appl Microbiol Biotechnol 2014; 98:8835-51. [PMID: 25213914 DOI: 10.1007/s00253-014-6049-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today's MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker's yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Leobenerstr. 2, 28359, Bremen, Germany,
| | | |
Collapse
|
47
|
Verma RK, Prabh ND, Sankararamakrishnan R. New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions. BMC Evol Biol 2014; 14:173. [PMID: 25112373 PMCID: PMC4236510 DOI: 10.1186/s12862-014-0173-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/24/2014] [Indexed: 12/18/2022] Open
Abstract
Background Aquaporins (AQPs) and aquaglyceroporins (AQGPs) belong to the superfamily of Major Intrinsic Proteins (MIPs) and are involved in the transport of water and neutral solutes across the membranes. MIP channels play significant role in plant-fungi symbiotic relationship and are believed to be important in host-pathogen interactions in human fungal diseases. In plants, at least five major MIP subfamilies have been identified. Fungal MIP subfamilies include orthodox aquaporins and five subgroups within aquaglyceroporins. XIP subfamily is common to both plants and fungi. In this study, we have investigated the extent of diversity in fungal MIPs and explored further evolutionary relationships with the plant MIP counterparts. Results We have extensively analyzed the available fungal genomes and examined nearly 400 fungal MIPs. Phylogenetic analysis and homology modeling exhibit the existence of a new MIP cluster distinct from any of the known fungal MIP subfamilies. All members of this cluster are found in microsporidia which are unicellular fungal parasites. Members of this family are small in size, charged and have hydrophobic residues in the aromatic/arginine selectivity filter and these features are shared by small and basic intrinsic proteins (SIPs), one of the plant MIP subfamilies. We have also found two new subfamilies (δ and γ2) within the AQGP group. Fungal AQGPs are the most diverse and possess the largest number of subgroups. We have also identified distinguishing features in loops E and D in the newly identified subfamilies indicating their possible role in channel transport and gating. Conclusions Fungal SIP-like MIP family is distinct from any of the known fungal MIP families including orthodox aquaporins and aquaglyceroporins. After XIPs, this is the second MIP subfamily from fungi that may have possible evolutionary link with a plant MIP subfamily. AQGPs in fungi are more diverse and possess the largest number of subgroups. The aromatic/arginine selectivity filter of SIP-like fungal MIPs and the δ AQGPs are unique, hydrophobic in nature and are likely to transport novel hydrophobic solutes. They can be attractive targets for developing anti-fungal drugs. The evolutionary pattern shared with their plant counterparts indicates possible involvement of new fungal MIPs in plant-fungi symbiosis and host-pathogen interactions.
Collapse
|
48
|
Thanasuwan S, Piratae S, Brindley PJ, Loukas A, Kaewkes S, Laha T. Suppression of aquaporin, a mediator of water channel control in the carcinogenic liver fluke, Opisthorchis viverrini. Parasit Vectors 2014; 7:224. [PMID: 24885060 PMCID: PMC4033688 DOI: 10.1186/1756-3305-7-224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Opisthorchiasis and Opisthorchis viverrini-associated bile duct cancer represent major public health threats in Thailand and Laos. The tegument of this food borne fluke plays pivotal roles in parasite metabolism, homeostasis and osmoregulation. Excretory/secretory products also pass from the fluke to the biliary environment, products that likely underlie pathogenesis of liver fluke infection. Aquaporins (AQPs), belong to the major intrinsic protein superfamily of integral plasma membrane channel proteins that selectively transport water across cell membranes. AQPs play key roles as water and ion transport channels through the tegument of helminth parasites. Methods Here, two forms of AQP mRNAs from the adult developmental stage of O. viverrini, termed O. viverrini aquaporin-1 and -2 (Ov-aqp-1 and -2) were investigated. Roles of Ov-aqp-1 and -2 in the movement of water across the tegument of this carcinogenic liver fluke were investigated using RNA interference. Results Ov-AQP-1 and Ov-AQP-2 contain unique characteristic asparagine-proline-alanine (NPA) motifs of AQP transmembrane proteins. Phylogenetic analysis indicated that Ov-AQPs belong to an expanding group of aquaglyceroporin-like water channel proteins characterized from helminth and protozoan parasites, which is pivotal to the specialized requirements of water and solute control during parasitism. Elevated transcription of Ov-aqp-1 was evident in the egg, cercaria, metacercaria and adult stages of O. viverrini, whereas Ov-aqp-2 transcripts were detected at higher level in egg, metacercaria, cercaria and adult stage, respectively. RNA interference using electroporated dsRNA suppressed transcript levels of Ov-aqp-1 and Ov-aqp-2 in adult worms by 58-99% over periods of up to 16 days in vitro. Suppression of Ov-aqp-1 and Ov-aqp-2 in vitro disabled water transport in adult flukes. Conclusion The apparently pivotal roles of Ov-AQP in solute homeostasis at the fluke surface suggest that deeper investigation will be informative for the pathophysiology of O. viverrini, and may uncover intervention targets, particularly in view of the singularly notable predilection of this pathogen for residence within ducts of the biliary tree.
Collapse
Affiliation(s)
| | | | | | | | | | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
49
|
Parasite aquaporins: Current developments in drug facilitation and resistance. Biochim Biophys Acta Gen Subj 2014; 1840:1566-73. [DOI: 10.1016/j.bbagen.2013.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/15/2023]
|
50
|
Abstract
BACKGROUND Plasmodium falciparum is the parasite that causes the most severe form of malaria responsible for nearly a million deaths a year. Currently, science has been established about its cellular structures, its metabolic processes, and even the molecular structures of its intrinsic membrane proteins responsible for transporting water, nutrient, and waste molecules across the parasite plasma membrane (PPM). PRESENTATION OF THE HYPOTHESIS I hypothesize that Plasmodium falciparum has an Achilles' heel that can be attacked with erythritol, the well-known sweetener that is classified as generally safe. This hypothesis is based on the molecular structure of the parasite's membrane and the quantitative mechanics of how erythritol interacts with the multi-functional channel protein expressed in the PPM. Most organisms have in their cell membrane two types of water-channel proteins: aquaporins to maintain hydro-homeostasis across the membrane and aquaglyceroporins to uptake glycerols etc. In contrast, P. falciparum has only one type of such proteins---the multi-functional aquaglyceroporin (PfAQP) expressed in the PPM---to do both jobs. Moreover, the parasite also uses PfAQP to excrete its metabolic wastes (ammonia included) produced at a very high rate in the blood stage. This extremely high efficiency of the bug using one protein for multiple essential tasks makes the parasite fatally vulnerable. Erythritol in the blood stream can kill the parasite by clogging up its PfAQP channel that needs to be open for maintaining hydro-homeostasis and for excreting toxic wastes across the bug's PPM. TESTING THE HYPOTHESIS In vitro tests are to measure the growth/death rate of P. falciparum in blood with various erythritol concentrations. In vivo experiments are to administer groups of infected mice with various doses of erythritol and monitor the parasite growth levels from blood samples drawn from each group. Clinic trials can be performed to observe the added effects of administering to patients erythritol along with the known drugs because erythritol was classified as a safe food ingredient. IMPLICATIONS OF THE HYPOTHESIS If proven true, erythritol will cure the most severe form of malaria without significant side effects.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249 USA
| |
Collapse
|