1
|
Tian R, Zhao P, Ding X, Wang X, Jiang X, Chen S, Cai Z, Li L, Chen S, Liu W, Sun Q. TBC1D4 antagonizes RAB2A-mediated autophagic and endocytic pathways. Autophagy 2024; 20:2426-2443. [PMID: 38964379 PMCID: PMC11572321 DOI: 10.1080/15548627.2024.2367907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Macroautophagic/autophagic and endocytic pathways play essential roles in maintaining homeostasis at different levels. It remains poorly understood how both pathways are coordinated and fine-tuned for proper lysosomal degradation of diverse cargoes. We and others recently identified a Golgi-resident RAB GTPase, RAB2A, as a positive regulator that controls both autophagic and endocytic pathways. In the current study, we report that TBC1D4 (TBC1 domain family member 4), a TBC domain-containing protein that plays essential roles in glucose homeostasis, suppresses RAB2A-mediated autophagic and endocytic pathways. TBC1D4 bound to RAB2A through its N-terminal PTB2 domain, which impaired RAB2A-mediated autophagy at the early stage by preventing ULK1 complex activation. During the late stage of autophagy, TBC1D4 impeded the association of RUBCNL/PACER and RAB2A with STX17 on autophagosomes by direct interaction with RUBCNL via its N-terminal PTB1 domain. Disruption of the autophagosomal trimeric complex containing RAB2A, RUBCNL and STX17 resulted in defective HOPS recruitment and eventually abortive autophagosome-lysosome fusion. Furthermore, TBC1D4 inhibited RAB2A-mediated endocytic degradation independent of RUBCNL. Therefore, TBC1D4 and RAB2A form a dual molecular switch to modulate autophagic and endocytic pathways. Importantly, hepatocyte- or adipocyte-specific tbc1d4 knockout in mice led to elevated autophagic flux and endocytic degradation and tissue damage. Together, this work establishes TBC1D4 as a critical molecular brake in autophagic and endocytic pathways, providing further mechanistic insights into how these pathways are intertwined both in vitro and in vivo.Abbreviations: ACTB: actin beta; ATG9: autophagy related 9; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; CLEM: correlative light electron microscopy; Ctrl: control; DMSO: dimethyl sulfoxide; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; FL: full length; GAP: GTPase-activating protein; GFP: green fluorescent protein; HOPS: homotypic fusion and protein sorting; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; OE: overexpression; PG: phagophore; PtdIns3K: class III phosphatidylinositol 3-kinase; SLC2A4/GLUT4: solute carrier family 2 member 4; SQSTM1/p62: sequestosome 1; RUBCNL/PACER: rubicon like autophagy enhancer; STX17: syntaxin 17; TAP: tandem affinity purification; TBA: total bile acid; TBC1D4: TBC1 domain family member 4; TUBA1B: tubulin alpha 1b; ULK1: unc-51 like autophagy activating kinase 1; VPS39: VPS39 subunit of HOPS complex; WB: western blot; WT: wild type.
Collapse
Affiliation(s)
- Rui Tian
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianming Ding
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Jiang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Rial SA, You Z, Vivoli A, Sean D, Al-Khoury A, Lavoie G, Civelek M, Martinez-Sanchez A, Roux PP, Durcan TM, Lim GE. 14-3-3ζ regulates adipogenesis by modulating chromatin accessibility during the early stages of adipocyte differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585495. [PMID: 38562727 PMCID: PMC10983991 DOI: 10.1101/2024.03.18.585495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We previously established the scaffold protein 14-3-3ζ as a critical regulator of adipogenesis and adiposity, but the temporal specificity of its action during adipocyte differentiation remains unclear. To decipher if 14-3-3ζ exerts its regulatory functions on mature adipocytes or on adipose precursor cells (APCs), we generated Adipoq14-3-3ζKO and Pdgfra14-3-3ζKO mouse models. Our findings revealed a pivotal role for 14-3-3ζ in APC differentiation in a sex-dependent manner, whereby male and female Pdgfra14-3-3ζKO mice display impaired or potentiated weight gain, respectively, as well as fat mass. To better understand how 14-3-3ζ regulates the adipogenic transcriptional program in APCs, CRISPR-Cas9 was used to generate TAP-tagged 14-3-3ζ-expressing 3T3-L1 preadipocytes. Using these cells, we examined if the 14-3-3ζ nuclear interactome is enriched with adipogenic regulators during differentiation. Regulators of chromatin remodeling, such as DNMT1 and HDAC1, were enriched in the nuclear interactome of 14-3-3ζ, and their activities were impacted upon 14-3-3ζ depletion. The interactions between 14-3-3ζ and chromatin-modifying enzymes suggested that 14-3-3ζ may control chromatin remodeling during adipogenesis, and this was confirmed by ATAC-seq, which revealed that 14-3-3ζ depletion impacted the accessibility of up to 1,244 chromatin regions corresponding in part to adipogenic genes, promoters, and enhancers during the initial stages of adipogenesis. Moreover, 14-3-3ζ-dependent chromatin accessibility was found to directly correlate with the expression of key adipogenic genes. Altogether, our study establishes 14-3-3ζ as a crucial epigenetic regulator of adipogenesis and highlights the usefulness of deciphering the nuclear 14-3-3ζ interactome to identify novel pro-adipogenic factors and pathways.
Collapse
Affiliation(s)
- SA Rial
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Z You
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - A Vivoli
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - D Sean
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Amal Al-Khoury
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - G Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - M Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908
| | - A Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Roux PP
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - TM Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada
| | - GE Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
- Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
3
|
Larsen JK, Larsen MR, Birk JB, Steenberg DE, Hingst JR, Højlund K, Chadt A, Al-Hasani H, Deshmukh AS, Wojtaszewski JF, Kjøbsted R. Illumination of the Endogenous Insulin-Regulated TBC1D4 Interactome in Human Skeletal Muscle. Diabetes 2022; 71:906-920. [PMID: 35192682 PMCID: PMC9074744 DOI: 10.2337/db21-0855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Insulin-stimulated muscle glucose uptake is a key process in glycemic control. This process depends on the redistribution of glucose transporters to the surface membrane, a process that involves regulatory proteins such as TBC1D1 and TBC1D4. Accordingly, a TBC1D4 loss-of-function mutation in human skeletal muscle is associated with an increased risk of type 2 diabetes, and observations from carriers of a TBC1D1 variant associate this protein to a severe obesity phenotype. Here, we identified interactors of the endogenous TBC1D4 protein in human skeletal muscle by an unbiased proteomics approach. We detected 76 proteins as candidate TBC1D4 interactors. The binding of 12 of these interactors was regulated by insulin, including proteins known to be involved in glucose metabolism (e.g., 14-3-3 proteins and α-actinin-4 [ACTN4]). TBC1D1 also coprecipitated with TBC1D4 and vice versa in both human and mouse skeletal muscle. This interaction was not regulated by insulin or exercise in young, healthy, lean individuals. Similarly, the exercise- and insulin-regulated phosphorylation of the TBC1D1-TBC1D4 complex was intact. In contrast, we observed an altered interaction as well as compromised insulin-stimulated phosphoregulation of the TBC1D1-TBC1D4 complex in muscle of obese individuals with type 2 diabetes. Altogether, we provide a repository of TBC1D4 interactors in human and mouse skeletal muscle that serve as potential regulators of TBC1D4 function and, thus, insulin-stimulated glucose uptake in human skeletal muscle.
Collapse
Affiliation(s)
- Jeppe K. Larsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Magnus R. Larsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B. Birk
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dorte E. Steenberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R. Hingst
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Alexandra Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F.P. Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Corresponding authors: Rasmus Kjøbsted, , and Jørgen F.P. Wojtaszewski,
| | - Rasmus Kjøbsted
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Corresponding authors: Rasmus Kjøbsted, , and Jørgen F.P. Wojtaszewski,
| |
Collapse
|
4
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
5
|
Eickelschulte S, Hartwig S, Leiser B, Lehr S, Joschko V, Chokkalingam M, Chadt A, Al-Hasani H. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction with insulin-regulated aminopeptidase. J Biol Chem 2021; 296:100637. [PMID: 33872597 PMCID: PMC8131924 DOI: 10.1016/j.jbc.2021.100637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis–Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 μM) and Thr649 (KM ∼25 μM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 μM), Ser711 (KM ∼79 μM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Sonja Hartwig
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Ben Leiser
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Stefan Lehr
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Viola Joschko
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Manopriya Chokkalingam
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Alexandra Chadt
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
6
|
Bledzka KM, Manaserh IH, Grondolsky J, Pfleger J, Roy R, Gao E, Chuprun JK, Koch WJ, Schumacher SM. A peptide of the amino-terminus of GRK2 induces hypertrophy and yet elicits cardioprotection after pressure overload. J Mol Cell Cardiol 2021; 154:137-153. [PMID: 33548241 DOI: 10.1016/j.yjmcc.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/14/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) expression and activity are elevated early on in response to several forms of cardiovascular stress and are a hallmark of heart failure. Interestingly, though, in addition to its well-characterized role in regulating GPCRs, mounting evidence suggests a GRK2 "interactome" that underlies a great diversity in its functional roles. Several such GRK2 interacting partners are important for adaptive and maladaptive myocyte growth; therefore, an understanding of domain-specific interactions with signaling and regulatory molecules could lead to novel targets for heart failure therapy. Herein, we subjected transgenic mice with cardiac restricted expression of a short, amino terminal fragment of GRK2 (βARKnt) to pressure overload and found that unlike their littermate controls or previous GRK2 fragments, they exhibited an increased left ventricular wall thickness and mass prior to cardiac stress that underwent proportional hypertrophic growth to controls after acute pressure overload. Importantly, despite this enlarged heart, βARKnt mice did not undergo the expected transition to heart failure observed in controls. Further, βARKnt expression limited adverse left ventricular remodeling and increased cell survival signaling. Proteomic analysis to identify βARKnt binding partners that may underlie the improved cardiovascular phenotype uncovered a selective functional interaction of both endogenous GRK2 and βARKnt with AKT substrate of 160 kDa (AS160). AS160 has emerged as a key downstream regulator of insulin signaling, integrating physiological and metabolic cues to couple energy demand to membrane recruitment of Glut4. Our preliminary data indicate that in βARKnt mice, cardiomyocyte insulin signaling is improved during stress, with a coordinate increase in spare respiratory activity and ATP production without metabolite switching. Surprisingly, these studies also revealed a significant decrease in gonadal fat weight, equivalent to human abdominal fat, in male βARKnt mice at baseline and following cardiac stress. These data suggest that the enhanced AS160-mediated signaling in the βARKnt mice may ameliorate pathological cardiac remodeling through direct modulation of insulin signaling within cardiomyocytes, and translate these to beneficial effects on systemic metabolism.
Collapse
Affiliation(s)
- Kamila M Bledzka
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyad H Manaserh
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Grondolsky
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jessica Pfleger
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - J Kurt Chuprun
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sarah M Schumacher
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
Hook SC, Chadt A, Heesom KJ, Kishida S, Al-Hasani H, Tavaré JM, Thomas EC. TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes. Sci Rep 2020; 10:17953. [PMID: 33087848 PMCID: PMC7578007 DOI: 10.1038/s41598-020-74661-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins involved in the spaciotemporal regulation of GLUT4 trafficking represent potential therapeutic targets for the treatment of insulin resistance and type 2 diabetes. A key regulator of insulin- and exercise-stimulated glucose uptake and GLUT4 trafficking is TBC1D1. This study aimed to identify proteins that regulate GLUT4 trafficking and homeostasis via TBC1D1. Using an unbiased quantitative proteomics approach, we identified proteins that interact with TBC1D1 in C2C12 myotubes including VPS13A and VPS13C, the Rab binding proteins EHBP1L1 and MICAL1, and the calcium pump SERCA1. These proteins associate with TBC1D1 via its phosphotyrosine binding (PTB) domains and their interactions with TBC1D1 were unaffected by AMPK activation, distinguishing them from the AMPK regulated interaction between TBC1D1 and AMPKα1 complexes. Depletion of VPS13A or VPS13C caused a post-transcriptional increase in cellular GLUT4 protein and enhanced cell surface GLUT4 levels in response to AMPK activation. The phenomenon was specific to GLUT4 because other recycling proteins were unaffected. Our results provide further support for a role of the TBC1D1 PTB domains as a scaffold for a range of Rab regulators, and also the VPS13 family of proteins which have been previously linked to fasting glycaemic traits and insulin resistance in genome wide association studies.
Collapse
Affiliation(s)
- Sharon C Hook
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Alexandra Chadt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kate J Heesom
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jeremy M Tavaré
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Elaine C Thomas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
8
|
Guo Y, Ning W, Jiang P, Lin S, Wang C, Tan X, Yao L, Peng D, Xue Y. GPS-PBS: A Deep Learning Framework to Predict Phosphorylation Sites that Specifically Interact with Phosphoprotein-Binding Domains. Cells 2020; 9:cells9051266. [PMID: 32443803 PMCID: PMC7290655 DOI: 10.3390/cells9051266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is essential for regulating cellular activities by modifying substrates at specific residues, which frequently interact with proteins containing phosphoprotein-binding domains (PPBDs) to propagate the phosphorylation signaling into downstream pathways. Although massive phosphorylation sites (p-sites) have been reported, most of their interacting PPBDs are unknown. Here, we collected 4458 known PPBD-specific binding p-sites (PBSs), considerably improved our previously developed group-based prediction system (GPS) algorithm, and implemented a deep learning plus transfer learning strategy for model training. Then, we developed a new online service named GPS-PBS, which can hierarchically predict PBSs of 122 single PPBD clusters belonging to two groups and 16 families. By comparison, GPS-PBS achieved a highly competitive accuracy against other existing tools. Using GPS-PBS, we predicted 371,018 mammalian p-sites that potentially interact with at least one PPBD, and revealed that various PPBD-containing proteins (PPCPs) and protein kinases (PKs) can simultaneously regulate the same p-sites to orchestrate important pathways, such as the PI3K-Akt signaling pathway. Taken together, we anticipate GPS-PBS can be a great help for further dissecting phosphorylation signaling networks.
Collapse
Affiliation(s)
- Yaping Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peiran Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lan Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Hatakeyama H, Morino T, Ishii T, Kanzaki M. Cooperative actions of Tbc1d1 and AS160/Tbc1d4 in GLUT4-trafficking activities. J Biol Chem 2018; 294:1161-1172. [PMID: 30482843 DOI: 10.1074/jbc.ra118.004614] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/13/2018] [Indexed: 12/28/2022] Open
Abstract
AS160 and Tbc1d1 are key Rab GTPase-activating proteins (RabGAPs) that mediate release of static GLUT4 in response to insulin or exercise-mimetic stimuli, respectively, but their cooperative regulation and its underlying mechanisms remain unclear. By employing GLUT4 nanometry with cell-based reconstitution models, we herein analyzed the functional cooperative activities of the RabGAPs. When both RabGAPs are present, Tbc1d1 functionally dominates AS160, and stimuli-inducible GLUT4 release relies on Tbc1d1-evoking proximal stimuli, such as AICAR and intracellular Ca2+ Detailed functional assessments with varying expression ratios revealed that AS160 modulates sensitivity to external stimuli in Tbc1d1-mediated GLUT4 release. For example, Tbc1d1-governed GLUT4 release triggered by Ca2+ plus insulin occurred more efficiently than that in cells with little or no AS160. Series of mutational analyses revealed that these synergizing actions rely on the phosphotyrosine-binding 1 (PTB1) and calmodulin-binding domains of Tbc1d1 as well as key phosphorylation sites of both AS160 (Thr642) and Tbc1d1 (Ser237 and Thr596). Thus, the emerging cooperative governance relying on the multiple regulatory nodes of both Tbc1d1 and AS160, functioning together, plays a key role in properly deciphering biochemical signals into a physical GLUT4 release process in response to insulin, exercise, and the two in combination.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Sendai 980-8579, Japan; Graduate School of Biomedical Engineering, Sendai 980-8579, Japan
| | - Taisuke Morino
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Takuya Ishii
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Sendai 980-8579, Japan; Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
10
|
Mafakheri S, Flörke RR, Kanngießer S, Hartwig S, Espelage L, De Wendt C, Schönberger T, Hamker N, Lehr S, Chadt A, Al-Hasani H. AKT and AMP-activated protein kinase regulate TBC1D1 through phosphorylation and its interaction with the cytosolic tail of insulin-regulated aminopeptidase IRAP. J Biol Chem 2018; 293:17853-17862. [PMID: 30275018 DOI: 10.1074/jbc.ra118.005040] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
In skeletal muscle, the Rab GTPase-activating (GAP) protein TBC1D1 is phosphorylated by AKT and AMP-activated protein kinase (AMPK) in response to insulin and muscle contraction. Genetic ablation of Tbc1d1 or mutation of distinct phosphorylation sites impairs intracellular GLUT4 retention and GLUT4 traffic, presumably through alterations of the activation state of downstream Rab GTPases. Previous studies have focused on characterizing the C-terminal GAP domain of TBC1D1 that lacks the known phosphorylation sites, as well as putative regulatory domains. As a result, it has been unclear how phosphorylation of TBC1D1 would regulate its activity. In the present study, we have expressed, purified, and characterized recombinant full-length TBC1D1 in Sf9 insect cells via the baculovirus system. Full-length TBC1D1 showed RabGAP activity toward GLUT4-associated Rab8a, Rab10, and Rab14, indicating similar substrate specificity as the truncated GAP domain. However, the catalytic activity of the full-length TBC1D1 was markedly higher than that of the GAP domain. Although in vitro phosphorylation of TBC1D1 by AKT or AMPK increased 14-3-3 binding, it did not alter the intrinsic RabGAP activity. However, we found that TBC1D1 interacts through its N-terminal PTB domains with the cytoplasmic domain of the insulin-regulated aminopeptidase, a resident protein of GLUT4 storage vesicles, and this binding is disrupted by phosphorylation of TBC1D1 by AKT or AMPK. In summary, our findings suggest that other regions outside the GAP domain may contribute to the catalytic activity of TBC1D1. Moreover, our data indicate that recruitment of TBC1D1 to GLUT4-containing vesicles and not its GAP activity is regulated by insulin and contraction-mediated phosphorylation.
Collapse
Affiliation(s)
- Samaneh Mafakheri
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Ralf R Flörke
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Sibylle Kanngießer
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Sonja Hartwig
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Lena Espelage
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Christian De Wendt
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Tina Schönberger
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Nele Hamker
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf
| | - Stefan Lehr
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Alexandra Chadt
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Hadi Al-Hasani
- From the Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, 40225 Düsseldorf; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| |
Collapse
|
11
|
Isoform-specific AMPK association with TBC1D1 is reduced by a mutation associated with severe obesity. Biochem J 2018; 475:2969-2983. [PMID: 30135087 PMCID: PMC6156765 DOI: 10.1042/bcj20180475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/10/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosine-binding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237. Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation.
Collapse
|
12
|
Rab14 limits the sorting of Glut4 from endosomes into insulin-sensitive regulated secretory compartments in adipocytes. Biochem J 2016; 473:1315-27. [PMID: 26936971 DOI: 10.1042/bcj20160020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
Insulin increases glucose uptake by increasing the rate of exocytosis of the facilitative glucose transporter isoform 4 (Glut4) relative to its endocytosis. Insulin also releases Glut4 from highly insulin-regulated secretory compartments (GSVs or Glut4 storage vesicles) into constitutively cycling endosomes. Previously it was shown that both overexpression and knockdown of the small GTP-binding protein Rab14 decreased Glut4 translocation to the plasma membrane (PM). To determine the mechanism of this perturbation, we measured the effects of Rab14 knockdown on the trafficking kinetics of Glut4 relative to two proteins that partially co-localize with Glut4, the transferrin (Tf) receptor and low-density-lipoprotein-receptor-related protein 1 (LRP1). Our data support the hypothesis that Rab14 limits sorting of proteins from sorting (or 'early') endosomes into the specialized GSV pathway, possibly through regulation of endosomal maturation. This hypothesis is consistent with known Rab14 effectors. Interestingly, the insulin-sensitive Rab GTPase-activating protein Akt substrate of 160 kDa (AS160) affects both sorting into and exocytosis from GSVs. It has previously been shown that exocytosis of GSVs is rate-limited by Rab10, and both Rab10 and Rab14 are in vitro substrates of AS160. Regulation of both entry into and exit from GSVs by AS160 through sequential Rab substrates would provide a mechanism for the finely tuned 'quantal' increases in cycling Glut4 observed in response to increasing concentrations of insulin.
Collapse
|
13
|
Brewer PD, Habtemichael EN, Romenskaia I, Mastick CC, Coster ACF. Glut4 Is Sorted from a Rab10 GTPase-independent Constitutive Recycling Pathway into a Highly Insulin-responsive Rab10 GTPase-dependent Sequestration Pathway after Adipocyte Differentiation. J Biol Chem 2015; 291:773-89. [PMID: 26527681 DOI: 10.1074/jbc.m115.694919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 02/04/2023] Open
Abstract
The RabGAP AS160/TBC1D4 controls exocytosis of the insulin-sensitive glucose transporter Glut4 in adipocytes. Glut4 is internalized and recycled through a highly regulated secretory pathway in these cells. Glut4 also cycles through a slow constitutive endosomal pathway distinct from the fast transferrin (Tf) receptor recycling pathway. This slow constitutive pathway is the only Glut4 cycling pathway in undifferentiated fibroblasts. The α2-macroglobulin receptor LRP1 cycles with Glut4 and the Tf receptor through all three exocytic pathways. To further characterize these pathways, the effects of knockdown of AS160 substrates on the trafficking kinetics of Glut4, LRP1, and the Tf receptor were measured in adipocytes and fibroblasts. Rab10 knockdown decreased cell surface Glut4 in insulin-stimulated adipocytes by 65%, but not in basal adipocytes or in fibroblasts. This decrease was due primarily to a 62% decrease in the rate constant of Glut4 exocytosis (kex), although Rab10 knockdown also caused a 1.4-fold increase in the rate constant of Glut4 endocytosis (ken). Rab10 knockdown in adipocytes also decreased cell surface LRP1 by 30% by decreasing kex 30-40%. There was no effect on LRP1 trafficking in fibroblasts or on Tf receptor trafficking in either cell type. These data confirm that Rab10 is an AS160 substrate that limits exocytosis through the highly insulin-responsive specialized secretory pathway in adipocytes. They further show that the slow constitutive endosomal (fibroblast) recycling pathway is Rab10-independent. Thus, Rab10 is a marker for the specialized pathway in adipocytes. Interestingly, mathematical modeling shows that Glut4 traffics predominantly through the specialized Rab10-dependent pathway both before and after insulin stimulation.
Collapse
Affiliation(s)
- Paul Duffield Brewer
- From the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557
| | - Estifanos N Habtemichael
- the Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - Irina Romenskaia
- From the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557
| | - Cynthia Corley Mastick
- From the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557,
| | - Adelle C F Coster
- the Department of Applied Mathematics, School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Fazakerley DJ, Naghiloo S, Chaudhuri R, Koumanov F, Burchfield JG, Thomas KC, Krycer JR, Prior MJ, Parker BL, Murrow BA, Stöckli J, Meoli CC, Holman GD, James DE. Proteomic Analysis of GLUT4 Storage Vesicles Reveals Tumor Suppressor Candidate 5 (TUSC5) as a Novel Regulator of Insulin Action in Adipocytes. J Biol Chem 2015; 290:23528-42. [PMID: 26240143 PMCID: PMC4583025 DOI: 10.1074/jbc.m115.657361] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 01/09/2023] Open
Abstract
Insulin signaling augments glucose transport by regulating glucose transporter 4 (GLUT4) trafficking from specialized intracellular compartments, termed GLUT4 storage vesicles (GSVs), to the plasma membrane. Proteomic analysis of GSVs by mass spectrometry revealed enrichment of 59 proteins in these vesicles. We measured reduced abundance of 23 of these proteins following insulin stimulation and assigned these as high confidence GSV proteins. These included established GSV proteins such as GLUT4 and insulin-responsive aminopeptidase, as well as six proteins not previously reported to be localized to GSVs. Tumor suppressor candidate 5 (TUSC5) was shown to be a novel GSV protein that underwent a 3.7-fold increase in abundance at the plasma membrane in response to insulin. siRNA-mediated knockdown of TUSC5 decreased insulin-stimulated glucose uptake, although overexpression of TUSC5 had the opposite effect, implicating TUSC5 as a positive regulator of insulin-stimulated glucose transport in adipocytes. Incubation of adipocytes with TNFα caused insulin resistance and a concomitant reduction in TUSC5. Consistent with previous studies, peroxisome proliferator-activated receptor (PPAR) γ agonism reversed TNFα-induced insulin resistance. TUSC5 expression was necessary but insufficient for PPARγ-mediated reversal of insulin resistance. These findings functionally link TUSC5 to GLUT4 trafficking, insulin action, insulin resistance, and PPARγ action in the adipocyte. Further studies are required to establish the exact role of TUSC5 in adipocytes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Sheyda Naghiloo
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Rima Chaudhuri
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Françoise Koumanov
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - James G Burchfield
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Kristen C Thomas
- From the Charles Perkins Centre, School of Molecular Bioscience, and
| | - James R Krycer
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Matthew J Prior
- The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Ben L Parker
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Beverley A Murrow
- The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Jacqueline Stöckli
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Christopher C Meoli
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and
| | - Geoffrey D Holman
- the Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - David E James
- From the Charles Perkins Centre, School of Molecular Bioscience, and The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia, and School of Medicine, University of Sydney, Sydney, New South Wales 2006, Australia,
| |
Collapse
|
15
|
Koumanov F, Pereira VJ, Richardson JD, Sargent SL, Fazakerley DJ, Holman GD. Insulin regulates Rab3-Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes. Diabetologia 2015; 58:1877-86. [PMID: 26024738 PMCID: PMC4499112 DOI: 10.1007/s00125-015-3627-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/21/2015] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS The glucose transporter GLUT4 is present mainly in insulin-responsive tissues of fat, heart and skeletal muscle and is translocated from intracellular membrane compartments to the plasma membrane (PM) upon insulin stimulation. The transit of GLUT4 to the PM is known to be dependent on a series of Rab proteins. However, the extent to which the activity of these Rabs is regulated by the action of insulin action is still unknown. We sought to identify insulin-activated Rab proteins and Rab effectors that facilitate GLUT4 translocation. METHODS We developed a new photoaffinity reagent (Bio-ATB-GTP) that allows GTP-binding proteomes to be explored. Using this approach we screened for insulin-responsive GTP loading of Rabs in primary rat adipocytes. RESULTS We identified Rab3B as a new candidate insulin-stimulated G-protein in adipocytes. Using constitutively active and dominant negative mutants and Rab3 knockdown we provide evidence that Rab3 isoforms are key regulators of GLUT4 translocation in adipocytes. Insulin-stimulated Rab3 GTP binding is associated with disruption of the interaction between Rab3 and its negative effector Noc2. Disruption of the Rab3-Noc2 complex leads to displacement of Noc2 from the PM. This relieves the inhibitory effect of Noc2, facilitating GLUT4 translocation. CONCLUSIONS/INTERPRETATION The discovery of the involvement of Rab3 and Noc2 in an insulin-regulated step in GLUT4 translocation suggests that the control of this translocation process is unexpectedly similar to regulated secretion and particularly pancreatic insulin-vesicle release.
Collapse
Affiliation(s)
- Francoise Koumanov
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Vinit J. Pereira
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | | | - Samantha L. Sargent
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Daniel J. Fazakerley
- />Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, NSW Australia
| | - Geoffrey D. Holman
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
16
|
Chadt A, Immisch A, de Wendt C, Springer C, Zhou Z, Stermann T, Holman GD, Loffing-Cueni D, Loffing J, Joost HG, Al-Hasani H. “Deletion of both Rab-GTPase–activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport [corrected]. Diabetes 2015; 64:746-59. [PMID: 25249576 DOI: 10.2337/db14-0368] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Rab-GTPase–activating proteins TBC1D1 and TBC1D4 (AS160) were previously shown to regulate GLUT4 translocation in response to activation of AKT and AMP-dependent kinase [corrected]. However, knockout mice lacking either Tbc1d1 or Tbc1d4 displayed only partially impaired insulin-stimulated glucose uptake in fat and muscle tissue. The aim of this study was to determine the impact of the combined inactivation of Tbc1d1 and Tbc1d4 on glucose metabolism in double-deficient (D1/4KO) mice. D1/4KO mice displayed normal fasting glucose concentrations but had reduced tolerance to intraperitoneally administered glucose, insulin, and AICAR. D1/4KO mice showed reduced respiratory quotient, indicating increased use of lipids as fuel. These mice also consistently showed elevated fatty acid oxidation in isolated skeletal muscle, whereas insulin-stimulated glucose uptake in muscle and adipose cells was almost completely abolished. In skeletal muscle and white adipose tissue, the abundance of GLUT4 protein, but not GLUT4 mRNA, was substantially reduced. Cell surface labeling of GLUTs indicated that RabGAP deficiency impairs retention of GLUT4 in intracellular vesicles in the basal state. Our results show that TBC1D1 and TBC1D4 together play essential roles in insulin-stimulated glucose uptake and substrate preference in skeletal muscle and adipose cells.
Collapse
Affiliation(s)
- Alexandra Chadt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany German Center for Diabetes Research (DZD), Düsseldorf, Germany
| | - Anja Immisch
- German Institute for Human Nutrition, Potsdam, Germany
| | - Christian de Wendt
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Springer
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Zhou Zhou
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Torben Stermann
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, U.K
| | | | | | - Hans-Georg Joost
- German Center for Diabetes Research (DZD), Düsseldorf, Germany German Institute for Human Nutrition, Potsdam, Germany
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University, Düsseldorf, Germany German Center for Diabetes Research (DZD), Düsseldorf, Germany
| |
Collapse
|
17
|
Waller AP, Kalyanasundaram A, Hayes S, Periasamy M, Lacombe VA. Sarcoplasmic reticulum Ca2+ ATPase pump is a major regulator of glucose transport in the healthy and diabetic heart. Biochim Biophys Acta Mol Basis Dis 2015; 1852:873-81. [PMID: 25615793 DOI: 10.1016/j.bbadis.2015.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/18/2014] [Accepted: 01/14/2015] [Indexed: 01/12/2023]
Abstract
Despite intensive research, the pathways that mediate calcium (Ca(2+))-stimulated glucose transport in striated muscle remain elusive. Since the sarcoplasmic reticulum calcium ATPase (SERCA) pump tightly regulates cytosolic [Ca(2+)], we investigated whether the SERCA pump is a major regulator of cardiac glucose transport. We used healthy and insulin-deficient diabetic transgenic (TG) mice expressing SERCA1a in the heart. Active cell surface glucose transporter (GLUT)-4 was measured by a biotinylated photolabeled assay in the intact perfused myocardium and isolated myocytes. In healthy TG mice, cardiac-specific SERCA1a expression increased active cell-surface GLUT4 and glucose uptake in the myocardium, as well as whole body glucose tolerance. Diabetes reduced active cell-surface GLUT4 content and glucose uptake in the heart of wild type mice, all of which were preserved in diabetic TG mice. Decreased basal AS160 and increased proportion of calmodulin-bound AS160 paralleled the increase in cell surface GLUT4 content in the heart of TG mice, suggesting that AS160 regulates GLUT trafficking by a Ca(2+)/calmodulin dependent pathway. In addition, cardiac-specific SERCA1a expression partially rescues hyperglycemia during diabetes. Collectively, these data suggested that the SERCA pump is a major regulator of cardiac glucose transport by an AS160 dependent mechanism during healthy and insulin-deficient state. Our data further indicated that cardiac-specific SERCA overexpression rescues diabetes induced-alterations in cardiac glucose transport and improves whole body glucose homeostasis. Therefore, findings from this study provide novel mechanistic insights linking upregulation of the SERCA pump in the heart as a potential therapeutic target to improve glucose metabolism during diabetes.
Collapse
Affiliation(s)
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, USA
| | - Summer Hayes
- College of Pharmacy, The Ohio State University, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, USA; Davis Heart and Lung Research Institute, Columbus, OH 43210, USA
| | - Véronique A Lacombe
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
18
|
Effect of troxerutin on insulin signaling molecules in the gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic adult male rat. Mol Cell Biochem 2014; 395:11-27. [PMID: 24880482 DOI: 10.1007/s11010-014-2107-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/15/2014] [Indexed: 01/01/2023]
Abstract
Troxerutin is a trihydroxyethylated derivative of the flavonoid, rutin. It has been reported to possess the hepatoprotective, nephroprotective, antioxidant, anti-inflammatory, and antihyperlipidemic activities. Troxerutin treatment reduced the blood glucose and glycosylated hemoglobin levels in high-cholesterol-induced insulin-resistant mice and in type-2 diabetic patients. However, the mechanism by which it exhibits antidiabetic property was unknown. Therefore, the present study was designed to evaluate the effect of troxerutin on insulin signaling molecules in gastrocnemius muscle of high fat and sucrose-induced type-2 diabetic rats. Wistar male albino rats were selected and divided into five groups. Group I: Control. Group II: High fat and sucrose-induced type-2 diabetic rats. Group III: Type-2 diabetic rats treated with troxerutin (150 mg/kg body weight/day orally). Group IV: Type-2 diabetic rats treated with metformin (50 mg/kg body weight/day orally). Group V: Normal rats treated with troxerutin (150 mg/kg body weight/day orally). After 30 days of treatment, fasting blood glucose, oral glucose tolerance, serum lipid profile, and the levels of insulin signaling molecules, glycogen, glucose uptake, and oxidation in gastrocnemius muscle were assessed. Diabetic rats showed impairment in insulin signaling molecules (IR, p-IRS-1(Tyr632), p-Akt(Ser473), β-arrestin-2, c-Src, p-AS160(Thr642), and GLUT4 proteins), glycogen concentration, glucose uptake, and oxidation. Oral administration of troxerutin showed near normal levels of blood glucose, serum insulin, lipid profile, and insulin signaling molecules as well as GLUT4 proteins in type-2 diabetic rats. It is concluded from the present study that troxerutin may play a significant role in the management of type-2 diabetes mellitus, by improving the insulin signaling molecules and glucose utilization in the skeletal muscle.
Collapse
|
19
|
Dokas J, Chadt A, Nolden T, Himmelbauer H, Zierath JR, Joost HG, Al-Hasani H. Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology 2013; 154:3502-14. [PMID: 23892475 DOI: 10.1210/en.2012-2147] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the obesity-resistant SJL mouse strain, we previously identified a naturally occurring loss-of-function mutation in the gene for Tbc1d1. Characterization of recombinant inbred mice that carried the Tbc1d1(SJL) allele on a C57BL/6J background indicated that loss of TBC1D1 protects from obesity, presumably by increasing the use of fat as energy source. To provide direct functional evidence for an involvement of TBC1D1 in energy substrate metabolism, we generated and characterized conventional Tbc1d1 knockout mice. TBC1D1-deficient mice showed moderately reduced body weight, decreased respiratory quotient, and an elevated resting metabolic rate. Ex vivo analysis of intact isolated skeletal muscle revealed a severe impairment in insulin- and AICAR-stimulated glucose uptake in glycolytic extensor digitorum longus muscle and a substantially increased rate of fatty acid oxidation in oxidative soleus muscle. Our results provide direct evidence that TBC1D1 plays a major role in glucose and lipid utilization, and energy substrate preference in skeletal muscle.
Collapse
Affiliation(s)
- Janine Dokas
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at the Heinrich-Heine-University Düsseldorf, Auf'm Hennekamp 65, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Richardson TG, Thomas EC, Sessions RB, Lawlor DA, Tavaré JM, Day INM. Structural and population-based evaluations of TBC1D1 p.Arg125Trp. PLoS One 2013; 8:e63897. [PMID: 23667688 PMCID: PMC3646766 DOI: 10.1371/journal.pone.0063897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/09/2013] [Indexed: 12/04/2022] Open
Abstract
Obesity is now a leading cause of preventable death in the industrialised world. Understanding its genetic influences can enhance insight into molecular pathogenesis and potential therapeutic targets. A non-synonymous polymorphism (rs35859249, p.Arg125Trp) in the N-terminal TBC1D1 phosphotyrosine-binding (PTB) domain has shown a replicated association with familial obesity in women. We investigated these findings in the Avon Longitudinal Study of Parents and Children (ALSPAC), a large European birth cohort of mothers and offspring, and by generating a predicted model of the structure of this domain. Structural prediction involved the use of three separate algorithms; Robetta, HHpred/MODELLER and I-TASSER. We used the transmission disequilibrium test (TDT) to investigate familial association in the ALSPAC study cohort (N = 2,292 mother-offspring pairs). Linear regression models were used to examine the association of genotype with mean measurements of adiposity (Body Mass Index (BMI), waist circumference and Dual-energy X-ray absorptiometry (DXA) assessed fat mass), and logistic regression was used to examine the association with odds of obesity. Modelling showed that the R125W mutation occurs in a location of the TBC1D1 PTB domain that is predicted to have a function in a putative protein:protein interaction. We did not detect an association between R125W and BMI (mean per allele difference 0.27 kg/m2 (95% Confidence Interval: 0.00, 0.53) P = 0.05) or obesity (odds ratio 1.01 (95% Confidence Interval: 0.77, 1.31, P = 0.96) in offspring after adjusting for multiple comparisons. Furthermore, there was no evidence to suggest that there was familial association between R125W and obesity (χ2 = 0.06, P = 0.80). Our analysis suggests that R125W in TBC1D1 plays a role in the binding of an effector protein, but we find no evidence that the R125W variant is related to mean BMI or odds of obesity in a general population sample.
Collapse
Affiliation(s)
- Tom G Richardson
- Bristol Genetic Epidemiology Laboratories, School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
21
|
Camoni L, Visconti S, Aducci P. The phytotoxin fusicoccin, a selective stabilizer of 14-3-3 interactions? IUBMB Life 2013; 65:513-7. [DOI: 10.1002/iub.1167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/28/2013] [Indexed: 11/10/2022]
|
22
|
Hatakeyama H, Kanzaki M. Regulatory mode shift of Tbc1d1 is required for acquisition of insulin-responsive GLUT4-trafficking activity. Mol Biol Cell 2013; 24:809-17. [PMID: 23325788 PMCID: PMC3596251 DOI: 10.1091/mbc.e12-10-0725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Tbc1d1 is involved in AICAR-dependent GLUT4 liberation. Tbc1d1 acquires temporal insulin responsiveness with AICAR pretreatment. This shift in regulatory mode requires Ser- 237 phosphorylation and the PTB1 domain. PTB1 mutants exhibit no shift in regulatory mode and thus no insulin responsiveness. Tbc1d1 is key to skeletal muscle GLUT4 regulation. By using GLUT4 nanometry combined with a cell-based reconstitution model, we uncover a shift in the regulatory mode of Tbc1d1 by showing that Tbc1d1 temporally acquires insulin responsiveness, which triggers GLUT4 trafficking only after an exercise-mimetic stimulus such as aminoimidazole carboxamide ribonucleotide (AICAR) pretreatment. The functional acquisition of insulin responsiveness requires Ser-237 phosphorylation and an intact phosphotyrosine-binding (PTB) 1 domain. Mutations in PTB1, including R125W (a natural mutant), thus result in complete loss of insulin-responsiveness acquisition, whereas AICAR-responsive GLUT4-liberation activity remains intact. Thus our data provide novel insights into temporal acquisition/memorization of Tbc1d1 insulin responsiveness, relying on the PTB1 domain, possibly a key factor in the beneficial effects of exercise on muscle insulin potency.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | | |
Collapse
|
23
|
Wang H, Ducommun S, Quan C, Xie B, Li M, Wasserman D, Sakamoto K, Mackintosh C, Chen S. AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochem J 2013; 449:479-89. [PMID: 23078342 PMCID: PMC3685216 DOI: 10.1042/bj20120702] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/02/2012] [Accepted: 10/19/2012] [Indexed: 11/17/2022]
Abstract
AS160 (Akt substrate of 160 kDa) is a Rab GTPase-activating protein implicated in insulin control of GLUT4 (glucose transporter 4) trafficking. In humans, a truncation mutation (R363X) in one allele of AS160 decreased the expression of the protein and caused severe postprandial hyperinsulinaemia during puberty. To complement the limited studies possible in humans, we generated an AS160-knockout mouse. In wild-type mice, AS160 expression is relatively high in adipose tissue and soleus muscle, low in EDL (extensor digitorum longus) muscle and detectable in liver only after enrichment. Despite having lower blood glucose levels under both fasted and random-fed conditions, the AS160-knockout mice exhibited insulin resistance in both muscle and liver in a euglycaemic clamp study. Consistent with this paradoxical phenotype, basal glucose uptake was higher in AS160-knockout primary adipocytes and normal in isolated soleus muscle, but their insulin-stimulated glucose uptake and overall GLUT4 levels were markedly decreased. In contrast, insulin-stimulated glucose uptake and GLUT4 levels were normal in EDL muscle. The liver also contributes to the AS160-knockout phenotype via hepatic insulin resistance, elevated hepatic expression of phosphoenolpyruvate carboxykinase isoforms and pyruvate intolerance, which are indicative of increased gluconeogenesis. Overall, as well as its catalytic function, AS160 influences expression of other proteins, and its loss deregulates basal and insulin-regulated glucose homoeostasis, not only in tissues that normally express AS160, but also by influencing liver function.
Collapse
Key Words
- akt substrate of 160 kda (as160)
- glucose transport
- insulin resistance
- liver
- muscle
- as160, akt substrate of 160 kda
- edl, extensor digitorum longus
- fbp-1, fructose-1,6-bisphosphatase 1
- gap, gtpase-activating protein
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- gir, glucose infusion rate
- glut, glucose transporter
- gsk3, glycogen synthase kinase 3
- mbp, myelin basic protein
- pck/pepck, phosphoenolpyruvate carboxykinase
- pkb, protein kinase b
- pm, plasma membrane
- rer, respiratory exchange ratio
- ta, tibialis anterior
Collapse
Affiliation(s)
- Hong Yu Wang
- *MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Serge Ducommun
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
- ‡Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'Innovation, Bâtiment G, 1015 Lausanne, Switzerland
| | - Chao Quan
- *MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Bingxian Xie
- *MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Min Li
- *MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - David H. Wasserman
- §Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, 2200 Pierce Ave, Nashville, TN 37232, U.S.A
| | - Kei Sakamoto
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
- ‡Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'Innovation, Bâtiment G, 1015 Lausanne, Switzerland
| | - Carol Mackintosh
- †MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
- ‖Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
| | - Shuai Chen
- *MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| |
Collapse
|
24
|
Lansey MN, Walker NN, Hargett SR, Stevens JR, Keller SR. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis. Am J Physiol Endocrinol Metab 2012; 303:E1273-86. [PMID: 23011063 PMCID: PMC3517634 DOI: 10.1152/ajpendo.00316.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.
Collapse
Affiliation(s)
- Melissa N Lansey
- Dept. of Medicine/Division of Endocrinology, Univ. of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
25
|
The Rab GTPase-activating protein TBC1D4/AS160 contains an atypical phosphotyrosine-binding domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes. Mol Cell Biol 2012; 32:4946-59. [PMID: 23045393 DOI: 10.1128/mcb.00761-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rab GTPase-activating protein TBC1D4/AS160 regulates GLUT4 trafficking in adipocytes. Nonphosphorylated AS160 binds to GLUT4 vesicles and inhibits GLUT4 translocation, and AS160 phosphorylation overcomes this inhibitory effect. In the present study we detected several new functional features of AS160. The second phosphotyrosine-binding domain in AS160 encodes a phospholipid-binding domain that facilitates plasma membrane (PM) targeting of AS160, and this function is conserved in other related RabGAP/Tre-2/Bub2/Cdc16 (TBC) proteins and an AS160 ortholog in Drosophila. This region also contains a nonoverlapping intracellular GLUT4-containing storage vesicle (GSV) cargo-binding site. The interaction of AS160 with GSVs and not with the PM confers the inhibitory effect of AS160 on insulin-dependent GLUT4 translocation. Constitutive targeting of AS160 to the PM increased the surface GLUT4 levels, and this was attributed to both enhanced AS160 phosphorylation and 14-3-3 binding and inhibition of AS160 GAP activity. We propose a model wherein AS160 acts as a regulatory switch in the docking and/or fusion of GSVs with the PM.
Collapse
|
26
|
Schweitzer GG, Arias EB, Cartee GD. Sustained postexercise increases in AS160 Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase phosphorylation. J Appl Physiol (1985) 2012; 113:1852-61. [PMID: 22936728 DOI: 10.1152/japplphysiol.00619.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prior exercise by rats can induce a sustained increase in muscle Akt substrate of 160 kDa (AS160) phosphorylation on Thr(642) (pAS160(Thr642)). Because phosphorylation of AS160 on both AS160(Thr642) and AS160(Ser588) is important for insulin-stimulated glucose transport (GT), we determined if exercise would also induce a sustained increase in pAS160(Ser588) concomitant with persistently elevated pAS160(Thr642) and GT. Given that the mechanisms for sustained postexercise (PEX) effects on pAS160 were uncertain, we also studied the four kinases known to phosphorylate AS160 (Akt, AMPK, RSK, and SGK1). In addition, because the serine/threonine phosphatase(s) that dephosphorylate muscle AS160 were previously unidentified, we assessed the ability of four serine/threonine phosphatases (PP1, PP2A, PP2B, and PP2C) to dephosphorylate AS160. We also evaluated exercise effects on posttranslational modifications (Tyr(307) and Leu(309)) that regulate PP2A. In isolated epitrochlearis muscles from rats, GT at 3hPEX with insulin significantly (P < 0.05) exceeded SED controls. Muscles from 0hPEX vs. 0hSED and 3hPEX vs. 3hSED rats had greater pAS160(Thr642) and pAS160(Ser588). AMPK was the only kinase with greater phosphorylation at 0hPEX vs. 0hSED, and none had greater phosphorylation at 3hPEX vs. 3hSED. Each phosphatase was able to dephosphorylate pAS160(Thr642) and pAS160(Ser588) in cell-free assays. Exercise did not alter posttranslational modifications of PP2A. Our results revealed: 1) pAMPK as a potential trigger for increased pAS160(Thr642) and pAS160(Ser588) at 0hPEX; 2) PP1, PP2A, PP2B, and PP2C were each able to dephosphorylate AS160; and 3) sustained PEX-induced elevations of pAS160(Thr642) and pAS160(Ser588) were attributable to mechanisms other than persistent phosphorylation of known AS160 kinases or altered posttranslational modifications of PP2A.
Collapse
Affiliation(s)
- George G Schweitzer
- Muscle Biology Laboratory, School of Kinesiology, Muscle Biology Laboratory, 401 Washtenaw, Ann Arbor, MI48109-2214, USA
| | | | | |
Collapse
|
27
|
de Boer AH, de Vries-van Leeuwen IJ. Fusicoccanes: diterpenes with surprising biological functions. TRENDS IN PLANT SCIENCE 2012; 17:360-8. [PMID: 22465041 DOI: 10.1016/j.tplants.2012.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/14/2012] [Accepted: 02/20/2012] [Indexed: 05/25/2023]
Abstract
Fusicoccin is the best-studied member of a class of diterpenes sharing a 5-8-5 ring structure, called fusicoccanes. Fusicoccin was and still is a 'tool in plant physiology', targeting the main engine of plasma membrane transport, the P-type H(+)-ATPase, assisted by members of the 14-3-3 family. The key position of 14-3-3 proteins in cell biology, combined with a broader specificity of other fusicoccanes as shown by crystallography studies, make fusicoccanes a versatile tool in plant and animal biology. In this review, we examine recent evidence that fusicoccanes act on animal cells, describe the discovery of the fungal biosynthetic pathway and emphasize that lower (liverworts) and higher plants produce fusicoccanes with intriguing biological activities.
Collapse
Affiliation(s)
- Albertus H de Boer
- Department of Structural Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
28
|
Abstract
To enhance glucose uptake into muscle and fat cells, insulin stimulates the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. This response requires the intersection of insulin signaling and vesicle trafficking pathways, and it is compromised in the setting of overnutrition to cause insulin resistance. Insulin signals through AS160/Tbc1D4 and Tbc1D1 to modulate Rab GTPases and through the Rho GTPase TC10α to act on other targets. In unstimulated cells, GLUT4 is incorporated into specialized storage vesicles containing IRAP, LRP1, sortilin, and VAMP2, which are sequestered by TUG, Ubc9, and other proteins. Insulin mobilizes these vesicles directly to the plasma membrane, and it modulates the trafficking itinerary so that cargo recycles from endosomes during ongoing insulin exposure. Knowledge of how signaling and trafficking pathways are coordinated will be essential to understanding the pathogenesis of diabetes and the metabolic syndrome and may also inform a wide range of other physiologies.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
29
|
Chen S, Synowsky S, Tinti M, MacKintosh C. The capture of phosphoproteins by 14-3-3 proteins mediates actions of insulin. Trends Endocrinol Metab 2011; 22:429-36. [PMID: 21871813 DOI: 10.1016/j.tem.2011.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/26/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
How does signalling via PI3K-PKB (AKT)-mTORC1-p70S6K and ERK-p90RSK mediate wide-ranging physiological responses to insulin? Quantitative proteomics and biochemical experiments are revealing that these signalling pathways induce the phosphorylation of large and overlapping sets of proteins, which are then captured by phosphoprotein-binding proteins named 14-3-3s. The 14-3-3s are dimers that dock onto dual-phosphorylated sites in a configuration with special signalling and mechanical properties. They interact with the Rab GTPase-activating proteins AS160 and TBC1D1 to regulate glucose uptake into target tissues in response to insulin and energy stress. Dynamic patterns in the 14-3-3-binding phosphoproteome are providing new insights into how insulin triggers coherent shifts in metabolism that are integrated with other cellular response systems.
Collapse
Affiliation(s)
- Shuai Chen
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
30
|
Brewer PD, Romenskaia I, Kanow MA, Mastick CC. Loss of AS160 Akt substrate causes Glut4 protein to accumulate in compartments that are primed for fusion in basal adipocytes. J Biol Chem 2011; 286:26287-97. [PMID: 21613213 DOI: 10.1074/jbc.m111.253880] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Akt substrate AS160 (TCB1D4) regulates Glut4 exocytosis; shRNA knockdown of AS160 increases surface Glut4 in basal adipocytes. AS160 knockdown is only partially insulin-mimetic; insulin further stimulates Glut4 translocation in these cells. Insulin regulates translocation as follows: 1) by releasing Glut4 from retention in a slowly cycling/noncycling storage pool, increasing the actively cycling Glut4 pool, and 2) by increasing the intrinsic rate constant for exocytosis of the actively cycling pool (k(ex)). Kinetic studies were performed in 3T3-L1 adipocytes to measure the effects of AS160 knockdown on the rate constants of exocytosis (k(ex)), endocytosis (k(en)), and release from retention into the cycling pool. AS160 knockdown released Glut4 into the actively cycling pool without affecting k(ex) or k(en). Insulin increased k(ex) in the knockdown cells, further increasing cell surface Glut4. Inhibition of phosphatidylinositol 3-kinase or Akt affected both k(ex) and release from retention in control cells but only k(ex) in AS160 knockdown cells. Glut4 vesicles accumulate in a primed pre-fusion pool in basal AS160 knockdown cells. Akt regulates the rate of exocytosis of the primed vesicles through an AS160-independent mechanism. Therefore, there is an additional Akt substrate that regulates the fusion of Glut4 vesicles that remain to be identified. Mathematical modeling was used to test the hypothesis that this substrate regulates vesicle priming (release from retention), whereas AS160 regulates the reverse step by stimulating GTP turnover of a Rab protein required for vesicle tethering/docking/fusion. Our analysis indicates that fusion of the primed vesicles with the plasma membrane is an additional non-Akt-dependent insulin-regulated step.
Collapse
Affiliation(s)
- Paul Duffield Brewer
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|