1
|
Arcay R, Barceló-Nicolau M, Suárez L, Martín L, Reigada R, Höring M, Liebisch G, Garrido C, Cabot G, Vílchez H, Cortés-Lara S, González de Herrero E, López-Causapé C, Oliver A, Barceló-Coblijn G, Mena A. Gut microbiome and plasma lipidome analysis reveals a specific impact of Clostridioides difficile infection on intestinal bacterial communities and sterol metabolism. mBio 2024; 15:e0134724. [PMID: 39189787 PMCID: PMC11481895 DOI: 10.1128/mbio.01347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/28/2024] Open
Abstract
Clostridioides difficile infection (CDI) causes alterations in the intestinal microbiota, frequently associated with changes in the gut metabolism of bile acids and cholesterol. In addition to the impact on microbiome composition and given the metabolic changes occurring during CDI, our work focuses on the importance to know the effects at the local and systemic levels, both during the infection and its treatment, by paying particular attention to plasma lipid metabolism due to its relationship with CDI pathogenesis. Specific changes, characterized by a loss of microbial richness and diversity and related to a reduction in short-chain acid-producing bacteria and an increase in bile salt hydrolase-producing bacteria, were observed in the gut microbiota of CDI patients, especially in those suffering from recurrent CDI (RCDI). However, gut microbiota showed its ability to restore itself after treatment, resembling healthy individuals, in those patients treated by fecal microbiome transfer (FMT), in contrast with those treated with antibiotics, and displaying increased levels of Eubacterium coprostanoligenes, a cholesterol-reducing anaerobe. Interestingly, changes in plasma lipidome revealed a global depletion in circulating lipids in CDI, with the largest impact on cholesteryl esters. CDI patients also showed a specific and consistent decrease in the levels of lipid species containing linoleic acid-an essential fatty acid-which were only partially recovered after antibiotic treatment. Analysis of the plasma lipidome reflects CDI impact on the gut microbiota and its metabolism, evidencing changes in sterol and fatty acid metabolism that are possibly related to specific alterations observed in gut microbial communities of CDI patients. IMPORTANCE There is increasing evidence about the influence the changes in microbiota and its metabolism has on numerous diseases and infections such as Clostridioides difficile infection (CDI). The knowledge of these changes at local and systemic levels can help us manage this infection to avoid recurrences and apply the best therapies, such as fecal microbiota transfer (FMT). This study shows a better restoration of the gut in FMT-treated patients than in antibiotic-treated patients, resembling healthy controls and showing increased levels of cholesterol-reducing bacteria. Furthermore, it evidences the CDI impact on plasma lipidome. We observed in CDI patients a global depletion in circulating lipids, particularly cholesteryl esters, and a specific decrease in linoleic acid-containing lipids, an essential fatty acid. Our observations could impact CDI management because the lipid content was only partially recovered after treatment, suggesting that continued nutritional support, aiming to restore healthy lipid levels, could be essential for a full recovery.
Collapse
Affiliation(s)
- Ricardo Arcay
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Maria Barceló-Nicolau
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Loreto Suárez
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Luisa Martín
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Rebeca Reigada
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Carmen Garrido
- Gastroenterology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Gabriel Cabot
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Helem Vílchez
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
| | - Sara Cortés-Lara
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Elisa González de Herrero
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Carla López-Causapé
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Antonio Oliver
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
- Research Unit, University Hospital Son Espases, Palma, Balearic Islands, Spain
| | - Ana Mena
- Microbiology Department, Hospital Universitari Son Espases, Palma, Balearic Islands, Spain
- Institut d’Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| |
Collapse
|
2
|
Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms 2024; 12:1004. [PMID: 38792835 PMCID: PMC11124097 DOI: 10.3390/microorganisms12051004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of nosocomial antibiotic-associated diarrhea, and colitis, with increasing incidence and healthcare costs. Its pathogenesis is primarily driven by toxins produced by the bacterium C. difficile, Toxin A (TcdA) and Toxin B (TcdB). Certain strains produce an additional toxin, the C. difficile transferase (CDT), which further enhances the virulence and pathogenicity of C. difficile. These toxins disrupt colonic epithelial barrier integrity, and induce inflammation and cellular damage, leading to CDI symptoms. Significant progress has been made in the past decade in elucidating the molecular mechanisms of TcdA, TcdB, and CDT, which provide insights into the management of CDI and the future development of novel treatment strategies based on anti-toxin therapies. While antibiotics are common treatments, high recurrence rates necessitate alternative therapies. Bezlotoxumab, targeting TcdB, is the only available anti-toxin, yet limitations persist, prompting ongoing research. This review highlights the current knowledge of the structure and mechanism of action of C. difficile toxins and their role in disease. By comprehensively describing the toxin-mediated mechanisms, this review provides insights for the future development of novel treatment strategies and the management of CDI.
Collapse
Affiliation(s)
- Evdokia Pourliotopoulou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Melania Kachrimanidou
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
3
|
Seal A, Hughes M, Wei F, Pugazhendhi AS, Ngo C, Ruiz J, Schwartzman JD, Coathup MJ. Sphingolipid-Induced Bone Regulation and Its Emerging Role in Dysfunction Due to Disease and Infection. Int J Mol Sci 2024; 25:3024. [PMID: 38474268 PMCID: PMC10932382 DOI: 10.3390/ijms25053024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The human skeleton is a metabolically active system that is constantly regenerating via the tightly regulated and highly coordinated processes of bone resorption and formation. Emerging evidence reveals fascinating new insights into the role of sphingolipids, including sphingomyelin, sphingosine, ceramide, and sphingosine-1-phosphate, in bone homeostasis. Sphingolipids are a major class of highly bioactive lipids able to activate distinct protein targets including, lipases, phosphatases, and kinases, thereby conferring distinct cellular functions beyond energy metabolism. Lipids are known to contribute to the progression of chronic inflammation, and notably, an increase in bone marrow adiposity parallel to elevated bone loss is observed in most pathological bone conditions, including aging, rheumatoid arthritis, osteoarthritis, and osteomyelitis. Of the numerous classes of lipids that form, sphingolipids are considered among the most deleterious. This review highlights the important primary role of sphingolipids in bone homeostasis and how dysregulation of these bioactive metabolites appears central to many chronic bone-related diseases. Further, their contribution to the invasion, virulence, and colonization of both viral and bacterial host cell infections is also discussed. Many unmet clinical needs remain, and data to date suggest the future use of sphingolipid-targeted therapy to regulate bone dysfunction due to a variety of diseases or infection are highly promising. However, deciphering the biochemical and molecular mechanisms of this diverse and extremely complex sphingolipidome, both in terms of bone health and disease, is considered the next frontier in the field.
Collapse
Affiliation(s)
- Anouska Seal
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
| | - Megan Hughes
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK;
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Abinaya S. Pugazhendhi
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| | | | - Melanie J. Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.S.); (F.W.); (A.S.P.); (C.N.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA (J.D.S.)
| |
Collapse
|
4
|
Wu HY, Kuo CJ, Chou CH, Ho MW, Chen CL, Hsu TS, Chen YC, Chiang-Ni C, Chen YYM, Chiu CH, Lai CH. Clostridium innocuum, an emerging pathogen that induces lipid raft-mediated cytotoxicity. Virulence 2023; 14:2265048. [PMID: 37798913 PMCID: PMC10561569 DOI: 10.1080/21505594.2023.2265048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Clostridium innocuum is an emerging spore-forming anaerobe that is often observed in Clostridioides difficile-associated inflammatory bowel disease (IBD) exacerbations. Unlike C. difficile, C. innocuum neither produces toxins nor possesses toxin-encoding genetic loci, but is commonly found in both intestinal and extra-intestinal infections. Membrane lipid rafts are composed of dynamic assemblies of cholesterol and sphingolipids, allowing bacteria to gain access to cells. However, the direct interaction between C. innocuum and lipid rafts that confers bacteria the ability to disrupt the intestinal barrier and induce pathogenesis remains unclear. In this study, we investigated the associations among nucleotide-binding oligomerization domain containing 2 (NOD2), lipid rafts, and cytotoxicity in C. innocuum-infected gut epithelial cells. Our results revealed that lipid rafts were involved in C. innocuum-induced NOD2 expression and nuclear factor (NF)-κB activation, triggering an inflammatory response. Reducing cholesterol by simvastatin significantly dampened C. innocuum-induced cell death, indicating that the C. innocuum-induced pathogenicity of cells was lipid raft-dependent. These results demonstrate that NOD2 mobilization into membrane rafts in response to C. innocuum-induced cytotoxicity results in aggravated pathogenicity.
Collapse
Affiliation(s)
- Hui-Yu Wu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Kuo
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Huei Chou
- Department of Infectious Disease, China Medical University Hospital, Taichung, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Department of Infectious Disease, China Medical University Hospital, Taichung, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chyi-Liang Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsui-Shan Hsu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chu Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chuan Chiang-Ni
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ywan M. Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Infectious Disease, Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
- Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
5
|
Bereznicka A, Mikolajczyk K, Czerwinski M, Kaczmarek R. Microbial lectome versus host glycolipidome: How pathogens exploit glycosphingolipids to invade, dupe or kill. Front Microbiol 2022; 13:958653. [PMID: 36060781 PMCID: PMC9437549 DOI: 10.3389/fmicb.2022.958653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosphingolipids (GSLs) are ubiquitous components of the cell membranes, found across several kingdoms of life, from bacteria to mammals, including humans. GSLs are a subclass of major glycolipids occurring in animal lipid membranes in clusters named "lipid rafts." The most crucial functions of GSLs include signal transduction and regulation as well as participation in cell proliferation. Despite the mainstream view that pathogens rely on protein-protein interactions to survive and thrive in their hosts, many also target the host lipids. In particular, multiple pathogens produce adhesion molecules or toxins that bind GSLs. Attachment of pathogens to cell surface receptors is the initial step in infections. Many mammalian pathogens have evolved to recognize GSL-derived receptors. Animal glycosphingolipidomes consist of multiple types of GSLs differing in terminal glycan and ceramide structures in a cell or tissue-specific manner. Interspecies differences in GSLs dictate host specificity as well as cell and tissue tropisms. Evolutionary pressure exerted by pathogens on their hosts drives changes in cell surface glycoconjugates, including GSLs, and has produced a vast number of molecules and interaction mechanisms. Despite that abundance, the role of GSLs as pathogen receptors has been largely overlooked or only cursorily discussed. In this review, we take a closer look at GSLs and their role in the recognition, cellular entry, and toxicity of multiple bacterial, viral and fungal pathogens.
Collapse
Affiliation(s)
| | | | - Marcin Czerwinski
- Department of Immunochemistry, Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wrocław, Poland
| | - Radoslaw Kaczmarek
- Department of Immunochemistry, Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
6
|
Hirschenberger M, Stadler N, Fellermann M, Sparrer KMJ, Kirchhoff F, Barth H, Papatheodorou P. CRISPA: A Non-viral, Transient Cas9 Delivery System Based on Reengineered Anthrax Toxin. Front Pharmacol 2021; 12:770283. [PMID: 34733166 PMCID: PMC8558532 DOI: 10.3389/fphar.2021.770283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
Translating the CRISPR/Cas9 genome editing technology into clinics is still hampered by rather unspecific, unsafe and/or inconvenient approaches for the delivery of its main components - the Cas9 endonuclease and a guide RNA - into cells. Here, we describe the development of a novel transient and non-viral Cas9 delivery strategy based on the translocation machinery of the Bacillus anthracis anthrax toxin, PA (protective antigen). We show that Cas9 variants fused to the N-terminus of the lethal factor or to a hexahistidine tag are shuttled through channels formed by PA into the cytosol of human cells. As proof-of-principle, we applied our new approach, denoted as CRISPA, to knock out lipolysis-stimulated lipoprotein receptor (LSR) in the human colon cancer cell line HCT116 and green-fluorescent protein (GFP) in human embryonic kidney 293T cells stably expressing GFP. Notably, we confirmed that the transporter PA can be adapted to recognize specific host cell-surface receptor proteins and may be optimized for cell type-selective delivery of Cas9. Altogether, CRISPA provides a novel, transient and non-viral way to deliver Cas9 into specific cells. Thus, this system is an additional step towards safe translation of the CRISPR/Cas9 technology into clinics.
Collapse
Affiliation(s)
- Maximilian Hirschenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.,Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Nicole Stadler
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maximilian Fellermann
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
7
|
Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2021; 12:566-577. [PMID: 32302381 PMCID: PMC7250501 DOI: 10.1093/gbe/evaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
During the last decades, hypervirulent strains of Clostridioides difficile with frequent disease recurrence and increased mortality appeared. Clostridioides difficile DSM 101085 was isolated from a patient who suffered from several recurrent infections and colonizations, likely contributing to a fatal outcome. Analysis of the toxin repertoire revealed the presence of a complete binary toxin locus and an atypical pathogenicity locus consisting of only a tcdA pseudogene and a disrupted tcdC gene sequence. The pathogenicity locus shows upstream a transposon and has been subject to homologous recombination or lateral gene transfer events. Matching the results of the genome analysis, neither TcdA nor TcdB production but the expression of cdtA and cdtB was detected. This highlights a potential role of the binary toxin C. difficile toxin in this recurrent colonization and possibly further in a host-dependent virulence. Compared with the C. difficile metabolic model strains DSM 28645 (630Δerm) and DSM 27147 (R20291), strain DSM 101085 showed a specific metabolic profile, featuring changes in the threonine degradation pathways and alterations in the central carbon metabolism. Moreover, products originating from Stickland pathways processing leucine, aromatic amino acids, and methionine were more abundant in strain DSM 101085, indicating a more efficient use of these substrates. The particular characteristics of strain C. difficile DSM 101085 may represent an adaptation to a low-protein diet in a patient with recurrent infections.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Antonia Dannheim
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany.,Göttingen International Health Network, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technical University of Braunschweig, Germany
| |
Collapse
|
8
|
Abeyawardhane DL, Godoy-Ruiz R, Adipietro KA, Varney KM, Rustandi RR, Pozharski E, Weber DJ. The Importance of Therapeutically Targeting the Binary Toxin from Clostridioides difficile. Int J Mol Sci 2021; 22:2926. [PMID: 33805767 PMCID: PMC8001090 DOI: 10.3390/ijms22062926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Novel therapeutics are needed to treat pathologies associated with the Clostridioides difficile binary toxin (CDT), particularly when C. difficile infection (CDI) occurs in the elderly or in hospitalized patients having illnesses, in addition to CDI, such as cancer. While therapies are available to block toxicities associated with the large clostridial toxins (TcdA and TcdB) in this nosocomial disease, nothing is available yet to treat toxicities arising from strains of CDI having the binary toxin. Like other binary toxins, the active CDTa catalytic subunit of CDT is delivered into host cells together with an oligomeric assembly of CDTb subunits via host cell receptor-mediated endocytosis. Once CDT arrives in the host cell's cytoplasm, CDTa catalyzes the ADP-ribosylation of G-actin leading to degradation of the cytoskeleton and rapid cell death. Although a detailed molecular mechanism for CDT entry and host cell toxicity is not yet fully established, structural and functional resemblances to other binary toxins are described. Additionally, unique conformational assemblies of individual CDT components are highlighted herein to refine our mechanistic understanding of this deadly toxin as is needed to develop effective new therapeutic strategies for treating some of the most hypervirulent and lethal strains of CDT-containing strains of CDI.
Collapse
Affiliation(s)
- Dinendra L. Abeyawardhane
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.L.A.); (R.G.-R.); (K.A.A.); (K.M.V.); (E.P.)
- Baltimore—Institute for Bioscience and Biotechnology Research, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Raquel Godoy-Ruiz
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.L.A.); (R.G.-R.); (K.A.A.); (K.M.V.); (E.P.)
- Baltimore—Institute for Bioscience and Biotechnology Research, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kaylin A. Adipietro
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.L.A.); (R.G.-R.); (K.A.A.); (K.M.V.); (E.P.)
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M. Varney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.L.A.); (R.G.-R.); (K.A.A.); (K.M.V.); (E.P.)
- Baltimore—Institute for Bioscience and Biotechnology Research, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Edwin Pozharski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.L.A.); (R.G.-R.); (K.A.A.); (K.M.V.); (E.P.)
- Baltimore—Institute for Bioscience and Biotechnology Research, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (D.L.A.); (R.G.-R.); (K.A.A.); (K.M.V.); (E.P.)
- Baltimore—Institute for Bioscience and Biotechnology Research, University of Maryland-Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Landenberger M, Nieland J, Roeder M, Nørgaard K, Papatheodorou P, Ernst K, Barth H. The cytotoxic effect of Clostridioides difficile pore-forming toxin CDTb. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183603. [PMID: 33689753 DOI: 10.1016/j.bbamem.2021.183603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023]
Abstract
Clostridioides (C.) difficile is clinically highly relevant and produces several AB-type protein toxins, which are the causative agents for C. difficile-associated diarrhea and pseudomembranous colitis. Treatment with antibiotics can lead to C. difficile overgrowth in the gut of patients due to the disturbed microbiota. C. difficile releases large Rho/Ras-GTPase glucosylating toxins TcdA and TcdB, which are considered as the major virulence factors for C. difficile-associated diseases. In addition to TcdA and TcdB, C. difficile strains isolated from severe cases of colitis produce a third toxin called CDT. CDT is a member of the family of clostridial binary actin ADP-ribosylating toxins and consists of two separate protein components. The B-component, CDTb, binds to the receptor and forms a complex with and facilitates transport and translocation of the enzymatically active A-component, CDTa, into the cytosol of target cells by forming trans-membrane pores through which CDTa translocates. In the cytosol, CDTa ADP-ribosylates G-actin causing depolymerization of the actin cytoskeleton and, eventually, cell death. In the present study, we report that CDTb exhibits a cytotoxic effect in the absence of CDTa. We show that CDTb causes cell rounding and impairs cell viability and the epithelial integrity of CaCo-2 monolayers in the absence of CDTa. CDTb-induced cell rounding depended on the presence of LSR, the specific cellular receptor of CDT. The isolated receptor-binding domain of CDTb was not sufficient to cause cell rounding. CDTb-induced cell rounding was inhibited by enzymatically inactive CDTa or a pore-blocker, implying that CDTb pores in cytoplasmic membranes contribute to cytotoxicity.
Collapse
Affiliation(s)
- Marc Landenberger
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Julian Nieland
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Maurice Roeder
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Nørgaard
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | | | - Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
10
|
Ernst K, Sailer J, Braune M, Barth H. Intoxication of mammalian cells with binary clostridial enterotoxins is inhibited by the combination of pharmacological chaperone inhibitors. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:941-954. [PMID: 33284399 PMCID: PMC8102464 DOI: 10.1007/s00210-020-02029-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
Binary enterotoxins Clostridioides difficile CDT toxin, Clostridium botulinum C2 toxin, and Clostridium perfringens iota toxin consist of two separate protein components. The B-components facilitate receptor-mediated uptake into mammalian cells and form pores into endosomal membranes through which the enzymatic active A-components translocate into the cytosol. Here, the A-components ADP-ribosylate G-actin which leads to F-actin depolymerization followed by rounding of cells which causes clinical symptoms. The protein folding helper enzymes Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506 binding protein (FKBP) families are required for translocation of A-components of CDT, C2, and iota toxins from endosomes to the cytosol. Here, we demonstrated that simultaneous inhibition of these folding helpers by specific pharmacological inhibitors protects mammalian, including human, cells from intoxication with CDT, C2, and iota toxins, and that the inhibitor combination displayed an enhanced effect compared to application of the individual inhibitors. Moreover, combination of inhibitors allowed a concentration reduction of the individual compounds as well as decreasing of the incubation time with inhibitors to achieve a protective effect. These results potentially have implications for possible future therapeutic applications to relieve clinical symptoms caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs for their membrane translocation into the cytosol of target cells.
Collapse
Affiliation(s)
- Katharina Ernst
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Judith Sailer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Maria Braune
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Korbmacher M, Fischer S, Landenberger M, Papatheodorou P, Aktories K, Barth H. Human α-Defensin-5 Efficiently Neutralizes Clostridioides difficile Toxins TcdA, TcdB, and CDT. Front Pharmacol 2020; 11:1204. [PMID: 32903430 PMCID: PMC7435013 DOI: 10.3389/fphar.2020.01204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Infections with the pathogenic bacterium Clostridioides (C.) difficile are coming more into focus, in particular in hospitalized patients after antibiotic treatment. C. difficile produces the exotoxins TcdA and TcdB. Since some years, hypervirulent strains are described, which produce in addition the binary actin ADP-ribosylating toxin CDT. These strains are associated with more severe clinical presentations and increased morbidity and frequency. Once in the cytosol of their target cells, the catalytic domains of TcdA and TcdB glucosylate and thereby inactivate small Rho-GTPases whereas the enzyme subunit of CDT ADP-ribosylates G-actin. Thus, enzymatic activity of the toxins leads to destruction of the cytoskeleton and breakdown of the epidermal gut barrier integrity. This causes clinical symptoms ranging from mild diarrhea to life-threatening pseudomembranous colitis. Therefore, pharmacological inhibition of the secreted toxins is of peculiar medical interest. Here, we investigated the neutralizing effect of the human antimicrobial peptide α-defensin-5 toward TcdA, TcdB, and CDT in human cells. The toxin-neutralizing effects of α-defensin-5 toward TcdA, TcdB, and CDT as well as their medically relevant combination were demonstrated by analyzing toxins-induced changes in cell morphology, intracellular substrate modification, and decrease of trans-epithelial electrical resistance. For TcdA, the underlying mode of inhibition is most likely based on the formation of inactive toxin-defensin-aggregates whereas for CDT, the binding- and transport-component might be influenced. The application of α-defensin-5 delayed intoxication of cells in a time- and concentration-dependent manner. Due to its effect on the toxins, α-defensin-5 should be considered as a candidate to treat severe C. difficile-associated diseases.
Collapse
Affiliation(s)
- Michael Korbmacher
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Chen Y, Huang K, Chen LK, Wu HY, Hsu CY, Tsai YS, Ko WC, Tsai PJ. Membrane Cholesterol Is Crucial for Clostridium difficile Surface Layer Protein Binding and Triggering Inflammasome Activation. Front Immunol 2020; 11:1675. [PMID: 32849582 PMCID: PMC7411348 DOI: 10.3389/fimmu.2020.01675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile, an obligate anaerobic gram-positive bacillus, generates spores and is commonly found colonizing the human gut. Patients with C. difficile infection (CDI) often exhibit clinical manifestations of pseudomembranous colitis or antibiotic-associated diarrhea. Surface layer proteins (SLPs) are the most abundant proteins in the C. difficile cell wall, suggesting that they might involve in immune recognition. Our previous results demonstrated that C. difficile triggers inflammasome activation. Here, we found SLPs as well as C. difficile induced inflammasome activation, and in a dose-dependent manner. In addition, the cholesterol-rich microdomains on the cell membrane (also referred to as lipid rafts) are thought to be crucial for bacterial adhesion and signal transduction. We demonstrated that lipid rafts participated in C. difficile SLPs binding to the cell membrane. Fluorescence microscopy showed that membrane cholesterol depletion by methyl-β-cyclodextrin (MβCD) reduced the association of SLPs with the cell surface. The coalescence of SLPs in the cholesterol-rich microdomains was confirmed in C. difficile-infected cells. Furthermore, the inflammasome activations induced by SLPs or C. difficile were abrogated by MβCD. Our results demonstrate that SLPs recruit the lipid rafts, which may be a key step for C. difficile colonization and inducing inflammasome activation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Laboratory Medicine, Mackay Memorial Hospital, New Taipei, Taiwan
| | - Kai Huang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Kuei Chen
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hui-Yu Wu
- Department of Laboratory Medicine, Mackay Memorial Hospital, New Taipei, Taiwan
| | - Chih-Yu Hsu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
13
|
Fischer S, Ückert AK, Landenberger M, Papatheodorou P, Hoffmann-Richter C, Mittler AK, Ziener U, Hägele M, Schwan C, Müller M, Kleger A, Benz R, Popoff MR, Aktories K, Barth H. Human peptide α-defensin-1 interferes with Clostridioides difficile toxins TcdA, TcdB, and CDT. FASEB J 2020; 34:6244-6261. [PMID: 32190927 DOI: 10.1096/fj.201902816r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.
Collapse
Affiliation(s)
- Stephan Fischer
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Anna-Katharina Ückert
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Marc Landenberger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | | | | | - Ann-Katrin Mittler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Ulm, Germany
| | - Marlen Hägele
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Martin Müller
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University of Ulm Medical Center, Ulm, Germany
| | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Michel R Popoff
- Department of Anaerobic Bacteria, Pasteur Institute, Paris, France
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
14
|
An Q, Li C, Chen Y, Yang Y, Song R, Zhou L, Li J, Tong A, Luo Y. Scaffold hopping of agomelatine leads to enhanced antidepressant effects by modulation of gut microbiota and host immune responses. Pharmacol Biochem Behav 2020; 192:172910. [PMID: 32194087 DOI: 10.1016/j.pbb.2020.172910] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023]
Abstract
The mechanisms underlying the pathophysiology of depression remain elusive, and the development of novel, effective antidepressant drugs remains necessary. A dihydroquinoline analog of agomelatine (AGO), N-(2-(7-methoxy-3,4-dihydroisoquinolin-1-yl)ethyl)acetamide hydrochloride (NMDEA), was synthesized by employing a scaffold-hopping strategy in our previous study. In this study, NMDEA was demonstrated to attenuate depression-related behaviors in mice models of chronic unpredictable mild stress (CUMS), using a sucrose preference test, a forced swimming test, and a tail suspension test. However, the antidepressant mechanism of NMDEA appears to differ from that for AGO. Based on the analysis of fecal microbiota from mice, stress can alter the richness of the gut bacterial community, increasing the expression of immune-modulating microbiota, such as Clostridia, and decreasing the expression of probiotic bacteria, such as Lactobacillus. Treatment with NMDEA was able to recover the richness and to regulate the dysbiosis among bacterial species. Several studies have demonstrated that the gut microbiota population can induce inflammatory processes. To explore the effects of NMDEA on the suppression of pro-inflammatory factors, we used Western blotting to analyze the levels of interleukin 1 beta (IL-1β), interleukin 6 (IL-6), p65, and inducible nitric oxide synthase (iNOS). NMDEA suppressed the activation of IL-1β and IL-6, in the hippocampus, and IL-1β, IL-6, p65, and iNOS, in lipopolysaccharide (LPS)-induced BV-2 cells. These results suggested that NMDEA may affect the microbiota-inflammasome-brain axis, regulating relevant neuro-inflammatory markers and gut microbiota. Our data also suggested that using small molecules to modify the gut microbiota population or alter inflammasome signaling may represent a new therapeutic opportunity for the mitigation of depression.
Collapse
Affiliation(s)
- Qi An
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Chungen Li
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yaxing Chen
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yang Yang
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Rao Song
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - LiangXue Zhou
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jiong Li
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Aiping Tong
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- Department of Neurosurgery and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Glutamine supports the protection of tissue cells against the damage caused by cholesterol-dependent cytolysins from pathogenic bacteria. PLoS One 2020; 15:e0219275. [PMID: 32163417 PMCID: PMC7067430 DOI: 10.1371/journal.pone.0219275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/21/2020] [Indexed: 12/28/2022] Open
Abstract
Pathogenic bacteria often damage tissues by secreting toxins that form pores in cell membranes, and the most common pore-forming toxins are cholesterol-dependent cytolysins. During bacterial infections, glutamine becomes a conditionally essential amino acid, and glutamine is an important nutrient for immune cells. However, the role of glutamine in protecting tissue cells against pore-forming toxins is unclear. Here we tested the hypothesis that glutamine supports the protection of tissue cells against the damage caused by cholesterol-dependent cytolysins. Stromal and epithelial cells were sensitive to damage by the cholesterol-dependent cytolysins, pyolysin and streptolysin O, as determined by leakage of potassium and lactate dehydrogenase from cells, and reduced cell viability. However, glutamine deprivation increased the leakage of lactate dehydrogenase and reduced the viability of cells challenged with cholesterol-dependent cytolysins. Without glutamine, stromal cells challenged with pyolysin leaked lactate dehydrogenase (control vs. pyolysin, 2.6 ± 0.6 vs. 34.4 ± 4.5 AU, n = 12), which was more than three-fold the leakage from cells supplied with 2 mM glutamine (control vs. pyolysin, 2.2 ± 0.3 vs. 9.4 ± 1.0 AU). Glutamine cytoprotection did not depend on glutaminolysis, replenishing the Krebs cycle via succinate, changes in cellular cholesterol, or regulators of cell metabolism (AMPK and mTOR). In conclusion, although the mechanism remains elusive, we found that glutamine supports the protection of tissue cells against the damage caused by cholesterol-dependent cytolysins from pathogenic bacteria.
Collapse
|
16
|
Bao Z, Li Y, Guan B, Xiong G, Zhang L, Tang Q, Wang T, Li X, Fang D, Zhou L. High Preoperative Controlling Nutritional Status Score Predicts a Poor Prognosis in Patients with Localized Upper Tract Urothelial Cancer: A Propensity Score Matching Study in a Large Chinese Center. Cancer Manag Res 2020; 12:323-335. [PMID: 32021446 PMCID: PMC6970241 DOI: 10.2147/cmar.s225711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose The aim of this study was to elucidate the prognostic value of the preoperative controlling nutritional status (CONUT) score, a new index based on the total lymphocyte count, serum albumin concentration and total cholesterol concentration, in patients with localized upper tract urothelial cancer (UTUC) after radical nephroureterectomy (RNU) using propensity score matching (PSM) analysis. Methods We retrospectively reviewed 908 consecutive patients with localized UTUC who underwent RNU between 1999 and 2015. Patients were divided into two groups according to the optimal cutoff value of the preoperative CONUT score. Relationships between the CONUT score with clinicopathological characteristics, overall survival (OS), cancer-specific survival (CSS), and disease-free survival (DFS) were analyzed before and after 1:1 PSM. Results A high preoperative CONUT score was significantly correlated with older age, low body mass index (BMI), poor American Statistical Association (ASA) score, advanced pathological T stage, and tumor squamous or glandular differentiation (all p<0.05). Kaplan-Meier curves showed poor OS, CSS, and DFS for patients with a high CONUT score before and after PSM (all p<0.001). Furthermore, multivariate analyses revealed that a high preoperative CONUT score was an independent risk factor for poor DFS (hazard ratio [HR] 1.418, 95% confidence interval [CI] 1.132–1.776, p=0.002) before PSM and an independent risk factor for poor DFS (HR 1.333, 95% CI 1.010–1.760, p=0.042) and OS (HR 1.459, 95% CI 1.010–2.107, p=0.044) after PSM. Conclusion A high preoperative CONUT score is an independent prognostic factor for poor outcomes in patients with localized UTUC after RNU.
Collapse
Affiliation(s)
- Zhengqing Bao
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| | - Yifan Li
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, People's Republic of China
| | - Bao Guan
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| | - Gengyan Xiong
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| | - Lei Zhang
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| | - Qi Tang
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| | - Tianyu Wang
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China.,Andrology Center, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, People's Republic of China.,Institute of Urology, Peking University, Beijing 100034, People's Republic of China.,National Urological Cancer Center, Beijing 100034, People's Republic of China
| |
Collapse
|
17
|
Rolando M, Buchrieser C. A Comprehensive Review on the Manipulation of the Sphingolipid Pathway by Pathogenic Bacteria. Front Cell Dev Biol 2019; 7:168. [PMID: 31497599 PMCID: PMC6712060 DOI: 10.3389/fcell.2019.00168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
Bacterial pathogens have developed many different strategies to hijack host cell responses to promote their own survival. The manipulation of lipid biogenesis and cell membrane stability is emerging as a key player in bacterial host cell control. Indeed, many bacterial pathogens such as Legionella, Pseudomonas, Neisseria, Staphylococci, Mycobacteria, Helicobacter, or Clostridia are able to manipulate and use host sphingolipids during multiple steps of the infectious process. Sphingolipids have long been considered only as structural components of cell membranes, however, it is now well known that they are also intracellular and intercellular signaling molecules that play important roles in many eukaryotic cell functions as well as in orchestrating immune responses. Furthermore, they are important to eliminate invading pathogens and play a crucial role in infectious diseases. In this review, we focus on the different strategies employed by pathogenic bacteria to hijack the sphingolipid balance in the host cell to promote cellular colonization.
Collapse
Affiliation(s)
- Monica Rolando
- Biologie des Bactéries Intracellulaires, CNRS UMR 3525, Institut Pasteur, Paris, France
| | - Carmen Buchrieser
- Biologie des Bactéries Intracellulaires, CNRS UMR 3525, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
19
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
20
|
Thyagarajan B, Potian JG, McArdle JJ, Baskaran P. Perturbation to Cholesterol at the Neuromuscular Junction Confers Botulinum Neurotoxin A Sensitivity to Neonatal Mice. Toxicol Sci 2018. [PMID: 28645175 DOI: 10.1093/toxsci/kfx127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A) cleaves SNAP25 at the motor nerve terminals and inhibits stimulus evoked acetylcholine release. This causes skeletal muscle paralysis. However, younger neonatal mice (<P7; <7-days old) are resistant to the neuroparalytic effects of BoNT/A. That is, invivo injection of BoNT/A at the innervations of Extensor digitorum longus muscle in the hindlimbs inhibited the toe spread reflex within 24 hours following BoNT/A injection in adult mouse and in older (>P7) mice. However, neonatal mice younger than 7 days-age remained unaffected by BoNT/A injection. Also, BoNT/A inhibited stimulus evoked acetylcholine release and stimulus-evoked twitch tension of diaphragm nerve muscle preparations (NMPs) of adult mouse and >P7 neonates but not that of <P7. Moreover, NMPs of <P7 showed decreased uptake of fluorescent BoNT/A compared to >P7. However, cholesterol depletion using methyl-β-cyclodextrin (MβCD) sensitized <P7 neonates to BoNT/A and facilitated BoNT/A uptake into NMPs obtained from <P7 neonates. Further, MβCD (10 mM; 30 min pretreatment) increased the interaction between synaptic vesicle protein 2 and BoNT/A. Also, cholesterol depletion increased the miniature endplate current in adult NMPs. Interestingly, cholesterol replenishment, invitro, delayed the onset of inhibitory effect of BoNT/A. Collectively, our data suggest that cholesterol rich lipid microdomains are involved in BoNT/A uptake mechanisms during development. Our data demonstrate that cholesterol depletion sensitized neonatal mice (<P7) to BoNT/A while replenishing cholesterol delayed the onset of inhibitory actin of BoNT/A. This suggests that membrane cholesterol modulates neurotoxin sensitivity at the neuromuscular junction (NMJ).
Collapse
Affiliation(s)
- Baskaran Thyagarajan
- School of Pharmacy, College of Health Sciences University of Wyoming, Laramie, Wyoming 82071
| | - Joseph G Potian
- Department of Pharmacology and Physiology, Rutgers University, Newark, New Jersey 07103
| | - Joseph J McArdle
- Department of Pharmacology and Physiology, Rutgers University, Newark, New Jersey 07103
| | - Padmamalini Baskaran
- School of Pharmacy, College of Health Sciences University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
21
|
Richter LV, Mansfeldt CB, Kuan MM, Cesare AE, Menefee ST, Richardson RE, Ahner BA. Altered Microbiome Leads to Significant Phenotypic and Transcriptomic Differences in a Lipid Accumulating Chlorophyte. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6854-6863. [PMID: 29750518 DOI: 10.1021/acs.est.7b06581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Given the challenges facing the economically favorable production of products from microalgae, understanding factors that might impact productivity rates including growth rates and accumulation of desired products, for example, triacylglycerols (TAG) for biodiesel feedstock, remains critical. Although operational parameters such as media composition and reactor design can clearly effect growth rates, the role of microbe-microbe interactions is just beginning to be elucidated. In this study an oleaginous marine algae Chlorella spp. C596 culture is shown to be better described as a microbial community. Perturbations to this microbial community showed a significant impact on phenotypes including sustained differences in growth rate and TAG accumulation of 2.4 and 2.5 fold, respectively. Characterization of the associated community using Illumina 16S rRNA amplicon and random shotgun transcriptomic analyses showed that the fast growth rate correlated with two specific bacterial species ( Ruegeria and Rhodobacter spp). The transcriptomic response of the Chlorella species revealed that the slower growing algal consortium C596-S1 upregulated genes associated with photosynthesis and resource scavenging and decreased the expression of genes associated with transcription and translation relative to the initial C596-R1. Our studies advance the appreciation of the effects microbiomes can have on algal growth in bioreactors and suggest that symbiotic interactions are involved in a range of critical processes including nitrogen, carbon cycling, and oxidative stress.
Collapse
Affiliation(s)
- Lubna V Richter
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Michael M Kuan
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Alexandra E Cesare
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Stephen T Menefee
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Ruth E Richardson
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Beth A Ahner
- Department of Biological and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
22
|
Czulkies BA, Mastroianni J, Lutz L, Lang S, Schwan C, Schmidt G, Lassmann S, Zeiser R, Aktories K, Papatheodorou P. Loss of LSR affects epithelial barrier integrity and tumor xenograft growth of CaCo-2 cells. Oncotarget 2018; 8:37009-37022. [PMID: 27391068 PMCID: PMC5514888 DOI: 10.18632/oncotarget.10425] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/13/2016] [Indexed: 11/25/2022] Open
Abstract
The lipolysis-stimulated lipoprotein receptor (LSR) is a lipoprotein receptor, serves as host receptor for clostridial iota-like toxins and is involved in the formation of tricellular contacts. Of particular interest is the role of LSR in progression of various cancers. Here we aimed to study the tumor growth of LSR-deficient colon carcinoma-derived cell lines HCT116 and CaCo-2 in a mouse xenograft model. Whereas knockout of LSR had no effect on tumor growth of HCT116 cells, we observed that CaCo-2 LSR knockout tumors grew to a smaller size than their wild-type counterparts. Histological analysis revealed increased apoptotic and necrotic cell death in a tumor originating from LSR-deficient CaCo-2 cells. LSR-deficient CaCo-2 cells exhibited increased cell proliferation in vitro and an altered epithelial morphology with impaired targeting of tricellulin to tricellular contacts. In addition, loss of LSR reduced the transepithelial electrical resistance of CaCo-2 cell monolayers and increased permeability for small molecules. Moreover, LSR-deficient CaCo-2 cells formed larger cysts in 3D culture than their wild-type counterparts. Our study provides evidence that LSR affects epithelial morphology and barrier formation in CaCo-2 cells and examines for the first time the effects of LSR deficiency on the tumor growth properties of colon carcinoma-derived cell lines.
Collapse
Affiliation(s)
- Bernd A Czulkies
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Justin Mastroianni
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Lisa Lutz
- Department of Pathology, University Medical Center, ALU, Freiburg, Germany
| | - Sarah Lang
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Gudula Schmidt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Silke Lassmann
- Department of Pathology, University Medical Center, ALU, Freiburg, Germany.,German Consortium for Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany
| | - Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS), ALU, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Present address: Institute of Pharmaceutical Biotechnology. University of Ulm, Ulm, Germany.,Present address: Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
23
|
Chandrasekaran R, Lacy DB. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev 2017; 41:723-750. [PMID: 29048477 PMCID: PMC5812492 DOI: 10.1093/femsre/fux048] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
Collapse
Affiliation(s)
- Ramyavardhanee Chandrasekaran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| |
Collapse
|
24
|
Huang FC. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection. Int J Mol Sci 2017; 18:1720. [PMID: 28783107 PMCID: PMC5578110 DOI: 10.3390/ijms18081720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella, a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
25
|
Ishihara H, Kondo T, Yoshida K, Omae K, Takagi T, Iizuka J, Tanabe K. Preoperative controlling nutritional status (CONUT) score as a novel predictive biomarker of survival in patients with localized urothelial carcinoma of the upper urinary tract treated with radical nephroureterectomy. Urol Oncol 2017; 35:539.e9-539.e16. [PMID: 28499734 DOI: 10.1016/j.urolonc.2017.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/15/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the correlation between the controlling nutritional status (CONUT) score and survival of patients with localized urothelial carcinoma of the upper urinary tract treated with radical nephroureterectomy (RNU). METHODS AND MATERIALS We retrospectively enrolled 107 patients. CONUT score was calculated based on the serum albumin concentration, lymphocyte count, and total cholesterol concentration. Patients were classified into 2 groups based on CONUT score. Relapse-free survival (RFS), cancer-specific survival (CSS), and overall survival (OS) after RNU were compared between the 2 groups, and predictors of survival were analyzed using Cox proportional hazards regression models. RESULTS For CONUT score, the area under the curve was 0.588 and the optimal cutoff value was 3. Twenty-four patients (22.4%) had high CONUT scores. The patients with high CONUT scores had significantly shorter 5-year RFS, CSS, and OS than did those with low CONUT scores (RFS: 50.1% vs. 66.0%; CSS: 28.1% vs. 71.7%; OS: 26.4% vs. 66.8%; all P<0.05). Results of the multivariable analysis, after adjustment for factors such as pT stage, pN stage, tumor grade, presence of lymphovascular invasion, and C-reactive protein level, revealed that CONUT score was an independent predictor of CSS (hazard ratio [HR] = 5.44, P = 0.0016) and OS (HR = 2.90, P = 0.0214) and showed marginal significance for predicting RFS (HR = 2.26, P = 0.0581). CONCLUSIONS Preoperative CONUT score helps predict survival in patients with localized urothelial carcinoma of the upper urinary tract treated with RNU.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Tsunenori Kondo
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan; Department of Urology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.
| | - Kazuhiko Yoshida
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenji Omae
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan; Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan
| | - Toshio Takagi
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
26
|
Ruhe F, Olling A, Abromeit R, Rataj D, Grieschat M, Zeug A, Gerhard R, Alekov A. Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Clostridium difficile Toxins TcdA and TcdB. Front Cell Infect Microbiol 2017; 7:67. [PMID: 28348980 PMCID: PMC5346576 DOI: 10.3389/fcimb.2017.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/21/2017] [Indexed: 12/30/2022] Open
Abstract
Virulent C. difficile toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of C. difficile toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization. In accordance with the established physiological function of ClC-5, its expression lowered the endosomal pH in HEK293T cells by approximately 0.6 units and enhanced approximately 5-fold the internalization of TcdA. In colon HT29 cells, 34% of internalized TcdA localized to ClC-5-containing vesicles defined by colocalization with Rab5, Rab4a, and Rab7 as early and early-to-late of endosomes but not as Rab11-containing recycling endosomes. Impairing the cellular uptake of TcdA by deleting the toxin CROPs domain did not abolish the effects of ClC-5. In addition, the transport-incompetent mutant ClC-5 E268Q similarly enhanced both endosomal acidification and intoxication by TcdA but facilitated the internalization of the toxin to a lower extent. These data suggest that ClC-5 enhances the cytotoxic action of C. difficile toxins by accelerating the acidification and maturation of vesicles of the early and early-to-late endosomal system. The dispensable role of electrogenic ion transport suggests that the voltage-dependent nonlinear capacitances of mammalian CLC transporters serve important physiological functions. Our data shed light on the intersection between the endocytotic cascade of host epithelial cells and the internalization pathway of the large virulence C. difficile toxins. Identifying ClC-5 as a potential specific host ion transporter hijacked by toxins produced by pathogenic bacteria widens the horizon of possibilities for novel therapies of life-threatening gastrointestinal infections.
Collapse
Affiliation(s)
- Frederike Ruhe
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Alexandra Olling
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Rasmus Abromeit
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Dennis Rataj
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | | | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical SchoolHannover, Germany
| | - Alexi Alekov
- Institute for Neurophysiology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
27
|
Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 2016; 113:7870-5. [PMID: 27339141 DOI: 10.1073/pnas.1522717113] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypervirulent Clostridium difficile strains, which are associated with increased morbidity and mortality, produce the actin-ADP ribosylating toxin Clostridium difficile transferase (CDT). CDT depolymerizes actin, causes formation of microtubule-based protrusions, and increases pathogen adherence. Here, we show that septins (SEPT) are essential for CDT-induced protrusion formation. SEPT2, -6, -7, and -9 accumulate at predetermined protrusion sites and form collar-like structures at the base of protrusions. The septin inhibitor forchlorfenuron or knockdown of septins inhibits protrusion formation. At protrusion sites, septins colocalize with the GTPase Cdc42 (cell division control protein 42) and its effector Borg (binder of Rho GTPases), which act as up-stream regulators of septin polymerization. Precipitation and surface plasmon resonance studies revealed high-affinity binding of septins to the microtubule plus-end tracking protein EB1, thereby guiding incoming microtubules. The data suggest that CDT usurps conserved regulatory principles involved in microtubule-membrane interaction, depending on septins, Cdc42, Borgs, and restructuring of the actin cytoskeleton.
Collapse
|
28
|
Martin-Verstraete I, Peltier J, Dupuy B. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis. Toxins (Basel) 2016; 8:E153. [PMID: 27187475 PMCID: PMC4885068 DOI: 10.3390/toxins8050153] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection.
Collapse
Affiliation(s)
- Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
- UFR Sciences du vivant, University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France.
| | - Johann Peltier
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobes, Department of Microbiology, Institut Pasteur, 25 rue du Dr Roux Paris, Paris 75015, France.
| |
Collapse
|
29
|
Abstract
Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Victoria, Australia
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and The Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Mark H. Wilcox
- Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Ed J. Kuijper
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
30
|
Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog 2016; 8:5. [PMID: 26893616 PMCID: PMC4758167 DOI: 10.1186/s13099-016-0088-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sphingolipids are important for innate immune response to eliminate infected pathogens and involved in autophagy. On the other hand, nucleotide-binding oligomerization domain-containing protein 2 (NOD2) served as an intracellular pattern recognition receptor to enhance host defense by inducing autophagy and the production of antimicrobial peptides, such as human beta-defensin-2 (hBD-2). However, the role of sphingolipids in Salmonella-induced autophagy and hBD-2 response in intestinal epithelial cells has not been previously elucidated. METHODS Salmonella typhimurium wild-type strain SL1344 was used to infect SW480, an intestinal epithelial cell. hBD-2 and interleukin-8 (IL-8) mRNA expressions were assessed in SW480 cells using RT-PCR, and intracellular signaling pathways and autophagy protein expression were analyzed by Western blot in SW480 cells in the presence or absence of inhibitors or transfected with siRNA. RESULTS We demonstrated that inhibition of de novo sphingolipid synthesis repressed the membrane recruitment of NOD2 and autophagy-related protein 16-like 1 (Atg16L1), suppressed Salmonella-induced autophagic protein LC3-II expression, and reduced NOD2-mediated hBD-2 response in Salmonella-infected SW480 cells. Contrasting to the utilization of membrane cholesterol on maintenance of Salmonella-containing vacuoles and anti-inflammation by Salmonella, sphingolipids act on epithelial defense against the invasive pathogen. CONCLUSIONS Our results offer mechanistic insights on the role of de novo sphingolipid synthesis in the innate immunity of intestinal epithelial cells to Salmonella infection. The pharmaceuticals enhancing or diet enriched with sphingolipids may induce the dual anti-bacterial mechanisms. The role of de novo sphingolipid synthesis on inflammatory bowel disease is deserved to be further investigated.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-pei Road, Niao-sung District, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Antharam VC, McEwen DC, Garrett TJ, Dossey AT, Li EC, Kozlov AN, Mesbah Z, Wang GP. An Integrated Metabolomic and Microbiome Analysis Identified Specific Gut Microbiota Associated with Fecal Cholesterol and Coprostanol in Clostridium difficile Infection. PLoS One 2016; 11:e0148824. [PMID: 26871580 PMCID: PMC4752508 DOI: 10.1371/journal.pone.0148824] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile infection (CDI) is characterized by dysbiosis of the intestinal microbiota and a profound derangement in the fecal metabolome. However, the contribution of specific gut microbes to fecal metabolites in C. difficile-associated gut microbiome remains poorly understood. Using gas-chromatography mass spectrometry (GC-MS) and 16S rRNA deep sequencing, we analyzed the metabolome and microbiome of fecal samples obtained longitudinally from subjects with Clostridium difficile infection (n = 7) and healthy controls (n = 6). From 155 fecal metabolites, we identified two sterol metabolites at >95% match to cholesterol and coprostanol that significantly discriminated C. difficile-associated gut microbiome from healthy microbiota. By correlating the levels of cholesterol and coprostanol in fecal extracts with 2,395 bacterial operational taxonomic units (OTUs) determined by 16S rRNA sequencing, we identified 63 OTUs associated with high levels of coprostanol and 2 OTUs correlated with low coprostanol levels. Using indicator species analysis (ISA), 31 of the 63 coprostanol-associated bacteria correlated with health, and two Veillonella species were associated with low coprostanol levels that correlated strongly with CDI. These 65 bacterial taxa could be clustered into 12 sub-communities, with each community containing a consortium of organisms that co-occurred with one another. Our studies identified 63 human gut microbes associated with cholesterol-reducing activities. Given the importance of gut bacteria in reducing and eliminating cholesterol from the GI tract, these results support the recent finding that gut microbiome may play an important role in host lipid metabolism.
Collapse
Affiliation(s)
- Vijay C Antharam
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Daniel C McEwen
- Department of Biosciences, Minnesota State University Moorhead, Moorhead, MN, United States of America
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| | - Aaron T Dossey
- All Things Bugs LLC, Athens, GA, United States of America
| | - Eric C Li
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Andrew N Kozlov
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Zhubene Mesbah
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America
| | - Gary P Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida, Gainesville, FL, United States of America.,Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
| |
Collapse
|
32
|
Host Cell Chaperones Hsp70/Hsp90 and Peptidyl-Prolyl Cis/Trans Isomerases Are Required for the Membrane Translocation of Bacterial ADP-Ribosylating Toxins. Curr Top Microbiol Immunol 2016; 406:163-198. [PMID: 27197646 DOI: 10.1007/82_2016_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial ADP-ribosylating toxins are the causative agents for several severe human and animal diseases such as diphtheria, cholera, or enteric diseases. They display an AB-type structure: The enzymatically active A-domain attaches to the binding/translocation B-domain which then binds to a receptor on the cell surface. After receptor-mediated endocytosis, the B-domain facilitates the membrane translocation of the unfolded A-domain into the host cell cytosol. Here, the A-domain transfers an ADP-ribose moiety onto its specific substrate which leads to characteristic cellular effects and thus to severe clinical symptoms. Since the A-domain has to reach the cytosol to achieve a cytotoxic effect, the membrane translocation represents a crucial step during toxin uptake. Host cell chaperones including Hsp90 and protein-folding helper enzymes of the peptidyl-prolyl cis/trans isomerase (PPIase) type facilitate this membrane translocation of the unfolded A-domain for ADP-ribosylating toxins but not for toxins with a different enzyme activity. This review summarizes the uptake mechanisms of the ADP-ribosylating clostridial binary toxins, diphtheria toxin (DT) and cholera toxin (CT), with a special focus on the interaction of these toxins with the chaperones Hsp90 and Hsp70 and PPIases of the cyclophilin and FK506-binding protein families during the membrane translocation of their ADP-ribosyltransferase domains into the host cell cytosol. Moreover, the medical implications of host cell chaperones and PPIases as new drug targets for the development of novel therapeutic strategies against diseases caused by bacterial ADP-ribosylating toxins are discussed.
Collapse
|
33
|
Schwan C, Aktories K. Formation of Nanotube-Like Protrusions, Regulation of Septin Organization and Re-guidance of Vesicle Traffic by Depolymerization of the Actin Cytoskeleton Induced by Binary Bacterial Protein Toxins. Curr Top Microbiol Immunol 2016; 399:35-51. [PMID: 27726005 DOI: 10.1007/82_2016_25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large group of bacterial protein toxins, including binary ADP-ribosylating toxins, modify actin at arginine-177, thereby actin polymerization is blocked and the actin cytoskeleton is redistributed. Modulation of actin functions largely affects other components of the cytoskeleton, especially microtubules and septins. Here, recent findings about the functional interconnections of the actin cytoskeleton with microtubules and septins, affected by bacterial toxins, are reviewed.
Collapse
Affiliation(s)
- Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
34
|
Resnik N, Repnik U, Kreft ME, Sepčić K, Maček P, Turk B, Veranič P. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells. PLoS One 2015; 10:e0137878. [PMID: 26361392 PMCID: PMC4567298 DOI: 10.1371/journal.pone.0137878] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
35
|
Pore-forming activity of clostridial binary toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:512-25. [PMID: 26278641 DOI: 10.1016/j.bbamem.2015.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/13/2015] [Accepted: 08/11/2015] [Indexed: 11/24/2022]
Abstract
Clostridial binary toxins (Clostridium perfringens Iota toxin, Clostridium difficile transferase, Clostridium spiroforme toxin, Clostridium botulinum C2 toxin) as Bacillus binary toxins, including Bacillus anthracis toxins consist of two independent proteins, one being the binding component which mediates the internalization into cell of the intracellularly active component. Clostridial binary toxins induce actin cytoskeleton disorganization through mono-ADP-ribosylation of globular actin and are responsible for enteric diseases. Clostridial and Bacillus binary toxins share structurally and functionally related binding components which recognize specific cell receptors, oligomerize, form pores in endocytic vesicle membrane, and mediate the transport of the enzymatic component into the cytosol. Binding components retain the global structure of pore-forming toxins (PFTs) from the cholesterol-dependent cytotoxin family such as perfringolysin. However, their pore-forming activity notably that of clostridial binding components is more related to that of heptameric PFT family including aerolysin and C. perfringens epsilon toxin. This review focuses upon pore-forming activity of clostridial binary toxins compared to other related PFTs. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
36
|
Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P. Interaction of the Clostridium difficile Binary Toxin CDT and Its Host Cell Receptor, Lipolysis-stimulated Lipoprotein Receptor (LSR). J Biol Chem 2015; 290:14031-44. [PMID: 25882847 DOI: 10.1074/jbc.m115.650523] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Indexed: 12/17/2022] Open
Abstract
CDT (Clostridium difficile transferase) is a binary, actin ADP-ribosylating toxin frequently associated with hypervirulent strains of the human enteric pathogen C. difficile, the most serious cause of antibiotic-associated diarrhea and pseudomembranous colitis. CDT leads to the collapse of the actin cytoskeleton and, eventually, to cell death. Low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile. The lipolysis-stimulated lipoprotein receptor (LSR) is the host cell receptor for CDT, and our aim was to gain a deeper insight into the interplay between both proteins. We show that CDT interacts with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. We identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying the CRISPR-Cas9 technology. LSR truncations ectopically expressed in LSR knock-out cells indicated that intracellular parts of LSR are not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. By generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), we found that amino acids 757-866 of CDTb are sufficient for binding to LSR. With a transposon-based, random mutagenesis approach, we identified potential LSR-interacting epitopes in CDTb. This study increases our understanding about the interaction between CDT and its receptor LSR, which is key to the development of anti-toxin strategies for preventing cell entry of the toxin.
Collapse
Affiliation(s)
- Sarah Hemmasi
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie
| | - Bernd A Czulkies
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Hermann Staudinger Graduate School
| | - Björn Schorch
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Fakultät für Biologie, the Spemann Graduate School of Biology and Medicine, and
| | - Antonia Veit
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie
| | - Klaus Aktories
- From the Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, the Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
37
|
Kasimov MR, Giniatullin AR, Zefirov AL, Petrov AM. Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:674-85. [PMID: 25725358 DOI: 10.1016/j.bbalip.2015.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/29/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
We have investigated the effects of 5α-cholesten-3-one (5Ch3, 200 nM) on synaptic transmission in mouse diaphragm. 5Ch3 had no impact on the amplitude or frequency of miniature endplate currents (MEPCs, spontaneous secretion), but decreased the amplitude of EPCs (evoked secretion) triggered by single action potentials. Treatment with 5Ch3 increased the depression of EPC amplitude and slowed the unloading of the dye FM1-43 from synaptic vesicles (exocytosis rate) during high-frequency stimulation. The estimated recycling time of vesicles did not change, suggesting that the decline of synaptic efficiency was due to the reduction in the size of the population of vesicles involved in release. The effects of 5Ch3 on synaptic transmission may be related to changes in the phase properties of the membrane. We have found that 5Ch3 reduces the staining of synaptic regions with the B-subunit of cholera toxin (a marker of lipid rafts) and increases the fluorescence of 22-NBD-cholesterol, indicating a phase change within the membrane. Manipulations of membrane cholesterol (saturation or depletion) strongly reduced the influence of 5Ch3 on both FM1-43 dye unloading and staining with the B-subunit of cholera toxin. Thus, 5Ch3 reduces the number of vesicles which are actively recruited during synaptic transmission and alters membrane properties. These effects of 5Ch3 depend on membrane cholesterol.
Collapse
Affiliation(s)
- M R Kasimov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A R Giniatullin
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A L Zefirov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia
| | - A M Petrov
- Department of Normal Physiology, Kazan State Medical University, Kazan, 420012, Russia.
| |
Collapse
|
38
|
Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci Rep 2015; 5:7850. [PMID: 25597743 PMCID: PMC4297958 DOI: 10.1038/srep07850] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023] Open
Abstract
The spore-forming gut bacterium Clostridium difficile is the leading cause of antibiotic-associated diarrhea in hospitalized patients. The major virulence factors are two large glucosylating cytotoxins. Hypervirulent strains (e.g. ribotype 027) with higher morbidity and mortality additionally produce the binary CDT toxin (Clostridium difficile transferase) that ADP-ribosylates actin and induces microtubule-based cell protrusions. Nanobodies are robust single domain antibodies derived from camelid heavy chain antibodies. Here we report the generation of functional nanobodies against the enzymatic CDTa and the heptameric receptor binding subunit CDTb. The nanobodies were obtained from a variable-domain repertoire library isolated from llamas immunized with recombinant CDTa or CDTb. Five CDTa-specific nanobodies blocked CDTa-mediated ADP-ribosylation of actin. Three CDTa-specific and two CDTb-specific nanobodies neutralized the cytotoxicity of CDTa+b. These nanobodies hold promise as new tools for research, diagnosis and therapy of C. difficile associated disease.
Collapse
|
39
|
Cholesterol-mediated membrane surface area dynamics in neuroendocrine cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1228-38. [PMID: 24046863 DOI: 10.1016/j.bbalip.2013.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cholesterol, a key membrane constituent, affects membrane surface area dynamics in secretory cells is unclear. Using methyl-beta-cyclodextrin (MbetaCD) to deplete cholesterol, we imaged melanotrophs from male Wistar rats in real-time and monitored membrane capacitance (C(m)), fluctuations of which reflect exocytosis and endocytosis. Treatment with MbetaCD reduced cellular cholesterol and caused a dose-dependent attenuation of the Ca(2+)-evoked increase in C(m) (IC50 = 5.3 mM) vs. untreated cells. Cytosol dialysis of MbetaCD enhanced the attenuation of C(m) increase (IC50 = 3.3 mM), suggesting cholesterol depletion at intracellular membrane sites was involved in attenuating exocytosis. Acute extracellular application of MbetaCD resulted in an immediate C(m) decline, which correlated well with the cellular surface area decrease, indicating the involvement of cholesterol in the regulation of membrane surface area dynamics. This decline in C(m) was three-fold slower than MbetaCD-mediated fluorescent cholesterol decay, implying that exocytosis is the likely physiological means for plasma membrane cholesterol replenishment. MbetaCD had no effect on the specific C(m) and the blockade of endocytosis by Dyngo 4a, confirmed by inhibition of dextran uptake, also had no effect on the time-course of MbetaCD-induced C(m) decline. Thus acute exposure to MbetaCD evokes a C(m) decline linked to the removal of membrane cholesterol, which cannot be compensated for by exocytosis. We propose that the primary contribution of cholesterol to surface area dynamics is via its role in regulated exocytosis.
Collapse
|
40
|
Abstract
Clostridium difficile infections (CDI) have emerged as a major cause of healthcare associated disease, and recent epidemiological evidence also suggests an important role in community-acquired diarrhea. This increase is associated with specific types, especially PCR ribotypes 027 and 078, which are sometimes referred to as “hypervirulent”. Over the past years major advances have been made in our understanding of C. difficile pathogenicity, with the identification and characterization of the major clostridial toxins TcdA and TcdB. However, the relation between the toxins, their regulation, and “hypervirulence” remain unclear. Here I review our current understanding of C. difficile pathogenicity and argue that “hypervirulent” is an inadequate term to describe PCR ribotypes 027 and 078, that the ability of C. difficile to cause problematic infections is a consequence of a multifactorial process that extends beyond toxins, sporulation, and antimicrobial resistance, and that vigilance is in order toward types that are closely related to ribotypes 027 and 078, but are currently not considered problematic.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Medical Microbiology; Leiden University Medical Center; Leiden, the Netherlands
| |
Collapse
|
41
|
Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. mBio 2013; 4:e00244-13. [PMID: 23631918 PMCID: PMC3648903 DOI: 10.1128/mbio.00244-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is the leading cause of antibiotics-associated diarrhea and pseudomembranous colitis. Hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT (C. difficile transferase), in addition to the Rho-glucosylating toxins A and B. We recently identified the lipolysis-stimulated lipoprotein receptor (LSR) as the host receptor that mediates uptake of CDT into target cells. Here we investigated in H1-HeLa cells, which ectopically express LSR, the influence of CDT on the plasma membrane distribution of the receptor. We found by fluorescence microscopy that the binding component of CDT (CDTb) induces clustering of LSR into subcompartments of the plasma membrane. Detergent extraction of cells treated with CDTb, followed by sucrose gradient fractionation, uncovered accumulation of LSR in detergent-resistant membranes (DRMs) that contained typical marker proteins of lipid rafts. Membrane cholesterol depletion with methyl-β-cyclodextrin inhibited the association of LSR with DRMs upon addition of CDTb. The receptor-binding domain of CDTb also triggered LSR clustering into DRMs. CDTb-triggered clustering of LSR into DRMs could be confirmed in Caco-2 cells. Our data suggest that CDT forces its receptor to cluster into lipid rafts and that oligomerization of the B component might enhance but is not essential for this process. C. difficile binary toxin CDT is a member of the iota-like, actin ADP-ribosylating toxin family. The mechanism that mediates endocytic uptake of these toxins still remains elusive. Previous studies highlighted the importance of lipid rafts for oligomerization of the binding component of these toxins and for cell entry. Recently, the host cell receptor for this toxin family, namely, the lipolysis-stimulated lipoprotein receptor (LSR), has been identified. Our study now demonstrates that the binding component of CDT (CDTb) induces clustering of LSR into lipid rafts. Importantly, LSR clustering is efficiently induced also by the receptor-binding domain of CDTb, suggesting that oligomerization of the B component of CDT is not the main trigger of this process. The current work extends our knowledge on the cooperative play between iota-like toxins and their receptor.
Collapse
|
42
|
Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One 2013; 8:e57147. [PMID: 23451167 PMCID: PMC3579816 DOI: 10.1371/journal.pone.0057147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.
Collapse
|
43
|
Aktories K, Schwan C, Papatheodorou P, Lang AE. Bidirectional attack on the actin cytoskeleton. Bacterial protein toxins causing polymerization or depolymerization of actin. Toxicon 2012; 60:572-81. [DOI: 10.1016/j.toxicon.2012.04.338] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
44
|
Lokar M, Kabaso D, Resnik N, Sepčić K, Kralj-Iglič V, Veranič P, Zorec R, Iglič A. The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomedicine 2012; 7:1891-902. [PMID: 22605937 PMCID: PMC3352693 DOI: 10.2147/ijn.s28723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intercellular membrane nanotubes (ICNs) are highly curved tubular structures that connect neighboring cells. The stability of these structures depends on the inner cytoskeleton and the cell membrane composition. Yet, due to the difficulty in the extraction of ICNs, the cell membrane composition remains elusive. In the present study, a raft marker, ostreolysin, revealed the enrichment of cholesterol-sphingomyelin membrane nanodomains along ICNs in a T24 (malignant) urothelial cancer cell line. Cholesterol depletion, due to the addition of methyl-β-cyclodextrin, caused the dispersion of cholesterol-sphingomyelin membrane nanodomains and the retraction of ICNs. The depletion of cholesterol also led to cytoskeleton reorganization and to formation of actin stress fibers. Live cell imaging data revealed the possible functional coupling between the change from polygonal to spherical shape, cell separation, and the disconnection of ICNs. The ICN was modeled as an axisymmetric tubular structure, enabling us to investigate the effects of cholesterol content on the ICN curvature. The removal of cholesterol was predicted to reduce the positive spontaneous curvature of the remaining membrane components, increasing their curvature mismatch with the tube curvature. The mechanisms by which the increased curvature mismatch could contribute to the disconnection of ICNs are discussed.
Collapse
Affiliation(s)
- Maruša Lokar
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Clostridium spiroforme produces the binary actin-ADP-ribosylating toxin CST (C. spiroforme toxin), which has been proposed to be responsible for diarrhea, enterocolitis, and eventually death, especially in rabbits. Here we report on the recombinant production of the enzyme component (CSTa) and the binding component (CSTb) of C. spiroforme toxin in Bacillus megaterium. By using the recombinant toxin components, we show that CST enters target cells via the lipolysis-stimulated lipoprotein receptor (LSR), which has been recently identified as the host cell receptor of the binary toxins Clostridium difficile transferase (CDT) and Clostridium perfringens iota toxin. Microscopic studies revealed that CST, but not the related Clostridium botulinum C2 toxin, colocalized with LSR during toxin uptake and traffic to endosomal compartments. Our findings indicate that CST shares LSR with C. difficile CDT and C. perfringens iota toxin as a host cell surface receptor.
Collapse
|
46
|
Shen A. Clostridium difficile toxins: mediators of inflammation. J Innate Immun 2012; 4:149-58. [PMID: 22237401 DOI: 10.1159/000332946] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a significant problem in hospital settings as the most common cause of nosocomial diarrhea worldwide. C. difficile infections (CDIs) are characterized by an acute intestinal inflammatory response with neutrophil infiltration. These symptoms are primarily caused by the glucosylating toxins, TcdA and TcdB. In the past decade, the frequency and severity of CDIs have increased markedly due to the emergence of so-called hypervirulent strains that overproduce cytotoxic glucosylating toxins relative to historical strains. In addition, these strains produce a third toxin, binary toxin or C. difficile transferase (CDT), that may contribute to hypervirulence. Both the glucosylating toxins and CDT covalently modify target cell proteins to cause disassembly of the actin cytoskeleton and induce severe inflammation. This review summarizes our current knowledge of the mechanisms by which glucosylating toxins and CDT disrupt target cell function, alter host physiology and stimulate immune responses.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vt. 05401, USA.
| |
Collapse
|
47
|
Carter GP, Rood JI, Lyras D. The role of toxin A and toxin B in the virulence of Clostridium difficile. Trends Microbiol 2011; 20:21-9. [PMID: 22154163 DOI: 10.1016/j.tim.2011.11.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/08/2011] [Accepted: 11/10/2011] [Indexed: 12/21/2022]
Abstract
During the past decade, there has been a striking increase in Clostridium difficile nosocomial infections worldwide predominantly due to the emergence of epidemic or hypervirulent isolates, leading to an increased research focus on this bacterium. Particular interest has surrounded the two large clostridial toxins encoded by most virulent isolates, known as toxin A and toxin B. Toxin A was thought to be the major virulence factor for many years; however, it is becoming increasingly evident that toxin B plays a much more important role than anticipated. It is clear that further experiments are required to accurately determine the relative roles of each toxin in disease, especially in more clinically relevant current epidemic isolates.
Collapse
Affiliation(s)
- Glen P Carter
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
48
|
Stiles BG, Wigelsworth DJ, Popoff MR, Barth H. Clostridial binary toxins: iota and C2 family portraits. Front Cell Infect Microbiol 2011; 1:11. [PMID: 22919577 PMCID: PMC3417380 DOI: 10.3389/fcimb.2011.00011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/10/2011] [Indexed: 02/04/2023] Open
Abstract
There are many pathogenic Clostridium species with diverse virulence factors that include protein toxins. Some of these bacteria, such as C. botulinum, C. difficile, C. perfringens, and C. spiroforme, cause enteric problems in animals as well as humans. These often fatal diseases can partly be attributed to binary protein toxins that follow a classic AB paradigm. Within a targeted cell, all clostridial binary toxins destroy filamentous actin via mono-ADP-ribosylation of globular actin by the A component. However, much less is known about B component binding to cell-surface receptors. These toxins share sequence homology amongst themselves and with those produced by another Gram-positive, spore-forming bacterium also commonly associated with soil and disease: Bacillus anthracis. This review focuses upon the iota and C2 families of clostridial binary toxins and includes: (1) basics of the bacterial source; (2) toxin biochemistry; (3) sophisticated cellular uptake machinery; and (4) host–cell responses following toxin-mediated disruption of the cytoskeleton. In summary, these protein toxins aid diverse enteric species within the genus Clostridium.
Collapse
Affiliation(s)
- Bradley G Stiles
- Biology Department, Wilson College, Chambersburg, PA, USA; Integrated Toxicology Division, Medical Research Institute of Infectious Diseases, Frederick, MD, USA.
| | | | | | | |
Collapse
|