1
|
Shan W, Li J, Philpot Z, Zuo Z. Carboxyl Terminal Modulator Protein Induces Cell Senescence and Is Upregulated With Aging by Zic2 in Rats. J Cell Physiol 2025; 240:e70007. [PMID: 39888066 PMCID: PMC11780686 DOI: 10.1002/jcp.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/21/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025]
Abstract
Carboxyl terminal modulator protein (CTMP) may be involved in various physiological and pathological processes, such as inflammation, tumor growth, and cardiac hypertrophy. Our recent study has shown that CTMP is increased with aging and plays a role in determining brain ischemic tolerance. However, it is not known how CTMP expression with aging is regulated and whether the changed CTMP expression has an effect on cell senescence. Here, cells that stably overexpressed CTMP were generated and cell senescence biomarkers were determined. The brains of Fischer 344 male rats were harvested for Western blot analysis and immunostaining to detect CTMP and the Zinc finger protein Zic2. The regulations of CTMP expression by Zic2 were examined by promoter activity assays. Increasing CTMP enhanced cells expressing senescence-associated β-galactosidase staining but without expression of Ki67, decreased cell proliferation and colony formation, and increased cells with condensed DNA of more than one pair of homologous chromosomes caused by senescence. Zic2 was decreased with aging in rats. Zic2 and CTMP were mainly expressed in the neurons in rats. Similarly, CTMP protein was expressed in the neurons of human brain. An anti-Zic2 antibody immunoprecipitated DNA fragments of ctmp gene. Zic2 inhibited the activity of presumptive ctmp promoter. Overexpressing Zic2 decreased CTMP in cells. These results suggest that CTMP induces cell senescence and that Zic2 is a suppressor of CTMP expression. The decrease of Zic2 contributes to CTMP increase with aging.
Collapse
Affiliation(s)
- Weiran Shan
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jun Li
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Zachary Philpot
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Idaho College of Osteopathic MedicineMeridianIdahoUSA
| | - Zhiyi Zuo
- Department of AnesthesiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Choi E, Song J, Lee Y, Jeong Y, Jang W. Prioritizing susceptibility genes for the prognosis of male-pattern baldness with transcriptome-wide association study. Hum Genomics 2024; 18:34. [PMID: 38566255 PMCID: PMC10985920 DOI: 10.1186/s40246-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression regulation has not been performed to the best of our knowledge. RESULTS In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes. CONCLUSIONS Overall, through an integrative analysis of gene expression and genotype data, we have identified robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug candidates that may alleviate MPB.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
3
|
Li H, Cui J, Hu C, Li H, Luo X, Hao Y. Identification and Analysis of ZIC-Related Genes in Cerebellum of Autism Spectrum Disorders. Neuropsychiatr Dis Treat 2024; 20:325-339. [PMID: 38410689 PMCID: PMC10895985 DOI: 10.2147/ndt.s444138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with significant genetic heterogeneity. The ZIC gene family can regulate neurodevelopment, especially in the cerebellum, and has been implicated in ASD-like behaviors in mice. We performed bioinformatic analysis to identify the ZIC gene family in the ASD cerebellum. Methods We explored the roles of ZIC family genes in ASD by investigating (i) the association of ZIC genes with ASD risk genes from the Simons Foundation Autism Research Initiative (SFARI) database and ZIC genes in the brain regions of the Human Protein Atlas (HPA) database; (ii) co-expressed gene networks of genes positively and negatively correlated with ZIC1, ZIC2, and ZIC3, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and receiver operating characteristic (ROC) curve analysis of genes in these networks; and (iii) the relationship between ZIC1, ZIC2, ZIC3, and their related genes with cerebellar immune cells and stromal cells in ASD patients. Results (i) ZIC1, ZIC2, and ZIC3 were associated with neurodevelopmental disorders and risk genes related to ASD in the human cerebellum and (ii) ZIC1, ZIC2, and ZIC3 were highly expressed in the cerebellum, which may play a pathogenic role by affecting neuronal development and the cerebellar internal environment in patients with ASD, including immune cells, astrocytes, and endothelial cells. (iii) OLFM3, SLC27A4, GRB2, TMED1, NR2F1, and STRBP are closely related to ZIC1, ZIC2, and ZIC3 in ASD cerebellum and have good diagnostic accuracy. (iv) ASD mice in the maternal immune activation model demonstrated that Zic3 and Nr2f1 levels were decreased in the immune-activated cerebellum. Conclusion Our study supports the role of ZIC1, ZIC2, and ZIC3 in ASD pathogenesis and provides potential targets for early and accurate prediction of ASD.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
4
|
Escuin S, Rose Raza-Knight S, Savery D, Gaston-Massuet C, Galea GL, Greene NDE, Copp AJ. Dual mechanism underlying failure of neural tube closure in the Zic2 mutant mouse. Dis Model Mech 2023; 16:297163. [PMID: 36916392 PMCID: PMC10073009 DOI: 10.1242/dmm.049858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
Understanding the molecular mechanisms that lead to birth defects is an important step towards improved primary prevention. Mouse embryos homozygous for the Kumba (Ku) mutant allele of Zic2 develop severe spina bifida with complete lack of dorsolateral hinge points (DLHPs) in the neuroepithelium. Bone morphogenetic protein (BMP) signalling is overactivated in Zic2Ku/Ku embryos, and the BMP inhibitor dorsomorphin partially rescues neural tube closure in cultured embryos. RhoA signalling is also overactivated, with accumulation of actomyosin in the Zic2Ku/Ku neuroepithelium, and the myosin inhibitor Blebbistatin partially normalises neural tube closure. However, dorsomorphin and Blebbistatin differ in their effects at tissue and cellular levels: DLHP formation is rescued by dorsomorphin but not Blebbistatin, whereas abnormal accumulation of actomyosin is rescued by Blebbistatin but not dorsomorphin. These findings suggest a dual mechanism of spina bifida origin in Zic2Ku/Ku embryos: faulty BMP-dependent formation of DLHPs and RhoA-dependent F-actin accumulation in the neuroepithelium. Hence, we identify a multi-pathway origin of spina bifida in a mammalian system that may provide a developmental basis for understanding the corresponding multifactorial human defects.
Collapse
Affiliation(s)
- Sarah Escuin
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Saba Rose Raza-Knight
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Carles Gaston-Massuet
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gabriel L Galea
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew J Copp
- Developmental Biology and Cancer Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
5
|
Morleo M, Pezzella N, Franco B. Proteome balance in ciliopathies: the OFD1 protein example. Trends Mol Med 2023; 29:201-217. [PMID: 36494254 DOI: 10.1016/j.molmed.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
The balance of protein synthesis and degradation is finely regulated and influences cellular homeostasis and biological processes (e.g., embryonic development and neuronal plasticity). Recent data demonstrated that centrosomal/ciliary proteins enable proteome control in response to spatial or microenvironmental stimuli. Here, we discuss recent discoveries regarding the role in the balance of the proteome of centrosomal/ciliary proteins associated with genetic disorders known as ciliopathies. In particular, OFD1 was the first example of a ciliopathy protein controlling both protein expression and autophagic/proteasomal degradation. Understanding the role of proteome balance in the pathogenesis of the clinical manifestations of ciliopathies may pave the way to the identification of a wide range of putative novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nunziana Pezzella
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy; Medical Genetics, Department of Translational Medicine, University of Naples 'Federico II', Via Sergio Pansini, 80131, Naples, Italy.
| |
Collapse
|
6
|
Clark E, Battistara M, Benton MA. A timer gene network is spatially regulated by the terminal system in the Drosophila embryo. eLife 2022; 11:e78902. [PMID: 36524728 PMCID: PMC10065802 DOI: 10.7554/elife.78902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete, and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatory module, delineating the tail region and delaying its developmental maturation.
Collapse
Affiliation(s)
- Erik Clark
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Margherita Battistara
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Matthew A Benton
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Developmental Biology Unit, EMBLHeidelbergGermany
| |
Collapse
|
7
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Butyrate Induces Modifications of the CTCF-Binding Landscape in Cattle Cells. Biomolecules 2022; 12:biom12091177. [PMID: 36139015 PMCID: PMC9496099 DOI: 10.3390/biom12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate’s role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
8
|
Zou Y, Zhong C, Hu Z, Duan S. MiR-873-5p: A Potential Molecular Marker for Cancer Diagnosis and Prognosis. Front Oncol 2021; 11:743701. [PMID: 34676171 PMCID: PMC8523946 DOI: 10.3389/fonc.2021.743701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
miR-873 is a microRNA located on chromosome 9p21.1. miR-873-5p and miR-873-3p are the two main members of the miR-873 family. Most studies focus on miR-873-5p, and there are a few studies on miR-873-3p. The expression level of miR-873-5p was down-regulated in 14 cancers and up-regulated in 4 cancers. miR-873-5p has many targeted genes, which have unique molecular functions such as catalytic activity, transcription regulation, and binding. miR-873-5p affects cancer development through the PIK3/AKT/mTOR, Wnt/β-Catenin, NF-κβ, and MEK/ERK signaling pathways. In addition, the target genes of miR-873-5p are closely related to the proliferation, apoptosis, migration, invasion, cell cycle, cell stemness, and glycolysis of cancer cells. The target genes of miR-873-5p are also related to the efficacy of several anti-cancer drugs. Currently, in cancer, the expression of miR-873-5p is regulated by a variety of epigenetic factors. This review summarizes the role and mechanism of miR-873-5p in human tumors shows the potential value of miR-873-5p as a molecular marker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuhao Zou
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Chenming Zhong
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Zekai Hu
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Shiwei Duan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Bellchambers HM, Barratt KS, Diamand KEM, Arkell RM. SUMOylation Potentiates ZIC Protein Activity to Influence Murine Neural Crest Cell Specification. Int J Mol Sci 2021; 22:ijms221910437. [PMID: 34638777 PMCID: PMC8509024 DOI: 10.3390/ijms221910437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
The mechanisms of neural crest cell induction and specification are highly conserved among vertebrate model organisms, but how similar these mechanisms are in mammalian neural crest cell formation remains open to question. The zinc finger of the cerebellum 1 (ZIC1) transcription factor is considered a core component of the vertebrate gene regulatory network that specifies neural crest fate at the neural plate border. In mouse embryos, however, Zic1 mutation does not cause neural crest defects. Instead, we and others have shown that murine Zic2 and Zic5 mutate to give a neural crest phenotype. Here, we extend this knowledge by demonstrating that murine Zic3 is also required for, and co-operates with, Zic2 and Zic5 during mammalian neural crest specification. At the murine neural plate border (a region of high canonical WNT activity) ZIC2, ZIC3, and ZIC5 function as transcription factors to jointly activate the Foxd3 specifier gene. This function is promoted by SUMOylation of the ZIC proteins at a conserved lysine immediately N-terminal of the ZIC zinc finger domain. In contrast, in the lateral regions of the neurectoderm (a region of low canonical WNT activity) basal ZIC proteins act as co-repressors of WNT/TCF-mediated transcription. Our work provides a mechanism by which mammalian neural crest specification is restricted to the neural plate border. Furthermore, given that WNT signaling and SUMOylation are also features of non-mammalian neural crest specification, it suggests that mammalian neural crest induction shares broad conservation, but altered molecular detail, with chicken, zebrafish, and Xenopus neural crest induction.
Collapse
|
10
|
Flora P, Dalal G, Cohen I, Ezhkova E. Polycomb Repressive Complex(es) and Their Role in Adult Stem Cells. Genes (Basel) 2021; 12:1485. [PMID: 34680880 PMCID: PMC8535826 DOI: 10.3390/genes12101485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/31/2022] Open
Abstract
Populations of resident stem cells (SCs) are responsible for maintaining, repairing, and regenerating adult tissues. In addition to having the capacity to generate all the differentiated cell types of the tissue, adult SCs undergo long periods of quiescence within the niche to maintain themselves. The process of SC renewal and differentiation is tightly regulated for proper tissue regeneration throughout an organisms' lifetime. Epigenetic regulators, such as the polycomb group (PcG) of proteins have been implicated in modulating gene expression in adult SCs to maintain homeostatic and regenerative balances in adult tissues. In this review, we summarize the recent findings that elucidate the composition and function of the polycomb repressive complex machinery and highlight their role in diverse adult stem cell compartments.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| | - Gil Dalal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA;
| |
Collapse
|
11
|
Xu Z, Zheng J, Chen Z, Guo J, Li X, Wang X, Qu C, Yuan L, Cheng C, Sun X, Yu J. Multilevel regulation of Wnt signaling by Zic2 in colon cancer due to mutation of β-catenin. Cell Death Dis 2021; 12:584. [PMID: 34099631 PMCID: PMC8184991 DOI: 10.1038/s41419-021-03863-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/22/2023]
Abstract
Zinc-finger of the cerebellum 2 (Zic2) is widely implicated in cancers, but the role of Zic2 in tumorigenesis is bilateral. A recent study indicated that Zic2 could render colon cancer cells more resistant to low glucose-induced apoptosis. However, the functional roles of Zic2 in colon cancer and the underlying molecular mechanism remain elusive. Herein, we demonstrated that Zic2 was highly expressed in colon cancer tissues and correlated with poor survival. Knockdown of Zic2 inhibited colon cancer cell growth, arrested the cell cycle transition from G0/G1 to S phase, and suppressed tumor sphere formation in vitro; in addition, silencing Zic2 retarded xenograft tumor formation in vivo. Consistently, ectopic expression of Zic2 had the opposite effects. Mechanistically, Zic2 executed its oncogenic role in colon cancer by enhancing Wnt/β-catenin signaling. Zic2 directly binds to the promoter of Axin2 and transcriptionally represses Axin2 expression and subsequently promotes the accumulation and nuclear translocation of β-catenin. Meanwhile, Zic2 could activate Wnt signaling by interacting with β-catenin. Intriguingly, in HCT116 cells with intrinsic Ser45 mutation of β-catenin, which blocks the degradation-related phosphorylation of β-catenin by CK1, modified Zic2 expression did not affect the protein level of β-catenin. Altogether, our findings uncover a novel multilevel mechanism for the oncogenic activity of Zic2 in colon cancer and suggest Zic2 as a potential therapeutic target for colon cancer patients.
Collapse
Affiliation(s)
- Zhengshui Xu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Jianbao Zheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Zilu Chen
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Jing Guo
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xiaopeng Li
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xingjie Wang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Chao Qu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Liyue Yuan
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Chen Cheng
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China.
| | - Junhui Yu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, PR China.
| |
Collapse
|
12
|
Ali RG, Bellchambers HM, Warr N, Ahmed JN, Barratt KS, Neill K, Diamand KEM, Arkell RM. WNT responsive SUMOylation of ZIC5 promotes murine neural crest cell development via multiple effects on transcription. J Cell Sci 2021; 134:jcs.256792. [PMID: 33771929 DOI: 10.1242/jcs.256792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger of the cerebellum (Zic) proteins act as classical transcription factors to promote transcription of the Foxd3 gene during neural crest cell specification. Additionally, they can act as co-factors that bind TCF molecules to repress WNT/β-catenin-dependent transcription without contacting DNA. Here, we show ZIC activity at the neural plate border is influenced by WNT-dependent SUMOylation. In a high WNT environment, a lysine within the highly conserved ZF-NC domain of ZIC5 is SUMOylated, which decreases formation of the TCF/ZIC co-repressor complex and shifts the balance towards transcription factor function. The modification is critical in vivo, as a ZIC5 SUMO-incompetent mouse strain exhibits neural crest specification defects. This work reveals the function of the ZIC ZF-NC domain, provides in vivo validation of target protein SUMOylation, and demonstrates that WNT/β-catenin signaling directs transcription at non-TCF DNA binding sites. Furthermore, it can explain how WNT signals convert a broad domain of Zic ectodermal expression into a restricted domain of neural crest cell specification.
Collapse
Affiliation(s)
- Radiya G Ali
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas Warr
- Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire, OX110RD, UK
| | - Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Kieran Neill
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia .,Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire, OX110RD, UK
| |
Collapse
|
13
|
Ajit K, Murphy BD, Banerjee A. Elucidating evolutionarily conserved mechanisms of diapause regulation using an in silico approach. FEBS Lett 2021; 595:1350-1374. [PMID: 33650678 DOI: 10.1002/1873-3468.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.
Collapse
Affiliation(s)
- Kamal Ajit
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médicine Vétérinaire, Université Montréal, St-Hyacinthe, QC, Canada
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
14
|
Castilla-Vallmanya L, Gürsoy S, Giray-Bozkaya Ö, Prat-Planas A, Bullich G, Matalonga L, Centeno-Pla M, Rabionet R, Grinberg D, Balcells S, Urreizti R. De Novo PORCN and ZIC2 Mutations in a Highly Consanguineous Family. Int J Mol Sci 2021; 22:ijms22041549. [PMID: 33557041 PMCID: PMC7913830 DOI: 10.3390/ijms22041549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity.
Collapse
Affiliation(s)
- Laura Castilla-Vallmanya
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Semra Gürsoy
- Department of Pediatric Genetics, Dr. Behcet Uz Children’s Hospital, Izmir 35210, Turkey;
| | - Özlem Giray-Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey;
| | - Aina Prat-Planas
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Gemma Bullich
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Mónica Centeno-Pla
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Raquel Rabionet
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Daniel Grinberg
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Susanna Balcells
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Roser Urreizti
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
- Correspondence:
| |
Collapse
|
15
|
Morenilla-Palao C, López-Cascales MT, López-Atalaya JP, Baeza D, Calvo-Díaz L, Barco A, Herrera E. A Zic2-regulated switch in a noncanonical Wnt/βcatenin pathway is essential for the formation of bilateral circuits. SCIENCE ADVANCES 2020; 6:6/46/eaaz8797. [PMID: 33188033 PMCID: PMC7673756 DOI: 10.1126/sciadv.aaz8797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/30/2020] [Indexed: 05/06/2023]
Abstract
The Wnt pathway is involved in a wide array of biological processes during development and is deregulated in many pathological scenarios. In neurons, Wnt proteins promote both axon extension and repulsion, but the molecular mechanisms underlying these opposing axonal responses are unknown. Here, we show that Wnt5a is expressed at the optic chiasm midline and promotes the crossing of retinal axons by triggering an alternative Wnt pathway that depends on the accumulation of βcatenin but does not activate the canonical pathway. In ipsilateral neurons, the transcription factor Zic2 switches this alternative Wnt pathway by regulating the expression of a set of Wnt receptors and intracellular proteins. In combination with this alternative Wnt pathway, the asymmetric activation of EphB1 receptors at the midline phosphorylates βcatenin and elicits a repulsive response. This alternative Wnt pathway and its Zic2-triggered switch may operate in other contexts that require a two-way response to Wnt ligands.
Collapse
Affiliation(s)
- Cruz Morenilla-Palao
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - María Teresa López-Cascales
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - José P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Diana Baeza
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Luís Calvo-Díaz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain
| | - Eloísa Herrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Campus San Juan, Av. Ramón y Cajal s/n, Alicante 03550, Spain.
| |
Collapse
|
16
|
Reddy PC, Gungi A, Ubhe S, Galande S. Epigenomic landscape of enhancer elements during Hydra head organizer formation. Epigenetics Chromatin 2020; 13:43. [PMID: 33046126 PMCID: PMC7552563 DOI: 10.1186/s13072-020-00364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. RESULTS To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. CONCLUSIONS The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
17
|
Ahmed JN, Diamand KEM, Bellchambers HM, Arkell RM. Systematized reporter assays reveal ZIC protein regulatory abilities are Subclass-specific and dependent upon transcription factor binding site context. Sci Rep 2020; 10:13130. [PMID: 32753700 PMCID: PMC7403390 DOI: 10.1038/s41598-020-69917-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
The ZIC proteins are a family of transcription regulators with a well-defined zinc finger DNA-binding domain and there is evidence that they elicit functional DNA binding at a ZIC DNA binding site. Little is known, however, regarding domains within ZIC proteins that confer trans-activation or -repression. To address this question, a new cell-based trans-activation assay system suitable for ZIC proteins in HEK293T cells was constructed. This identified two previously unannotated evolutionarily conserved regions of ZIC3 that are necessary for trans-activation. These domains are found in all Subclass A ZIC proteins, but not in the Subclass B proteins. Additionally, the Subclass B proteins fail to elicit functional binding at a multimerised ZIC DNA binding site. All ZIC proteins, however, exhibit functional binding when the ZIC DNA binding site is embedded in a multiple transcription factor locus derived from ZIC target genes in the mouse genome. This ability is due to several domains, some of which are found in all ZIC proteins, that exhibit context dependent trans-activation or -repression activity. This knowledge is valuable for assessing the likely pathogenicity of variant ZIC proteins associated with human disorders and for determining factors that influence functional transcription factor binding.
Collapse
Affiliation(s)
- Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
18
|
Luo X, van der Veer BK, Sun L, Bartoccetti M, Boretto M, Vankelecom H, Khoueiry R, Koh KP. Coordination of germ layer lineage choice by TET1 during primed pluripotency. Genes Dev 2020; 34:598-618. [PMID: 32115407 PMCID: PMC7111260 DOI: 10.1101/gad.329474.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
Here, Luo et al. show how the DNA dioxygenase Tet1 plays a pivotal role upstream of germ layer lineage bifurcation. A permissive role for Tet1 in neural fate induction is identified, and involves Zic2-dependent engagement at neural target genes at lineage priming, is dependent on the signaling environment during gastrulation, and impacts neural tube closure after gastrulation. Gastrulation in the early postimplantation stage mammalian embryo begins when epiblast cells ingress to form the primitive streak or develop as the embryonic ectoderm. The DNA dioxygenase Tet1 is highly expressed in the epiblast and yet continues to regulate lineage specification during gastrulation when its expression is diminished. Here, we show how Tet1 plays a pivotal role upstream of germ layer lineage bifurcation. During the transition from naive pluripotency to lineage priming, a global reconfiguration redistributes Tet1 from Oct4-cobound promoters to distal regulatory elements at lineage differentiation genes, which are distinct from high-affinity sites engaged by Oct4. An altered chromatin landscape in Tet1-deficient primed epiblast-like cells is associated with enhanced Oct4 expression and binding to Nodal and Wnt target genes, resulting in collaborative signals that enhance mesendodermal and inhibit neuroectodermal gene expression during lineage segregation. A permissive role for Tet1 in neural fate induction involves Zic2-dependent engagement at neural target genes at lineage priming, is dependent on the signaling environment during gastrulation, and impacts neural tube closure after gastrulation. Our findings provide mechanistic information for epigenetic integration of pluripotency and signal-induced differentiation cues.
Collapse
Affiliation(s)
- Xinlong Luo
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Bernard K van der Veer
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Lei Sun
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Michela Bartoccetti
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Matteo Boretto
- Laboratory of Tissue Plasticity in Health and Disease, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Rita Khoueiry
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Kian Peng Koh
- Laboratory for Stem Cell and Developmental Epigenetics, Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Xu J, Zhou C, Foo KS, Yang R, Xiao Y, Bylund K, Sahara M, Chien KR. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 2020; 38:741-755. [PMID: 32129551 PMCID: PMC7891398 DOI: 10.1002/stem.3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two‐stage genome‐wide CRISPR‐knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA‐Seq profiling of the ZIC2‐mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA‐seq analysis showed the ZIC2 mutants affected the apelin receptor‐related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome‐wide unbiased CRISPR‐knockout screen to identify the key steps in human mesoderm precursor cell‐ and heart progenitor cell‐fate determination during in vitro hPSC cardiogenesis.
Collapse
Affiliation(s)
- Jiejia Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kylie S Foo
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ran Yang
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yao Xiao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bylund
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
20
|
Ge Q, Hu Y, He J, Chen F, Wu L, Tu X, Qi Y, Zhang Z, Xue M, Chen S, Zhong J, Wang L. Zic1 suppresses gastric cancer metastasis by regulating Wnt/β-catenin signaling and epithelial-mesenchymal transition. FASEB J 2020; 34:2161-2172. [PMID: 31909528 DOI: 10.1096/fj.201901372rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/05/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) patients with metastasis had limited treatment options and dismal outcome. We have previously reported the aberrant expression of Zic family member 1 (Zic1) in GC. However, the functional roles and underlying mechanism of Zic1 in GC metastasis remain unknown. Here, we demonstrate that lower expression of Zic1 was correlated with more lymph node metastasis and poor outcome of GC patients. Ectopic expression of Zic1 suppressed both lung metastasis and peritoneal tumor dissemination of GC in mice. The metastatic suppressing ability of Zic1 was mediated by regulating the process of cell invasion, adhesion and epithelial-mesenchymal transition (EMT). Mechanistically, Zic1 could downregulate Wnt targets including c-Myc and Cyclin D1 by inhibiting LEF transcriptional activity in GC cells. Notably, Zic1 was inversely related to the expression of Cyclin D1 in GC tissues tested. In addition, Zic1 could physically interact with β-catenin/transcription factor 4 (TCF4) and disrupt their complex formation, while not affecting β-catenin nuclear localization. Collectively, our study indicated that Zic1 suppressed GC metastasis through attenuating Wnt/β-catenin signaling and the EMT process. Our work may provide novel therapeutic strategies for the metastasis of GC.
Collapse
Affiliation(s)
- Qiwei Ge
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yingying Hu
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Fei Chen
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lunpo Wu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Xintao Tu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yadong Qi
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zizhen Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Meng Xue
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jing Zhong
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Abstract
ABSTRACT
There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by ‘timing factor’ wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Andrew D. Peel
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
22
|
Zhao Z, Wang L, Bartom E, Marshall S, Rendleman E, Ryan C, Shilati A, Savas J, Chandel N, Shilatifard A. β-Catenin/Tcf7l2-dependent transcriptional regulation of GLUT1 gene expression by Zic family proteins in colon cancer. SCIENCE ADVANCES 2019; 5:eaax0698. [PMID: 31392276 PMCID: PMC6669021 DOI: 10.1126/sciadv.aax0698] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/25/2019] [Indexed: 05/04/2023]
Abstract
The zinc finger of the cerebellum (ZIC) proteins has been implicated to function in normal tissue development. Recent studies have described the critical functions of Zic proteins in cancers and the potential tumor-suppressive functions in colon cancer development and progression. To elucidate the functional roles of Zic proteins in colorectal cancer, we knocked out the Zic5 gene and analyzed the chromatin localization pattern and transcriptional regulation of target gene expression. We found that Zic5 regulates glucose metabolism, and Zic5 knockout is accompanied by an increased glycolytic state and tolerance to a low-glucose condition. Furthermore, loss of β-catenin or TCF7l2 diminishes the chromatin binding of Zic5 globally. Our studies suggest that the Wnt/β-catenin signaling pathway has a strong influence on the function of Zic proteins and glucose metabolism in colorectal cancers through GLUT1. Interfering Wnt/-catenin-Zic5 axis-regulated aerobic glycolysis represents a potentially effective strategy to selectively target colon cancer cells.
Collapse
Affiliation(s)
- Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Stacy Marshall
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Emily Rendleman
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Caila Ryan
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anthony Shilati
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Grinblat Y, Lipinski RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn 2019; 248:626-633. [PMID: 30993762 DOI: 10.1002/dvdy.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary conservation and experimental tractability have made animal model systems invaluable tools in our quest to understand human embryogenesis, both normal and abnormal. Standard genetic approaches, particularly useful in understanding monogenic diseases, are no longer sufficient as research attention shifts toward multifactorial outcomes. Here, we examine this progression through the lens of holoprosencephaly (HPE), a common human malformation involving incomplete forebrain division, and a classic example of an etiologically complex outcome. We relate the basic underpinning of HPE pathogenesis to critical cell-cell interactions and signaling molecules discovered through embryological and genetic approaches in multiple model organisms, and discuss the role of the mouse model in functional examination of HPE-linked genes. We then outline the most critical remaining gaps to understanding human HPE, including the conundrum of incomplete penetrance/expressivity and the role of gene-environment interactions. To tackle these challenges, we outline a strategy that leverages new and emerging technologies in multiple model systems to solve the puzzle of HPE.
Collapse
Affiliation(s)
- Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
24
|
Xiong J, Xiang B, Chen X, Cai T. Case report: a novel mutation in ZIC2 in an infant with microcephaly, holoprosencephaly, and arachnoid cyst. Medicine (Baltimore) 2019; 98:e14780. [PMID: 30855487 PMCID: PMC6417543 DOI: 10.1097/md.0000000000014780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Holoprosencephaly (HPE) is a severe congenital brain malformation resulting from failed or incomplete forebrain division in early pregnancy. PATIENT CONCERNS In this study, we reported a 9-month old infant girl with mild microcephaly, semilobor HPE, and arachnoid cyst. DIAGNOSES Potential genetic defects were screened directly using trio-case whole exome sequencing (WES) rather than traditional karyotype, microarray, and Sanger sequencing of select genes. OUTCOMES A previous unpublished de novo missense mutation (c.1069C >G, p.H357D) in the 3rd zinc finger domain (ZFD3) of the ZIC2 gene was identified in the affected individual, but not in the parents. Sanger sequencing using specific primers verified the mutation. Extensive bioinformatics analysis confirmed the pathogenicity of this extremely rare mutation. Phenotype-genotype analysis revealed significant correlation between the 3rd zinc-finger domain with semilobor HPE. LESSONS These findings expanded the spectrum of the ZIC2 gene mutations and associated clinical manifestations, which is the first identification of a mutated ZIC2 gene in a Han infant girl with mild microcephaly, semilobor HPE, and arachnoid cyst.
Collapse
Affiliation(s)
- Jianjun Xiong
- College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Bingwu Xiang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Sibbritt T, Ip CK, Khoo P, Wilkie E, Jones V, Sun JQJ, Shen JX, Peng G, Han JJ, Jing N, Osteil P, Ramialison M, Tam PPL, Fossat N. A gene regulatory network anchored by LIM homeobox 1 for embryonic head development. Genesis 2018; 56:e23246. [DOI: 10.1002/dvg.23246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Chi K. Ip
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Poh‐Lynn Khoo
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- Bioinformatics Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Vanessa Jones
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Jane Q. J. Sun
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Joanne X. Shen
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
| | - Guangdun Peng
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
| | - Jing‐Dong J. Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences‐Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Naihe Jing
- State Key Laboratory of Cell Biology Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai China
- School of Life Science and Technology ShanghaiTech University Shanghai China
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute Monash University Melbourne Victoria Australia
| | - Patrick P. L. Tam
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute The University of Sydney Sydney New South Wales Australia
- School of Medical Sciences, Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
26
|
Bawa PS, Ravi S, Paul S, Chaudhary B, Srinivasan S. A novel molecular mechanism for a long non-coding RNA PCAT92 implicated in prostate cancer. Oncotarget 2018; 9:32419-32434. [PMID: 30197753 PMCID: PMC6126693 DOI: 10.18632/oncotarget.25940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
The role of many lncRNAs in cancer remains elusive including that for a Prostate Cancer Associated Transcript 92 (PCAT92). PCAT92 shares the locus on chromosome 13 with ABCC4 gene, known to be implicated in prostate cancer. It has been shown that PCAT92 and ABCC4 are up-regulated in prostate cancer samples from multiple transcriptome datasets. Among the prostate cancer cell-lines LNCaP showed maximum overexpression of PCAT92 compared to control cell-line RWPE-1. We have shown that knockdown of PCAT92 in LNCaP cells reduces cell viability and proliferation and down-regulates ABCC4 transcript/protein expression. The shared region between PCAT92 and ABCC4 has a binding site for an oncogenic transcription factor (ZIC2) which is also upregulated in the majority of datasets studied here. ZIC2 binding to the predicted ABCC4 promoter has been confirmed using pull-down assay. Interestingly, under PCAT92 knockdown condition, there is a reduction in the ZIC2 binding to ABCC4 promoter indicating the potential involvement of PCAT92 in the recruitment of ZIC2. We have identified distinct regions on PCAT92 with potential to bind to ZIC2 non-DNA binding Zinc-finger domain and potential for triplex formation near ABCC4 promoter region, which have been experimentally validated. Together, these observations and localization in the nucleus suggests that PCAT92 may play a role in prostate cancer by increasing the local concentration of ZIC2 by forming RNA-DNA triplex near ABCC4 promoter thus helping in recruitment of ZIC2 for ABCC4 regulation.
Collapse
Affiliation(s)
- Pushpinder Singh Bawa
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India.,Manipal University, Manipal, Karnataka, India
| | - Samathmika Ravi
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Swagatika Paul
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Bibha Chaudhary
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Subhashini Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| |
Collapse
|
27
|
Abstract
Lophotrochozoa is a sister taxon of Ecdysozoa in the Protostomia that includes mollusks, annelids, brachiopods, and platyhelminths. Recent studies have clarified the structure, expression, and roles of lophotrochozoan Zic family genes. Zic genes in oligochaete annelid Tubifex tubifex (freshwater sludge worm) and polychaete annelid Capitella teleta (bristle worm) are commonly expressed in a subset of developing brain and mesoderm derivatives. The latter includes the naïve mesoderm and the associated chaetal sacs in each body segment, although the segmentation processes differ between the two species. Furthermore, in brachiopod Terebratalia transversa (lamp shell), Zic is expressed in the anterior ectodermal domains and mesodermal derivatives, including those associated with the chaetal sacs. This result suggests the common involvement of Zic genes in the development of chaetae, a lophotrochozoan novelty acquired in the course of evolution. In addition, the highly simplified lophotrochozoan Dicyema acuticephalum (dicyemid mesozoan, a cephalopod endoparasite), which lost its gut, nervous system, and muscles during evolution, expresses its Zic genes in hermaphroditic gonads, highlighting the role of Zic genes in germ cell development. The role of Zic in head regeneration was revealed in studies on platyhelminth Schmidtea mediterranea (freshwater planarian). Planarian Zic expression was induced in a subpopulation of neoblasts that includes adult pluripotent stem cells. It is needed for head regeneration and production of an anterior signaling center. Suppression of Wnt-β-catenin signaling underlies Zic-mediated head regeneration, reminiscent of Wnt-β-catenin suppression by vertebrate Zic genes. Taken together, studies on the lophotrochozoan Zic genes are essential to understanding not only the roles of these genes in body plan evolution but also the molecular mechanism underlying adult stem cell regulation.
Collapse
|
28
|
Clark E, Peel AD. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development 2018; 145:dev.155580. [PMID: 29724758 PMCID: PMC6001374 DOI: 10.1242/dev.155580] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/25/2018] [Indexed: 01/20/2023]
Abstract
Long-germ insects, such as the fruit fly Drosophila melanogaster, pattern their segments simultaneously, whereas short-germ insects, such as the beetle Tribolium castaneum, pattern their segments sequentially, from anterior to posterior. While the two modes of segmentation at first appear quite distinct, much of this difference might simply reflect developmental heterochrony. We now show here that, in both Drosophila and Tribolium, segment patterning occurs within a common framework of sequential Caudal, Dichaete, and Odd-paired expression. In Drosophila these transcription factors are expressed like simple timers within the blastoderm, while in Tribolium they form wavefronts that sweep from anterior to posterior across the germband. In Drosophila, all three are known to regulate pair-rule gene expression and influence the temporal progression of segmentation. We propose that these regulatory roles are conserved in short-germ embryos, and that therefore the changing expression profiles of these genes across insects provide a mechanistic explanation for observed differences in the timing of segmentation. In support of this hypothesis we demonstrate that Odd-paired is essential for segmentation in Tribolium, contrary to previous reports.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, UK
| | - Andrew D Peel
- Faculty of Biological Sciences, University of Leeds, UK
| |
Collapse
|
29
|
Borday C, Parain K, Thi Tran H, Vleminckx K, Perron M, Monsoro-Burq AH. An atlas of Wnt activity during embryogenesis in Xenopus tropicalis. PLoS One 2018; 13:e0193606. [PMID: 29672592 PMCID: PMC5908154 DOI: 10.1371/journal.pone.0193606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 12/22/2022] Open
Abstract
Wnt proteins form a family of highly conserved secreted molecules that are critical mediators of cell-cell signaling during embryogenesis. Partial data on Wnt activity in different tissues and at different stages have been reported in frog embryos. Our objective here is to provide a coherent and detailed description of Wnt activity throughout embryo development. Using a transgenic Xenopus tropicalis line carrying a Wnt-responsive reporter sequence, we depict the spatial and temporal dynamics of canonical Wnt activity during embryogenesis. We provide a comprehensive series of in situ hybridization in whole-mount embryos and in cross-sections, from gastrula to tadpole stages, with special focus on neural tube, retina and neural crest cell development. This collection of patterns will thus constitute a valuable resource for developmental biologists to picture the dynamics of Wnt activity during development.
Collapse
Affiliation(s)
- Caroline Borday
- CNRS UMR 3347, INSERM U1021, Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Karine Parain
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris Sud, Université Paris-Saclay, Orsay, France
- * E-mail: (MP); (AHMB)
| | - Anne H. Monsoro-Burq
- CNRS UMR 3347, INSERM U1021, Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Universitaire de France, Paris, France
- * E-mail: (MP); (AHMB)
| |
Collapse
|
30
|
Zic Genes in Nematodes: A Role in Nervous System Development and Wnt Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [PMID: 29442317 DOI: 10.1007/978-981-10-7311-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Transcription factors of the Zic family play important roles during animal development, and their misregulation has been implicated in several human diseases. Zic proteins are present in nematodes, and their function has been mostly studied in the model organism C. elegans. C. elegans possesses only one Zic family member, REF-2. Functional studies have shown that this factor plays a key role during the development of the nervous system, epidermis, and excretory system. In addition, they have revealed that the C. elegans Zic protein acts as an atypical mediator of the Wnt/β-catenin pathway. In other animals including vertebrates, Zic factors are also regulators of nervous system development and modulators of Wnt signaling, suggesting that these are evolutionary ancient functions of Zic proteins.
Collapse
|
31
|
Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:353-380. [DOI: 10.1007/978-981-10-7311-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Hoogland AM, Böttcher R, Verhoef E, Jenster G, van Leenders GJLH. Gene-expression analysis of gleason grade 3 tumor glands embedded in low- and high-risk prostate cancer. Oncotarget 2018; 7:37846-37856. [PMID: 27191985 PMCID: PMC5122354 DOI: 10.18632/oncotarget.9344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/25/2016] [Indexed: 12/02/2022] Open
Abstract
The Gleason score (GS) of prostate cancer on diagnostic biopsies is an important parameter for therapeutic decision-making. Biopsy GS under-estimates the actual GS at radical prostatectomy in a significant number of patients due to sampling artifact. The aim of this study was to identify markers that are differentially expressed in Gleason grade 3 (GG3) tumor glands embedded in GS 4 + 3 = 7 and GS 3 + 3 = 6 prostate cancer using laser capture microdissection and RNA sequencing. GG3 tumor glands embedded in nine GS 3 + 3 = 6 and nine GS 4 + 3 = 7 prostate cancers were isolated by laser capture microdissection of frozen radical prostatectomy specimens. After RNA amplification and RNA sequencing, differentially expressed genes in both GG3 components were identified by a 2log fold change > 1.0 and p-value < 0.05. We applied immunohistochemistry on a tissue micro-array representing 481 radical prostatectomy samples for further validation on protein level. A total of 501 genes were up-regulated and 421 down-regulated in GG3 glands embedded in GS 4 + 3 = 7 as compared to GS 3 + 3 = 6 prostate cancer. We selected HELLS, ZIC2 and ZIC5 genes for further validation. ZIC5 mRNA was up-regulated 17 fold (p = 8.4E–07), ZIC2 8 fold (p = 1.3E–05) and HELLS 2 fold (p = 0.006) in GG3 glands derived from GS 4 + 3 = 7. HELLS expression of ≥ 1% occurred in 10% GS < 7, 17% GS 7 and 43% GS >7 prostate cancer (p < 0.001). Using a cut-off of ≥ 1%, protein expression of ZIC5 was present in 28% GS < 7, 43% GS 7 and 57% GS > 7 cancer (p < 0.001). ZIC2 was neither associated with GS nor outcome in our validation set. HELLS was independently predictive for biochemical-recurrence after radical prostatectomy (HR 2.3; CI 1.5–3.6; p < 0.01). In conclusion, HELLS and ZIC5 might be promising candidate markers for selection of biopsy GS 6 prostate cancer being at risk for up-grading at prostatectomy.
Collapse
Affiliation(s)
- A Marije Hoogland
- Departments of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - René Böttcher
- Departments of Urology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Bioinformatics, University of Applied Sciences Wildau, Wildau, Germany
| | - Esther Verhoef
- Departments of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guido Jenster
- Departments of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
33
|
Abstract
The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
34
|
Houtmeyers R, Souopgui J, Tejpar S. Deregulation of ZIC Family Members in Oncogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:329-338. [DOI: 10.1007/978-981-10-7311-3_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Diamand KEM, Barratt KS, Arkell RM. Overview of Rodent Zic Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:179-207. [PMID: 29442323 DOI: 10.1007/978-981-10-7311-3_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The five murine Zic genes encode multifunctional transcriptional regulator proteins important for a large number of processes during embryonic development. The genes and proteins are highly conserved with respect to the orthologous human genes, an attribute evidently mirrored by functional conservation, since the murine and human genes mutate to give the same phenotypes. Each ZIC protein contains a zinc finger domain that participates in both protein-DNA and protein-protein interactions. The ZIC proteins are capable of interacting with the key transcriptional mediators of the SHH, WNT and NODAL signalling pathways as well as with components of the transcriptional machinery and chromatin-modifying complexes. It is possible that this diverse range of protein partners underlies characteristics uncovered by mutagenesis and phenotyping of the murine Zic genes. These features include redundant and unique roles for ZIC proteins, regulatory interdependencies amongst family members and pleiotropic Zic gene function. Future investigations into the complex nature of the Zic gene family activity should be facilitated by recent advances in genome engineering and functional genomics.
Collapse
Affiliation(s)
- Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
36
|
Bellchambers HM, Ware SM. ZIC3 in Heterotaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:301-327. [PMID: 29442328 DOI: 10.1007/978-981-10-7311-3_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mutation of ZIC3 causes X-linked heterotaxy, a syndrome in which the laterality of internal organs is disrupted. Analysis of model organisms and gene expression during early development suggests ZIC3-related heterotaxy occurs due to defects at the earliest stage of left-right axis formation. Although there are data to support abnormalities of the node and cilia as underlying causes, it is unclear at the molecular level why loss of ZIC3 function causes such these defects. ZIC3 has putative roles in a number of developmental signalling pathways that have distinct roles in establishing the left-right axis. This complicates the understanding of the mechanistic basis of Zic3 in early development and left-right patterning. Here we summarise our current understanding of ZIC3 function and describe the potential role ZIC3 plays in important signalling pathways and their links to heterotaxy.
Collapse
Affiliation(s)
- Helen M Bellchambers
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
37
|
Guo QH, Wang CZ, Wu ZQ, Qin Y, Han BY, Wang AP, Wang BA, Dou JT, Wu XS, Mu YM. Multi-genic pattern found in rare type of hypopituitarism: a whole-exome sequencing study of Han Chinese with pituitary stalk interruption syndrome. J Cell Mol Med 2017; 21:3626-3632. [PMID: 28707430 PMCID: PMC5706574 DOI: 10.1111/jcmm.13272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare type of hypopituitarism manifesting various degrees of pituitary hormone deficiency. Although mutations have been identified in some familial cases, the underpinning mechanisms of sporadic patients with PSIS who are in a vast majority remain elusive, necessitating a comprehensive study using systemic approaches. We postulate that other genetic mechanisms may be responsible for the sporadic PSIS. To test this hypothesis, we conducted a study in 24 patients with PSIS of Han Chinese with no family history using whole‐exome sequencing (WES) and bioinformatic analysis. We identified a group of heterozygous mutations in 92% (22 of 24) of the patients, and these genes are mostly associated with Notch, Shh, Wnt signalling pathways. Importantly, 83% (20 of 24) of the patients had more than one mutation in those pathways suggesting synergy of compound mutations underpin the pathogenesis of sporadic PSIS.
Collapse
Affiliation(s)
- Qing-Hua Guo
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology, Hainan Branch of Chinese PLA General Hospital, Sanya, Hainan, China
| | - Cheng-Zhi Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Zhi-Qiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yan Qin
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui City, Henan, China
| | - Bai-Yu Han
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China.,Department of Endocrinology and Metabolism, The 264 Hospital of PLA, Taiyuan, Shanxi, China
| | - An-Ping Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Bao-An Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Jing-Tao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Sheng Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Yi-Ming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
38
|
Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 2017; 429:92-104. [PMID: 28689736 DOI: 10.1016/j.ydbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; Genetics Ph. D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
39
|
Xiang S, Xiang T, Xiao Q, Li Y, Shao B, Luo T. Zinc-finger protein 545 is inactivated due to promoter methylation and functions as a tumor suppressor through the Wnt/β-catenin, PI3K/AKT and MAPK/ERK signaling pathways in colorectal cancer. Int J Oncol 2017; 51:801-811. [PMID: 28677721 PMCID: PMC5564408 DOI: 10.3892/ijo.2017.4064] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
The transcription factor, zinc-finger protein 545 (ZNF545), that belongs to the Kruppel-associated box zinc-finger protein (KRAB-ZFP) family, acts as a tumor suppressor and is inactivated by promoter methylation in cancers such as nasopharyngeal carcinoma, breast cancer, and gastric cancer, but its role in colorectal cancer (CRC) is unknown. The purpose of this study was to characterize the ZNF545 expression, methylation status, biological function, and related molecular mechanisms in CRC. The results showed that ZNF545 was expressed in adult normal colorectal tissues, but downregulated or silenced in CRC cell lines, and this mechanism was reversed by demethylation treatment with 5-aza-2′-deoxycytidine and trichostatin A. The results also showed that the expression of ZNF545 in primary CRC tissues was significantly downregulated compared to adjacent tissues (p<0.05). Overexpression of ZNF545 caused CRC cell cycle arrest and apoptosis, suppressed cell proliferation, and suppressed colony formation and migration in vitro, showing that ZNF545 can function as a tumor suppressor. This function was also shown in nude mice. Furthermore, Wnt/β-catenin, phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT), and mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling pathways participated in the regulation of ZNF545 in CRC cells. Together, the results suggested that ZNF545 functions as a tumor suppressor in CRC and is frequently inactivated by promoter methylation.
Collapse
Affiliation(s)
- Shili Xiang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingxiu Xiang
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qian Xiao
- Department of Breast and Thyroid, The Hospital of Chongqing Traditional Chinese Medicine, Chongqing 400011, P.R. China
| | - Yunhai Li
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bianfei Shao
- Molecular Oncology and Epigenetics Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
40
|
Lu SX, Zhang CZ, Luo RZ, Wang CH, Liu LL, Fu J, Zhang L, Wang H, Xie D, Yun JP. Zic2 promotes tumor growth and metastasis via PAK4 in hepatocellular carcinoma. Cancer Lett 2017; 402:71-80. [PMID: 28577975 DOI: 10.1016/j.canlet.2017.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 12/26/2022]
Abstract
The dysregulation of transcription factors contributes to the unlimited growth of cancer cells. Zic2 has been shown to be crucial to the progression of human cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Our data showed that Zic2 expression gradually increased from normal to cancer to metastatic tissues. Zic2 overexpression promoted, whereas Zic2 knockdown inhibited, cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Gene microarray results indicated that PAK4 was a potential target of Zic2. The knockdown of Zic2 decreased, whereas Zic2 re-expression increased, the expression of PAK4. ChIP and luciferase assays indicated that Zic2 directly bound to the PAK4 promoter and modulated its activity. PAK4 interference attenuated Zic2-mediated cell growth via modulating the Raf/MEK/ERK pathway. In a cohort of 615 patients, Zic2 was positively correlated with PAK4 and associated with worse overall and disease-free survival. Multivariate analyses revealed that Zic2 and PAK4 were independent indicators of a poor outcome in HCC. In addition, Zic2 expression was inversely correlated with miR-1271 expression. Re-introduction of miR-1271 attenuated Zic2-promoted cell proliferation and migration. Taken together, our findings suggest that the newly identified miR-1271/Zic2/PAK4 axis plays an important role in HCC progression and may serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Shi-Xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Zhen Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chun-Hua Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lanjing Zhang
- Department of Pathology, University Medical Center of Princeton, Plainsboro, NJ, USA; Rutgers University, Newark, NJ, USA
| | - Huamin Wang
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
41
|
Halder D, Lee CH, Hyun JY, Chang GE, Cheong E, Shin I. Suppression of Sin3A activity promotes differentiation of pluripotent cells into functional neurons. Sci Rep 2017; 7:44818. [PMID: 28303954 PMCID: PMC5356016 DOI: 10.1038/srep44818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022] Open
Abstract
Sin3 is a transcriptional corepressor for REST silencing machinery that represses multiple neuronal genes in non-neuronal cells. However, functions of Sin3 (Sin3A and Sin3B) in suppression of neuronal phenotypes are not well characterized. Herein we show that Sin3A knockdown impedes the repressive activity of REST and enhances differentiation of pluripotent P19 cells into electrophysiologically active neurons without inducing astrogenesis. It is also found that silencing Sin3B induces neurogenesis of P19 cells with a lower efficiency than Sin3A knockdown. The results suggest that Sin3A has a more profound effect on REST repressive machinery for silencing neuronal genes in P19 cells than Sin3B. Furthermore, we show that a peptide inhibitor of Sin3A-REST interactions promotes differentiation of P19 cells into functional neurons. Observations made in studies using genetic deletion and a synthetic inhibitor suggests that Sin3A plays an important role in the repression of neuronal genes by the REST regulatory mechanism.
Collapse
Affiliation(s)
- Debasish Halder
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Chang-Hee Lee
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Ji Young Hyun
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Korea
| | - Gyeong-Eon Chang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Eunji Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Injae Shin
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
42
|
Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network. eLife 2016; 5:e18215. [PMID: 27525481 PMCID: PMC5035143 DOI: 10.7554/elife.18215] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Zic2mutation causes holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 2016; 25:3946-3959. [DOI: 10.1093/hmg/ddw235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
|
44
|
Jin S, Collin J, Zhu L, Montaner D, Armstrong L, Neganova I, Lako M. A Novel Role for miR-1305 in Regulation of Pluripotency-Differentiation Balance, Cell Cycle, and Apoptosis in Human Pluripotent Stem Cells. Stem Cells 2016; 34:2306-17. [PMID: 27339422 PMCID: PMC5031214 DOI: 10.1002/stem.2444] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/24/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are defined as pluripotent in view of their self‐renewal ability and potential to differentiate to cells of all three germ layers. Recent studies have indicated that microRNAs (miRNAs) play an important role in the maintenance of pluripotency and cell cycle regulation. We used a microarray based approach to identify miRNAs that were enriched in hESCs when compared to differentiated cells and at the same time showed significant expression changes between different phases of cell cycle. We identified 34 candidate miRNAs and performed functional studies on one of these, miR‐1305, which showed the highest expression change during cell cycle transition. Overexpression of miR‐1305 induced differentiation of pluripotent stem cells, increased cell apoptosis and sped up G1/S transition, while its downregulation facilitated the maintenance of pluripotency and increased cell survival. Using target prediction software and luciferase based reporter assays we identified POLR3G as a downstream target by which miR‐1305 regulates the fine balance between maintenance of pluripotency and onset of differentiation. Overexpression of POLR3G rescued pluripotent stem cell differentiation induced by miR‐1305 overexpression. In contrast, knock‐down of POLR3G expression abolished the miR‐1305‐knockdown mediated enhancement of pluripotency, thus validating its role as miR‐1305 target in human pluripotent stem cells. Together our data point to an important role for miR‐1305 as a novel regulator of pluripotency, cell survival and cell cycle and uncovers new mechanisms and networks by which these processes are intertwined in human pluripotent stem cells. Stem Cells2016;34:2306–2317
Collapse
Affiliation(s)
- Shibo Jin
- Institute of Genetic Medicine, Newcastle University, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, UK
| | - Lili Zhu
- Institute of Genetic Medicine, Newcastle University, UK
| | - David Montaner
- Centro De Investigacion Principe Felipe, Valencia, Spain
| | | | - Irina Neganova
- Institute of Genetic Medicine, Newcastle University, UK.
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, UK.
| |
Collapse
|
45
|
Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA. Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. Genesis 2016; 54:334-49. [PMID: 27092474 PMCID: PMC4912902 DOI: 10.1002/dvg.22943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
Abstract
The decision by embryonic ectoderm to give rise to epidermal versus neural derivatives is the result of signaling events during blastula and gastrula stages. However, there also is evidence in Xenopus that cleavage stage blastomeres contain maternally derived molecules that bias them toward a neural fate. We used a blastomere explant culture assay to test whether maternally deposited transcription factors bias 16-cell blastomere precursors of epidermal or neural ectoderm to express early zygotic neural genes in the absence of gastrulation interactions or exogenously supplied signaling factors. We found that Foxd4l1, Zic2, Gmnn, and Sox11 each induced explants made from ventral, epidermis-producing blastomeres to express early neural genes, and that at least some of the Foxd4l1 and Zic2 activities are required at cleavage stages. Similarly, providing extra Foxd4l1 or Zic2 to explants made from dorsal, neural plate-producing blastomeres significantly increased the expression of early neural genes, whereas knocking down either significantly reduced them. These results show that maternally delivered transcription factors bias cleavage stage blastomeres to a neural fate. We demonstrate that mouse and human homologs of Foxd4l1 have similar functional domains compared to the frog protein, as well as conserved transcriptional activities when expressed in Xenopus embryos and blastomere explants. genesis 54:334-349, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shailly Gaur
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Max Mandelbaum
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Mona Herold
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Himani Datta Majumdar
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | - Karen M. Neilson
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
| | | | - Kathy Mood
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Ira O. Daar
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, NW, Washington DC, USA
- George Washington University Institute for Neuroscience
| |
Collapse
|
46
|
Oda-Ishii I, Kubo A, Kari W, Suzuki N, Rothbächer U, Satou Y. A Maternal System Initiating the Zygotic Developmental Program through Combinatorial Repression in the Ascidian Embryo. PLoS Genet 2016; 12:e1006045. [PMID: 27152625 PMCID: PMC4859511 DOI: 10.1371/journal.pgen.1006045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/20/2016] [Indexed: 01/28/2023] Open
Abstract
Maternal factors initiate the zygotic developmental program in animal embryos. In embryos of the chordate, Ciona intestinalis, three maternal factors—Gata.a, β-catenin, and Zic-r.a—are required to establish three domains of gene expression at the 16-cell stage; the animal hemisphere, vegetal hemisphere, and posterior vegetal domains. Here, we show how the maternal factors establish these domains. First, only β-catenin and its effector transcription factor, Tcf7, are required to establish the vegetal hemisphere domain. Second, genes specifically expressed in the posterior vegetal domain have additional repressive cis-elements that antagonize the activity of β-catenin/Tcf7. This antagonizing activity is suppressed by Zic-r.a, which is specifically localized in the posterior vegetal domain and binds to DNA indirectly through the interaction with Tcf7. Third, Gata.a directs specific gene expression in the animal hemisphere domain, because β-catenin/Tcf7 weakens the Gata.a-binding activity for target sites through a physical interaction in the vegetal cells. Thus, repressive regulation through protein-protein interactions among the maternal transcription factors is essential to establish the first distinct domains of gene expression in the chordate embryo. During animal development, transcription factors and signaling molecules transcriptionally regulate one another and constitute a gene regulatory network. This network is evoked by maternally provided factors. Many maternal factors are localized and thereby activate a set of genes in a specific region. In embryos of the chordate, Ciona intestinalis, three maternal factors with localized activities are known. The present study demonstrated that these localized maternal factors interact with one another through a fourth non-localized transcription factor, Tcf7, and negatively regulate one another. These repressive interactions are essential to establish the first distinct domains of gene expression and evoke the gene regulatory network properly. The findings indicate that not only activating target genes but also repressing activities of other transcription factors through protein-protein interactions are important to properly initiate the zygotic program. Intriguingly, in one repressive interaction, a transcription factor loses its binding activity for target sites through an interaction with another transcription factor. Thus, this study provides a description of the entire system in which maternal factors initiate the zygotic developmental program of the Ciona embryo.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
| | - Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
| | - Willi Kari
- Department of Evolution and Developmental Biology, Zoological Institute, University Innsbruck, Innsbruck, Austria
| | - Nobuhiro Suzuki
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
| | - Ute Rothbächer
- Department of Evolution and Developmental Biology, Zoological Institute, University Innsbruck, Innsbruck, Austria
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
- * E-mail:
| |
Collapse
|
47
|
Gupta S, Sen J. Roof plate mediated morphogenesis of the forebrain: New players join the game. Dev Biol 2016; 413:145-52. [DOI: 10.1016/j.ydbio.2016.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/06/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
|
48
|
Altered expression of mRNA profiles in blood of early-onset schizophrenia. Sci Rep 2016; 6:16767. [PMID: 26733343 PMCID: PMC4702094 DOI: 10.1038/srep16767] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/20/2015] [Indexed: 01/18/2023] Open
Abstract
To identify gene expression abnormalities in schizophrenia (SZ), we generated whole-genome gene expression profiles using microarrays on peripheral blood mononuclear cells (PBMCs) from 18 early-onset SZ cases and 12 controls. We detected 84 transcripts differentially expressed by diagnostic status, with 82 genes being upregulated and 2 downregulated. We identified two SZ associated gene coexpression modules (green and red), including 446 genes . The green module is positively correlated with SZ, encompassing predominantly up-regulated genes in SZ; while the red module was negatively correlated with disease status, involving mostly nominally down-regulated genes in SZ. The olfactory transduction pathway was the most enriched pathways for the genes within the two modules. The expression levels of several hub genes, including AKT1, BRCA1, CCDC134, UBD, and ZIC2 were validated using real-time quantitative PCR. Our findings indicate that mRNA coexpression abnormalities may serve as a promising mechanism underlying the development of SZ.
Collapse
|
49
|
Chiacchiera F, Rossi A, Jammula S, Piunti A, Scelfo A, Ordóñez-Morán P, Huelsken J, Koseki H, Pasini D. Polycomb Complex PRC1 Preserves Intestinal Stem Cell Identity by Sustaining Wnt/β-Catenin Transcriptional Activity. Cell Stem Cell 2015; 18:91-103. [PMID: 26526724 DOI: 10.1016/j.stem.2015.09.019] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/11/2015] [Accepted: 09/15/2015] [Indexed: 10/22/2022]
Abstract
Polycomb repressive complexes (PRCs) are among the most important gatekeepers of establishing and maintaining cell identity in metazoans. PRC1, which plays a dominant role in this context, executes its functions via multiple subcomplexes, which all contribute to H2AK119 mono-ubiquitination (H2Aubq). Despite our comprehensive knowledge of PRC1-dependent H2Aubq in embryonic stem cells and during early development, its role in adult stem cells still remains poorly characterized. Here we show that PRC1 activity is required for the integrity of the intestinal epithelium, regulating stem cell self-renewal via a cell-autonomous mechanism that is independent from Cdkn2a expression. By dissecting the PRC1-dependent transcription program in intestinal stem cells, we demonstrate that PRC1 represses a large number of non-lineage-specific transcription factors that directly affect β-catenin/Tcf transcriptional activity. Our data reveal that PRC1 preserves Wnt/β-catenin activity in adult stem cells to maintain intestinal homeostasis and supports tumor formation induced by the constitutive activation of this pathway.
Collapse
Affiliation(s)
- Fulvio Chiacchiera
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Alessandra Rossi
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - SriGanesh Jammula
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Piunti
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Scelfo
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paloma Ordóñez-Morán
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC, Lausanne CH-1015, Switzerland
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC, Lausanne CH-1015, Switzerland
| | - Haruhiko Koseki
- Developmental Genetics Group, RIKEN Research Centre for Allergy & Immunology (RCAI), 1-7-22 Suehiuro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Diego Pasini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
50
|
Moarii M, Reyal F, Vert JP. Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype. Hum Genomics 2015; 9:26. [PMID: 26463173 PMCID: PMC4603341 DOI: 10.1186/s40246-015-0048-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/01/2015] [Indexed: 01/26/2023] Open
Abstract
Background The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical importance as it has been reported to be associated with prognosis or response to treatment. However, the identification of a universal molecular basis to define CIMP across tumors has remained elusive. Results We perform a genome-wide methylation analysis of over 2000 tumor samples from 5 cancer sites to assess the existence of a CIMP with common molecular basis across cancers. We then show that the CIMP phenotype is associated with specific gene expression variations. However, we do not find a common genetic signature in all tissues associated with CIMP. Conclusion Our results suggest the existence of a universal epigenetic and transcriptomic signature that defines the CIMP across several tumor types but does not indicate the existence of a common genetic signature of CIMP. Electronic supplementary material The online version of this article (doi:10.1186/s40246-015-0048-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matahi Moarii
- CBIO-Centre for Computational Biology, Mines Paristech, PSL-Research University, 35 Rue Saint-Honore, Fontainebleau, F-77300, France. .,Department of Bioinformatics, Biostatistics and System Biology, Institut Curie, 11-13 Rue Pierre et Marie Curie, Paris, F-75248, France. .,U900, INSERM, 11-13 Rue Pierre et Marie Curie, Paris, F-75248, France.
| | - Fabien Reyal
- UMR932, Immunity and Cancer Team, Institut Curie, 26 Rue d'Ulm, Paris, 75006, France. .,Department of Translational Research, Residual Tumor and Response to Treatment Team, Institut Curie, 26 Rue d'Ulm, Paris, 75006, France. .,Department of Surgery, Institut Curie, 26 Rue d'Ulm, Paris, 75006, France.
| | - Jean-Philippe Vert
- CBIO-Centre for Computational Biology, Mines Paristech, PSL-Research University, 35 Rue Saint-Honore, Fontainebleau, F-77300, France. .,Department of Bioinformatics, Biostatistics and System Biology, Institut Curie, 11-13 Rue Pierre et Marie Curie, Paris, F-75248, France. .,U900, INSERM, 11-13 Rue Pierre et Marie Curie, Paris, F-75248, France.
| |
Collapse
|