1
|
Xiong L, Huang YX, Mao L, Xu Y, Deng YQ. Targeting gut microbiota and its associated metabolites as a potential strategy for promoting would healing in diabetes. World J Diabetes 2025; 16:98788. [DOI: 10.4239/wjd.v16.i5.98788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/03/2025] [Accepted: 03/05/2025] [Indexed: 04/25/2025] Open
Abstract
Impaired healing of diabetic wounds is one of the most important complications of diabetes, often leading to lower limb amputations and incurring significant economic and psychosocial costs. Unfortunately, there are currently no effective prevention or treatment strategies available. Recent research has reported that an imbalance in the gut microbiota, known as dysbiosis, was linked to the onset of type 2 diabetes, as well as the development and progression of diabetic complications. Indeed, the gut microbiota has emerged as a promising therapeutic approach for treating type 2 diabetes and related diseases. However, there is few of literatures specifically discussing the relationship between gut microbiota and diabetic wounds. This review aims to explore the potential role of the gut microbiota, especially probiotics, and its associated byproducts such as short chain fatty acids, bile acids, hydrogen sulfide, and tryptophan metabolites on wound healing to provide fresh insights and novel perspectives for the treatment of chronic wounds in diabetes.
Collapse
Affiliation(s)
- Ling Xiong
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Ya-Xin Huang
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Lan Mao
- Department of Dermatology & STD, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yong-Qiong Deng
- Department of Dermatology & STD, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610000, Sichuan Province, China
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
2
|
Xu J, Zhang H, Ye H. Research progress on the role of fascia in skin wound healing. BURNS & TRAUMA 2025; 13:tkaf002. [PMID: 40248160 PMCID: PMC12001785 DOI: 10.1093/burnst/tkaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 04/19/2025]
Abstract
The skin, the human body's largest organ, is perpetually exposed to environmental factors, rendering it vulnerable to potential injuries. Fascia, a vital connective tissue that is extensively distributed throughout the body, fulfils multiple functions, including support, compartmentalization, and force transmission. The role of fascia in skin wound healing has recently attracted considerable attention. In addition to providing mechanical support, fascia significantly contributes to intercellular signalling and tissue repair, establishing itself as a crucial participant in wound healing. This review synthesises the latest advancements in fascia research and its implications for skin wound healing.
Collapse
Affiliation(s)
- Jiamin Xu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haifeng Ye
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital; School of Basic Medical Sciences; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
3
|
Priyanka K, Sahoo RN, Nanda A, Kanhar S, Das C, Sahu A, Naik PK, Nayak AK. Wound Healing Activity of Topical Herbal Gels Containing Barringtonia acutangula Fruit Extract: In silico and In vivo Studies. Chem Biodivers 2024; 21:e202400147. [PMID: 38687689 DOI: 10.1002/cbdv.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
The current study describes the efficacy of B. acutangula fruit extract in wound healing via incorporation within topical gels. B. acutangula fruit extract was produced by solvent extraction method. The bioactive extract was incorporated within Carbopol 940-based topical gels, which were applied topically over the excision and incision wounds. The change in healing process was observed till 20 days. The percentages of closure of excision wound area were 92.89 % and 93.43 %, when treated with topical herbal gels containing B. acutangula fruit extract of 5 % and 10 %, respectively. The tensile strengths of incision area in rats treated with topical herbal gels containing 5 % and 10 % methanol extract of B. acutangula fruits were found to be 25±5.12 g and 30±4.10 g, respectively. The wound healing activity of topical herbal gels containing B. acutangula fruit extract in rats was found to be significant when compared with that of the reference standard and untreated groups. In addition, in silico studies suggested about good skin permeability and binding to the proteins responsible for delaying wound healing. It can be concluded that this topical herbal gels containing B. acutangula fruit extract could be used clinically for the treatment of wounds.
Collapse
Affiliation(s)
- Kumari Priyanka
- Department of Pharmacy, Usha Martin University, Ranchi, 835103, Jharkhand, India
| | - Rudra Narayan Sahoo
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Ashirbad Nanda
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Satish Kanhar
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, 752050, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Abhijit Sahu
- Center of Excellence, Natural Products & Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, 768019, Odisha, India
| | - Pradeep Kumar Naik
- Center of Excellence, Natural Products & Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, 768019, Odisha, India
| | - Amit Kumar Nayak
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
4
|
Gumede DB, Abrahamse H, Houreld NN. Targeting Wnt/β-catenin signaling and its interplay with TGF-β and Notch signaling pathways for the treatment of chronic wounds. Cell Commun Signal 2024; 22:244. [PMID: 38671406 PMCID: PMC11046856 DOI: 10.1186/s12964-024-01623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Wound healing is a tightly regulated process that ensures tissue repair and normal function following injury. It is modulated by activation of pathways such as the transforming growth factor-beta (TGF-β), Notch, and Wnt/β-catenin signaling pathways. Dysregulation of this process causes poor wound healing, which leads to tissue fibrosis and ulcerative wounds. The Wnt/β-catenin pathway is involved in all phases of wound healing, primarily in the proliferative phase for formation of granulation tissue. This review focuses on the role of the Wnt/β-catenin signaling pathway in wound healing, and its transcriptional regulation of target genes. The crosstalk between Wnt/β-catenin, Notch, and the TGF-β signaling pathways, as well as the deregulation of Wnt/β-catenin signaling in chronic wounds are also considered, with a special focus on diabetic ulcers. Lastly, we discuss current and prospective therapies for chronic wounds, with a primary focus on strategies that target the Wnt/β-catenin signaling pathway such as photobiomodulation for healing diabetic ulcers.
Collapse
Affiliation(s)
- Dimakatso B Gumede
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
5
|
Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The Roles of WNT Signaling Pathways in Skin Development and Mechanical-Stretch-Induced Skin Regeneration. Biomolecules 2023; 13:1702. [PMID: 38136575 PMCID: PMC10741662 DOI: 10.3390/biom13121702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of The Cadet Team 6, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
6
|
Ehnert S, Rinderknecht H, Liu C, Voss M, Konrad FM, Eisler W, Alexander D, Ngamsri KC, Histing T, Rollmann MF, Nussler AK. Increased Levels of BAMBI Inhibit Canonical TGF-β Signaling in Chronic Wound Tissues. Cells 2023; 12:2095. [PMID: 37626905 PMCID: PMC10453918 DOI: 10.3390/cells12162095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic wounds affect more than 2% of the population worldwide, with a significant burden on affected individuals, healthcare systems, and societies. A key regulator of the entire wound healing cascade is transforming growth factor beta (TGF-β), which regulates not only inflammation and extracellular matrix formation but also revascularization. This present work aimed at characterizing wound tissues obtained from acute and chronic wounds regarding angiogenesis, inflammation, as well as ECM formation and degradation, to identify common disturbances in the healing process. Serum and wound tissues from 38 patients (N = 20 acute and N = 18 chronic wounds) were analyzed. The patients' sera suggested a shift from VEGF/VEGFR to ANGPT/TIE2 signaling in the chronic wounds. However, this shift was not confirmed in the wound tissues. Instead, the chronic wound tissues showed increased levels of MMP9, a known activator of TGF-β. However, regulation of TGF-β target genes, such as CTGF, COL1A1, or IL-6, was absent in the chronic wounds. In wound tissues, all three TGF-β isoforms were expressed with increased levels of TGF-β1 and TGF-β3 and a reporter assay confirmed that the expressed TGF-β was activated. However, Western blots and immunostaining showed decreased canonical TGF-β signaling in the respective chronic wound tissues, suggesting the presence of a TGF-β inhibitor. As a potential regulatory mechanism, the TGF-β proteome profiler array suggested elevated levels of the TGF-β pseudo-receptor BAMBI. Also, tissue expression of BAMBI was significantly increased not only in chronic wounds (10.6-fold) but also in acute wounds that had become chronic (9.5-fold). In summary, our data indicate a possible regulatory role of BAMBI in the development of chronic wounds. The available few in vivo studies support our findings by postulating a therapeutic potential of BAMBI for controlling scar formation.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Helen Rinderknecht
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Chao Liu
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Melanie Voss
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Franziska M. Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany; (F.M.K.); (K.-C.N.)
| | - Wiebke Eisler
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstr 2-8, 72076 Tübingen, Germany;
| | - Kristian-Christos Ngamsri
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany; (F.M.K.); (K.-C.N.)
| | - Tina Histing
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Mika F. Rollmann
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| | - Andreas K. Nussler
- Siegfried Weller Research Institute, BG Unfallklinik Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, 72076 Tübingen, Germany (W.E.); (M.F.R.); (A.K.N.)
| |
Collapse
|
7
|
Promotion of Lymphangiogenesis by Targeted Delivery of VEGF-C Improves Diabetic Wound Healing. Cells 2023; 12:cells12030472. [PMID: 36766814 PMCID: PMC9913977 DOI: 10.3390/cells12030472] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Chronic wounds represent a major therapeutic challenge. Lymphatic vessel function is impaired in chronic ulcers but the role of lymphangiogenesis in wound healing has remained unclear. We found that lymphatic vessels are largely absent from chronic human wounds as evaluated in patient biopsies. Excisional wound healing studies were conducted using transgenic mice with or without an increased number of cutaneous lymphatic vessels, as well as antibody-mediated inhibition of lymphangiogenesis. We found that a lack of lymphatic vessels mediated a proinflammatory wound microenvironment and delayed wound closure, and that the VEGF-C/VEGFR3 signaling axis is required for wound lymphangiogenesis. Treatment of diabetic mice (db/db mice) with the F8-VEGF-C fusion protein that targets the alternatively spliced extra domain A (EDA) of fibronectin, expressed in remodeling tissue, promoted wound healing, and potently induced wound lymphangiogenesis. The treatment also reduced tissue inflammation and exerted beneficial effects on the wound microenvironment, including myofibroblast density and collagen deposition. These findings indicate that activating the lymphatic vasculature might represent a new therapeutic strategy for treating chronic non-healing wounds.
Collapse
|
8
|
Si H, Zhao N, Pedroza A, Zaske AM, Rosen JM, Creighton CJ, Roarty K. Noncanonical Wnt/Ror2 signaling regulates cell-matrix adhesion to prompt directional tumor cell invasion in breast cancer. Mol Biol Cell 2022; 33:ar103. [PMID: 36001375 PMCID: PMC9582800 DOI: 10.1091/mbc.e22-02-0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/25/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cell-extracellular matrix (ECM) interactions represent fundamental exchanges during tumor progression, yet how particular signal-transduction factors prompt the conversion of tumor cells into migratory populations capable of systemic spread during metastasis remains elusive. We demonstrate that the noncanonical Wnt receptor, Ror2, regulates tumor cell-driven matrix remodeling and invasion in breast cancer. Ror2 loss-of-function (LOF) triggers the disruption of E-cadherin within tumor cells, accompanied by an increase in tumor cell invasion and collagen realignment in three-dimensional cultures. RNA sequencing of Ror2-deficient organoids further uncovered alterations in actin cytoskeleton, cell adhesion, and collagen cross-linking gene expression programs. Spatially, we pinpoint the up-regulation and redistribution of α5 and β3 integrins together with the production of fibronectin in areas of invasion downstream of Ror2 loss. Wnt/β-catenin-dependent and Wnt/Ror2 alternative Wnt signaling appear to regulate distinct functions for tumor cells regarding their ability to modify cell-ECM exchanges during invasion. Furthermore, blocking either integrin or focal adhesion kinase (FAK), a downstream mediator of integrin-mediated signal transduction, abrogates the enhanced migration observed upon Ror2 loss. These results reveal a critical function for the alternative Wnt receptor, Ror2, as a determinant of tumor cell-driven ECM exchanges during cancer invasion and metastasis.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Na Zhao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Andrea Pedroza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ana-Maria Zaske
- University of Texas Health Science Center at Houston, Houston, TX 77054
| | - Jeffrey M. Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Chad J. Creighton
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Breast Cancer Program, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
9
|
The Role of the Fibronectin Synergy Site for Skin Wound Healing. Cells 2022; 11:cells11132100. [PMID: 35805184 PMCID: PMC9265582 DOI: 10.3390/cells11132100] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Skin is constantly exposed to injuries that are repaired with different outcomes, either regeneration or scarring. Scars result from fibrotic processes modulated by cellular physical forces transmitted by integrins. Fibronectin (FN) is a major component in the provisional matrix assembled to repair skin wounds. FN enables cell adhesion binding of α5β1/αIIbβ3 and αv-class integrins to an RGD-motif. An additional linkage for α5/αIIb is the synergy site located in close proximity to the RGD motif. The mutation to impair the FN synergy region (Fn1syn/syn) demonstrated that its absence permits complete development. However, only with the additional engagement to the FN synergy site do cells efficiently resist physical forces. To test how the synergy site-mediated adhesion affects the course of wound healing fibrosis, we used a mouse model of skin injury and in-vitro migration studies with keratinocytes and fibroblasts on FNsyn. The loss of FN synergy site led to normal re-epithelialization caused by two opposing migratory defects of activated keratinocytes and, in the dermis, induced reduced fibrotic responses, with lower contents of myofibroblasts and FN deposition and diminished TGF-β1-mediated cell signalling. We demonstrate that weakened α5β1-mediated traction forces on FNsyn cause reduced TGF-β1 release from its latent complex.
Collapse
|
10
|
Takaya K, Sunohara A, Aramaki-Hattori N, Sakai S, Okabe K, Kanazawa H, Asou T, Kishi K. Role of Wnt Signaling in Mouse Fetal Skin Wound Healing. Biomedicines 2022; 10:biomedicines10071536. [PMID: 35884841 PMCID: PMC9312897 DOI: 10.3390/biomedicines10071536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 01/04/2023] Open
Abstract
Wnt proteins secrete glycoproteins that are involved in various cellular processes to maintain homeostasis during development and adulthood. However, the expression and role of Wnt in wound healing have not been fully documented. Our previous studies have shown that, in an early-stage mouse fetus, no scarring occurred after cutaneous wounding, and complete regeneration was achieved. In this study, the expression and localization of Wnt proteins in a mouse fetal-wound-healing model and their associations with scar formation were analyzed. Wnt-related molecules were detected by in-situ hybridization, immunostaining, and real-time polymerase chain reaction. The results showed altered expression of Wnt-related molecules during the wound-healing process. Moreover, scar formation was suppressed by Wnt inhibitors, suggesting that Wnt signaling may be involved in wound healing and scar formation. Thus, regulation of Wnt signaling may be a possible mechanism to control scar formation.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
- Correspondence: ; Tel.: +81-35-363-3814
| | - Ayano Sunohara
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Noriko Aramaki-Hattori
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Shigeki Sakai
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Keisuke Okabe
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Toru Asou
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (A.S.); (N.A.-H.); (S.S.); (K.O.); (T.A.); (K.K.)
| |
Collapse
|
11
|
Liu C, Rinderknecht H, Histing T, Kolbenschlag J, Nussler AK, Ehnert S. Establishment of an In Vitro Scab Model for Investigating Different Phases of Wound Healing. Bioengineering (Basel) 2022; 9:191. [PMID: 35621469 PMCID: PMC9137770 DOI: 10.3390/bioengineering9050191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic wounds are a serious problem in clinical work and a heavy burden for individuals and society. In order to develop novel therapies, adequate model systems for the investigation of wound healing are required. Although in past years different in vitro and in vitro wound healing models have been established, a true human-like model does still not exist. Animal models are limited in their use due to species-specific differences in the skin, a lengthy manufacturing process, experimental costs, and ethical concerns. Both 2D and 3D in vitro models are usually comprised of only one or two skin cell types and fail to capture the reaction between blood cells and skin cells. Thus, our aim was to develop an in vitro scab model to investigate early reactions in the wound healing process. The here established scab model is comprised of HaCaT cells and freshly collected blood from healthy volunteers. The generated scabs were stably cultured for more than 2 weeks. TGF-β signaling is well known to regulate the early phases of wound healing. All three TGF-β isoforms and target genes involved in extracellular matrix composition and degradation were expressed in the in vitro scabs. To validate the in vitro scab model, the effects of either additional stimulation or the inhibition of the TGF-β signaling pathway were investigated. Exogenous application of TGF-β1 stimulated matrix remodeling, which loosened the structure of the in vitro scabs with time, also induced expression of the inhibitory Smad7. Inhibition of the endogenous TGF-β signaling, on the contrary, resulted in a rapid condensation and degranulation of the in vitro scabs. In summary, the here established in vitro scab model can be used to analyze the first phases of wound healing where blood and skin cells interact, as it is viable and responsive for more than 2 weeks.
Collapse
Affiliation(s)
| | | | | | | | - Andreas K. Nussler
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Unfallklinik Tübingen, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (C.L.); (H.R.); (T.H.); (J.K.); (S.E.)
| | | |
Collapse
|
12
|
Novotny T, Eckhardt A, Doubkova M, Knitlova J, Vondrasek D, Vanaskova E, Ostadal M, Uhlik J, Bacakova L, Musilkova J. The possible role of hypoxia in the affected tissue of relapsed clubfoot. Sci Rep 2022; 12:4462. [PMID: 35292718 PMCID: PMC8924187 DOI: 10.1038/s41598-022-08519-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Our aim was to study the expression of hypoxia-related proteins as a possible regulatory pathway in the contracted side tissue of relapsed clubfoot. We compared the expression of hypoxia-related proteins in the tissue of the contracted (medial) side of relapsed clubfoot, and in the tissue of the non-contracted (lateral) side of relapsed clubfoot. Tissue samples from ten patients were analyzed by immunohistochemistry and image analysis, Real-time PCR and Mass Spectrometry to evaluate the differences in protein composition and gene expression. We found a significant increase in the levels of smooth muscle actin, transforming growth factor-beta, hypoxia-inducible factor 1 alpha, lysyl oxidase, lysyl oxidase-like 2, tenascin C, matrix metalloproteinase-2, matrix metalloproteinase-9, fibronectin, collagen types III and VI, hemoglobin subunit alpha and hemoglobin subunit beta, and an overexpression of ACTA2, FN1, TGFB1, HIF1A and MMP2 genes in the contracted medial side tissue of clubfoot. In the affected tissue, we have identified an increase in the level of hypoxia-related proteins, together with an overexpression of corresponding genes. Our results suggest that the hypoxia-associated pathway is potentially a factor contributing to the etiology of clubfoot relapses, as it stimulates both angioproliferation and fibroproliferation, which are considered to be key factors in the progression and development of relapses.
Collapse
Affiliation(s)
- Tomas Novotny
- Department of Orthopaedics, University J.E. Purkinje and Masaryk Hospital, Usti nad Labem, Czech Republic.,Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adam Eckhardt
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. .,Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Jarmila Knitlova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Vondrasek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Eliska Vanaskova
- Department of Orthopaedics, University J.E. Purkinje and Masaryk Hospital, Usti nad Labem, Czech Republic
| | - Martin Ostadal
- Department of Orthopaedics, University Hospital Bulovka, Charles University, Prague, Czech Republic
| | - Jiri Uhlik
- Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Abdul Kareem N, Aijaz A, Jeschke MG. Stem Cell Therapy for Burns: Story so Far. Biologics 2021; 15:379-397. [PMID: 34511880 PMCID: PMC8418374 DOI: 10.2147/btt.s259124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Burn injuries affect approximately 11 million people annually, with fatalities amounting up to 180,000. Burn injuries constitute a global health issue associated with high morbidity and mortality. Recent years have seen advancements in regenerative medicine for burn wound healing encompassing stem cells and stem cell-derived products such as exosomes and conditioned media with promising results compared to current treatment approaches. Sources of stem cells used for treatment vary ranging from hair follicle stem cells, embryonic stem cells, umbilical cord stem cells, to mesenchymal stem cells, such as adipose-derived mesenchymal stem cells, bone marrow-derived mesenchymal stem cells, and even stem cells harvested from discarded burn tissue. Stem cells utilize various pathways for wound healing, such as PI3/AKT pathway, WNT-β catenin pathway, TGF-β pathway, Notch and Hedgehog signaling pathway. Due to the paracrine signaling mechanism of stem cells, exosomes and conditioned media derived from stem cells have also been utilized in burn wound therapy. As exosomes and conditioned media are cell-free therapy and contain various biomolecules that facilitate wound healing, they are gaining popularity as an alternative treatment strategy with significant improvement in outcomes. The treatment is provided either as direct injections or embedded in a natural/artificial scaffold. This paper reviews in detail the different sources of stem cells, stem cell-derived products, their efficacy in burn wound repair, associated signaling pathways and modes of delivery for wound healing.
Collapse
Affiliation(s)
| | - Ayesha Aijaz
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
14
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Sawangareetrakul P, Ngiwsara L, Champattanachai V, Chokchaichamnankit D, Saharat K, Ketudat Cairns JR, Srisomsap C, Khwanraj K, Dharmasaroja P, Pulkes T, Svasti J. Aberrant proteins expressed in skin fibroblasts of Parkinson's disease patients carrying heterozygous variants of glucocerebrosidase and parkin genes. Biomed Rep 2021; 14:36. [PMID: 33732455 PMCID: PMC7907964 DOI: 10.3892/br.2021.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects movement, and its development is associated with environmental and genetic factors. Genetic variants in GBA and PARK2 are important risk factors implicated in the development of PD; however, their precise roles have yet to be elucidated. The present study aimed to identify and analyse proteins from the skin fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants, and from healthy controls. Liquid chromatography coupled with tandem mass spectrometry and label-free quantitative proteomics were performed to identify and compare differential protein expression levels. Moreover, protein-protein interaction networks were assessed using Search Tool for Retrieval of Interacting Genes analysis. Using these proteomic approaches, 122 and 119 differentially expressed proteins from skin fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants, respectively, were identified and compared. According to the results of protein-protein interaction and Gene Ontology analyses, 14 proteins involved in the negative regulation of macromolecules and mRNA metabolic processes, and protein targeting to the membrane exhibited the largest degree of differential expression in the fibroblasts of patients with PD with a GBA variant, whereas 20 proteins involved in the regulation of biological quality, NAD metabolic process and cytoskeletal organization exhibited the largest degree of differential expression in the fibroblasts of patients with PD with a PARK2 variant. Among these, the expression levels of annexin A2 and tubulin β chain, were most strongly upregulated in the fibroblasts of patients with GBA-PD and PARK2-PD, respectively. Other predominantly expressed proteins were confirmed by western blotting, and the results were consistent with those of the quantitative proteomic analysis. Collectively, the results of the present study demonstrated that the proteomic patterns of fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants are different and unique. Aberrant expression of the proteins affected by these variants may reflect physiological changes that also occur in neurons, resulting in PD development and progression.
Collapse
Affiliation(s)
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | | | | | - Kittirat Saharat
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - James R. Ketudat Cairns
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Kawinthra Khwanraj
- Faculty of Science, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Permphan Dharmasaroja
- Faculty of Science, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Teeratorn Pulkes
- Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
16
|
Fibronectin in development and wound healing. Adv Drug Deliv Rev 2021; 170:353-368. [PMID: 32961203 DOI: 10.1016/j.addr.2020.09.005] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
Fibronectin structure and composition regulate contextual cell signaling. Recent advances have been made in understanding fibronectin and its role in tissue organization and repair. This review outlines fibronectin splice variants and their functions, evaluates potential therapeutic strategies targeting or utilizing fibronectin, and concludes by discussing potential future directions to modulate fibronectin function in development and wound healing.
Collapse
|
17
|
Fibronectin 1 activates WNT/β-catenin signaling to induce osteogenic differentiation via integrin β1 interaction. J Transl Med 2020; 100:1494-1502. [PMID: 32561820 DOI: 10.1038/s41374-020-0451-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease leading to fragility fractures and is a major health issue globally. WNT/β-catenin signaling regulates bone-remodeling processes and plays vital roles in OP development. However, the underlying regulatory mechanisms behind WNT/β-catenin signaling in OP requires clarification, as further studies are required to identify novel alternate therapeutic agents to improve OP. Here we report that fibronectin 1 (FN-1) promoted differentiation and mineralization of osteoblasts by activating WNT/β-catenin pathway, in cultured pre-osteoblasts. With isobaric tags for relative and absolute quantitation labeling proteomics analysis, we investigated protein changes in bone samples from OP patients and normal controls. FN-1 accumulated in osteoblasts in bone samples from OP patients and age-related OP mice compared to control group. In addition, we observed that integrin β1 (ITGB1) acts as an indispensable signaling molecule for the interplay between FN-1 and β-catenin, and that FN-1 expression increased, but ITGB1 expression decreased in osteoblasts during OP progression. Therefore, our study reveals a novel explanation for WNT/β-catenin pathway inactivation in OP pathology. Supplying of FN-1 and ITGB1 may provide a potential therapeutic strategy in improving bone formation during OP.
Collapse
|
18
|
Nie X, Zhao J, Ling H, Deng Y, Li X, He Y. Exploring microRNAs in diabetic chronic cutaneous ulcers: Regulatory mechanisms and therapeutic potential. Br J Pharmacol 2020; 177:4077-4095. [PMID: 32449793 PMCID: PMC7443474 DOI: 10.1111/bph.15139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic chronic cutaneous ulcers (DCU) are one of the serious complications of diabetes mellitus, occurring mainly in diabetic patients with peripheral neuropathy. Recent studies have indicated that microRNAs (miRNAs/miRs) and their target genes are essential regulators of cell physiology and pathology including biological processes that are involved in the regulation of diabetes and diabetes-related microvascular complications. in vivo and in vitro models have revealed that the expression of some miRNAs can be regulated in the inflammatory response, cell proliferation, and wound remodelling of DCU. Nevertheless, the potential application of miRNAs to clinical use is still limited. Here, we provide a contemporary overview of the miRNAs as well as their associated target genes and pathways (including Wnt/β-catenin, NF-κB, TGF-β/Smad, and PI3K/AKT/mTOR) related to DCU healing. We also summarize the current development of drugs for DCU treatment and discuss the therapeutic challenges of DCU treatment and its future research directions.
Collapse
Affiliation(s)
- Xuqiang Nie
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
- College of PharmacyZunyi Medical UniversityZunyiChina
- Institute of Materia Medica, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Jiufeng Zhao
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Hua Ling
- School of PharmacyGeorgia Campus ‐ Philadelphia College of Osteopathic MedicineSuwaneeGAUSA
| | - Youcai Deng
- Institute of Materia Medica, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Xiaohui Li
- Institute of Materia Medica, College of PharmacyThird Military Medical UniversityChongqingChina
| | - Yuqi He
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
- College of PharmacyZunyi Medical UniversityZunyiChina
| |
Collapse
|
19
|
Liu D, Zhang H, Cui M, Chen C, Feng Y. Hsa-miR-425-5p promotes tumor growth and metastasis by activating the CTNND1-mediated β-catenin pathway and EMT in colorectal cancer. Cell Cycle 2020; 19:1917-1927. [PMID: 32594834 PMCID: PMC7469528 DOI: 10.1080/15384101.2020.1783058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy with high mortality. However, the roles of miR-425-5p and its underlying mechanism in CRC remain unknown. Here, RT-qPCR confirmed that miR-425-5p expression was increased by miR-425-5p mimic in SW480 cells and decreased by miR-425-5p inhibitor in LOVO cells. CCK-8, flow cytometry, wound healing and transwell assays revealed that the increased miR-425-5p promoted cell viability, cell cycle entry, migration and invasion in CRC. Besides, miR-425-5p overexpression induced epithelial-mesenchymal transition (EMT) with upregulation of Fibronectin, N-cadherin, Vimentin, and downregulation of E-cadherin. Moreover, miR-425-5p overexpression induced c-myc, Cyclin D1 and MMP7 levels, and promoted β-catenin translocation to the nucleus. Knockdown of miR-425-5p exerted opposite effects. Luciferase reporter assay indicated that miR-425-5p directly targeted CTNND1. Overexpression of miR-425-5p repressed CTNND1 expression at mRNA and protein levels. Silencing of CTNND1 had the inhibitory effect of miR-425-5p inhibitor on cell proliferation, migration, invasion, EMT, and the activation of β-catenin signaling pathway. Furthermore, miR-425-5p promoted tumor growth and metastasis in vivo. In conclusion, miR-425-5p may promote tumorigenesis and metastasis through activating CTNND1-mediated β-catenin pathway, which may provide therapeutic targets for human CRC.
Collapse
Affiliation(s)
- Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingming Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chunsheng Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yong Feng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
20
|
Ho TJ, Chen JK, Li TS, Lin JH, Hsu YH, Wu JR, Tsai WT, Chen HP. The curative effects of the traditional Chinese herbal medicine "Jinchuang ointment" on excisional wounds. Chin Med 2020; 15:41. [PMID: 32377230 PMCID: PMC7195791 DOI: 10.1186/s13020-020-00324-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/26/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND "Jinchuang ointment" is a traditional Chinese herbal medicine for external incised wounds. This herbal medicine has been successfully used to treat patients with diabetic foot ulcers and pressure sores in Taiwan for several decades. We previously examined its biological activities on cell-based in vitro assay platforms. Because some patients refused to use animal-derived ingredients ointment during our clinical practice, the efficacy of plant oil-based reconstituted "Jinchuang ointment" was also investigated. METHODS A porcine excisional wound model was established and used to evaluate its efficacy in vivo in this study. Besides, an unusual clinical case is also present. RESULTS As judged from the wound appearance of animal studies on day 14 and the results of blood flow flux at the wound sites on day 28, "Jinchuang ointment" accelerated wound closure significantly better than the control group. CONCLUSIONS The results from clinical treatment, histopathological evaluation, and the animal study showed that "Jinchung ointment" promotes wound healing significantly better than the control group. Also, sesame oil-reconstituted ointment can be a choice for patients who refuse to use lard-containing ointment.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, 97004 Taiwan
| | - Jhong-Kuei Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
| | - Tzong Shiun Li
- Department of Plastic Surgery, Show Chwan Memorial Hospital, Changhua County, 50008 Taiwan
- Innovation Research Center, Show Chwan Memorial Hospital, Changhua County, 50008 Taiwan
| | - Jung-Hsing Lin
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, 701, Sec 3, Zhongyang Road, Hualien, 97004 Taiwan
| | - Yung-Hsiang Hsu
- Department of Pathology, School of Medicine, Tzu Chi University, Hualien, 97004 Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
| | - Jia-Ru Wu
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
| | - Wan-Ting Tsai
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
| | - Hao-Ping Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 97002 Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, 701, Sec 3, Zhongyang Road, Hualien, 97004 Taiwan
| |
Collapse
|
21
|
Profile of Matrix-Remodeling Proteinases in Osteoarthritis: Impact of Fibronectin. Cells 2019; 9:cells9010040. [PMID: 31877874 PMCID: PMC7017325 DOI: 10.3390/cells9010040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex and specialized three-dimensional macromolecular network, present in nearly all tissues, that also interacts with cell surface receptors on joint resident cells. Changes in the composition and physical properties of the ECM lead to the development of many diseases, including osteoarthritis (OA). OA is a chronic degenerative rheumatic disease characterized by a progressive loss of synovial joint function as a consequence of the degradation of articular cartilage, also associated with alterations in the synovial membrane and subchondral bone. During OA, ECM-degrading enzymes, including urokinase-type plasminogen activator (uPA), matrix metalloproteinases (MMPs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), cleave ECM components, such as fibronectin (Fn), generating fibronectin fragments (Fn-fs) with catabolic properties. In turn, Fn-fs promote activation of these proteinases, establishing a degradative and inflammatory feedback loop. Thus, the aim of this review is to update the contribution of ECM-degrading proteinases to the physiopathology of OA as well as their modulation by Fn-fs.
Collapse
|
22
|
Zhou S, Hokugo A, McClendon M, Zhang Z, Bakshi R, Wang L, Segovia LA, Rezzadeh K, Stupp SI, Jarrahy R. Bioactive peptide amphiphile nanofiber gels enhance burn wound healing. Burns 2019; 45:1112-1121. [DOI: 10.1016/j.burns.2018.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 06/08/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022]
|
23
|
Meng E, Chen CL, Liu CC, Liu CC, Chang SJ, Cherng JH, Wang HH, Wu ST. Bioapplications of Bacterial Cellulose Polymers Conjugated with Resveratrol for Epithelial Defect Regeneration. Polymers (Basel) 2019; 11:E1048. [PMID: 31208051 PMCID: PMC6632064 DOI: 10.3390/polym11061048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/24/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Excellent wound dressing is essential for effective wound repair and regeneration. However, natural polymeric skin substitutes often lack mechanical strength and hydrophilicity. One way to overcome this limitation is to use biodegradable polymers with high mechanical strength and low skin-irritation induction in wet environments. Bacterial cellulose (BC) is an attractive polymer for medical applications; unlike synthetic polymers, it is biodegradable and renewable and has a strong affinity for materials containing hydroxyl groups. Therefore, we conjugated it with resveratrol (RSV), which has a 4'-hydroxyl group and exhibits good biocompatibility and no cytotoxicity. We synthesized BC scaffolds with immobilized RSV and characterized the resulting BC/RSV scaffold with scanning electron microscopy and Fourier-transform infrared spectroscopy. We found that RSV was released from the BC in vitro after ~10 min, and immunofluorescence staining showed that BC was highly biocompatible and regenerated epithelia. Additionally, Masson's trichrome staining showed that the scaffolds preserved the normal collagen-bundling pattern and induced re-epithelialization in defective rat epidermis. These results indicated that RSV-conjugated BC created a biocompatible environment for stem cell attachment and growth and promoted epithelial regeneration during wound healing.
Collapse
Affiliation(s)
- En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 112, Taiwan.
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 112, Taiwan.
| | - Chuan-Chieh Liu
- Division of Cardiology, Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City 231, Taiwan.
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
| | - Cheng-Che Liu
- Department of Physiology and Biophysics; Graduate Institute of Physiology, National Defense Medical Center, Taipei 114, Taiwan.
| | - Shu-Jen Chang
- Division of Rheumatology/Immunology/Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan.
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Hsiao-Hsien Wang
- Section of Urology, Cheng-Hsin Rehabilitation Medical Center, Taipei 112, Taiwan.
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 112, Taiwan.
| |
Collapse
|
24
|
Aljghami ME, Jeschke MG, Amini-Nik S. Examining the contribution of surrounding intact skin during cutaneous healing. J Anat 2019; 234:523-531. [PMID: 30786015 DOI: 10.1111/joa.12941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Severe cutaneous wounds expose the body to the external environment, which may lead to impairments in bodily functions and increased risk of infection. There is a need to develop skin substitutes which could effectively promote complete skin regeneration following an injury. Murine models are used to test such skin substitutes, but their healing involves contraction of the dermis not found in human wounds. We have previously described a device called a dome, which comes in two models, that is used to prevent skin contraction in mice. One model provides a physical barrier to minimize contraction, and the other model has additional perforations in the barrier to allow cellular contribution from the surrounding intact skin. Taking advantage of an enhanced version of these two models, we compared granulation tissue formation, the extent of vascularization, and the transition to myofibroblastic phenotype between the models. We enhanced the dome by developing a twist open cap dome and applied the two models of the dome into the excisional wound biopsy in mice. We demonstrate that the dome can be used to prevent skin contraction in mice. The control model prevented skin contraction while barricading the contribution of surrounding intact skin. When not barricaded, the intact skin enhances wound healing by increasing the number of myofibroblasts and neovascularization. Using a novel model of inhibition of skin contraction in rodents, we examined the contribution from the surrounding intact skin to granulation tissue formation, myofibroblastic differentiation, and neovascularization during the course of skin healing in mice.
Collapse
Affiliation(s)
- Makram E Aljghami
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Connon CJ, Gouveia RM. Autogenous Biofabrication of Nativelike, Scaffold-Free Human Skin Equivalents Using a Smart, Enzyme-Degradable Tissue Templating Coating. ACS APPLIED BIO MATERIALS 2019; 2:838-847. [DOI: 10.1021/acsabm.8b00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Che J. Connon
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, U.K
| | - Ricardo M. Gouveia
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, U.K
| |
Collapse
|
26
|
Sadiq A, Menchetti I, Shah A, Jeschke MG, Belo C, Carlos-Alcalde W, Hayat MQ, Amini-Nik S. 5-HT1A Receptor Function Makes Wound Healing a Happier Process. Front Pharmacol 2018; 9:1406. [PMID: 30618734 PMCID: PMC6297675 DOI: 10.3389/fphar.2018.01406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Skin wound healing is a multistage phenomenon that is regulated by cell–cell interplay and various factors. Endogenous serotonin is an important neurotransmitter and cytokine. Its interaction with the serotonin 1A receptor (5-HTR1A) delivers downstream cellular effects. The role of serotonin (5-hydroxytryptamine, 5-HT) and the 5-HT1A receptor has been established in the regeneration of tissues such as the liver and spinal motor neurons, prompting the investigation of the role of 5-HT1A receptor in skin healing. This study assessed the role of 5-HT1A receptor in excisional wound healing by employing an excisional punch biopsy model on 5-Ht1a receptor knockout mice. Post-harvest analysis revealed 5-Ht1a receptor knockout mice showed impaired skin healing, accompanied by a greater number of F4/80 macrophages, which prolongs the inflammatory phase of wound healing. To further unravel this phenomenon, we employed the 5-HT1A receptor agonist [(R)-(+)-8-Hydroxy-DPAT hydrobromide] as a topical cream treatment in an excisional punch biopsy model. The 5-HT1A receptor agonist treated group showed a smaller wound area, scar size, and improved neovascularization, which contributed to improve healing outcomes as compared to the control. Collectively, these findings revealed that serotonin and 5-HT1A receptor play an important role during the healing process. These findings may open new lines of investigation for the potential treatment alternatives to improve skin healing with minimal scarring.
Collapse
Affiliation(s)
- Alia Sadiq
- Sunnybrook Research Institute, Toronto, ON, Canada.,Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Ahmed Shah
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Wendolyn Carlos-Alcalde
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Muhammad Qasim Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Tak HJ, Piao Z, Kim HJ, Lee SH. Axin2 overexpression promotes the early epithelial disintegration and fusion of facial prominences during avian lip development. Dev Genes Evol 2018; 228:197-211. [PMID: 30043120 DOI: 10.1007/s00427-018-0617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
The epithelial disintegration and the mesenchymal bridging are critical steps in the fusion of facial prominences during the upper lip development. These processes of epithelial-mesenchymal transition and programmed cell death are mainly influenced by Wnt signals. Axis inhibition protein2 (Axin2), a major component of the Wnt pathway, has been reported to be involved in lip development and cleft pathogenesis. We wanted to study the involvement of Axin2 in the lip development, especially during the epithelial disintegration of facial prominences. Our results show that Axin2 was expressed mainly in the epithelium of facial prominences and decreased when the prominences were about to contact each other between Hamburger-Hamilton stages 27 and 28 of chicken embryos. The epithelial integrity was destructed or kept intact by the local gain or loss of Axin2 expression, resulting in morphological changes in the facial processes and their skeletal derivatives including the maxilla, nasal, premaxilla bone, and their junctions without cleft formation. These changes were related to expression changes in nuclear β-catenin, pGSK3β, Slug, Smad3, E-cadherin, and p63. All these data indicate that Axin2 participates in the regulation of epithelial integrity and fusion by promoting epithelial disassociation, basement membrane breakdown, and seam loss during the fusion of facial prominences in lip development.
Collapse
Affiliation(s)
- Hye-Jin Tak
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Zhengguo Piao
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital of Guangzhou Medical College, Guangzhou City, China
| | - Hak-Jin Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sang-Hwy Lee
- Oral Science Research Center, College of Dentistry, Yonsei University, Seoul, South Korea.
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
28
|
Bakhtyar N, Jeschke MG, Herer E, Sheikholeslam M, Amini-Nik S. Exosomes from acellular Wharton's jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res Ther 2018; 9:193. [PMID: 30005703 PMCID: PMC6044104 DOI: 10.1186/s13287-018-0921-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Compromised wound healing has become a global public health challenge which presents a significant psychological, financial, and emotional burden on patients and physicians. We recently reported that acellular gelatinous Wharton's jelly of the human umbilical cord enhances skin wound healing in vitro and in vivo in a murine model; however, the key player in the jelly which enhances wound healing is still unknown. METHODS We performed mass spectrometry on acellular gelatinous Wharton's jelly to elucidate the chemical structures of the molecules. Using an ultracentrifugation protocol, we isolated exosomes and treated fibroblasts with these exosomes to assess their proliferation and migration. Mice were subjected to a full-thickness skin biopsy experiment and treated with either control vehicle or vehicle containing exosomes. Isolated exosomes were subjected to further mass spectrometry analysis to determine their cargo. RESULTS Subjecting the acellular gelatinous Wharton's jelly to proteomics approaches, we detected a large amount of proteins that are characteristic of exosomes. Here, we show that the exosomes isolated from the acellular gelatinous Wharton's jelly enhance cell viability and cell migration in vitro and enhance skin wound healing in the punch biopsy wound model in mice. Mass spectrometry analysis revealed that exosomes of Wharton's jelly umbilical cord contain a large amount of alpha-2-macroglobulin, a protein which mimics the effect of acellular gelatinous Wharton's jelly exosomes on wound healing. CONCLUSIONS Exosomes are being enriched in the native niche of the umbilical cord and can enhance wound healing in vivo through their cargo. Exosomes from the acellular gelatinous Wharton's jelly and the cargo protein alpha-2-macroglobulin have tremendous potential as a noncellular, off-the-shelf therapeutic modality for wound healing.
Collapse
Affiliation(s)
- Nazihah Bakhtyar
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
| | - Marc G. Jeschke
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- The University of Toronto, Institute of Medical Science, Toronto, ON Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The University of Toronto, Toronto, ON Canada
| | - Elaine Herer
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- Gynecology and Obstetrics Department, Sunnybrook Health Sciences Centre, Toronto, ON Canada
| | - Mohammadali Sheikholeslam
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The University of Toronto, Toronto, ON Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, Sunnybrook’s Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, Office: M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON M4N 3M5 Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine and Pathobiology (LMP), The University of Toronto, Toronto, ON Canada
| |
Collapse
|
29
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018; 123:135-154. [PMID: 28757325 PMCID: PMC5742037 DOI: 10.1016/j.addr.2017.07.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
In recent decades, there have been tremendous improvements in burn care that have allowed patients to survive severe burn injuries that were once fatal. However, a major limitation of burn care currently is the development of hypertrophic scars in approximately 70% of patients. This significantly decreases the quality of life for patients due to the physical and psychosocial symptoms associated with scarring. Current approaches to manage scarring include surgical techniques and non-surgical methods such as laser therapy, steroid injections, and compression therapy. These treatments are limited in their effectiveness and regularly fail to manage symptoms. As a result, the development of novel treatments that aim to improve outcomes and quality of life is imperative. Drug delivery that targets the molecular cascades of wound healing to attenuate or prevent hypertrophic scarring is a promising approach that has therapeutic potential. In this review, we discuss current treatments for scar management after burn injury, and how drug delivery targeting molecular signaling can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| | - Yusef Yousuf
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
31
|
|
32
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Yousuf Y, Jeschke MG, Shah A, Sadri AR, Datu AK, Samei P, Amini-Nik S. The response of muscle progenitor cells to cutaneous thermal injury. Stem Cell Res Ther 2017; 8:234. [PMID: 29041952 PMCID: PMC5646146 DOI: 10.1186/s13287-017-0686-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/02/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Severe burn results in a systemic response that leads to significant muscle wasting. It is believed that this rapid loss in muscle mass occurs due to increased protein degradation combined with reduced protein synthesis. Alterations in the microenvironment of muscle progenitor cells may partially account for this pathology. The aim of this study was to ascertain the response of muscle progenitor cells following thermal injury in mice and to enlighten the cellular cascades that contribute to the muscle wasting. METHODS C57BL/6 mice received a 20% total body surface area (TBSA) thermal injury. Gastrocnemius muscle was harvested at days 2, 7, and 14 following injury for protein and histological analysis. RESULTS We observed a decrease in myofiber cross-sectional area at 2 days post-burn. This muscle atrophy was compensated for by an increase in myofiber cross-sectional area at 7 and 14 days post-burn. Myeloperoxidase (MPO)-positive cells (neutrophils) increased significantly at 2 days. Moreover, through Western blot analysis of two key mediators of the proteolytic pathway, we show there is an increase in Murf1 and NF-κB 2 days post-burn. MPO-positive cells were also positive for NF-κB, suggesting that neutrophils attain NF-κB activity in the muscle. Unlike inflammatory and proteolytic pathways, the number of Pax7-positive muscle progenitor cells decreased significantly 2 days post-burn. This was followed by a recovery in the number of Pax7-positive cells at 7 and 14 days, suggesting proliferation of muscle progenitors that accompanied regrowth. CONCLUSION Our data show a biphasic response in the muscles of mice exposed to burn injury, with phenotypic characteristics of muscle atrophy at 2 days while compensation was observed later with a change in Pax7-positive muscle progenitor cells. Targeting muscle progenitors may be of therapeutic benefit in muscle wasting observed after burn injury.
Collapse
Affiliation(s)
- Yusef Yousuf
- Institute of Medicine Science, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Sunnybrook's Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3 M5, Canada
| | - Marc G Jeschke
- Institute of Medicine Science, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Sunnybrook's Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3 M5, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Ahmed Shah
- Sunnybrook Research Institute, Sunnybrook's Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3 M5, Canada
| | - Ali-Reza Sadri
- Institute of Medicine Science, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Sunnybrook's Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3 M5, Canada
| | - Andrea-Kaye Datu
- Sunnybrook Research Institute, Sunnybrook's Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3 M5, Canada
| | - Pantea Samei
- Sunnybrook Research Institute, Sunnybrook's Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3 M5, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, Sunnybrook's Trauma, Emergency & Critical Care (TECC) Program, Ross Tilley Burn Centre, M7-161, Lab: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3 M5, Canada. .,Laboratory in Medicine and Pathobiology, University of Toronto, Toronto, Canada. .,Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
34
|
Shah A, Amini-Nik S. The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. Int J Mol Sci 2017; 18:ijms18051068. [PMID: 28509885 PMCID: PMC5454978 DOI: 10.3390/ijms18051068] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022] Open
Abstract
Historically, plant-based products have been the basis of medicine since before the advent of modern Western medicine. Wound dressings made of honey, curcumin and other phytochemical-rich compounds have been traditionally used. Recently, the mechanisms behind many of these traditional therapies have come to light. In this review, we show that in the context of wound healing, there is a global theme of anti-inflammatory and antioxidant phytochemicals in traditional medicine. Although promising, we discuss the limitations of using some of these phytochemicals in order to warrant more research, ideally in randomized clinical trial settings.
Collapse
Affiliation(s)
- Ahmed Shah
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, ON M5S 1A8, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
35
|
Mousa A, Cui C, Song A, Myneni VD, Sun H, Li JJ, Murshed M, Melino G, Kaartinen MT. Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ 2017; 24:844-854. [PMID: 28387755 PMCID: PMC5423109 DOI: 10.1038/cdd.2017.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
Appropriate bone mass is maintained by bone-forming osteoblast and bone-resorbing osteoclasts. Mesenchymal stem cell (MSC) lineage cells control osteoclastogenesis via expression of RANKL and OPG (receptor activator of nuclear factor κB ligand and osteoprotegerin), which promote and inhibit bone resorption, respectively. Protein crosslinking enzymes transglutaminase 2 (TG2) and Factor XIII-A (FXIII-A) have been linked to activity of myeloid and MSC lineage cells; however, in vivo evidence has been lacking to support their function. In this study, we show in mice that TG2 and FXIII-A control monocyte-macrophage cell differentiation into osteoclasts as well as RANKL production in MSCs and in adipocytes. Long bones of mice lacking TG2 and FXIII-A transglutaminases, show compromised biomechanical properties and trabecular bone loss in axial and appendicular skeleton. This was caused by increased osteoclastogenesis, a cellular phenotype that persists in vitro. The increased potential of TG2 and FXIII-A deficient monocytes to form osteoclasts was reversed by chemical inhibition of TG activity, which revealed the presence of TG1 in osteoclasts and assigned different roles for the TGs as regulators of osteoclastogenesis. TG2- and FXIII-A-deficient mice had normal osteoblast activity, but increased bone marrow adipogenesis, MSCs lacking TG2 and FXIII-A showed high adipogenic potential and significantly increased RANKL expression as well as upregulated TG1 expression. Chemical inhibition of TG activity in the null cells further increased adipogenic potential and RANKL production. Altered differentiation of TG2 and FXIII-A null MSCs was associated with plasma fibronectin (FN) assembly defect in cultures and FN retention in serum and marrow in vivo instead of assembly into bone. Our findings provide new functions for TG2, FXIII-A and TG1 in bone cells and identify them as novel regulators of bone mass, plasma FN homeostasis, RANKL production and myeloid and MSC cell differentiation.
Collapse
Affiliation(s)
- Aisha Mousa
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Cui Cui
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Aimei Song
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Vamsee D Myneni
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Huifang Sun
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
| | - Jin Jin Li
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Monzur Murshed
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
- Shriners Hospital for Children, Montreal, QC, Canada
| | - Gerry Melino
- Department Experimental Medicine & Surgery, University of Rome Tor Vergata, Rome, Italy
- MRC Toxicology Unit, Leicester LE19HN, UK
| | - Mari T Kaartinen
- Faculty of Dentistry, Division of Biomedical Sciences, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Bakhtyar N, Jeschke MG, Mainville L, Herer E, Amini-Nik S. Acellular Gelatinous Material of Human Umbilical Cord Enhances Wound Healing: A Candidate Remedy for Deficient Wound Healing. Front Physiol 2017; 8:200. [PMID: 28421003 PMCID: PMC5379110 DOI: 10.3389/fphys.2017.00200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
Impaired wound healing is a severe clinical challenge and research into finding effective wound healing strategies is underway as there is no ideal treatment. Gelatinous material from the umbilical cord called Wharton's jelly is a valuable source of mesenchymal stem cells which have been shown to aid wound healing. While the cellular component of Wharton's jelly has been the subject of extensive research during the last few years, little is known about the de-cellularized jelly material of the umbilical cord. This is important as they are native niche of stem cells. We have isolated Wharton's jelly from umbilical cords and then fractionated acellular gelatinous Wharton's jelly (AGWJ). Here, we show for the first time that AGWJ enhances wound healing in vitro as well as in vivo for wounds in a murine model. In vivo staining of the wounds revealed a smaller wound length in the AGWJ treated wounds in comparison to control treatment by enhancing cell migration and differentiation. AGWJ significantly enhanced fibroblast cell migration in vitro. Aside from cell migration, AGWJ changed the cell morphology of fibroblasts to a more elongated phenotype, characteristic of myofibroblasts, confirmed by upregulation of alpha smooth muscle actin using immunoblotting. AGWJ treatment of wounds led to accelerated differentiation of cells into myofibroblasts, shortening the proliferation phase of wound healing. This data provides support for a novel wound healing remedy using AGWJ. AGWJ being native biological, cost effective and abundantly available globally, makes it a highly promising treatment option for wound dressing and skin regeneration.
Collapse
Affiliation(s)
- Nazihah Bakhtyar
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada
| | - Marc G Jeschke
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of TorontoToronto, ON, Canada
| | - Laurence Mainville
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada
| | - Elaine Herer
- Department of Gynecology and Obstetrics, Sunnybrook Health Sciences Centre, University of TorontoToronto, ON, Canada
| | - Saeid Amini-Nik
- Department of Biological Sciences, Sunnybrook Health Sciences Center, Sunnybrook Research InstituteToronto, ON, Canada.,Division of Plastic Surgery, Department of Surgery, University of TorontoToronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
37
|
Jeschke MG, Sadri AR, Belo C, Amini-Nik S. A Surgical Device to Study the Efficacy of Bioengineered Skin Substitutes in Mice Wound Healing Models. Tissue Eng Part C Methods 2017; 23:237-242. [DOI: 10.1089/ten.tec.2016.0545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Marc G. Jeschke
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
- Institute of Medical Science, University of Toronto, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Ali-Reza Sadri
- Institute of Medical Science, University of Toronto, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Belo
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathology, University of Toronto, Canada
| |
Collapse
|
38
|
Miyoshi H, VanDussen KL, Malvin NP, Ryu SH, Wang Y, Sonnek NM, Lai CW, Stappenbeck TS. Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium. EMBO J 2016; 36:5-24. [PMID: 27797821 DOI: 10.15252/embj.201694660] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022] Open
Abstract
Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound-associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE2) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β-catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE2-Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE2 and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury.
Collapse
Affiliation(s)
- Hiroyuki Miyoshi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole P Malvin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stacy H Ryu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chin-Wen Lai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Nicholas MN, Jeschke MG, Amini-Nik S. Methodologies in creating skin substitutes. Cell Mol Life Sci 2016; 73:3453-72. [PMID: 27154041 PMCID: PMC4982839 DOI: 10.1007/s00018-016-2252-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/14/2022]
Abstract
The creation of skin substitutes has significantly decreased morbidity and mortality of skin wounds. Although there are still a number of disadvantages of currently available skin substitutes, there has been a significant decline in research advances over the past several years in improving these skin substitutes. Clinically most skin substitutes used are acellular and do not use growth factors to assist wound healing, key areas of potential in this field of research. This article discusses the five necessary attributes of an ideal skin substitute. It comprehensively discusses the three major basic components of currently available skin substitutes: scaffold materials, growth factors, and cells, comparing and contrasting what has been used so far. It then examines a variety of techniques in how to incorporate these basic components together to act as a guide for further research in the field to create cellular skin substitutes with better clinical results.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Marc G Jeschke
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Saeid Amini-Nik
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Ross Tilley Burn Centre, Sunnybrook Research Institute, Room: M7-140, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
40
|
Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis 2016; 11:95-104. [PMID: 26309090 DOI: 10.1080/15476278.2015.1086052] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cutaneous wound repair in adult mammals typically does not regenerate original dermal architecture. Skin that has undergone repair following injury is not identical to intact uninjured skin. This disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development and thus we seek a deeper understanding of the role that Wnt signaling plays in the mechanisms of skin repair in both fetal and adult wounds. The influence of secreted Wnt signaling proteins in tissue homeostasis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. Wnt signaling is activated by wounding and participates in every subsequent stage of the healing process from the control of inflammation and programmed cell death, to the mobilization of stem cell reservoirs within the wound site. Endogenous Wnt signaling augmentation represents an attractive option to aid in the restoration of cutaneous wounds, as the complex mechanisms of the Wnt pathway have been increasingly investigated over the years. In this review, we summarize recent data elucidating the roles that Wnt signaling plays in cutaneous wound healing process.
Collapse
Affiliation(s)
- Khosrow S Houschyar
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA. ,b Clinic for Plastic and Reconstructive Surgery ; Bergmannstrost Halle , Germany
| | - Arash Momeni
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Malcolm N Pyles
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Zeshaan N Maan
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Alexander J Whittam
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Frank Siemers
- b Clinic for Plastic and Reconstructive Surgery ; Bergmannstrost Halle , Germany
| |
Collapse
|
41
|
Zhou L, Yang K, Randall Wickett R, Zhang Y. Dermal fibroblasts induce cell cycle arrest and block epithelial-mesenchymal transition to inhibit the early stage melanoma development. Cancer Med 2016; 5:1566-79. [PMID: 27061029 PMCID: PMC4944884 DOI: 10.1002/cam4.707] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 02/05/2023] Open
Abstract
Stromal fibroblasts are an integral part of the tumor stroma and constantly interact with cancer cells to promote their initiation and progression. However, the role and function of dermal fibroblasts during the early stage of melanoma development remain poorly understood. We, therefore, designed a novel genetic approach to deactivate stromal fibroblasts at the onset of melanoma formation by targeted ablation of β-catenin. To our surprise, melanoma tumors formed from β-catenin-deficient group (B16F10 mixed with β-catenin-deficient fibroblasts) appeared earlier than tumors formed from control group (B16F10 mixed with normal dermal fibroblasts). At the end point when tumors were collected, mutant tumors were bigger and heavier than control tumors. Further analysis showed that there were fewer amounts of stromal fibroblasts and myofibroblasts inside mutant tumor stroma. Melanoma tumors from control group showed reduced proliferation, down-regulated expression of cyclin D1 and increased expression of cyclin-dependent kinase inhibitor p16, suggesting dermal fibroblasts blocked the onset of melanoma tumor formation by inducing a cell cycle arrest in B16F10 melanoma cells. Furthermore, we discovered that dermal fibroblasts prevented epithelial-mesenchymal transition in melanoma cells. Overall, our findings demonstrated that dermal fibroblasts crosstalk with melanoma cells to regulate in vivo tumor development via multiple mechanisms, and the outcomes of their reciprocal interactions depend on activation states of stromal fibroblasts and stages of melanoma development.
Collapse
Affiliation(s)
- Linli Zhou
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| | - Kun Yang
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| | - R. Randall Wickett
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| | - Yuhang Zhang
- Division of Pharmaceutical SciencesCollege of PharmacyUniversity of CincinnatiCincinnatiOhio45267
| |
Collapse
|
42
|
Nicholas MN, Jeschke MG, Amini-Nik S. Cellularized Bilayer Pullulan-Gelatin Hydrogel for Skin Regeneration. Tissue Eng Part A 2016; 22:754-64. [PMID: 27072720 PMCID: PMC4876533 DOI: 10.1089/ten.tea.2015.0536] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/12/2016] [Indexed: 12/24/2022] Open
Abstract
Skin substitutes significantly reduce the morbidity and mortality of patients with burn injuries and chronic wounds. However, current skin substitutes have disadvantages related to high costs and inadequate skin regeneration due to highly inflammatory wounds. Thus, new skin substitutes are needed. By combining two polymers, pullulan, an inexpensive polysaccharide with antioxidant properties, and gelatin, a derivative of collagen with high water absorbency, we created a novel inexpensive hydrogel-named PG-1 for "pullulan-gelatin first generation hydrogel"-suitable for skin substitutes. After incorporating human fibroblasts and keratinocytes onto PG-1 using centrifugation over 5 days, we created a cellularized bilayer skin substitute. Cellularized PG-1 was compared to acellular PG-1 and no hydrogel (control) in vivo in a mouse excisional skin biopsy model using newly developed dome inserts to house the skin substitutes and prevent mouse skin contraction during wound healing. PG-1 had an average pore size of 61.69 μm with an ideal elastic modulus, swelling behavior, and biodegradability for use as a hydrogel for skin substitutes. Excellent skin cell viability, proliferation, differentiation, and morphology were visualized through live/dead assays, 5-bromo-2'-deoxyuridine proliferation assays, and confocal microscopy. Trichrome and immunohistochemical staining of excisional wounds treated with the cellularized skin substitute revealed thicker newly formed skin with a higher proportion of actively proliferating cells and incorporation of human cells compared to acellular PG-1 or control. Excisional wounds treated with acellular or cellularized hydrogels showed significantly less macrophage infiltration and increased angiogenesis 14 days post skin biopsy compared to control. These results show that PG-1 has ideal mechanical characteristics and allows ideal cellular characteristics. In vivo evidence suggests that cellularized PG-1 promotes skin regeneration and may help promote wound healing in highly inflammatory wounds, such as burns and chronic wounds.
Collapse
Affiliation(s)
- Mathew N Nicholas
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| | - Marc G Jeschke
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Sunnybrook Research Institute, Ross Tilley Burn Centre, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
43
|
McLane JS, Ligon LA. Palladin mediates stiffness-induced fibroblast activation in the tumor microenvironment. Biophys J 2016. [PMID: 26200861 DOI: 10.1016/j.bpj.2015.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mechanical properties of the tumor microenvironment have emerged as key factors in tumor progression. It has been proposed that increased tissue stiffness can transform stromal fibroblasts into carcinoma-associated fibroblasts. However, it is unclear whether the three to five times increase in stiffness seen in tumor-adjacent stroma is sufficient for fibroblast activation. In this study we developed a three-dimensional (3D) hydrogel model with precisely tunable stiffness and show that a physiologically relevant increase in stiffness is sufficient to lead to fibroblast activation. We found that soluble factors including CC-motif chemokine ligand (CCL) chemokines and fibronectin are necessary for this activation, and the combination of C-C chemokine receptor type 4 (CCR4) chemokine receptors and β1 and β3 integrins are necessary to transduce these chemomechanical signals. We then show that these chemomechanical signals lead to the gene expression changes associated with fibroblast activation via a network of intracellular signaling pathways that include focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K). Finally, we identify the actin-associated protein palladin as a key node in these signaling pathways that result in fibroblast activation.
Collapse
Affiliation(s)
- Joshua S McLane
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York
| | - Lee A Ligon
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York.
| |
Collapse
|
44
|
Jeschke MG, Patsouris D, Stanojcic M, Abdullahi A, Rehou S, Pinto R, Chen P, Burnett M, Amini-Nik S. Pathophysiologic Response to Burns in the Elderly. EBioMedicine 2015; 2:1536-48. [PMID: 26629550 PMCID: PMC4634201 DOI: 10.1016/j.ebiom.2015.07.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/20/2015] [Accepted: 07/28/2015] [Indexed: 01/07/2023] Open
Abstract
Over the last decades advancements have improved survival and outcomes of severely burned patients except one population, elderly. The Lethal Dose 50 (LD50) burn size in elderly has remained the same over the past three decades, and so has morbidity and mortality, despite the increased demand for elderly burn care. The objective of this study is to gain insights on why elderly burn patients have had such a poor outcome when compared to adult burn patients. The significance of this project is that to this date, burn care providers recognize the extreme poor outcome of elderly, but the reason remains unclear. In this prospective translational trial, we have determined clinical, metabolic, inflammatory, immune, and skin healing aspects. We found that elderly have a profound increased mortality, more premorbid conditions, and stay at the hospital for longer, p < 0.05. Interestingly, we could not find a higher incidence of infection or sepsis in elderly, p > 0.05, but a significant increased incidence of multi organ failure, p < 0.05. These clinical outcomes were associated with a delayed hypermetabolic response, increased hyperglycemic and hyperlipidemic responses, inversed inflammatory response, immune-compromisation and substantial delay in wound healing predominantly due to alteration in characteristics of progenitor cells, p < 0.05. In summary, elderly have substantially different responses to burns when compared to adults associated with increased morbidity and mortality. This study indicates that these responses are complex and not linear, requiring a multi-modal approach to improve the outcome of severely burned elderly. The outcome of elderly burn management is low with reasons that remain unclear. Elderly have a higher mortality, more premorbid conditions and a higher incidence of multi organ failure. Elderly stay at the hospital for longer time. The incidence of infection or sepsis is not higher than young adult. Elderly show delayed hyper-metabolic response, increased hyperglycemic and hyperlipidemic responses. Elderly present inversed inflammatory response. Elderly show substantial delay in wound healing, predominantly due to alteration in characteristics of progenitor cells.
Despite advancements in treatment of severely burned patients, the death rate is still high in elderly. In this project, we investigate the reason behind this poor outcome. Our report highlights some of the deficiencies that we have observed in elderly patients and compare them to the young adults. Elderly have late immune responses which are necessary to fight the disease. Their body lacks some of the essential stem cells which are essential for skin healing. By learning the major deficiencies that come with this age group, we will be able to help elderly who have been subjected to burn injury.
Collapse
Affiliation(s)
- Marc G Jeschke
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - David Patsouris
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - Mile Stanojcic
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - Abdikarim Abdullahi
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - Sarah Rehou
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - Ruxandra Pinto
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - Peter Chen
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - Marjorie Burnett
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| | - Saeid Amini-Nik
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Canada
| |
Collapse
|
45
|
Song H, Man L, Wang Y, Bai X, Wei S, Liu Y, Liu M, Gu X, Wang Y. The Regenerating Spinal Cord of Gecko Maintains Unaltered Expression of β-Catenin Following Tail Amputation. J Mol Neurosci 2014; 55:653-62. [DOI: 10.1007/s12031-014-0405-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
46
|
Tsao CT, Leung M, Chang JYF, Zhang M. A simple material model to generate epidermal and dermal layers in vitro for skin regeneration. J Mater Chem B 2014; 2:5256-5264. [PMID: 25147728 PMCID: PMC4136534 DOI: 10.1039/c4tb00614c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an urgent need for a rationally-designed, cellularized skin graft capable of reproducing the micro-environmental cues necessary to promote skin healing and regeneration. To address this need, we developed a composite scaffold, namely, CA/C-PEG, composing of a porous chitosan-alginate (CA) structure impregnated with a thermally reversible chitosan-poly(ethylene glycol) (C-PEG) gel to incorporate skin cells as a bi-layered skin equivalent. Fibroblasts were encapsulated in C-PEG to simulate the dermal layer while the keratinocytes were seeded on the top of CA/C-PEG composite scaffold to mimic the epidermal layer. The CA scaffold provided mechanical support for the C-PEG gel and the C-PEG gel physically segregated the keratinocytes from fibroblasts in the construct. Three different tissue culture micro-environments were tested: CA scaffolds without C-PEG cultured in cell culture medium without air-liquid interface (-gel-interface), CA scaffolds impregnated with C-PEG and cultured in cell culture medium without air-liquid interface (-gel-interface), and CA scaffolds impregnated with C-PEG cultured in cell culture medium with air-liquid interface (-gel- interface). We found that the presence of C-PEG increased the cellular proliferation rates of both keratinocytes and fibroblasts, and the air-liquid interface induced keratinocyte maturation. This CA/C-PEG composite scaffold design is able to recapitulate micro-environments relevant to skin tissue engineering, and may be a useful tool for future skin tissue engineering applications.
Collapse
Affiliation(s)
- Ching-Ting Tsao
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew Leung
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Julia Yu-Fong Chang
- Department of Oral & Maxillofacial Surgery, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Amini-Nik S, Cambridge E, Yu W, Guo A, Whetstone H, Nadesan P, Poon R, Hinz B, Alman BA. β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 2014; 124:2599-610. [PMID: 24837430 DOI: 10.1172/jci62059] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 03/27/2014] [Indexed: 01/28/2023] Open
Abstract
A β-catenin/T cell factor-dependent transcriptional program is critical during cutaneous wound repair for the regulation of scar size; however, the relative contribution of β-catenin activity and function in specific cell types in the granulation tissue during the healing process is unknown. Here, cell lineage tracing revealed that cells in which β-catenin is transcriptionally active express a gene profile that is characteristic of the myeloid lineage. Mice harboring a macrophage-specific deletion of the gene encoding β-catenin exhibited insufficient skin wound healing due to macrophage-specific defects in migration, adhesion to fibroblasts, and ability to produce TGF-β1. In irradiated mice, only macrophages expressing β-catenin were able to rescue wound-healing deficiency. Evaluation of scar tissue collected from patients with hypertrophic and normal scars revealed a correlation between the number of macrophages within the wound, β-catenin levels, and cellularity. Our data indicate that β-catenin regulates myeloid cell motility and adhesion and that β-catenin-mediated macrophage motility contributes to the number of mesenchymal cells and ultimate scar size following cutaneous injury.
Collapse
|
48
|
Animal models in burn research. Cell Mol Life Sci 2014; 71:3241-55. [PMID: 24714880 DOI: 10.1007/s00018-014-1612-5] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.
Collapse
|
49
|
Stoffels JMJ, Zhao C, Baron W. Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 2013; 70:4243-53. [PMID: 23756580 PMCID: PMC11113129 DOI: 10.1007/s00018-013-1350-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022]
Abstract
Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Josephine M. J. Stoffels
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Zhao
- Wellcome Trust—Medical Research Council Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
50
|
Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci 2012; 70:2059-81. [PMID: 23052205 PMCID: PMC3663196 DOI: 10.1007/s00018-012-1152-9] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 12/15/2022]
Abstract
Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.
Collapse
|