1
|
Wu M, Zhao Y, Yang J, Yang F, Dai Y, Wang Q, Chen C, Chu X. The role of ankyrin repeat-containing proteins in epigenetic and transcriptional regulation. Cell Death Discov 2025; 11:232. [PMID: 40350474 PMCID: PMC12066720 DOI: 10.1038/s41420-025-02519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Ankyrin repeat (AR) motif is one of the most abundant repeat motifs found in eukaryotic proteins. It functions in mediating protein-protein interactions and regulating numerous biological functions. Interestingly, some AR-containing proteins are involved in epigenetic and transcriptional events. Our review aims to characterize the structure and post-translational modification of AR, summarize the prominent role of AR-containing proteins in epigenetic and transcriptional events, emphasizing the crucial functions mediated by AR motifs.
Collapse
Affiliation(s)
- Meijuan Wu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yulu Zhao
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiahe Yang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fangyuan Yang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yeyang Dai
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Cheng Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China.
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China.
| |
Collapse
|
2
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
3
|
Quotti Tubi L, Mandato E, Canovas Nunes S, Arjomand A, Zaffino F, Manni S, Casellato A, Macaccaro P, Vitulo N, Zumerle S, Filhol O, Boldyreff B, Siebel CW, Viola A, Valle G, Mainoldi F, Casola S, Cancila V, Gulino A, Tripodo C, Pizzi M, Dei Tos AP, Trentin L, Semenzato G, Piazza F. CK2β-regulated signaling controls B cell differentiation and function. Front Immunol 2023; 13:959138. [PMID: 36713383 PMCID: PMC9874936 DOI: 10.3389/fimmu.2022.959138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Serine-Threonine kinase CK2 supports malignant B-lymphocyte growth but its role in B-cell development and activation is largely unknown. Here, we describe the first B-cell specific knockout (KO) mouse model of the β regulatory subunit of CK2. CK2βKO mice present an increase in marginal zone (MZ) and a reduction in follicular B cells, suggesting a role for CK2 in the regulation of the B cell receptor (BCR) and NOTCH2 signaling pathways. Biochemical analyses demonstrate an increased activation of the NOTCH2 pathway in CK2βKO animals, which sustains MZ B-cell development. Transcriptomic analyses indicate alterations in biological processes involved in immune response and B-cell activation. Upon sheep red blood cells (SRBC) immunization CK2βKO mice exhibit enlarged germinal centers (GCs) but display a limited capacity to generate class-switched GC B cells and immunoglobulins. In vitro assays highlight that B cells lacking CK2β have an impaired signaling downstream of BCR, Toll-like receptor, CD40, and IL-4R all crucial for B-cell activation and antigen presenting efficiency. Somatic hypermutations analysis upon 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Chicken Gamma Globulin (NP-CGG) evidences a reduced NP-specific W33L mutation frequency in CK2βKO mice suggesting the importance of the β subunit in sustaining antibody affinity maturation. Lastly, since diffuse large B cell lymphoma (DLBCL) cells derive from GC or post-GC B cells and rely on CK2 for their survival, we sought to investigate the consequences of CK2 inhibition on B cell signaling in DLBCL cells. In line with the observations in our murine model, CK2 inactivation leads to signaling defects in pathways that are essential for malignant B-lymphocyte activation.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Arash Arjomand
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Fortunato Zaffino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Alessandro Casellato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Paolo Macaccaro
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Nicola Vitulo
- Department of Biology, Interdepartmental Research Center for Biotechnologies (CRIBI) Biotechnology Center, University of Padova, Padova, Italy
| | - Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Recherches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Christian W. Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, Interdepartmental Research Center for Biotechnologies (CRIBI) Biotechnology Center, University of Padova, Padova, Italy
| | | | - Stefano Casola
- IFOM-ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | | | - Claudio Tripodo
- IFOM-ETS-The AIRC Institute of Molecular Oncology, Milan, Italy,Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,*Correspondence: Francesco Piazza,
| |
Collapse
|
4
|
Saini N, Bheeshmachar G, Sarin A. Sirtuin1 meditated modification of Notch1 intracellular domain regulates nucleolar localization and activation of distinct signaling cascades. Front Cell Dev Biol 2022; 10:988816. [PMID: 36211456 PMCID: PMC9539544 DOI: 10.3389/fcell.2022.988816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Notch signaling is involved in cell fate decisions in the development and maintenance of tissue homeostasis. Spatial regulation of the Notch1 intracellular domain (NIC1), has been shown to underpin signaling outcomes mediated by this receptor. We recently reported a putative Nucleolar Localization Sequence (NoLS) in NIC1. Here we investigate if the putative NoLS identified in NIC1 regulates localization in the nucleolus and anti-apoptotic activity. Confocal imaging of live cells expressing NIC1 or forms modified by deletion or site-directed mutagenesis established that the putative NoLS in NIC1 is required for nucleolar localization and regulated by the deacetylase Sirtuin1. Subsequent analysis of anti-apoptotic activity revealed signaling cascades linked to nucleolar localization. For this, etoposide and 4-Nitroquinoline 1-oxide, an inhibitor of topoisomerase-II and a UV mimetic drug respectively, were used as prototypic triggers of genomic damage in a mammalian cell line. While NIC1 blocked apoptosis regardless of its localization to the nucleoplasm or nucleolus, modifications of NIC1 which promoted localization to the nucleolus triggered a dependence on the nucleolar proteins fibrillarin and nucleolin for anti-apoptotic activity. Further, cells co-expressing NIC1 and Sirtuin1 (but not its catalytically inactive form), confirmed both spatial regulation and the switch to dependence on the nucleolar proteins. Finally, site-directed mutagenesis showed that the NoLS lysine residues are targets of Sirtuin1 activity. NIC1 mediated transcription is not similarly regulated. Thus, NIC1 localization to the nucleolus is regulated by Sirtuin1 modification of the lysine residues in NoLS and triggers a distinct signaling cascade involving nucleolar intermediates for anti-apoptotic activity.
Collapse
|
5
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
6
|
Osathanon T, Egusa H. Notch signaling in induced pluripotent stem cells. MOLECULAR PLAYERS IN IPSC TECHNOLOGY 2022:249-284. [DOI: 10.1016/b978-0-323-90059-1.00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Wei H, Yang W, Hong H, Yan Z, Qin H, Benveniste EN. Protein Kinase CK2 Regulates B Cell Development and Differentiation. THE JOURNAL OF IMMUNOLOGY 2021; 207:799-808. [PMID: 34301844 DOI: 10.4049/jimmunol.2100059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022]
Abstract
Protein kinase CK2 (also known as Casein Kinase 2) is a serine/threonine kinase composed of two catalytic subunits (CK2α and/or CK2α') and two regulatory CK2β subunits. CK2 is overexpressed and overactive in B cell acute lymphoblastic leukemia and diffuse large B cell lymphomas, leading to inappropriate activation of the NF-κB, JAK/STAT, and PI3K/AKT/mTOR signaling pathways and tumor growth. However, whether CK2 regulates normal B cell development and differentiation is not known. We generated mice lacking CK2α specifically in B cells (using CD19-driven Cre recombinase). These mice exhibited cell-intrinsic expansion of marginal zone B cells at the expense of transitional B cells, without changes in follicular B cells. Transitional B cells required CK2α to maintain adequate BCR signaling. In the absence of CK2α, reduced BCR signaling and elevated Notch2 signaling activation increased marginal zone B cell differentiation. Our results identify a previously unrecognized function for CK2α in B cell development and differentiation.
Collapse
Affiliation(s)
- Hairong Wei
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Wei Yang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Huixian Hong
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Zhaoqi Yan
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and.,Gladstone Institute of Neurological Disease, San Francisco, CA 94158
| | - Hongwei Qin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Etty N Benveniste
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
8
|
Alvarez-Trotta A, Guerrant W, Astudillo L, Lahiry M, Diluvio G, Shersher E, Kaneku H, Robbins DJ, Orton D, Capobianco AJ. Pharmacological Disruption of the Notch1 Transcriptional Complex Inhibits Tumor Growth by Selectively Targeting Cancer Stem Cells. Cancer Res 2021; 81:3347-3357. [PMID: 33820800 PMCID: PMC8655881 DOI: 10.1158/0008-5472.can-20-3611] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
In many human cancers, deregulation of the Notch pathway has been shown to play a role in the initiation and maintenance of the neoplastic phenotype. Aberrant Notch activity also plays a central role in the maintenance and survival of cancer stem cells (CSC), which underlie metastasis and resistance to therapy. For these reasons, inhibition of Notch signaling has become an exceedingly attractive target for cancer therapeutic development. However, attempts to develop Notch pathway-specific drugs have largely failed in the clinic, in part due to intestinal toxicity. Here, we report the discovery of NADI-351, the first specific small-molecule inhibitor of Notch1 transcriptional complexes. NADI-351 selectively disrupted Notch1 transcription complexes and reduced Notch1 recruitment to target genes. NADI-351 demonstrated robust antitumor activity without inducing intestinal toxicity in mouse models, and CSCs were ablated by NADI-351 treatment. Our study demonstrates that NADI-351 is an orally available and potent inhibitor of Notch1-mediated transcription that inhibits tumor growth with low toxicity, providing a potential therapeutic approach for improved cancer treatment. SIGNIFICANCE: This study showcases the first Notch1-selective inhibitor that suppresses tumor growth with limited toxicity by selectively ablating cancer stem cells.
Collapse
Affiliation(s)
- Annamil Alvarez-Trotta
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Luisana Astudillo
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Mohini Lahiry
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Giulia Diluvio
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Elena Shersher
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Hugo Kaneku
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - David J Robbins
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Anthony J Capobianco
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida.
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
9
|
Chu Q, Wang L, Zhang J, Wang W, Wang Y. CDK5 positively regulates Notch1 signaling in pancreatic cancer cells by phosphorylation. Cancer Med 2021; 10:3689-3699. [PMID: 33960694 PMCID: PMC8178504 DOI: 10.1002/cam4.3916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
The marked overexpression of cyclin‐dependent kinase 5 (CDK5) or Notch1 receptor, which plays critical roles in pancreatic ductal adenocarcinoma (PDAC) development, has been detected in numerous PDAC cell lines and tissues. Although, a previous study has demonstrated that CDK5 inhibition disrupts Notch1 functions in human umbilical vein endothelial cells, the mechanism underlying Notch1 activation regulated by CDK5 remains unclear. Herein, we identified a physical interaction between CDK5 and Notch1 in PDAC cells, with the Notch1 peptide phosphorylated by CDK5/p25 kinase. CDK5 blockade resulted in the profound inhibition of Notch signaling. Accordingly, CDK5 inhibition sensitized PDAC cell proliferation and migration following Notch inhibition. In conclusion, CDK5 positively regulates Notch1 function via phosphorylation, which in turn promotes cell proliferation and migration. The combinational inhibition of CDK5 and Notch signaling may be an effective strategy in the treatment of PDAC.
Collapse
Affiliation(s)
- Qiaoyun Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, China
| | - Jie Zhang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Lattmann E, Deng T, Hajnal A. To Divide or Invade: A Look Behind the Scenes of the Proliferation-Invasion Interplay in the Caenorhabditis elegans Anchor Cell. Front Cell Dev Biol 2021; 8:616051. [PMID: 33490081 PMCID: PMC7815685 DOI: 10.3389/fcell.2020.616051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cell invasion is defined by the capability of cells to migrate across compartment boundaries established by basement membranes (BMs). The development of complex organs involves regulated cell growth and regrouping of different cell types, which are enabled by controlled cell proliferation and cell invasion. Moreover, when a malignant tumor takes control over the body, cancer cells evolve to become invasive, allowing them to spread to distant sites and form metastases. At the core of the switch between proliferation and invasion are changes in cellular morphology driven by remodeling of the cytoskeleton. Proliferative cells utilize their actomyosin network to assemble a contractile ring during cytokinesis, while invasive cells form actin-rich protrusions, called invadopodia that allow them to breach the BMs. Studies of developmental cell invasion as well as of malignant tumors revealed that cell invasion and proliferation are two mutually exclusive states. In particular, anchor cell (AC) invasion during Caenorhabditis elegans larval development is an excellent model to study the transition from cell proliferation to cell invasion under physiological conditions. This mini-review discusses recent insights from the C. elegans AC invasion model into how G1 cell-cycle arrest is coordinated with the activation of the signaling networks required for BM breaching. Many regulators of the proliferation-invasion network are conserved between C. elegans and mammals. Therefore, the worm may provide important clues to better understand cell invasion and metastasis formation in humans.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Ting Deng
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program, University and ETH Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Yamamoto S. Making sense out of missense mutations: Mechanistic dissection of Notch receptors through structure-function studies in Drosophila. Dev Growth Differ 2020; 62:15-34. [PMID: 31943162 DOI: 10.1111/dgd.12640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Notch signaling is involved in the development of almost all organ systems and is required post-developmentally to modulate tissue homeostasis. Rare variants in Notch signaling pathway genes are found in patients with rare Mendelian disorders, while unique or recurrent somatic mutations in a similar set of genes are identified in cancer. The human genome contains four genes that encode Notch receptors, NOTCH1-4, all of which are linked to genetic diseases and cancer. Although some mutations have been classified as clear loss- or gain-of-function alleles based on cellular or rodent based assay systems, the functional consequence of many variants/mutations in human Notch receptors remain unknown. In this review, I will first provide an overview of the domain structure of Notch receptors and discuss how each module is known to regulate Notch signaling activity in vivo using the Drosophila Notch receptor as an example. Next, I will introduce some interesting mutant alleles that have been isolated in the fly Notch gene over the past > 100 years of research and discuss how studies of these mutations have facilitated the understanding of Notch biology. By identifying unique alleles of the fly Notch gene through forward genetic screens, mapping their molecular lesions and characterizing their phenotypes in depth, one can begin to unravel new mechanistic insights into how different domains of Notch fine-tune signaling output. Such information can be useful in deciphering the functional consequences of rare variants/mutations in human Notch receptors, which in turn can influence disease management and therapy.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.,Department of Neuroscience, BCM, Houston, TX, USA.,Program in Developmental Biology, BCM, Houston, TX, USA.,Development, Disease Models & Therapeutics Graduate Program, BCM, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
12
|
Jarrett SM, Seegar TCM, Andrews M, Adelmant G, Marto JA, Aster JC, Blacklow SC. Extension of the Notch intracellular domain ankyrin repeat stack by NRARP promotes feedback inhibition of Notch signaling. Sci Signal 2019; 12:12/606/eaay2369. [PMID: 31690634 DOI: 10.1126/scisignal.aay2369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Canonical Notch signaling relies on regulated proteolysis of the receptor Notch to generate a nuclear effector that induces the transcription of Notch-responsive genes. In higher organisms, one Notch-responsive gene that is activated in many different cell types encodes the Notch-regulated ankyrin repeat protein (NRARP), which acts as a negative feedback regulator of Notch responses. Here, we showed that NRARP inhibited the growth of Notch-dependent T cell acute lymphoblastic leukemia (T-ALL) cell lines and bound directly to the core Notch transcriptional activation complex (NTC), requiring both the transcription factor RBPJ and the Notch intracellular domain (NICD), but not Mastermind-like proteins or DNA. The crystal structure of an NRARP-NICD1-RBPJ-DNA complex, determined to 3.75 Å resolution, revealed that the assembly of NRARP-NICD1-RBPJ complexes relied on simultaneous engagement of RBPJ and NICD1, with the three ankyrin repeats of NRARP extending the Notch1 ankyrin repeat stack. Mutations at the NRARP-NICD1 interface disrupted entry of the proteins into NTCs and abrogated feedback inhibition in Notch signaling assays in cultured cells. Forced expression of NRARP reduced the abundance of NICD in cells, suggesting that NRARP may promote the degradation of NICD. These studies establish the structural basis for NTC engagement by NRARP and provide insights into a critical negative feedback mechanism that regulates Notch signaling.
Collapse
Affiliation(s)
- Sanchez M Jarrett
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tom C M Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Andrews
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA.,Department of Oncologic Pathology and Blais Proteomic Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA.,Department of Oncologic Pathology and Blais Proteomic Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. .,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
13
|
Salama YA, El-karef A, El Gayyar AM, Abdel-Rahman N. Beyond its antioxidant properties: Quercetin targets multiple signalling pathways in hepatocellular carcinoma in rats. Life Sci 2019; 236:116933. [DOI: 10.1016/j.lfs.2019.116933] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022]
|
14
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
15
|
Kindermann B, Valkova C, Krämer A, Perner B, Engelmann C, Behrendt L, Kritsch D, Jungnickel B, Kehlenbach RH, Oswald F, Englert C, Kaether C. The nuclear pore proteins Nup88/214 and T-cell acute lymphatic leukemia-associated NUP214 fusion proteins regulate Notch signaling. J Biol Chem 2019; 294:11741-11750. [PMID: 31186352 DOI: 10.1074/jbc.ra118.006357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 05/20/2019] [Indexed: 01/14/2023] Open
Abstract
The Notch receptor is a key mediator of developmental programs and cell-fate decisions. Imbalanced Notch signaling leads to developmental disorders and cancer. To fully characterize the Notch signaling pathway and exploit it in novel therapeutic interventions, a comprehensive view on the regulation and requirements of Notch signaling is needed. Notch is regulated at different levels, ranging from ligand binding, stability to endocytosis. Using an array of different techniques, including reporter gene assays, immunocytochemistry, and ChIP-qPCR we show here, to the best of our knowledge for the first time, regulation of Notch signaling at the level of the nuclear pore. We found that the nuclear pore protein Nup214 (nucleoporin 214) and its interaction partner Nup88 negatively regulate Notch signaling in vitro and in vivo in zebrafish. In mammalian cells, loss of Nup88/214 inhibited nuclear export of recombination signal-binding protein for immunoglobulin κJ region (RBP-J), the DNA-binding component of the Notch pathway. This inhibition increased binding of RBP-J to its cognate promoter regions, resulting in increased downstream Notch signaling. Interestingly, we also found that NUP214 fusion proteins, causative for certain cases of T-cell acute lymphatic leukemia, potentially contribute to tumorigenesis via a Notch-dependent mechanism. In summary, the nuclear pore components Nup88/214 suppress Notch signaling in vitro, and in zebrafish, nuclear RBP-J levels are rate-limiting factors for Notch signaling in mammalian cells, and regulation of nucleocytoplasmic transport of RBP-J may contribute to fine-tuning Notch activity in cells.
Collapse
Affiliation(s)
- Bastian Kindermann
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Christina Valkova
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Birgit Perner
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Christian Engelmann
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Laura Behrendt
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| | - Daniel Kritsch
- Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Berit Jungnickel
- Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
| | - Franz Oswald
- Universitätsklinikum Ulm, Zentrum für Innere Medizin, Abteilung für Innere Medizin I, 89081 Ulm, Germany
| | - Christoph Englert
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany.,Institut für Biochemie und Biophysik, Friedrich Schiller Universität Jena, 07745 Jena, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07745 Jena, Germany
| |
Collapse
|
16
|
Oo HZ, Seiler R, Black PC, Daugaard M. Post-translational modifications in bladder cancer: Expanding the tumor target repertoire. Urol Oncol 2018; 38:858-866. [PMID: 30342880 DOI: 10.1016/j.urolonc.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade, genomic and transcriptomic analyses have uncovered promising tumor antigens including immunotherapeutic targets in bladder cancer (BCa). Conventional tumor antigens are proteins expressed on the plasma membrane of tumor cells such as EGFR, FGFR3, and ERBB2 in BCa, which can be targeted by antibodies or similar epitope-specific binding reagents. The cellular proteome consists of ∼100,000 proteins but the expression of these proteins is rarely unique to tumor cells. Many tumor-associated proteins are post-translationally modified with phosphorylation, glycosylation, ubiquitination, or SUMOylation moieties. Although these modifications expand the complexity, they potentially offer novel targeting opportunities across tumor sub-populations. Experimental targeting of cancer-specific post-translational modifications (PTMs) has shown encouraging results in pre-clinical models of BCa, which could potentially overcome issues with inherent intra-tumor heterogeneity due to simultaneous expression on different proteins. Here, we review current knowledge on post-translational modifications in BCa and highlight recent efforts in experimental targeting strategies.
Collapse
Affiliation(s)
- Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Roland Seiler
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Urology, University of Bern, Bern, Switzerland
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
17
|
Bray SJ, Gomez-Lamarca M. Notch after cleavage. Curr Opin Cell Biol 2018; 51:103-109. [DOI: 10.1016/j.ceb.2017.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/13/2017] [Indexed: 01/13/2023]
|
18
|
C-terminal deletion of NOTCH1 intracellular domain (N1 ICD) increases its stability but does not amplify and recapitulate N1 ICD-dependent signalling. Sci Rep 2017; 7:5034. [PMID: 28698562 PMCID: PMC5506007 DOI: 10.1038/s41598-017-05119-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Since the generation of a mouse strain conditionally expressing the active intracellular domain of Notch1 (N1ICD), many laboratories have exploited this model (RosaN1-ICD) to assess the impact of constitutive Notch1 signalling activation in normal and pathological processes. It should be underscored that Cre-recombination leads to the expression of a C-terminally truncated form of N1ICD (N1ICDdC) in the RosaN1-ICD mutant mice. Given that no studies were undertaken to delineate whether deletion of this region leaves intact N1ICD function, stable cell lines with single targeted integration of inducible N1ICD and N1ICDdC were generated. We found that C-terminal deletion of N1ICD stabilized the protein but did not promote the activity of Notch responsive promoters. Furthermore, despite higher expression levels, N1ICDdC failed to phenocopy N1ICD in the promotion of anchorage-independent growth. Our results thus suggest that the C-terminal region of N1ICD plays a role in shaping the Notch response. Therefore, it should be taken into consideration that N1ICD is truncated when interpreting phenotypes of RosaN1-ICD mutant mice.
Collapse
|
19
|
Wang H, Gui H, Rallo MS, Xu Z, Matise MP. Atrophin protein RERE positively regulates Notch targets in the developing vertebrate spinal cord. J Neurochem 2017; 141:347-357. [PMID: 28144959 DOI: 10.1111/jnc.13969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The Notch signaling pathway controls cell fate decision, proliferation, and other biological functions in both vertebrates and invertebrates. Precise regulation of the canonical Notch pathway ensures robustness of the signal throughout development and adult tissue homeostasis. Aberrant Notch signaling results in profound developmental defects and is linked to many human diseases. In this study, we identified the Atrophin family protein RERE (also called Atro2) as a positive regulator of Notch target Hes genes in the developing vertebrate spinal cord. Prior studies have shown that during early embryogenesis in mouse and zebrafish, deficit of RERE causes various patterning defects in multiple organs including the neural tube. Here, we detected the expression of RERE in the developing chick spinal cord, and found that normal RERE activity is needed for proper neural progenitor proliferation and neuronal differentiation possibly by affecting Notch-mediated Hes expression. In mammalian cells, RERE co-immunoprecipitates with CBF1 and Notch intracellular domain (NICD), and is recruited to nuclear foci formed by over-expressed NICD1. RERE is also necessary for NICD to activate the expression of Notch target genes. Our findings suggest that RERE stimulates Notch target gene expression by preventing degradation of NICD protein, thereby facilitating the assembly of a transcriptional activating complex containing NICD, CBF1/RBPjκ in vertebrate, Su(H) in Drosophila melanogaster, Lag1 in C. elegans, and other coactivators.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Hongxing Gui
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Michael S Rallo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Zhiyan Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Michael P Matise
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
20
|
Non-epigenetic function of HDAC8 in regulating breast cancer stem cells by maintaining Notch1 protein stability. Oncotarget 2016; 7:1796-807. [PMID: 26625202 PMCID: PMC4811498 DOI: 10.18632/oncotarget.6427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Here, we report a novel non-epigenetic function of histone deacetylase (HDAC) 8 in activating cancer stem cell (CSC)-like properties in breast cancer cells by enhancing the stability of Notch1 protein. The pan-HDAC inhibitors AR-42 and SAHA, and the class I HDAC inhibitor depsipeptide, suppressed mammosphere formation and other CSC markers by reducing Notch1 expression in MDA-MB-231 and SUM-159 cells. Interrogation of individual class I isoforms (HDAC1-3 and 8) using si/shRNA-mediated knockdown, ectopic expression and/or pharmacological inhibition revealed HDAC8 to be the primary mediator of this drug effect. This suppression of Notch1 in response to HDAC8 inhibition was abrogated by the proteasome inhibitor MG132 and siRNA-induced silencing of Fbwx7, indicating Notch1 suppression occurred through proteasomal degradation. However, co-immunoprecipitation analysis indicated that HDAC8 did not form complexes with Notch1 and HDAC inhibition had no effect on Notch1 acetylation. In a xenograft tumor model, the tumorigenicity of breast cancer cells was decreased by HDAC8 knockdown. These findings suggest the therapeutic potential of HDAC8 inhibition to suppress Notch1 signaling in breast cancer.
Collapse
|
21
|
Aster JC, Pear WS, Blacklow SC. The Varied Roles of Notch in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 12:245-275. [PMID: 27959635 DOI: 10.1146/annurev-pathol-052016-100127] [Citation(s) in RCA: 509] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch receptors influence cellular behavior by participating in a seemingly simple signaling pathway, but outcomes produced by Notch signaling are remarkably varied depending on signal dose and cell context. Here, after briefly reviewing new insights into physiologic mechanisms of Notch signaling in healthy tissues and defects in Notch signaling that contribute to congenital disorders and viral infection, we discuss the varied roles of Notch in cancer, focusing on cell autonomous activities that may be either oncogenic or tumor suppressive.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
22
|
Lian H, Li D, Zhou Y, Landesman-Bollag E, Zhang G, Anderson NM, Tang KC, Roderick JE, Kelliher MA, Seldin DC, Fu H, Feng H. CK2 inhibitor CX-4945 destabilizes NOTCH1 and synergizes with JQ1 against human T-acute lymphoblastic leukemic cells. Haematologica 2016; 102:e17-e21. [PMID: 27758824 DOI: 10.3324/haematol.2016.154013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Haiwei Lian
- Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, P.R. China.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA.,Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan, Hubei, P.R. China
| | - Dun Li
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| | - Yun Zhou
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA.,Department of Gynaecology, Wuhan University Renmin Hospital, Wuhan, Hubei, P.R. China
| | - Esther Landesman-Bollag
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| | - Guanglan Zhang
- Department of Computer Science, Metropolitan College, Boston University, MA, USA
| | - Nicole M Anderson
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA
| | - Kevin Charles Tang
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA
| | - Justine E Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - David C Seldin
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| | - Hui Fu
- Department of Anatomy and Embryology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, P.R. China
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, MA, USA .,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, MA, USA
| |
Collapse
|
23
|
Lee HJ, Kim MY, Park HS. Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling. BMB Rep 2016; 48:431-7. [PMID: 26058398 PMCID: PMC4576950 DOI: 10.5483/bmbrep.2015.48.8.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/20/2022] Open
Abstract
Notch signaling plays a pivotal role in cell fate determination, cellular development, cellular self-renewal, tumor progression, and has been linked to developmental disorders and carcinogenesis. Notch1 is activated through interactions with the ligands of neighboring cells, and acts as a transcriptional activator in the nucleus. The Notch1 intracellular domain (Notch1-IC) regulates the expression of target genes related to tumor development and progression. The Notch1 protein undergoes modification after translation by posttranslational modification enzymes. Phosphorylation modification is critical for enzymatic activation, complex formation, degradation, and subcellular localization. According to the nuclear cycle, Notch1-IC is degraded by E3 ligase, FBW7 in the nucleus via phosphorylation-dependent degradation. Here, we summarize the Notch signaling pathway, and resolve to understand the role of phosphorylation in the regulation of Notch signaling as well as to understand its relation to cancer.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Mi-Yeon Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
24
|
Crabtree JS, Singleton CS, Miele L. Notch Signaling in Neuroendocrine Tumors. Front Oncol 2016; 6:94. [PMID: 27148486 PMCID: PMC4830836 DOI: 10.3389/fonc.2016.00094] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
Carcinoids and neuroendocrine tumors (NETs) are a heterogeneous group of tumors that arise from the neuroendocrine cells of the GI tract, endocrine pancreas, and the respiratory system. NETs remain significantly understudied with respect to molecular mechanisms of pathogenesis, particularly the role of cell fate signaling systems such as Notch. The abundance of literature on the Notch pathway is a testament to its complexity in different cellular environments. Notch receptors can function as oncogenes in some contexts and tumor suppressors in others. The genetic heterogeneity of NETs suggests that to fully understand the roles and the potential therapeutic implications of Notch signaling in NETs, a comprehensive analysis of Notch expression patterns and potential roles across all NET subtypes is required.
Collapse
Affiliation(s)
- Judy S Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Ciera S Singleton
- Department of Genetics, Louisiana State University Health Sciences Center , New Orleans, LA , USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
25
|
Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:303-13. [PMID: 26592459 DOI: 10.1016/j.bbamcr.2015.11.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 01/12/2023]
Abstract
Notch signaling is a highly conserved signal transduction pathway that regulates stem cell maintenance and differentiation in several organ systems. Upon activation, the Notch receptor is proteolytically processed, its intracellular domain (NICD) translocates into the nucleus and activates expression of target genes. Output, strength and duration of the signal are tightly regulated by post-translational modifications. Here we review the intracellular post-translational regulation of Notch that fine-tunes the outcome of the Notch response. We also describe how crosstalk with other conserved signaling pathways like the Wnt, Hedgehog, hypoxia and TGFβ/BMP pathways can affect Notch signaling output. This regulation can happen by regulation of ligand, receptor or transcription factor expression, regulation of protein stability of intracellular key components, usage of the same cofactors or coregulation of the same key target genes. Since carcinogenesis is often dependent on at least two of these pathways, a better understanding of their molecular crosstalk is pivotal.
Collapse
Affiliation(s)
| | - Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Danny Huylebroeck
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Franz Oswald
- University Medical Center Ulm, Department of Internal Medicine I, Ulm, Germany
| | | |
Collapse
|
26
|
Kinase active Misshapen regulates Notch signaling in Drosophila melanogaster. Exp Cell Res 2015; 339:51-60. [DOI: 10.1016/j.yexcr.2015.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/26/2015] [Accepted: 09/26/2015] [Indexed: 01/15/2023]
|
27
|
Filhol O, Giacosa S, Wallez Y, Cochet C. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity. Cell Mol Life Sci 2015; 72:3305-22. [PMID: 25990538 PMCID: PMC11113558 DOI: 10.1007/s00018-015-1929-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022]
Abstract
Structurally, protein kinase CK2 consists of two catalytic subunits (α and α') and two regulatory subunits (β), which play a critical role in targeting specific CK2 substrates. Compelling evidence shows the complexity of the CK2 cellular signaling network and supports the view that this enzyme is a key component of regulatory protein kinase networks that are involved in several aspects of cancer. CK2 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, and its expression and activity are upregulated in blood tumors and virtually all solid tumors. The prognostic significance of CK2α expression in association with various clinicopathological parameters highlighted this kinase as an adverse prognostic marker in breast cancer. In addition, several recent studies reported its implication in the regulation of the epithelial-to-mesenchymal transition (EMT), an early step in cancer invasion and metastasis. In this review, we briefly overview the contribution of CK2 to several aspects of cancer and discuss how in mammary epithelial cells, the expression of its CK2β regulatory subunit plays a critical role in maintaining an epithelial phenotype through CK2-mediated control of key EMT-related transcription factors. Importantly, decreased CK2β expression in breast tumors is correlated with inefficient phosphorylation and nuclear translocation of Snail1 and Foxc2, ultimately leading to EMT induction. This review highlights the pivotal role played by CK2β in the mammary epithelial phenotype and discusses how a modest alteration in its expression may be sufficient to induce dramatic effects facilitating the early steps in tumor cell dissemination through the coordinated regulation of two key transcription factors.
Collapse
Affiliation(s)
- Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Sofia Giacosa
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Yann Wallez
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| | - Claude Cochet
- Institut National de la Santé et de la Recherche Médicale, U1036, Grenoble, France
- Institute of Life Sciences Research and Technologies, Biology of Cancer and Infection, Commissariat à l’Energie Atomique, Grenoble, France
- Unité Mixte de Recherche-S1036, University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
28
|
De Falco F, Sabatini R, Falzetti F, Di Ianni M, Sportoletti P, Baldoni S, Del Papa B, Screpanti I, Marconi P, Rosati E. Constitutive phosphorylation of the active Notch1 intracellular domain in chronic lymphocytic leukemia cells with NOTCH1 mutation. Leukemia 2014; 29:994-8. [PMID: 25425197 DOI: 10.1038/leu.2014.329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- F De Falco
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - R Sabatini
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - F Falzetti
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - M Di Ianni
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - P Sportoletti
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - S Baldoni
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - B Del Papa
- Department of Medicine, Hematology and Clinical Immunology Section, University of Perugia, Perugia, Italy
| | - I Screpanti
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - P Marconi
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| | - E Rosati
- Department of Experimental Medicine, Biosciences and Medical Embryology Section, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Wang X, Gupta P, Fairbanks J, Hansen D. Protein kinase CK2 both promotes robust proliferation and inhibits the proliferative fate in the C. elegans germ line. Dev Biol 2014; 392:26-41. [PMID: 24824786 DOI: 10.1016/j.ydbio.2014.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/02/2014] [Accepted: 05/02/2014] [Indexed: 11/18/2022]
Abstract
Stem cells are capable of both self-renewal (proliferation) and differentiation. Determining the regulatory mechanisms controlling the balance between stem cell proliferation and differentiation is not only an important biological question, but also holds the key for using stem cells as therapeutic agents. The Caenorhabditis elegans germ line has emerged as a valuable model to study the molecular mechanisms controlling stem cell behavior. In this study, we describe a large-scale RNAi screen that identified kin-10, which encodes the β subunit of protein kinase CK2, as a novel factor regulating stem cell proliferation in the C. elegans germ line. While a loss of kin-10 in an otherwise wild-type background results in a decrease in the number of proliferative cells, loss of kin-10 in sensitized genetic backgrounds results in a germline tumor. Therefore, kin-10 is not only necessary for robust proliferation, it also inhibits the proliferative fate. We found that kin-10's regulatory role in inhibiting the proliferative fate is carried out through the CK2 holoenzyme, rather than through a holoenzyme-independent function, and that it functions downstream of GLP-1/Notch signaling. We propose that a loss of kin-10 leads to a defect in CK2 phosphorylation of its downstream targets, resulting in abnormal activity of target protein(s) that are involved in the proliferative fate vs. differentiation decision. This eventually causes a shift towards the proliferative fate in the stem cell fate decision.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Pratyush Gupta
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Jared Fairbanks
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
30
|
Sangphech N, Osborne BA, Palaga T. Notch signaling regulates the phosphorylation of Akt and survival of lipopolysaccharide-activated macrophages via regulator of G protein signaling 19 (RGS19). Immunobiology 2014; 219:653-60. [PMID: 24775271 DOI: 10.1016/j.imbio.2014.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 11/19/2022]
Abstract
Macrophages play critical roles in innate immune defense by sensing microbes using pattern-recognition receptors. Lipopolysaccharide (LPS) stimulates macrophages via TLR, which leads to activation of downstream signaling cascades. In this study, we investigated the roles of a conserved signaling pathway, Notch signaling, in regulating the downstream signaling cascades of the LPS/TLR4 pathways in macrophages. Using a phospho-proteomic approach and a gamma-secretase inhibitor (GSI) to suppress the processing and activation of Notch signaling, we identified regulator of G protein signaling 19 (RGS19) as a target protein whose phosphorylation was affected by GSI treatment. RGS19 is a guanosine triphosphatase (GTPase)-activating protein that functions to negatively regulate G protein-coupled receptors via Gαi/Gαq-linked signaling. Stimulation of RAW264.7 cells with LPS increased the level of the phosphorylated form of RGS19, while LPS stimulation in the presence of GSI decreased its level. GSI treatment did not alter the mRNA level of rgs19. Treatment with GSI or silencing of rgs19 in macrophages impaired the phosphorylation of Akt Thr(308) upon LPS stimulation. Furthermore, targeted deletion of a DNA-binding protein and binding partner of the Notch receptor, RBP-Jκ/CSL, in macrophages resulted in delayed and decreased Akt phosphorylation. Because the PI3K/Akt pathway regulates cell survival in various cell types, the cell cycle and cell death were assayed upon GSI treatment, phosphatidylinositol 3 kinase (PI3K) inhibitor treatment or silencing of rgs19. GSI treatment resulted in decreased cell populations in the G1 and S phases, while it increased the cell population of cell death. Similarly, silencing of rgs19 resulted in a decreased cell population in the G1 phase and an increased cell population in the subG1 phase. Inhibition of Akt phosphorylation by PI3K inhibitor in LPS-stimulated macrophages increased cell population in G1 phase, suggesting a possible cell cycle arrest. Taken together, these results indicate that Notch signaling positively regulates phosphorylation of Akt, possibly via phosphorylation of RGS19, and inhibition of both molecules affects the cell survival and cell cycle of macrophages upon LPS stimulation.
Collapse
Affiliation(s)
- Naunpun Sangphech
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Tanapat Palaga
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
31
|
Agarwal M, Nitta RT, Li G. Casein Kinase 2: a novel player in glioblastoma therapy and cancer stem cells. J Mol Genet Med 2014; 8. [PMID: 25264454 DOI: 10.4172/1747-0862.1000094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Casein kinase 2 (CK2) is an oncogenic protein kinase which contributes to tumor development, proliferation, and suppression of apoptosis in multiple cancer types. The mechanism by which CK2 expression and activity leads to tumorigenesis in glioblastoma (GBM), a stage IV primary brain tumor, is being studied. Recent studies demonstrate that CK2 plays an important role in GBM formation and growth through the inhibition of tumor suppressors and activation of oncogenes. In addition, intriguing new reports indicate that CK2 may regulate GBM formation in a novel manner; CK2 may play a critical role in cancer stem cell (CSC) maintenance. Since glial CSCs have the ability to self-renew and initiate tumor growth, new treatments which target these CSCs are needed to treat this fatal disease. Inhibition of CK2 is potentially a novel method to inhibit GBM growth and reoccurrence by targeting the glial CSCs. A new, orally available, selective CK2 inhibitor, CX-4945 has had promising results when tested in cancer cell lines, in vivo xenograft models, and human clinical trials. The development of CK2 targeted inhibitors, starting with CX-4945, may lead to a new class of more effective cancer therapies.
Collapse
Affiliation(s)
- Maya Agarwal
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Ryan T Nitta
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305, USA
| | - Gordon Li
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Tremblay I, Paré E, Arsenault D, Douziech M, Boucher MJ. The MEK/ERK pathway promotes NOTCH signalling in pancreatic cancer cells. PLoS One 2013; 8:e85502. [PMID: 24392017 PMCID: PMC3877363 DOI: 10.1371/journal.pone.0085502] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022] Open
Abstract
Activation of the NOTCH receptors relies on their intracellular proteolysis by the gamma-secretase complex. This cleavage liberates the NOTCH intracellular domain (NIC) thereby allowing the translocation of NIC towards the nucleus to assemble into a transcriptional platform. Little information is available regarding the regulatory steps operating on NIC following its release from the transmembrane receptor up to its association with transcriptional partners. Interfering with these regulatory steps might potentially influences the nuclear outcome of NOTCH signalling. Herein, we exploited a reliable model to study the molecular events occurring subsequent to NOTCH1 cleavage. In pancreatic cancer cells, pulse of NOTCH1 activation led to increased expression of NOTCH target genes namely HES1 and c-MYC. We uncovered that, upon its release, the NOTCH1 intracellular domain, NIC1, undergoes a series of post-translational modifications that include phosphorylation. Most interestingly, we found that activation of the MEK/ERK pathway promotes HES1 expression. Inhibition of the gamma-secretase complex prevented the MEK/ERK-induced HES1 expression suggesting a NOTCH-dependent mechanism. Finally, higher levels of NIC1 were found associated with its transcriptional partners [CBF1, Su(H) and LAG-1] (CSL) and MASTERMIND-LIKE 1 (MAML1) upon MEK/ERK activation providing a potential mechanism whereby the MEK/ERK pathway promotes expression of NOTCH target genes. For the first time, our data exposed a signalling pathway, namely the MEK/ERK pathway that positively impacts on NOTCH nuclear outcome.
Collapse
Affiliation(s)
- Isabelle Tremblay
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Emanuel Paré
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dominique Arsenault
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mélanie Douziech
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marie-Josée Boucher
- Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
33
|
Cheng P, Kumar V, Liu H, Youn JI, Fishman M, Sherman S, Gabrilovich D. Effects of notch signaling on regulation of myeloid cell differentiation in cancer. Cancer Res 2013; 74:141-52. [PMID: 24220241 DOI: 10.1158/0008-5472.can-13-1686] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Functionally altered myeloid cells play an important role in immune suppression in cancer, in angiogenesis, and in tumor cells' invasion and metastases. Here, we report that inhibition of Notch signaling in hematopoietic progenitor cells (HPC), myeloid-derived suppressor cells (MDSC), and dendritic cells is directly involved in abnormal myeloid cell differentiation in cancer. Inhibition of Notch signaling was caused by the disruption of the interaction between Notch receptor and transcriptional repressor CSL, which is normally required for efficient transcription of target genes. This disruption was the result of serine phosphorylation of Notch. We demonstrated that increased activity of casein kinase 2 (CK2) observed in HPC and in MDSC could be responsible for the phosphorylation of Notch and downregulation of Notch signaling. Inhibition of CK2 by siRNA or by pharmacological inhibitor restored Notch signaling in myeloid cells and substantially improved their differentiation, both in vitro and in vivo. This study demonstrates a novel mechanism regulation of Notch signaling in cancer. This may suggest a new perspective for pharmacological regulation of differentiation of myeloid cells in cancer.
Collapse
Affiliation(s)
- Pingyan Cheng
- Authors' Affiliations: H. Lee Moffitt Cancer Center, Tampa, Florida; The Wistar Institute, Philadelphia, Pennsylvania; and University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | | | | | | | |
Collapse
|
34
|
Tang H, Xiao K, Mao L, Rockman HA, Marchuk DA. Overexpression of TNNI3K, a cardiac-specific MAPKKK, promotes cardiac dysfunction. J Mol Cell Cardiol 2013; 54:101-11. [PMID: 23085512 PMCID: PMC3535516 DOI: 10.1016/j.yjmcc.2012.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 12/21/2022]
Abstract
Cardiac troponin I-interacting kinase (TNNI3K) is a cardiac-specific kinase whose biological function remains largely unknown. We have recently shown that TNNI3K expression greatly accelerates cardiac dysfunction in mouse models of cardiomyopathy, indicating an important role in modulating disease progression. To further investigate TNNI3K kinase activity in vivo, we have generated transgenic mice expressing both wild-type and kinase-dead versions of the human TNNI3K protein. Importantly, we show that the increased TNNI3K kinase activity induces mouse cardiac remodeling, and its kinase activity promotes accelerated disease progression in a left-ventricular pressure overload model of mouse cardiomyopathy. Using an in vitro kinase assay and proteomics analysis, we show that TNNI3K is a dual-function kinase with Tyr and Ser/Thr kinase activity. TNNI3K expression induces a series of cellular and molecular changes, including a reduction of sarcomere length and changes in titin isoform composition, which are indicative of cardiac remodeling. Using antisera to TNNI3K, we show that TNNI3K protein is located at the sarcomere Z disc. These combined data suggest that TNNI3K mediates cell signaling to modulate cardiac response to stress.
Collapse
Affiliation(s)
- Hao Tang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| | - Kunhong Xiao
- Department of Medicine, Duke University, Durham, NC 27710
| | - Lan Mao
- Department of Medicine, Duke University, Durham, NC 27710
| | | | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710
| |
Collapse
|
35
|
Tiedemann HB, Schneltzer E, Zeiser S, Hoesel B, Beckers J, Przemeck GKH, de Angelis MH. From dynamic expression patterns to boundary formation in the presomitic mesoderm. PLoS Comput Biol 2012; 8:e1002586. [PMID: 22761566 PMCID: PMC3386180 DOI: 10.1371/journal.pcbi.1002586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.
Collapse
Affiliation(s)
- Hendrik B. Tiedemann
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Elida Schneltzer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Bastian Hoesel
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
- * E-mail:
| |
Collapse
|
36
|
Boucher J, Gridley T, Liaw L. Molecular pathways of notch signaling in vascular smooth muscle cells. Front Physiol 2012; 3:81. [PMID: 22509166 PMCID: PMC3321637 DOI: 10.3389/fphys.2012.00081] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
Notch signaling in the cardiovascular system is important during embryonic development, vascular repair of injury, and vascular pathology in humans. The vascular smooth muscle cell (VSMC) expresses multiple Notch receptors throughout its life cycle, and responds to Notch ligands as a regulatory mechanism of differentiation, recruitment to growing vessels, and maturation. The goal of this review is to provide an overview of the current understanding of the molecular basis for Notch regulation of VSMC phenotype. Further, we will explore Notch interaction with other signaling pathways important in VSMC.
Collapse
Affiliation(s)
- Joshua Boucher
- Center for Molecular Medicine, Maine Medical Center Research Institute Scarborough, ME, USA
| | | | | |
Collapse
|