1
|
Abdelaziz AM. Alpha-Synuclein drives NURR1 and NLRP3 Inflammasome dysregulation in Parkinson's disease: From pathogenesis to potential therapeutic strategies. Int Immunopharmacol 2025; 156:114692. [PMID: 40267723 DOI: 10.1016/j.intimp.2025.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is characterized by the loss of dopaminergic neurons and pathological aggregation of α-synuclein (α-Syn). Emerging evidence highlights the interplay between genetic susceptibility, neuroinflammation, and transcriptional dysregulation in driving PD pathogenesis. This review brings together the latest information on three important players: α-Syn, the transcription factor Orphan nuclear receptor (NURR1), and the NOD-like receptor 3 (NLRP3) inflammasome. Pathogenic α-syn aggregates cause damage to neurons by disrupting mitochondria and lysosomes and spreading in a way similar to prion proteins. They also turn on the NLRP3 inflammasome, which is a key player in neuroinflammation. NLRP3-driven release of pro-inflammatory cytokines exacerbates neurodegeneration and creates a self-sustaining inflammatory milieu. Meanwhile, reduced NURR1 activity, a pivotal modulator of dopaminergic neuron survival and development, exposes neurons to oxidative stress, neuroinflammation, and α-Syn toxicity, hence exacerbating disease progression. So, targeting this trio exhibits transformative potential against PD pathogenesis.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| |
Collapse
|
2
|
Kalyn M, Garvey R, Lee H, Mbesha HA, Curry J, Saxena V, Mennigen JA, Ekker M. Differential roles of NR4A2 (NURR1) paralogs in the brain and behavior of zebrafish. J Neurochem 2025; 169:e16234. [PMID: 39388214 DOI: 10.1111/jnc.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Dopaminergic (DAnergic) dysfunction and imbalanced dopamine (DA) levels are known contributors to the pathogenesis of numerous psychiatric and neurodegenerative disorders. Of the many identified risk factors for DA-associated disorders, nuclear receptor subfamily 4 group A2 (NR4A2; or nuclear receptor related-1 protein (NURR1)), a transcription factor involved in DAnergic differentiation, has been associated with Parkinson's disease and attention deficit hyperactive disorder (ADHD). In zebrafish, transient loss of nr4a2 was previously shown to decrease tyrosine hydroxylase (TH) expression and impair locomotion. To further characterize the roles of the two zebrafish nr4a2 paralogs, nr4a2a, and nr4a2b, we produced targeted loss-of-function mutants and examined DAnergic neuron regeneration, oxidative respiration, and behavioral traits. The loss of nr4a2a function more closely recapitulated Parkinsonian phenotypes and affected neurotrophic factor gene expression. Conversely, nr4a2b mutants displayed behavioral symptoms reminiscent of mice deficient in Nr4a2 with increased neurotrophic output. In contrast, nr4a2b mutants also displayed increased metabolic input from non-mitochondrial sources indicative of high cytosolic reactive oxygen species and perturbed mitochondrial function. The nr4a2a mutants also showed increased maximal respiration, which may suggest a compensatory mechanism to meet the metabolic requirements of DAnergic neuron health. Overall, the zebrafish mutants generated in this study helped uncover molecular mechanisms involved in DA-related disease pathologies, and in the regeneration of DAnergic neurons.
Collapse
Affiliation(s)
- Michael Kalyn
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Rose Garvey
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hyojin Lee
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Jory Curry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vishal Saxena
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Ekker
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Gabaldon-Albero A, Mayo S, Martinez F. NR4A2 as a Novel Target Gene for Developmental and Epileptic Encephalopathy: A Systematic Review of Related Disorders and Therapeutic Strategies. Int J Mol Sci 2024; 25:5198. [PMID: 38791237 PMCID: PMC11120677 DOI: 10.3390/ijms25105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The NR4A2 gene encodes an orphan transcription factor of the steroid-thyroid hormone-retinoid receptor superfamily. This review focuses on the clinical findings associated with the pathogenic variants so far reported, including three unreported cases. Also, its role in neurodegenerative diseases, such as Parkinson's or Alzheimer's disease, is examined, as well as a brief exploration on recent proposals to develop novel therapies for these neurological diseases based on small molecules that could modulate NR4A2 transcriptional activity. The main characteristic shared by all patients is mild to severe developmental delay/intellectual disability. Moderate to severe disorder of the expressive and receptive language is present in at least 42%, while neuro-psychiatric issues were reported in 53% of patients. Movement disorders, including dystonia, chorea or ataxia, are described in 37% patients, although probably underestimated because of its frequent onset in late adolescence-young adulthood. Finally, epilepsy was surprisingly present in 42% of patients, being drug-resistant in three of them. The age at onset varied widely, from five months to twenty-six years, as did the classification of epilepsy, which ranged from focal epilepsy to infantile spasms or Lennox-Gastaut syndrome. Accordingly, we propose that NR4A2 should be considered as a first-tier target gene for the genetic diagnosis of developmental and epileptic encephalopathy.
Collapse
Affiliation(s)
- Alba Gabaldon-Albero
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
| | - Sonia Mayo
- Genetics and Inheritance Research Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain
- Department of Genetics, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Francisco Martinez
- Translational Research Group in Genetics, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain;
- Genetics Unit, Hospital Universitario y Politecnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
4
|
González-Cota AL, Martínez-Flores D, Rosendo-Pineda MJ, Vaca L. NMDA receptor-mediated Ca 2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer. Cell Calcium 2024; 119:102856. [PMID: 38408411 DOI: 10.1016/j.ceca.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.
Collapse
Affiliation(s)
- Ana L González-Cota
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Daniel Martínez-Flores
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
5
|
Liu C, Ying M, Wang A, Liu Y, Chen Y, Ye W, Wen H, Ma C, Liu C, Guo Y. Reprogramming astrocytes into dopaminergic neurons to restore motor dysfunction in Parkinson 's disease model rats. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1377-1389. [PMID: 39931768 DOI: 10.11817/j.issn.1672-7347.2024.240078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
OBJECTIVES Parkinson's disease (PD) is a neurodegenerative disorder primarily caused by the loss of dopaminergic neurons (DA) in the brain. Since DA neurons are non-renewable, conventional therapies only alleviate symptoms without addressing the root cause. This study aims to reprogram astrocyte (AS) into DA neurons for transplantation into the brain to reconstruct damaged neural circuits and treat PD. METHODS Astrocytes were isolated from neonatal rat brain tissues. A lentiviral vector carrying the transcription factors nuclear receptor-related factor 1 (UNRR1) and achaete-scute family bHLH transcription factor 1 (ASCL1), named LV-NURR1-ASCL1, was constructed and used to infect cultured rat AS in vitro. Immunofluorescence, Western blotting, and reverse transcription polymerase chain reaction (RT-PCR) were employed to detect and compare the expression levels of NURR1 and ASCL1 in lentivirus-infected AS (LV group) and AS cultured in complete medium without LV-NURR1-ASCL1 (Con group). The virus-infected AS was then cultured in neuronal induction medium for 18 days. Immunofluorescence was used to detect the expression of DA markers, including tyrosine hydroxylase (TH) and forkhead box A2 (FOXA2), as well as the neuronal marker class III beta tubulin (TUJ1). To establish the PD rat model, 6-hydroxydopamine (6-OHDA) was injected into 2 sites in the medial forebrain bundle (MFB) region of the right brain in rats. The reprogrammed cells (AS-iDA) were quantified and transplanted into the right MFB region of the PD model rats using a stereotaxic instrument. Four weeks after transplantation, immunofluorescence was used to assess the survival, differentiation, and migration of AS-iDA in the brain and the expression of TH, TUJ1, and FOXA2 in the brain tissue of PD rats. Eight weeks post-transplantation, the recovery of motor function in PD rats was evaluated using the apomorphine (APO)-induced rotation test, rotarod fatigue test, and open-field test. RESULTS Immunofluorescence analysis showed positive expression of NURR1 and ASCL1 in AS after lentiviral infection. RT-PCR results demonstrated that the mRNA expression levels of NURR1 and ASCL1 in the LV group were significantly higher than those in the Con group, with increases of (7.483±0.706)-fold and (10.830±1.940)-fold, respectively. Western blotting analysis further confirmed that the protein expression levels of NURR1 and ASCL1 in the LV group were (2.403±0.511)-fold and (4.423±0.603)-fold higher, respectively, compared to the control group. After 18 days of directed induction culture lentivirus-infected AS (AS-iDA) displayed significant morphological changes, developing neuron-like long neurites. At this stage, AS-iDA highly expressed the neuronal marker TUJ1 as well as the DA markers TH and FOXA2. Four weeks post-transplantation, immunofluorescence on brain slices from PD rats revealed that AS-iDA survived in the transplant region, migrated to surrounding areas, and expressed TUJ1, TH, and FOXA2. At 8 weeks post-transplantation, compared to untreated PD rats, PD rats transplanted with AS-iDA exhibited significantly reduced rotational behavior in the APO-induced rotation test, increased mobility in the open-field test, and extended time on the rotarod in the fatigue test (all P<0.05). CONCLUSIONS Lentiviral overexpression of NURR1 and ASCL1 efficiently reprograms AS into DA neurons. Transplantation of reprogrammed DA neurons significantly improves motor function in PD rats, highlighting their potential as donor cells for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunbo Liu
- School of Life Sciences, Bengbu Medical University, Bengbu Anhui 233030.
| | - Mengjiao Ying
- School of Life Sciences, Bengbu Medical University, Bengbu Anhui 233030
| | - Ao Wang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu Anhui 233030
| | - Yumeng Liu
- School of Life Sciences, Bengbu Medical University, Bengbu Anhui 233030
| | - Ying Chen
- School of Life Sciences, Bengbu Medical University, Bengbu Anhui 233030
| | - Wenhao Ye
- School of Life Sciences, Bengbu Medical University, Bengbu Anhui 233030
| | - Hebao Wen
- Department of Sports and Art, Bengbu Medical University, Bengbu Anhui 233030, China
| | - Caiyun Ma
- School of Life Sciences, Bengbu Medical University, Bengbu Anhui 233030
| | - Changqing Liu
- School of Life Sciences, Bengbu Medical University, Bengbu Anhui 233030
| | - Yu Guo
- School of Laboratory Medicine, Bengbu Medical University, Bengbu Anhui 233030.
| |
Collapse
|
6
|
García-Yagüe ÁJ, Cuadrado A. Mechanisms of NURR1 Regulation: Consequences for Its Biological Activity and Involvement in Pathology. Int J Mol Sci 2023; 24:12280. [PMID: 37569656 PMCID: PMC10419244 DOI: 10.3390/ijms241512280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
NURR1 (Nuclear receptor-related 1 protein or NR4A2) is a nuclear protein receptor transcription factor with an essential role in the development, regulation, and maintenance of dopaminergic neurons and mediates the response to stressful stimuli during the perinatal period in mammalian brain development. The dysregulation of NURR1 activity may play a role in various diseases, including the onset and progression of neurodegenerative diseases, and several other pathologies. NURR1 is regulated by multiple mechanisms, among which phosphorylation by kinases or SUMOylation are the best characterized. Both post-translational modifications can regulate the activity of NURR1, affecting its stability and transcriptional activity. Other non-post-translational regulatory mechanisms include changes in its subcellular distribution or interaction with other protein partners by heterodimerization, also affecting its transcription activity. Here, we summarize the currently known regulatory mechanisms of NURR1 and provide a brief overview of its participation in pathological alterations.
Collapse
Affiliation(s)
- Ángel Juan García-Yagüe
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28027 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBER-CIBERNED), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta, 28029 Madrid, Spain
| |
Collapse
|
7
|
Esvald EE, Tuvikene J, Kiir CS, Avarlaid A, Tamberg L, Sirp A, Shubina A, Cabrera-Cabrera F, Pihlak A, Koppel I, Palm K, Timmusk T. Revisiting the expression of BDNF and its receptors in mammalian development. Front Mol Neurosci 2023; 16:1182499. [PMID: 37426074 PMCID: PMC10325033 DOI: 10.3389/fnmol.2023.1182499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes the survival and functioning of neurons in the central nervous system and contributes to proper functioning of many non-neural tissues. Although the regulation and role of BDNF have been extensively studied, a rigorous analysis of the expression dynamics of BDNF and its receptors TrkB and p75NTR is lacking. Here, we have analyzed more than 3,600 samples from 18 published RNA sequencing datasets, and used over 17,000 samples from GTEx, and ~ 180 samples from BrainSpan database, to describe the expression of BDNF in the developing mammalian neural and non-neural tissues. We show evolutionarily conserved dynamics and expression patterns of BDNF mRNA and non-conserved alternative 5' exon usage. Finally, we also show increasing BDNF protein levels during murine brain development and BDNF protein expression in several non-neural tissues. In parallel, we describe the spatiotemporal expression pattern of BDNF receptors TrkB and p75NTR in both murines and humans. Collectively, our in-depth analysis of the expression of BDNF and its receptors gives insight into the regulation and signaling of BDNF in the whole organism throughout life.
Collapse
Affiliation(s)
- Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
- dxlabs LLC, Tallinn, Estonia
| | - Carl Sander Kiir
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Laura Tamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anastassia Shubina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
| |
Collapse
|
8
|
Hemedan AA, Schneider R, Ostaszewski M. Applications of Boolean modeling to study the dynamics of a complex disease and therapeutics responses. FRONTIERS IN BIOINFORMATICS 2023; 3:1189723. [PMID: 37325771 PMCID: PMC10267406 DOI: 10.3389/fbinf.2023.1189723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Computational modeling has emerged as a critical tool in investigating the complex molecular processes involved in biological systems and diseases. In this study, we apply Boolean modeling to uncover the molecular mechanisms underlying Parkinson's disease (PD), one of the most prevalent neurodegenerative disorders. Our approach is based on the PD-map, a comprehensive molecular interaction diagram that captures the key mechanisms involved in the initiation and progression of PD. Using Boolean modeling, we aim to gain a deeper understanding of the disease dynamics, identify potential drug targets, and simulate the response to treatments. Our analysis demonstrates the effectiveness of this approach in uncovering the intricacies of PD. Our results confirm existing knowledge about the disease and provide valuable insights into the underlying mechanisms, ultimately suggesting potential targets for therapeutic intervention. Moreover, our approach allows us to parametrize the models based on omics data for further disease stratification. Our study highlights the value of computational modeling in advancing our understanding of complex biological systems and diseases, emphasizing the importance of continued research in this field. Furthermore, our findings have potential implications for the development of novel therapies for PD, which is a pressing public health concern. Overall, this study represents a significant step forward in the application of computational modeling to the investigation of neurodegenerative diseases, and underscores the power of interdisciplinary approaches in tackling challenging biomedical problems.
Collapse
|
9
|
Català-Solsona J, Lituma PJ, Lutzu S, Siedlecki-Wullich D, Fábregas-Ordoñez C, Miñano-Molina AJ, Saura CA, Castillo PE, Rodriguez-Álvarez J. Activity-Dependent Nr4a2 Induction Modulates Synaptic Expression of AMPA Receptors and Plasticity via a Ca 2+/CRTC1/CREB Pathway. J Neurosci 2023; 43:3028-3041. [PMID: 36931707 PMCID: PMC10146469 DOI: 10.1523/jneurosci.1341-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Transcription factors have a pivotal role in synaptic plasticity and the associated modification of neuronal networks required for memory formation and consolidation. The nuclear receptors subfamily 4 group A (Nr4a) have emerged as possible modulators of hippocampal synaptic plasticity and cognitive functions. However, the molecular and cellular mechanisms underlying Nr4a2-mediated hippocampal synaptic plasticity are not completely known. Here, we report that neuronal activity enhances Nr4a2 expression and function in cultured mouse hippocampal neurons (both sexes) by an ionotropic glutamate receptor/Ca2+/cAMP response element-binding protein/CREB-regulated transcription factor 1 (iGluR/Ca2+/CREB/CRTC1) pathway. Nr4a2 activation mediates BDNF production and increases expression of iGluRs, thereby affecting LTD at CA3-CA1 synapses in acute mouse hippocampal slices (both sexes). Together, our results indicate that the iGluR/Ca2+/CREB/CRTC1 pathway mediates activity-dependent expression of Nr4a2, which is involved in glutamatergic synaptic plasticity by increasing BDNF and synaptic GluA1-AMPARs. Therefore, Nr4a2 activation could be a therapeutic approach for brain disorders associated with dysregulated synaptic plasticity.SIGNIFICANCE STATEMENT A major factor that regulates fast excitatory synaptic transmission and plasticity is the modulation of synaptic AMPARs. However, despite decades of research, the underlying mechanisms of this modulation remain poorly understood. Our study identified a molecular pathway that links neuronal activity with AMPAR modulation and hippocampal synaptic plasticity through the activation of Nr4a2, a member of the nuclear receptor subfamily 4. Since several compounds have been described to activate Nr4a2, our study not only provides mechanistic insights into the molecular pathways related to hippocampal synaptic plasticity and learning, but also identifies Nr4a2 as a potential therapeutic target for pathologic conditions associated with dysregulation of glutamatergic synaptic function.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo J Lituma
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Stefano Lutzu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| | - Dolores Siedlecki-Wullich
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Cristina Fábregas-Ordoñez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Alfredo J Miñano-Molina
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Carlos A Saura
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
- Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - José Rodriguez-Álvarez
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, 28031, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York 10461
| |
Collapse
|
10
|
Lai JIC, Porcu A, Romoli B, Keisler M, Manfredsson FP, Powell SB, Dulcis D. Nicotine-Mediated Recruitment of GABAergic Neurons to a Dopaminergic Phenotype Attenuates Motor Deficits in an Alpha-Synuclein Parkinson's Model. Int J Mol Sci 2023; 24:4204. [PMID: 36835612 PMCID: PMC9960650 DOI: 10.3390/ijms24044204] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Previous work revealed an inverse correlation between tobacco smoking and Parkinson's disease (PD) that is associated with nicotine-induced neuroprotection of dopaminergic (DA) neurons against nigrostriatal damage in PD primates and rodent models. Nicotine, a neuroactive component of tobacco, can directly alter the activity of midbrain DA neurons and induce non-DA neurons in the substantia nigra (SN) to acquire a DA phenotype. Here, we investigated the recruitment mechanism of nigrostriatal GABAergic neurons to express DA phenotypes, such as transcription factor Nurr1 and DA-synthesizing enzyme tyrosine hydroxylase (TH), and the concomitant effects on motor function. Wild-type and α-syn-overexpressing (PD) mice treated with chronic nicotine were assessed by behavioral pattern monitor (BPM) and immunohistochemistry/in situ hybridization to measure behavior and the translational/transcriptional regulation of neurotransmitter phenotype following selective Nurr1 overexpression or DREADD-mediated chemogenetic activation. We found that nicotine treatment led to a transcriptional TH and translational Nurr1 upregulation within a pool of SN GABAergic neurons in wild-type animals. In PD mice, nicotine increased Nurr1 expression, reduced the number of α-syn-expressing neurons, and simultaneously rescued motor deficits. Hyperactivation of GABA neurons alone was sufficient to elicit de novo translational upregulation of Nurr1. Retrograde labeling revealed that a fraction of these GABAergic neurons projects to the dorsal striatum. Finally, concomitant depolarization and Nurr1 overexpression within GABA neurons were sufficient to mimic nicotine-mediated dopamine plasticity. Revealing the mechanism of nicotine-induced DA plasticity protecting SN neurons against nigrostriatal damage could contribute to developing new strategies for neurotransmitter replacement in PD.
Collapse
Affiliation(s)
- Jessica IChi Lai
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Benedetto Romoli
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Keisler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Susan B. Powell
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson's Disease. Int J Mol Sci 2022; 23:ijms232416184. [PMID: 36555826 PMCID: PMC9788636 DOI: 10.3390/ijms232416184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Neuroinflammation plays a crucial role in the progression of neurodegenerative disorders, particularly Parkinson's disease (PD). Glial cell activation and subsequent adaptive immune involvement are neuroinflammatory features in familial and idiopathic PD, resulting in the death of dopaminergic neuron cells. An oxidative stress response, inflammatory mediator production, and immune cell recruitment and activation are all hallmarks of this activation, leading to chronic neuroinflammation and progressive neurodegeneration. Several studies in PD patients' cerebrospinal fluid and peripheral blood revealed alterations in inflammatory markers and immune cell populations that may lead to or exacerbate neuroinflammation and perpetuate the neurodegenerative process. Most of the genes causing PD are also expressed in astrocytes and microglia, converting their neuroprotective role into a pathogenic one and contributing to disease onset and progression. Nuclear receptor-related transcription factor 1 (NURR1) regulates gene expression linked to dopaminergic neuron genesis and functional maintenance. In addition to playing a key role in developing and maintaining neurotransmitter phenotypes in dopaminergic neurons, NURR1 agonists have been shown to reverse behavioral and histological abnormalities in animal PD models. NURR1 protects dopaminergic neurons from inflammation-induced degeneration, specifically attenuating neuronal death by suppressing the expression of inflammatory genes in microglia and astrocytes. This narrative review highlights the inflammatory changes in PD and the advances in NURR1-regulated neuroinflammation associated with PD. Further, we present new evidence that targeting this inflammation with a variety of potential NURR1 target therapy medications can effectively slow the progression of chronic neuroinflammation-induced PD.
Collapse
|
12
|
Abdollahi M, Fahnestock M. Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. Int J Mol Sci 2022; 23:6853. [PMID: 35743300 PMCID: PMC9224520 DOI: 10.3390/ijms23126853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Nurr1 and brain-derived neurotrophic factor (BDNF) play major roles in cognition. Nurr1 regulates BDNF in midbrain dopaminergic neurons and cerebellar granule cells. Nurr1 and BDNF are also highly expressed in the cerebral cortex, a brain area important in cognition. Due to Nurr1 and BDNF tissue specificity, the regulatory effect of Nurr1 on BDNF in different brain areas cannot be generalized. The relationship between Nurr1 and BDNF in the cortex has not been investigated previously. Therefore, we examined Nurr1-mediated BDNF regulation in cortical neurons in activity-dependent and activity-independent states. Mouse primary cortical neurons were treated with the Nurr1 agonist, amodiaquine (AQ). Membrane depolarization was induced by KCl or veratridine and reversed by nimodipine. AQ and membrane depolarization significantly increased Nurr1 (p < 0.001) and BDNF (pAQ < 0.001, pKCl < 0.01) as assessed by real-time qRT-PCR. However, Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized neurons. Accordingly, the positive correlation between Nurr1 and BDNF expression in AQ and membrane depolarization experiments does not imply co-regulation because Nurr1 knockdown did not affect BDNF gene expression in resting or depolarized cortical neurons. Therefore, in contrast to midbrain dopaminergic neurons and cerebellar granule cells, Nurr1 does not regulate BDNF in cortical neurons.
Collapse
Affiliation(s)
- Mona Abdollahi
- Medical Sciences Graduate Program, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
13
|
Montarolo F, Martire S, Marnetto F, Valentino P, Valverde S, Capobianco MA, Bertolotto A. The Selective Agonist for Sphingosine-1-Phosphate Receptors Siponimod Increases the Expression Level of NR4A Genes in Microglia Cell Line. Curr Issues Mol Biol 2022; 44:1247-1256. [PMID: 35723306 PMCID: PMC8947415 DOI: 10.3390/cimb44030083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/30/2022] Open
Abstract
Fingolimod (FTY720) and siponimod (BAF312) are selective agonists for sphingosine-1-phosphate (S1P) receptors approved for the treatment of relapsing–remitting (RR) and secondary progressive (SP) multiple sclerosis (MS), respectively. BAF312 exerts pro-myelination and neuro-protective functions on CNS resident cells, although the underlying molecular mechanism is not yet fully understood. NR4A2 is an anti-inflammatory gene, belonging to the NR4A family, whose expression is reduced in blood from treatment-naïve patients with RRMS, but is restored in patients treated with FTY720 for more than two years. We performed an in vitro study to investigate the potential involvement of the NR4A genes in the protective and restorative effects of BAF312. We showed that BAF312 enhances the expression of NR4A1 and NR4A2 in the N9 microglial cell line, but has no effect in the peripheral blood mononuclear cells and oligodendrocytes. This study suggests a novel molecular mechanism of action for the selective agonists for S1P receptors within the CNS.
Collapse
Affiliation(s)
- Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy; (F.M.); (S.M.); (F.M.); (P.V.); (S.V.); (M.A.C.)
- Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, 10043 Orbassano, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy; (F.M.); (S.M.); (F.M.); (P.V.); (S.V.); (M.A.C.)
- Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, 10043 Orbassano, Italy
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| | - Fabiana Marnetto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy; (F.M.); (S.M.); (F.M.); (P.V.); (S.V.); (M.A.C.)
- Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, 10043 Orbassano, Italy
| | - Paola Valentino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy; (F.M.); (S.M.); (F.M.); (P.V.); (S.V.); (M.A.C.)
- Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, 10043 Orbassano, Italy
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy
| | - Sabdi Valverde
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy; (F.M.); (S.M.); (F.M.); (P.V.); (S.V.); (M.A.C.)
- Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, 10043 Orbassano, Italy
| | - Marco Alfonso Capobianco
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy; (F.M.); (S.M.); (F.M.); (P.V.); (S.V.); (M.A.C.)
- Neurology Department and Regional Referring Center of Multiple Sclerosis (CReSM), University Hospital San Luigi Gonzaga, 10043 Orbassano, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, Italy; (F.M.); (S.M.); (F.M.); (P.V.); (S.V.); (M.A.C.)
- Correspondence:
| |
Collapse
|
14
|
Neuronal NR4A1 deficiency drives complement-coordinated synaptic stripping by microglia in a mouse model of lupus. Signal Transduct Target Ther 2022; 7:50. [PMID: 35177587 PMCID: PMC8854434 DOI: 10.1038/s41392-021-00867-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/18/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropsychiatric lupus (NPSLE) is a frequent manifestation of systemic lupus erythematosus (SLE) that occurs in 40–90% of SLE patients; however, the underlying mechanisms remain elusive, causing a severe lack of therapeutic targets for this condition. Here, we show that complement-coordinated elimination of synapses participated in NPSLE in MRL/lpr mice, a lupus-prone murine model. We demonstrated that lupus mice developed increased anxiety-like behaviors and persistent phagocytic microglial reactivation before overt peripheral lupus pathology. In the lupus brain, C1q was increased and localized at synaptic terminals, causing the apposition of phagocytic microglia and ensuing synaptic engulfment. We further determined that neuronal Nr4a1 signaling was essential for attracting C1q synaptic deposition and subsequent microglia-mediated synaptic elimination. Minocycline-mediated deactivation of microglia, antibody blockade of C1q, or neuronal restoration of Nr4a1 protected lupus mice from synapse loss and NP manifestations. Our findings revealed an active role of neurons in coordinating microglia-mediated synaptic loss and highlighted neuronal Nr4a1 and C1q as critical components amenable to therapeutic intervention in NPSLE.
Collapse
|
15
|
Català-Solsona J, Miñano-Molina AJ, Rodríguez-Álvarez J. Nr4a2 Transcription Factor in Hippocampal Synaptic Plasticity, Memory and Cognitive Dysfunction: A Perspective Review. Front Mol Neurosci 2021; 14:786226. [PMID: 34880728 PMCID: PMC8645690 DOI: 10.3389/fnmol.2021.786226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Long-lasting changes of synaptic efficacy are largely mediated by activity-induced gene transcription and are essential for neuronal plasticity and memory. In this scenario, transcription factors have emerged as pivotal players underlying synaptic plasticity and the modification of neural networks required for memory formation and consolidation. Hippocampal synaptic dysfunction is widely accepted to underlie the cognitive decline observed in some neurodegenerative disorders including Alzheimer’s disease. Therefore, understanding the molecular pathways regulating gene expression profiles may help to identify new synaptic therapeutic targets. The nuclear receptor 4A subfamily (Nr4a) of transcription factors has been involved in a variety of physiological processes within the hippocampus, ranging from inflammation to neuroprotection. Recent studies have also pointed out a role for the activity-dependent nuclear receptor subfamily 4, group A, member 2 (Nr4a2/Nurr1) in hippocampal synaptic plasticity and cognitive functions, although the underlying molecular mechanisms are still poorly understood. In this review, we highlight the specific effects of Nr4a2 in hippocampal synaptic plasticity and memory formation and we discuss whether the dysregulation of this transcription factor could contribute to hippocampal synaptic dysfunction, altogether suggesting the possibility that Nr4a2 may emerge as a novel synaptic therapeutic target in brain pathologies associated to cognitive dysfunctions.
Collapse
Affiliation(s)
- Judit Català-Solsona
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alfredo J Miñano-Molina
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José Rodríguez-Álvarez
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Biegler MT, Cantin LJ, Scarano DL, Jarvis ED. Controlling for activity-dependent genes and behavioral states is critical for determining brain relationships within and across species. J Comp Neurol 2021; 529:3206-3221. [PMID: 33855704 PMCID: PMC8205984 DOI: 10.1002/cne.25157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
The genetic profile of vertebrate pallia has long driven debate on homology across distantly related clades. Based on an expression profile of the orphan nuclear receptor NR4A2 in mouse and chicken brains, Puelles et al. (The Journal of Comparative Neurology, 2016, 524, 665–703) concluded that the avian lateral mesopallium is homologous to the mammalian claustrum, and the medial mesopallium homologous to the insula cortex. They argued that their findings contradict conclusions by Jarvis et al. (The Journal of Comparative Neurology, 2013, 521, 3614–3665) and Chen et al. (The Journal of Comparative Neurology, 2013, 521, 3666–3701) that the hyperpallium densocellare is instead a mesopallium cell population, and by Suzuki and Hirata (Frontiers in Neuroanatomy, 2014, 8, 783) that the avian mesopallium is homologous to mammalian cortical layers 2/3. Here, we find that NR4A2 is an activity‐dependent gene and cannot be used to determine brain organization or species relationships without considering behavioral state. Activity‐dependent NR4A2 expression has been previously demonstrated in the rodent brain, with the highest induction occurring within the claustrum, amygdala, deep and superficial cortical layers, and hippocampus. In the zebra finch, we find that NR4A2 is constitutively expressed in the arcopallium, but induced in parts of the mesopallium, and in sparse cells within the hyperpallium, depending on animal stimulus or behavioral state. Basal and induced NR4A2 expression patterns do not discount the previously named avian hyperpallium densocellare as dorsal mesopallium and conflict with proposed homology between the avian mesopallium and mammalian claustrum/insula at the exclusion of other brain regions. Broadly, these findings highlight the importance of controlling for behavioral state and neural activity to genetically define brain cell population relationships within and across species.
Collapse
Affiliation(s)
- Matthew T Biegler
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Laboratory of Neurogenetics of Language, The Rockefeller University, New York, New York, USA
| | - Lindsey J Cantin
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, New York, USA
| | - Danielle L Scarano
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Laboratory of Neurogenetics of Language, The Rockefeller University, New York, New York, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
Zhang L, Yang H. Promotive effects of tetrahydroxystilbene glucoside on the differentiation of neural stem cells from the mesencephalon into dopaminergic neurons. Neurosci Lett 2021; 742:135520. [PMID: 33246026 DOI: 10.1016/j.neulet.2020.135520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. Neural stem cells (NSCs) are the most promising cells for cell-replacement therapy for PD. However, the poor differentiation and maturation of DA neurons and decreased cell survival after transplantation are a challenge. Tetrahydroxystilbene glucoside (2,3,5,4'-tetrahydroxystilbene-2-O-glucoside; TSG), an active component of the popular traditional Chinese medicinal plant Polygonum multiflorum Thunb, possesses multiple pharmacological actions. In this study, we determined whether TSG can induce neural stem cell (NSCs) differentiation into neurons, especially DA neurons, and the possible involvement of Wnt/β-catenin signaling pathways. Results revealed that NSCs differentiated primarily into astrocytes when cultured in 2 % serum-containing medium. However, TSG treatment during NSC differentiation in vitro increased the number of Tuj-1-positive neurons, as well as the proportion of tyrosine hydroxylase(TH)-positive cells and dopamine- transporter- positive neurons, a late marker of mature DA neurons. We also found that TSG enhanced the expression of nuclear receptor related factor 1, a transcription factor specific for the development and maintenance of midbrain DA neurons in inducing NSC differentiation into TH -immunoreactive DA neurons. Moreover, TSG upregulated the expression of Wnt/β-catenin signaling molecules (Wnt1, Wnt3a, Wnt5a, and β-catenin). However, these promoting effects were significantly inhibited by the application of IWR1, a Wnt signaling-specific blocker in culture. Our findings suggested that TSG may have potential in inducing the DA neuronal differentiation of mouse NSCs mediated by triggering the Wnt/β-catenin signaling pathway. These results indicated the possible role for TSG in the transplantation of NSCs for PD.
Collapse
Affiliation(s)
- Lingling Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
18
|
Valsecchi V, Boido M, Montarolo F, Guglielmotto M, Perga S, Martire S, Cutrupi S, Iannello A, Gionchiglia N, Signorino E, Calvo A, Fuda G, Chiò A, Bertolotto A, Vercelli A. The transcription factor Nurr1 is upregulated in amyotrophic lateral sclerosis patients and SOD1-G93A mice. Dis Model Mech 2020; 13:dmm043513. [PMID: 32188741 PMCID: PMC7240304 DOI: 10.1242/dmm.043513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects both lower and upper motor neurons (MNs) in the central nervous system. ALS etiology is highly multifactorial and multifarious, and an effective treatment is still lacking. Neuroinflammation is a hallmark of ALS and could be targeted to develop new therapeutic approaches. Interestingly, the transcription factor Nurr1 has been demonstrated to have an important role in the inflammatory process in several neurological disorders, such as Parkinson's disease and multiple sclerosis. In the present paper, we demonstrate for the first time that Nurr1 expression levels are upregulated in the peripheral blood of ALS patients. Moreover, we investigated Nurr1 function in the SOD1-G93A mouse model of ALS. Nurr1 was strongly upregulated in the spinal cord during the asymptomatic and early symptomatic phases of the disease, where it promoted the expression of brain-derived neurotrophic factor mRNA and the repression of NFκB pro-inflammatory targets, such as inducible nitric oxide synthase. Therefore, we hypothesize that Nurr1 is activated in an early phase of the disease as a protective endogenous anti-inflammatory mechanism, although not sufficient to reverse disease progression. On the basis of these observations, Nurr1 could represent a potential biomarker for ALS and a promising target for future therapies.
Collapse
MESH Headings
- Amyotrophic Lateral Sclerosis/blood
- Amyotrophic Lateral Sclerosis/genetics
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Brain-Derived Neurotrophic Factor/metabolism
- Female
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Transgenic
- Middle Aged
- Motor Neurons/metabolism
- Motor Neurons/pathology
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/blood
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Superoxide Dismutase-1/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Valeria Valsecchi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Department of Neuroscience, Reproductive and Dentistry Sciences, University of Naples "Federico II", via S. Pansini 5, 80131, Naples, Italy
| | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Michela Guglielmotto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Simona Perga
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Serena Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Andrea Iannello
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Nadia Gionchiglia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Elena Signorino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Andrea Calvo
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Giuseppe Fuda
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Adriano Chiò
- Department of Neuroscience Rita Levi Montalcini, Amyotrophic Lateral Sclerosis Expert Center (CRESLA), University of Turin, via Cherasco 15, 10126 Turin, Italy
- University Hospital Città della Scienza e della Salute, corso Bramante 88, 10126 Turin, Italy
| | - Antonio Bertolotto
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
- Neurobiology Unit, Neurology - CReSM (Regional Referring Center of Multiple Sclerosis), AOU San Luigi Gonzaga, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| | - Alessandro Vercelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10126 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano, Turin, Italy
| |
Collapse
|
19
|
Jeon SG, Yoo A, Chun DW, Hong SB, Chung H, Kim JI, Moon M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer's Disease-related Pathogenesis. Aging Dis 2020; 11:705-724. [PMID: 32489714 PMCID: PMC7220289 DOI: 10.14336/ad.2019.0718] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
Several studies have revealed that the transcription factor nuclear receptor related 1 (Nurr1) plays several roles not only in the regulation of gene expression related to dopamine synthesis, but also in alternative splicing, and miRNA targeting. Moreover, it regulates cognitive functions and protects against inflammation-induced neuronal death. In particular, the role of Nurr1 in the pathogenesis of Parkinson's disease (PD) has been well investigated; for example, it has been shown that it restores behavioral and histological impairments in PD models. Although many studies have evaluated the connection between Nurr1 and PD pathogenesis, the role of Nurr1 in Alzheimer's disease (AD) remain to be studied. There have been several studies describing Nurr1 protein expression in the AD brain. However, only a few studies have examined the role of Nurr1 in the context of AD. Therefore, in this review, we highlight the overall effects of Nurr1 under the neuropathologic conditions related to AD. Furthermore, we suggest the possibility of using Nurr1 as a therapeutic target for AD or other neurodegenerative disorders.
Collapse
Affiliation(s)
- Seong Gak Jeon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Anji Yoo
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Dong Wook Chun
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sang Bum Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Jin-il Kim
- Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| |
Collapse
|
20
|
Li H, Shang J, Zhang C, Lu R, Chen J, Zhou X. Repetitive Transcranial Magnetic Stimulation Alleviates Neurological Deficits After Cerebral Ischemia Through Interaction Between RACK1 and BDNF exon IV by the Phosphorylation-Dependent Factor MeCP2. Neurotherapeutics 2020; 17:651-663. [PMID: 31912469 PMCID: PMC7283432 DOI: 10.1007/s13311-019-00771-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is acknowledged as a form of neurostimulation, especially for functional recovery. The foundational knowledge of molecular mechanism is limited regarding its role in cerebral ischemia, for which the present study was designed. Primary neurons were treated with oxygen-glucose deprivation (OGD) and repetitive magnetic stimulation (rMS), in which brain-derived neurotrophic factor (BDNF) and transcription of BDNF exons were examined. Then, adenovirus vectors carrying siRACK1 sequence were delivered to primary neurons, followed by detection of the transcription of BDNF exons and the extent of methyl CpG binding protein 2 (MeCP2) phosphorylation. Results showed that BDNF and the transcription of BDNF exons were upregulated by rMS and OGD treatment, but decreased by extra treatment of RACK1 siRNA. Then, the mechanism investigations demonstrated that rMS increased the extent of MeCP2 phosphorylation to promote the interaction between RACK1 and BDNF exon IV. The aforementioned findings were further confirmed in vivo in middle cerebral artery occlusion (MCAO)-induced rat models, as indicated by improved neurological functions and reduced area of cerebral infarction. The study offers potential evidence for improvement of neurological deficits, highlighting the important role of rTMS for treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hongzhan Li
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Jianqing Shang
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Chengliang Zhang
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China
| | - Rulan Lu
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China
| | - Junpao Chen
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China
| | - Xianju Zhou
- Department of Neurology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, No. 13, Shiliugang Road, Guangzhou, 510315, Guangdong Province, China.
- Department of Neurology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 29, Xinglong Alley, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
21
|
Park JH, Ahn JH, Kim DW, Lee TK, Park CW, Park YE, Lee JC, Lee HA, Yang GE, Won MH, Lee CH. Altered Nurr1 protein expression in the hippocampal CA1 region following transient global cerebral ischemia. Mol Med Rep 2019; 21:107-114. [PMID: 31746417 PMCID: PMC6896304 DOI: 10.3892/mmr.2019.10828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/10/2019] [Indexed: 11/06/2022] Open
Abstract
Nuclear receptor related 1 protein (Nurr1), a member of the nuclear receptor 4 family of orphan nuclear receptors, has been reported to display anti‑inflammatory properties. The present study investigated the alteration of Nurr1 immunoreactivity in the gerbil hippocampus proper following 5 min of transient global cerebral ischemia. In sham operated gerbils, Nurr1 immunoreactivity was observed in pyramidal neurons in all cornu ammonis 1‑3 (CA1‑3) subfields of the hippocampus proper. In ischemia‑operated gerbils, Nurr1 immunoreactivity was altered in the CA1 subfield. Nurr1 immunoreactivity in CA1 pyramidal neurons gradually decreased until 2 days post‑ischemia, and, at 4 days post‑ischemia, Nurr1 immunoreactivity was concentrated in CA1 pyramidal neurons. Additionally, Nurr1 immunoreactivity was newly expressed in microglia in the CA1 subfield at 4 days post‑ischemia. Conversely, in the CA2/3 subfield, time‑dependent alteration of Nurr1 immunoreactivity was not identified at any time following ischemia. These results indicated that the alteration of Nurr1 expression in the CA1 subfield in the hippocampus may be associated with the death of CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyang-Ah Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Go Eun Yang
- Department of Radiology, Kangwon National University Hospital, Chuncheon, Gangwon 24289, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam‑do 31116, Republic of Korea
| |
Collapse
|
22
|
Jakaria M, Haque ME, Cho DY, Azam S, Kim IS, Choi DK. Molecular Insights into NR4A2(Nurr1): an Emerging Target for Neuroprotective Therapy Against Neuroinflammation and Neuronal Cell Death. Mol Neurobiol 2019; 56:5799-5814. [PMID: 30684217 DOI: 10.1007/s12035-019-1487-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
NR4A2 is a nuclear receptor and a transcription factor, with distinctive physiological features. In the cell nuclei of the central nervous system, it is widely expressed and identified as a crucial regulator of dopaminergic (DA) neuronal differentiation, survival, and maintenance. Importantly, it has regulated different genes crucial for dopaminergic signals, and its expression has been diminished in both aged and PD post-mortem brains and reduced in PD patients. In microglia and astrocytes, the expression of NR4A2 has been found where it can be capable of inhibiting the expression of proinflammatory mediators; hence, it protected inflammation-mediated DA neuronal death. In addition, NR4A2 plays neuroprotective role via regulating different signals. However, NR4A2 has been mainly focused on Parkinson's research, but, in recent times, it has been studied in Alzheimer's disease (AD), multiple sclerosis (MS), and stroke. Altered expression of NR4A2 is connected to AD progression, and activation of its may improve cognitive function. It is downregulated in peripheral blood mononuclear cells of MS patients; nonetheless, its role in MS has not been fully clear. miR-145-5p known as a putative regulator of NR4A2 and in a middle cerebral artery occlusion/reperfusion model, anti-miR-145-5p administration promoted neurological outcomes in rat. To date, various activators and modulators of NR4A2 have been discovered and investigated as probable therapeutic drugs in neuroinflammatory and neuronal cell death models. The NR4A2 gene and cell-based therapy are described as promising drug candidates for neurodegenerative diseases. Moreover, microRNA might have a crucial role in neurodegeneration via affecting NR4A2 expression. Herein, we present the role of NR4A2 in neuroinflammation and neuronal cell death focusing on neurodegenerative conditions and display NR4A2 as a promising therapeutic target for the therapy of neuroprotection.
Collapse
Affiliation(s)
- Md Jakaria
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Md Ezazul Haque
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Duk-Yeon Cho
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - Shofiul Azam
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea.,Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju, South Korea. .,Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Sciences and Research Institute of Inflammatory Diseases (RID), Konkuk University, Chungju, South Korea.
| |
Collapse
|
23
|
Imura T, Kobayashi Y, Suzutani K, Ichikawa‐Tomikawa N, Chiba H. Differential expression of a stress‐regulated gene Nr4a2 characterizes early‐ and late‐born hippocampal granule cells. Hippocampus 2018; 29:539-549. [DOI: 10.1002/hipo.23045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/09/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Tetsuya Imura
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
- Department of Human PathologyKyoto Prefectural University of Medicine, Graduate School of Medical Sciences Kyoto Japan
- Department of Pathology and Applied NeurobiologyKyoto Prefectural University of Medicine, Graduate School of Medical Sciences Kyoto Japan
| | - Yasuyuki Kobayashi
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| | - Ken Suzutani
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| | - Naoki Ichikawa‐Tomikawa
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| | - Hideki Chiba
- Department of Basic PathologyFukushima Medical University School of Medicine Fukushima Japan
| |
Collapse
|
24
|
Loppi S, Kolosowska N, Kärkkäinen O, Korhonen P, Huuskonen M, Grubman A, Dhungana H, Wojciechowski S, Pomeshchik Y, Giordano M, Kagechika H, White A, Auriola S, Koistinaho J, Landreth G, Hanhineva K, Kanninen K, Malm T. HX600, a synthetic agonist for RXR-Nurr1 heterodimer complex, prevents ischemia-induced neuronal damage. Brain Behav Immun 2018; 73:670-681. [PMID: 30063972 PMCID: PMC8543705 DOI: 10.1016/j.bbi.2018.07.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 01/16/2023] Open
Abstract
Ischemic stroke is amongst the leading causes of death and disabilities. The available treatments are suitable for only a fraction of patients and thus novel therapies are urgently needed. Blockage of one of the cerebral arteries leads to massive and persisting inflammatory reaction contributing to the nearby neuronal damage. Targeting the detrimental pathways of neuroinflammation has been suggested to be beneficial in conditions of ischemic stroke. Nuclear receptor 4A-family (NR4A) member Nurr1 has been shown to be a potent modulator of harmful inflammatory reactions, yet the role of Nurr1 in cerebral stroke remains unknown. Here we show for the first time that an agonist for the dimeric transcription factor Nurr1/retinoid X receptor (RXR), HX600, reduces microglia expressed proinflammatory mediators and prevents inflammation induced neuronal death in in vitro co-culture model of neurons and microglia. Importantly, HX600 was protective in a mouse model of permanent middle cerebral artery occlusion and alleviated the stroke induced motor deficits. Along with the anti-inflammatory capacity of HX600 in vitro, treatment of ischemic mice with HX600 reduced ischemia induced Iba-1, p38 and TREM2 immunoreactivities, protected endogenous microglia from ischemia induced death and prevented leukocyte infiltration. These anti-inflammatory functions were associated with reduced levels of brain lysophosphatidylcholines (lysoPCs) and acylcarnitines, metabolites related to proinflammatory events. These data demonstrate that HX600 driven Nurr1 activation is beneficial in ischemic stroke and propose that targeting Nurr1 is a novel candidate for conditions involving neuroinflammatory component.
Collapse
Affiliation(s)
- S. Loppi
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - N. Kolosowska
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - O. Kärkkäinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - P. Korhonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M. Huuskonen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - A. Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia
| | - H. Dhungana
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - S. Wojciechowski
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Y. Pomeshchik
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M. Giordano
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - H. Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - A. White
- Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Qld 4006, Australia
| | - S. Auriola
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - J. Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - G. Landreth
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - K. Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | - K. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - T. Malm
- A. I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland,Corresponding author at: A. I. Virtanen Institute for Molecular Science, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland. (T. Malm)
| |
Collapse
|
25
|
Li C, Tu G, Luo C, Guo Y, Fang M, Zhu C, Li H, Ou J, Zhou Y, Liu W, Yung KKL, Mo Z. Effects of rhynchophylline on the hippocampal miRNA expression profile in ketamine-addicted rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:379-389. [PMID: 29476799 DOI: 10.1016/j.pnpbp.2018.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 01/28/2023]
Abstract
In the past few years, ketamine, a noncompetitive NMDA antagonist, has been widely abused worldwide as a new type of synthetic drug, severely affecting the physical and mental health of ketamine abusers. Previous studies have suggested that rhynchophylline can alleviate drug abuse and reverse the conditioned place preference caused by the abuse. MicroRNAs (miRNAs) are important factors regulating gene expression and are involved in the drug addiction process. The hippocampus is a critical area in the brain involved in causing drug addiction. However, the hippocampal miRNA expression profile and the effects of rhynchophylline on miRNA expression during ketamine abuse have not been reported. Thus, this study analyzed the hippocampal miRNA expression profile during ketamine-dependence formation and the effects of rhynchophylline on the differential expression of miRNAs induced by ketamine. The results of microarray analysis suggested that the expression levels of miR-331-5p were significantly different among three groups (the control, ketamine, and ketamine + rhynchophylline groups). miR-331-5p levels were significantly decreased in the ketamine model group and were upregulated in the ketamine + rhynchophylline group. Bioinformatics analysis of miR-331-5p and the 3' UTR of nuclear receptor related 1 protein (Nurr1) identified binding sites and showed downregulation, and the overexpression of miR-331-5p in hippocampal tissues showed that miR-331-5p is a negative transcription regulatory factor of Nurr1. Interestingly, we found that the downstream protein of Nurr1, brain-derived neurotrophic factor (BDNF), showed identical expression trends in the hippocampus as Nurr1. However, the transcription of the protein upstream of Nurr1, cyclic adenosine monophosphate response element-binding protein (CREB), did not show any significant differences between the ketamine group and the ketamine + rhynchophylline group. However, after rhynchophylline intervention, p-CREB showed significant differences between the ketamine and the ketamine + rhynchophylline groups. In summary, miR-331-5p is a key regulatory factor of Nurr1, and rhynchophylline can participate in the process of resistance to ketamine addiction through the miR-331-5p/Nurr1/BDNF pathway or inhibition of CREB phosphorylation.
Collapse
Affiliation(s)
- Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Genghong Tu
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, China
| | - Chaohua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Youli Guo
- Department of Pharmacy, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, China
| | - Miao Fang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chen Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hancheng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jinying Ou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuting Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
26
|
Tamamori-Adachi M, Koga A, Susa T, Fujii H, Tsuchiya M, Okinaga H, Hisaki H, Iizuka M, Kitajima S, Okazaki T. DNA damage response induced by Etoposide promotes steroidogenesis via GADD45A in cultured adrenal cells. Sci Rep 2018; 8:9636. [PMID: 29941883 PMCID: PMC6018231 DOI: 10.1038/s41598-018-27938-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 06/12/2018] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoid production is regulated by adrenocorticotropic hormone (ACTH) via the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway in the adrenal cortex, but the changes in steroidogenesis associated with aging are unknown. In this study, we show that cell-autonomous steroidogenesis is induced by non-ACTH- mediated genotoxic stress in human adrenocortical H295R cells. Low-dose etoposide (EP) was used to induce DNA damage as a genotoxic stress, leading to cellular senescence. We found that steroidogenesis was promoted in cells stained with γH2AX, a marker of DNA damaged cells. Among stress-associated and p53-inducible genes, the expression of GADD45A and steroidogenesis-related genes was significantly upregulated. Immunofluorescence analysis revealed that GADD45A accumulated in the nuclei. Metabolite assay using cultured media showed that EP-treated cells were induced to produce and secrete considerable amounts of glucocorticoid. Knockdown of GADD45A using small interfering RNA markedly inhibited the EP-induced upregulation of steroidogenesis-related gene expression, and glucocorticoid production. A p38MAPK inhibitor, but not a PKA inhibitor, suppressed EP-stimulated steroidogenesis. These results suggest that DNA damage itself promotes steroidogenesis via one or more unprecedented non-ACTH-mediated pathway. Specifically, GADD45A plays a crucial role in the steroidogenic processes triggered by EP-stimulated genotoxic stress. Our study sheds new light on an alternate mechanism of steroidogenesis in the adrenal cortex.
Collapse
Affiliation(s)
- Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Akane Koga
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Fujii
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of General Medicine, National Defense Medical College, 3-2, Namiki, Tokorozawa City, Saitama, 359-8513, Japan
| | - Masao Tsuchiya
- Department of Practical Pharmacy, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8605, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
27
|
Guo Y, Luo C, Tu G, Li C, Liu Y, Liu W, Lam Yung KK, Mo Z. Rhynchophylline Downregulates Phosphorylated cAMP Response Element Binding Protein, Nuclear Receptor-related-1, and Brain-derived Neurotrophic Factor Expression in the Hippocampus of Ketamine-induced Conditioned Place Preference Rats. Pharmacogn Mag 2018; 14:81-86. [PMID: 29576706 PMCID: PMC5858247 DOI: 10.4103/pm.pm_90_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 03/31/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Addiction to ketamine is becoming a serious public health issues, for which there exists no effective treatment. Rhynchophylline (Rhy) is an alkaloid extracted from certain Uncaria species that is well known for both its potent anti-addictive and neuroprotective properties. Increasing evidence supports the contributions of cAMP response element binding protein (CREB), nuclear receptor-related-1 (Nurr1), and brain-derived neurotrophic factor (BDNF) in modulating neural and behavioral plasticity which was induced by addictive drugs. Objective: To investigate the effects of Rhy on the behavior and the levels of phosphorylated CREB (p-CREB), Nurr1, and BDNF in the hippocampus of ketamine-induced conditioned place preference (CPP) rats. Materials and Methods: CPP paradigm was used to establish the model of ketamine-dependent rats and to evaluate the effect of Rhy on ketamine dependence. The expressions of p-CREB, Nurr1, and BDNF were tested by Western blotting and immunohistochemistry. Results: We observed that Rhy can reverse the behavior preference induced by ketamine CPP training. At the same time, expression of p-CREB, Nurr1, and BDNF, which was significantly increased by ketamine, was restored in the Rhy -treated group. Conclusion: This study indicates that Rhy can reverse the reward effect induced by ketamine in rats and the mechanism can probably be related to regulate the hippocampal protein expression of p-CREB, Nurr1, and BDNF. SUMMARY P-CREB, Nurr1 and BDNF play an important role in the formation of ketamine-induced place preference in rats Rhynchophylline reversed the expression of p-CREB, Nurr1 and BDNF which was activated by ketamine in the hippocampus Rhynchophylline demonstrates the potential effect of mediates ketamine induced rewarding effect.
Abbreviations used: Rhy: Rhynchophylline; CREB: cAMP response element binding protein; Nurr1: Nuclear receptor-related-1; BDNF: Brain-derived neurotrophic factor; CPP: Conditioned place preference; NMDA: N-methyl-D-aspartic acid; METH: Methamphetamine; CNS: Central nervous system; PFA: Paraformaldehyde; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; LTP: long-term potentiation.
Collapse
Affiliation(s)
- Youli Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Pharmacy, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou, China
| | - Chaohua Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Genghong Tu
- Department of Pathophysiology, Guangdong Province Key Laboratory of Functional Proteomics, Southern Medical University, Guangzhou, China
| | - Chan Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
More SV, Choi DK. Emerging preclinical pharmacological targets for Parkinson's disease. Oncotarget 2018; 7:29835-63. [PMID: 26988916 PMCID: PMC5045437 DOI: 10.18632/oncotarget.8104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological condition caused by the degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, tremors, and postural instability. Due to the multicentric pathology of PD involving inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it has become difficult to pin-point a single therapeutic target and evaluate its potential application. Currently available drugs for treating PD provide only symptomatic relief and do not decrease or avert disease progression resulting in poor patient satisfaction and compliance. Significant amount of understanding concerning the pathophysiology of PD has offered a range of potential targets for PD. Several emerging targets including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-1A/1B receptors are in different stages of clinical development. Additionally, alternative interventions such as deep brain stimulation, thalamotomy, transcranial magnetic stimulation, and gamma knife surgery, are also being developed for patients with advanced PD. As much as these therapeutic targets hold potential to delay the onset and reverse the disease, more targets and alternative interventions need to be examined in different stages of PD. In this review, we discuss various emerging preclinical pharmacological targets that may serve as a new promising neuroprotective strategy that could actually help alleviate PD and its symptoms.
Collapse
Affiliation(s)
- Sandeep Vasant More
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, South Korea
| |
Collapse
|
29
|
Sun Z, Ma Y, Duan S, Xie L, Lv J, Huang J, Lin Z, Guo R, Ma S. cAMP Response Element Binding Protein Expression in the Hippocampus of Rhesus Macaques with Chronic Ephedrine Addiction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1931204. [PMID: 29181387 PMCID: PMC5664267 DOI: 10.1155/2017/1931204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/18/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Drug addiction is classified as a chronic relapse nature brain disease with complicated neurobiology mechanisms. There are an increasing number of researchers that are investigating the possible mechanisms for solving the thorny problem. METHODS The model of chronic addiction of rhesus monkey ephedrine was established, where changes in body weight and behavior were monitored. The expression of cAMP response element binding protein (CREB) in the hippocampus of rhesus monkeys was identified by real-time PCR and Western blot. RESULTS We were successful in establishing the chronic ephedrine addiction model in the rhesus macaques. They exhibited changes in body weight and behavior. Immunofluorescence showed that CREB was expressed in the nucleus of the hippocampus, and the expression of CREB mRNA and protein in the hippocampus were increased by real-time PCR and Western blot. The CREB positive expression in the hippocampus of the modeling group was significantly higher than in the control group. CONCLUSIONS The changes of body weight and behavior of the rhesus monkeys after ephedrine chronic addiction were significant. The changes of CREB in the hippocampus of rhesus macaques with ephedrine chronic addiction are important molecular mechanisms, and the upregulation of CREB may be involved in the physiological pathology and behavior process in individuals with chronic ephedrine addiction.
Collapse
Affiliation(s)
- Zongbo Sun
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Ye Ma
- Department of Linguistics & Languages, Michigan State University, East Lansing, MI 48824, USA
| | - Shouxing Duan
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, Guangdong 515041, China
| | - Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Junyao Lv
- Department of Forensic Medicine, Shantou University Medical College, No. 22 Xinling Road, Shantou, Guangdong 515041, China
| | - Jinzhuang Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Zhirong Lin
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Ruiwei Guo
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, Guangdong 515041, China
- Guangdong Key Laboratory of Medical Molecular Imaging, No. 57 Changping Road, Shantou, Guangdong 515041, China
| |
Collapse
|
30
|
Ay M, Luo J, Langley M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson's Disease. J Neurochem 2017; 141:766-782. [PMID: 28376279 PMCID: PMC5643047 DOI: 10.1111/jnc.14033] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
Quercetin, one of the major flavonoids in plants, has been recently reported to have neuroprotective effects against neurodegenerative processes. However, since the molecular signaling mechanisms governing these effects are not well clarified, we evaluated quercetin's effect on the neuroprotective signaling events in dopaminergic neuronal models and further tested its efficacy in the MitoPark transgenic mouse model of Parkinson's disease (PD). Western blot analysis revealed that quercetin significantly induced the activation of two major cell survival kinases, protein kinase D1 (PKD1) and Akt in MN9D dopaminergic neuronal cells. Furthermore, pharmacological inhibition or siRNA knockdown of PKD1 blocked the activation of Akt, suggesting that PKD1 acts as an upstream regulator of Akt in quercetin-mediated neuroprotective signaling. Quercetin also enhanced cAMP response-element binding protein phosphorylation and expression of the cAMP response-element binding protein target gene brain-derived neurotrophic factor. Results from qRT-PCR, Western blot analysis, mtDNA content analysis, and MitoTracker assay experiments revealed that quercetin augmented mitochondrial biogenesis. Quercetin also increased mitochondrial bioenergetics capacity and protected MN9D cells against 6-hydroxydopamine-induced neurotoxicity. To further evaluate the neuroprotective efficacy of quercetin against the mitochondrial dysfunction underlying PD, we used the progressive dopaminergic neurodegenerative MitoPark transgenic mouse model of PD. Oral administration of quercetin significantly reversed behavioral deficits, striatal dopamine depletion, and TH neuronal cell loss in MitoPark mice. Together, our findings demonstrate that quercetin activates the PKD1-Akt cell survival signaling axis and suggest that further exploration of quercetin as a promising neuroprotective agent for treating PD may offer clinical benefits.
Collapse
Affiliation(s)
- Muhammet Ay
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Jie Luo
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Monica Langley
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Huajun Jin
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Vellareddy Anantharam
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Arthi Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Anumantha G. Kanthasamy
- Parkinson’s Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
31
|
In vitro generation of mature midbrain-type dopamine neurons by adjusting exogenous Nurr1 and Foxa2 expressions to their physiologic patterns. Exp Mol Med 2017; 49:e300. [PMID: 28280264 PMCID: PMC5382556 DOI: 10.1038/emm.2016.163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/24/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022] Open
Abstract
Developmental information aids stem cell biologists in producing tissue-specific cells. Recapitulation of the developmental profile of a specific cell type in an in vitro stem cell system provides a strategy for manipulating cell-fate choice during the differentiation process. Nurr1 and Foxa2 are potential candidates for genetic engineering to generate midbrain-type dopamine (DA) neurons for experimental and therapeutic applications in Parkinson's disease (PD), as forced expression of these genes in neural stem/precursor cells (NPCs) yields cells with a complete battery of midbrain DA neuron-specific genes. However, simple overexpression without considering their expression pattern in the developing midbrain tends to generate DA cells without adequate neuronal maturation and long-term maintenance of their phenotype in vitro and in vivo after transplantation. We here show that the physiological levels and timing of Nurr1 and Foxa2 expression can be replicated in NPCs by choosing the right vectors and promoters. Controlled expression combined with a strategy for transgene expression maintenance induced generation of fully mature midbrain-type DA neurons. These findings demonstrate the feasibility of cellular engineering for artificial cell-fate specification.
Collapse
|
32
|
Parra-Damas A, Chen M, Enriquez-Barreto L, Ortega L, Acosta S, Perna JC, Fullana MN, Aguilera J, Rodríguez-Alvarez J, Saura CA. CRTC1 Function During Memory Encoding Is Disrupted in Neurodegeneration. Biol Psychiatry 2017; 81:111-123. [PMID: 27587263 DOI: 10.1016/j.biopsych.2016.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/21/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Associative memory impairment is an early clinical feature of dementia patients, but the molecular and cellular mechanisms underlying these deficits are largely unknown. In this study, we investigated the functional regulation of the cyclic adenosine monophosphate response element binding protein (CREB)-regulated transcription coactivator 1 (CRTC1) by associative learning in physiological and neurodegenerative conditions. METHODS We evaluated the activation of CRTC1 in the hippocampus of control mice and mice lacking the Alzheimer's disease-linked presenilin genes (presenilin conditional double knockout [PS cDKO]) after one-trial contextual fear conditioning by using biochemical, immunohistochemical, and gene expression analyses. PS cDKO mice display classical features of neurodegeneration occurring in Alzheimer's disease including age-dependent cortical atrophy, neuron loss, dendritic degeneration, and memory deficits. RESULTS Context-associative learning, but not single context or unconditioned stimuli, induces rapid dephosphorylation (Ser151) and translocation of CRTC1 from the cytosol/dendrites to the nucleus of hippocampal neurons in the mouse brain. Accordingly, context-associative learning induces differential CRTC1-dependent transcription of c-fos and the nuclear receptor subfamily 4 (Nr4a) genes Nr4a1-3 in the hippocampus through a mechanism that involves CRTC1 recruitment to CRE promoters. Deregulation of CRTC1 dephosphorylation, nuclear translocation, and transcriptional function are associated with long-term contextual memory deficits in PS cDKO mice. Importantly, CRTC1 gene therapy in the hippocampus ameliorates context memory and transcriptional deficits and dendritic degeneration despite ongoing cortical degeneration in this neurodegeneration mouse model. CONCLUSIONS These findings reveal a critical role of CRTC1 in the hippocampus during associative memory, and provide evidence that CRTC1 deregulation underlies memory deficits during neurodegeneration.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meng Chen
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lilian Enriquez-Barreto
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Ortega
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - Sara Acosta
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - Judith Camats Perna
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - M Neus Fullana
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the
| | - José Aguilera
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Rodríguez-Alvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular; and the; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Montes P, Ruiz-Sánchez E, Calvillo M, Rojas P. Active coping of prenatally stressed rats in the forced swimming test: involvement of the Nurr1 gene. Stress 2016; 19:506-15. [PMID: 27219004 DOI: 10.1080/10253890.2016.1193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Depending on genetic predisposition, prenatal stress may result in vulnerability or resilience to develop psychiatric disorders in adulthood. Nurr1 is an immediate early gene, important in the brain for the stress response. We tested the hypothesis that prenatal stress and the decrease of hippocampal Nurr1 alter offspring behavioral responses in the forced swimming test (FST). Pregnant Wistar rats were exposed to restraint stress (45 min, thrice daily) from gestation day 14. Prenatally stressed (PS) and non-prenatally stressed (NPS) male offspring were treated bilaterally with a Nurr1 antisense oligodeoxynucleotide (ODN; or control) into the hippocampus at 97 d of age. After 1 h, the rats were exposed to the FST (acute stressor) to analyze their behavioral responses. Thirty minutes after the FST, we analyzed the gene expression of Nurr1, Bdnf and Nr3c1 (genes for Nurr1, brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), respectively) in the hippocampus, prefrontal cortex (PFC) and hypothalamus. Results showed that the decrease of hippocampal Nurr1 after the antisense ODN in adult NPS rats induces immobility (indicating depressive-like behavior). The PS adult rats, including the group with decreased hippocampal Nurr1, presented low immobility in the FST. This low immobility was concordant with maintenance of Nurr1 and Bdnf expression levels in the three analyzed brain regions; Nr3c1 gene expression was also maintained in the PFC and hypothalamus. These findings suggest that Nurr1 and associated genes could participate in the brain modifications induced by prenatal stress, allowing active coping (resilience) with acute stress in adulthood.
Collapse
MESH Headings
- Adaptation, Psychological/physiology
- Animals
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Female
- Gene Expression
- Hippocampus/metabolism
- Hypothalamus/metabolism
- Male
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Prefrontal Cortex/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- Prenatal Exposure Delayed Effects/psychology
- Rats
- Rats, Wistar
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Restraint, Physical
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Swimming/psychology
Collapse
Affiliation(s)
- Pedro Montes
- a Laboratory of Neurotoxicology , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| | - Elizabeth Ruiz-Sánchez
- a Laboratory of Neurotoxicology , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| | - Minerva Calvillo
- b Experimental Laboratory of Neurodegenerative Diseases , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| | - Patricia Rojas
- a Laboratory of Neurotoxicology , National Institute of Neurology and Neurosurgery, "Manuel Velasco Suárez" , Mexico D.F. , Mexico
| |
Collapse
|
34
|
Ding Y, Zhang Z, Ma J, Xia H, Wang Y, Liu Y, Ma Q, Sun T, Liu J. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related‑1 protein‑ and tyrosine hydroxylase‑expressing cells. Mol Med Rep 2016; 14:1993-9. [PMID: 27432537 PMCID: PMC4991738 DOI: 10.3892/mmr.2016.5489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is a severe neurodegenerative disorder. Although the detailed underlying molecular mechanism remains to be elucidated, the major pathological feature of PD is the loss of dopaminergic (DA) neurons of the substantia nigra. The use of donor stem cells to replace DA neurons may be a key breakthrough in the treatment of PD. In the present study, the growth kinetics of hippocampal neural stem cells (Hip-NSCs) isolated from postnatal mice and cultured in vitro were observed, specifically the generation of cells expressing DA neuronal markers nuclear receptor related-1 protein (Nurr1) and tyrosine hydroxylase (TH). It was revealed that Hip-NSCs differentiated primarily into astrocytes when cultured in serum-containing medium. However, in low serum conditions, the number of βIII tubulin-positive neurons increased markedly. The proportion of Nurr1-positive cells and TH-positive neurons, significantly increased with increasing duration of directed differentiation of Hip-NSCs (P=0.0187 and 0.0254, respectively). The results of the present study reveal that Hip-NSCs may be induced to differentiate in vitro into neurons expressing Nurr1 and TH, known to be critical regulators of DA neuronal fate. Additionally, their expression may be necessary to facilitate neuronal maturation in vitro. These data suggest that Hip-NSCs may serve as a source of DA neurons for cell therapy in patients diagnosed with PD.
Collapse
Affiliation(s)
- Yinxiu Ding
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zixin Zhang
- Department of Radiotherapy, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiangbo Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hechun Xia
- Department of Cerebral Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yin Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yinming Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Quanrui Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Juan Liu
- Ningxia Key Laboratory of Cerebrocranial Diseases, Basic Medical College of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
35
|
Olivares AM, Moreno-Ramos OA, Haider NB. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J Exp Neurosci 2016; 9:93-121. [PMID: 27168725 PMCID: PMC4859451 DOI: 10.4137/jen.s25480] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/13/2022] Open
Abstract
The nuclear hormone receptor (NHR) superfamily is composed of a wide range of receptors involved in a myriad of important biological processes, including development, growth, metabolism, and maintenance. Regulation of such wide variety of functions requires a complex system of gene regulation that includes interaction with transcription factors, chromatin-modifying complex, and the proper recognition of ligands. NHRs are able to coordinate the expression of genes in numerous pathways simultaneously. This review focuses on the role of nuclear receptors in the central nervous system and, in particular, their role in regulating the proper development and function of the brain and the eye. In addition, the review highlights the impact of mutations in NHRs on a spectrum of human diseases from autism to retinal degeneration.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Oscar Andrés Moreno-Ramos
- Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, Colombia
| | - Neena B Haider
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Xifró X, Rodríguez-Álvarez J. Delineating the factors and cellular mechanisms involved in the survival of cerebellar granule neurons. THE CEREBELLUM 2016; 14:354-9. [PMID: 25596943 DOI: 10.1007/s12311-015-0646-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cerebellar granule neurons (CGNs) constitute the most abundant neuronal population in the mammalian brain. Their postnatal generation and the feasibility to induce their apoptotic death in vitro make them an excellent model to study the effect of several neurotransmitters and neurotrophins. Here, we first review which factors are involved in the generation and proliferation of CGNs in the external granule layer (EGL) and in the regulation of their differentiation and migration to internal granule layer (IGL). Special attention was given to the role of several neurotrophins and the NMDA subtype of glutamate receptor. Then, using the paradigm of potassium deprivation in cultured CGNs, we address several extracellular factors that promote the survival of CGNs, with particular emphasis on the cellular mechanisms. The role of specific protein kinases leading to the regulation of transcription factors and recent data involving the small G protein family is also discussed. Finally, the participation of some members of Bcl-2 family and the inhibition of mitochondria-related apoptotic pathway is also considered. Altogether, these studies evidence that CGNs are a key model to understand the development and the survival of neuronal populations.
Collapse
Affiliation(s)
- Xavier Xifró
- Departament de Ciències Mèdiques, Facultat de Medicina, Universitat de Girona, C/ Emili Grahit, 77, 17071, Girona, Spain,
| | | |
Collapse
|
37
|
Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-Based Therapies for Parkinson's Disease. CNS Neurosci Ther 2016; 22:351-9. [PMID: 27012974 DOI: 10.1111/cns.12536] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have documented that orphan nuclear receptor Nurr1 (also known as NR4A2) plays important roles in the midbrain dopamine (DA) neuron development, differentiation, and survival. Furthermore, it has been reported that the defects in Nurr1 are associated with Parkinson's disease (PD). Thus, Nurr1 might be a potential therapeutic target for PD. Emerging evidence from in vitro and in vivo studies has recently demonstrated that Nurr1-activating compounds and Nurr1 gene therapy are able not only to enhance DA neurotransmission but also to protect DA neurons from cell injury induced by environmental toxin or microglia-mediated neuroinflammation. Moreover, modulators that interact with Nurr1 or regulate its function, such as retinoid X receptor, cyclic AMP-responsive element-binding protein, glial cell line-derived neurotrophic factor, and Wnt/β-catenin pathway, have the potential to enhance the effects of Nurr1-based therapies in PD. This review highlights the recent progress in preclinical studies of Nurr1-based therapies and discusses the outlook of this emerging therapy as a promising new generation of PD medication.
Collapse
Affiliation(s)
- Jie Dong
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing-Lin Mo
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huai-Bin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Wei-Dong Le
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
38
|
Wei X, Gao H, Zou J, Liu X, Chen D, Liao J, Xu Y, Ma L, Tang B, Zhang Z, Cai X, Jin K, Xia Y, Wang Q. Contra-directional Coupling of Nur77 and Nurr1 in Neurodegeneration: A Novel Mechanism for Memantine-Induced Anti-inflammation and Anti-mitochondrial Impairment. Mol Neurobiol 2015; 53:5876-5892. [PMID: 26497037 DOI: 10.1007/s12035-015-9477-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
Abstract
Recent evidence suggests that nerve growth factor IB (Nur77) and nuclear receptor related1 (Nurr1) are differentially involved in dopaminergic neurodegeneration. Since memantine has shown clinically relevant efficacy in Parkinson's disease (PD) and displayed a potent protective effect on dopaminergic neurons in experimental PD models, we asked if it exerts its neuroprotection by regulating Nur77 and Nurr1 signaling. We adopted a well-established in vitro PD model, 6-hydroxydopamine (OHDA)-lesioned PC12 cells, to test our hypothesis. Different concentrations of memantine were incubated with 6-OHDA-lesioned PC12 cells, and Nur77/Nurr1 and their related signaling molecules were examined by Western blot and immunocytochemistry. Nur77-deficient PC12 cells were used to verify the influences of Nur77 on neurodegeneration and memantine-mediated neuroprotection. We found that memantine reversed Nur77 upregulation and restored Nurr1 downregulation in 6-OHDA-lesioned PC12 cells. 6-OHDA incubation caused Nur77 translocation from the nucleus to cytosol and induced co-localization of Cyt c/HSP60/Nur77 in the cytosol. Memantine strongly reduced the sub-cellular translocations of Nur77/Cyt c/HSP60 under 6-OHDA-induced oxidative condition. Knockdown of Nur77 enhanced the viability of PC12 cells exposed to 6-OHDA, while memantine-induced neuroprotection was much less in the cells with Nur77 knockdown than in those without it. We conclude that Nur77 plays a crucial role in modulating mitochondrial impairment and contributes to neurodegeneration under the experimental PD condition. Memantine effectively suppresses such Nur77-mediated neurodegeneration and promotes survival signaling through post-translational modification of Nurr1. Nur77 and Nurr1 present a contra-directionally coupling interaction in memantine-mediated neuroprotection.
Collapse
Affiliation(s)
- Xiaobo Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China
| | - Huimin Gao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China
| | - Jing Zou
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China
| | - Xu Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China
| | - Dan Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China
| | - Jinchi Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China
| | - Yunqi Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China
| | - Long Ma
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, China
| | - Beisha Tang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, China
| | - Xiang Cai
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250# Changgang East Road, Guangzhou, 510260, China
| | - Kunling Jin
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Ying Xia
- Department of Neurosurgery, The University of Texas Medical School at Houston, 6431 Fannin St. MSE R444, Houston, TX, 77030, USA.
| | - Qing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
39
|
Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci 2015; 18:415-22. [PMID: 25643298 PMCID: PMC4340719 DOI: 10.1038/nn.3932] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating neural and behavioral plasticity to drugs of abuse. Here, we demonstrate a persistent down-regulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which is mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increases stalling of RNA polymerase II at these Bdnf promoters in VTA and alters permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we show that morphine suppresses binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which results from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributes to Bdnf repression and associated behavioral plasticity to morphine. These studies reveal novel epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.
Collapse
|
40
|
Skerrett R, Malm T, Landreth G. Nuclear receptors in neurodegenerative diseases. Neurobiol Dis 2014; 72 Pt A:104-16. [PMID: 24874548 PMCID: PMC4246019 DOI: 10.1016/j.nbd.2014.05.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 01/04/2023] Open
Abstract
Nuclear receptors have generated substantial interest in the past decade as potential therapeutic targets for the treatment of neurodegenerative disorders. Despite years of effort, effective treatments for progressive neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and ALS remain elusive, making non-classical drug targets such as nuclear receptors an attractive alternative. A substantial literature in mouse models of disease and several clinical trials have investigated the role of nuclear receptors in various neurodegenerative disorders, most prominently AD. These studies have met with mixed results, yet the majority of studies in mouse models report positive outcomes. The mechanisms by which nuclear receptor agonists affect disease pathology remain unclear. Deciphering the complex signaling underlying nuclear receptor action in neurodegenerative diseases is essential for understanding this variability in preclinical studies, and for the successful translation of nuclear receptor agonists into clinical therapies.
Collapse
Affiliation(s)
- Rebecca Skerrett
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Tarja Malm
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; A.I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland.
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Drouet JB, Fauvelle F, Maunoir-Regimbal S, Fidier N, Maury R, Peinnequin A, Denis J, Buguet A, Canini F. Differences in prefrontal cortex GABA/glutamate ratio after acute restraint stress in rats are associated with specific behavioral and neurobiological patterns. Neuroscience 2014; 285:155-65. [PMID: 25451275 DOI: 10.1016/j.neuroscience.2014.10.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 01/18/2023]
Abstract
In patients suffering from stress-related pathologies and depression, frontal cortex GABA and glutamate contents are reported to decrease and increase, respectively. This suggests that the GABA and/or glutamate content may participate in pathological phenotype expression. Whether differences in frontal cortex GABA and glutamate contents would be associated with specific behavioral and neurobiological patterns remains unclear, especially in the event of exposure to moderate stress. We hypothesized that an increase in prefrontal cortex GABA/glutamate ratio would be associated with a blunted prefrontal cortex activation, an enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activation and changes in behavior. Rats being restrained for 1-h were then tested in an open-field test in order to assess their behavior while under stress, and were sacrificed immediately afterward. The GABA/glutamate ratio was assessed by (1)H high-resolution magic angle spinning magnetic resonance spectroscopy ((1)H-HRMAS-MRS). The neurobiological response was evaluated through prefrontal cortex mRNA expression and plasma corticosterone levels. The stressed rats were distributed into two subgroups according to their high (H-G/g) or low (L-G/g) GABA/glutamate ratio. Compared to the L-G/g rats, the H-G/g rats exhibited a decrease in c-fos, Arc, Npas4, Nr4a2 mRNA expression suggesting blunted prefrontal cortex activation. They also showed a more pronounced stress with an enhanced rise in corticosterone, alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), creatine kinase (CK) and lactate dehydrogenase (LDH) levels, as well as behavioral disturbances with decreased locomotion speed. These changes were independent from prefrontal cortex energetic status as mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) pathway activities were similar in both subpopulations. The differences in GABA/glutamate ratio in the frontal cortex observed in the stressed animals may participate in shaping individual differences in psychophysiological reactions.
Collapse
Affiliation(s)
- J-B Drouet
- Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France
| | - F Fauvelle
- Département Radiobiologie et de Radiopathologie, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France
| | - S Maunoir-Regimbal
- Département Radiobiologie et de Radiopathologie, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France
| | - N Fidier
- Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France
| | - R Maury
- Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France
| | - A Peinnequin
- Pôle de Génomique, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France
| | - J Denis
- Laboratoire d'analyses biologiques, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France
| | - A Buguet
- Quartier Campement, Ignié (PK-45), Congo
| | - F Canini
- Département Neurosciences & Contraintes Opérationnelles, Institut de Recherche Biomédicale des Armées (IRBA), BP73, 91223 Brétigny-sur-Orge Cédex, France; Ecole du Val de Grâce, 1 place Laveran, F-75005 Paris, France.
| |
Collapse
|
42
|
Hesse M, Arenz C. miRNAs as novel therapeutic targets and diagnostic biomarkers for Parkinson’s disease: a patent evaluation of WO2014018650. Expert Opin Ther Pat 2014; 24:1271-6. [DOI: 10.1517/13543776.2014.965679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Moon M, Jeong I, Kim CH, Kim J, Lee PKJ, Mook-Jung I, Leblanc P, Kim KS. Correlation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer's disease. J Neurochem 2014; 132:254-62. [PMID: 25156412 DOI: 10.1111/jnc.12935] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/24/2022]
Abstract
The functional roles of the orphan nuclear receptor, Nurr1, have been extensively studied and well established in the development and survival of midbrain dopamine neurons. As Nurr1 and other NR4A members are widely expressed in the brain in overlapping and distinct manners, it has been an open question whether Nurr1 has important function(s) in other brain areas. Recent studies suggest that up-regulation of Nurr1 expression is critical for cognitive functions and/or long-term memory in forebrain areas including hippocampal formation. Questions remain about the association between Nurr1 expression and Alzheimer's disease (AD) brain pathology. Here, using our newly developed Nurr1-selective antibody, we report that Nurr1 protein is prominently expressed in brain areas with Aβ accumulation, that is, the subiculum and the frontal cortex, in the 5XFAD mouse and that Nurr1 is highly co-expressed with Aβ at early stages. Furthermore, the number of Nurr1-expressing cells significantly declines in the 5XFAD mouse in an age-dependent manner, accompanied by increased plaque deposition. Thus, our findings suggest that altered expression of Nurr1 is associated with AD progression. Using our newly developed Nurr1-selective antibody, we show that Nurr1 protein is prominently expressed in brain areas accumulating amyloid-beta (Aβ) in the transgenic mouse model of Alzheimer's disease (AD) and that Nurr1 is highly co-expressed with Aβ at early stages (upper panel). Furthermore, in the AD brain the number of Nurr1-expressing cells significantly declines in an age-dependent manner concomitant with increased Aβ accumulation (lower diagram) highlighting a possible Nurr1 involvement in AD pathology.
Collapse
Affiliation(s)
- Minho Moon
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts, USA; Program in Neuroscience, Harvard Medical School, Belmont, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Wang Y, Ertürk A, Kallop D, Jiang Z, Weimer RM, Kaminker J, Sheng M. Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron 2014; 83:431-443. [PMID: 24976215 DOI: 10.1016/j.neuron.2014.05.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 12/11/2022]
Abstract
Excitatory synapses occur mainly on dendritic spines, and spine density is usually correlated with the strength of excitatory synaptic transmission. We report that Nr4a1, an activity-inducible gene encoding a nuclear receptor, regulates the density and distribution of dendritic spines in CA1 pyramidal neurons. Nr4a1 overexpression resulted in elimination of the majority of spines; however, postsynaptic densities were preserved on dendritic shafts, and the strength of excitatory synaptic transmission was unaffected, showing that excitatory synapses can be dissociated from spines. mRNA expression profiling studies suggest that Nr4a1-mediated transcriptional regulation of the actin cytoskeleton contributes to this effect. Under conditions of chronically elevated activity, when Nr4a1 was induced, Nr4a1 knockdown increased the density of spines and PSDs specifically at the distal ends of dendrites. Thus, Nr4a1 is a key component of an activity-induced transcriptional program that regulates the density and distribution of spines and synapses.
Collapse
Affiliation(s)
- Yelin Chen
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Yuanyuan Wang
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Ali Ertürk
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Dara Kallop
- Department of Biomedical Imaging, Genentech Inc, South San Francisco, CA 94080, USA
| | - Zhiyu Jiang
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA
| | - Robby M Weimer
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA; Department of Biomedical Imaging, Genentech Inc, South San Francisco, CA 94080, USA
| | - Joshua Kaminker
- Department of Bioinformatics & Computational Biology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech Inc, South San Francisco, CA 94080, USA.
| |
Collapse
|
45
|
The lifelong maintenance of mesencephalic dopaminergic neurons by Nurr1 and engrailed. J Biomed Sci 2014; 21:27. [PMID: 24685177 PMCID: PMC3998737 DOI: 10.1186/1423-0127-21-27] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 01/04/2023] Open
Abstract
Specific vulnerability and degeneration of the dopaminergic neurons in the substantia nigra pars compacta of the midbrain is the pathological hallmark of Parkinson’s disease. A number of transcription factors regulate the birth and development of this set of neurons and some remain constitutively expressed throughout life. These maintenance transcription factors are closely associated with essential neurophysiological functions and are required ultimately for the long-term survival of the midbrain dopaminergic neurons. The current review describes the role of two such factors, Nurr1 and engrailed, in differentiation, maturation, and in normal physiological functions including acquisition of neurotransmitter identity. The review will also elucidate the relationship of these factors with life, vulnerability, degeneration and death of mesencephalic dopaminergic neurons in the context of Parkinson’s disease.
Collapse
|
46
|
Tao QQ, Sun YM, Liu ZJ, Ni W, Yang P, Li HL, Lu SJ, Wu ZY. A variant within FGF1 is associated with Alzheimer's disease in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:131-6. [PMID: 24464990 DOI: 10.1002/ajmg.b.32205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/12/2013] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the accumulation of amyloid beta (Aβ) plaques and Tau-containing neurofibrillary tangles in vulnerable brain areas. The progression of AD is well correlated with hippocampal neuron loss which highly suggests genes associated with neuron survival would be important for AD pathogenesis. According to the recent results of genome-wide association studies (GWAS) and other reported studies, we selected two single nucleotide polymorphisms (SNPs), rs3765728 within tumor protein p73 (P73), and rs34011 within fibroblast growth factor 1 (FGF1), both genes were related to neuron survival. We analyzed the distribution of rs3765728 and rs34011 in 1,083 Chinese subjects including 429 unrelated sporadic AD patients and 654 unrelated age and gender-matched control subjects. We found that the genotype distribution of rs34011 was significantly different between AD and control group (χ(2) = 9.048, df = 2, P = 0.011). Logistic regression manifested the risk of AD increased in TT genotype carriers in total subjects (Wald = 8.892, df = 1, P = 0.003, odds ratio [OR]:2.009, 95% confidence interval [95%CI]: 1.270-3.178). This effect was also found in APOE ϵ4 carrier group (Wald = 7.844, df = 1, P = 0.005, OR: 4.201, 95%CI: 1.539-11.472), suggesting the rs34011 has a synergetic effect of APOE on AD risk. However, no association was observed between rs3765728 and AD in the Han Chinese population (χ(2) = 0.431, df = 2, P = 0.806).
Collapse
Affiliation(s)
- Qing-Qing Tao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Xifró X, Miñano-Molina AJ, Saura CA, Rodríguez-Álvarez J. Ras protein activation is a key event in activity-dependent survival of cerebellar granule neurons. J Biol Chem 2014; 289:8462-72. [PMID: 24523415 DOI: 10.1074/jbc.m113.536375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal activity promotes the survival of cerebellar granule neurons (CGNs) during the postnatal development of cerebellum. CGNs that fail to receive excitatory inputs will die by apoptosis. This process could be mimicked in culture by exposing CGNs to either a physiological concentration of KCl (5 mm or K5) plus N-methyl-d-aspartate (NMDA) or to 25 mm KCl (K25). We have previously described that a 24-h exposure to NMDA (100 μm) or K25 at 2 days in vitro induced long term survival of CGNs in K5 conditions. Here we have studied the molecular mechanisms activated at 2 days in vitro in these conditions. First we showed that NMDA or K25 addition promoted a rapid stimulation of PI3K and a biphasic phosphorylation on Ser-473 of Akt, a PI3K substrate. Interestingly, we demonstrated that only the first wave of Akt phosphorylation is necessary for the NMDA- and K25-mediated survival. Additionally, we detected that both NMDA and K25 increased ERK activity with a similar time-course. Moreover, our results showed that NMDA-mediated activation of the small G-protein Ras is necessary for PI3K/Akt pathway activation, whereas Rap1 was involved in NMDA phosphorylation of ERK. On the other hand, Ras, but not Rap1, mediates K25 activation of PI3K/Akt and MEK/ERK pathways. Because neuroprotection by NMDA or K25 is mediated by Ras (and not by Rap1) activation, we propose that Ras stimulation is a crucial event in NMDA- and K25-mediated survival of CGNs through the activation of PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Xavier Xifró
- From the Institut de Neurociencies and Department of Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | | | | | | |
Collapse
|
48
|
Tokuoka H, Hatanaka T, Metzger D, Ichinose H. Nurr1 expression is regulated by voltage-dependent calcium channels and calcineurin in cultured hippocampal neurons. Neurosci Lett 2013; 559:50-5. [PMID: 24291696 DOI: 10.1016/j.neulet.2013.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/19/2013] [Indexed: 12/01/2022]
Abstract
Nurr1 is an orphan nuclear transcription factor expressed in the brain. While Nurr1 is assumed to be an immediate early gene, it is not fully understood how Nurr1 expression is regulated in an activity-dependent manner in the central nervous system. Here, we investigated the molecular mechanisms underlying the regulation of Nurr1 expression in cultured hippocampal and cortical neurons. We found that upregulation of neural activity by high KCl and bicuculline enhances Nurr1 levels, while blockade of its activity by tetrodotoxin reduces Nurr1 levels. The induction of Nurr1 expression was mediated by voltage-dependent calcium channels (VDCCs), as shown by cadmium and VDCC-specific inhibitors. Furthermore, calcineurin, but not calcium/calmodulin-dependent protein kinase (CaMK) was critical for the induction. Thus, Nurr1 expression is regulated by VDCC and calcineurin in a cell-autonomous, neural activity-dependent manner.
Collapse
Affiliation(s)
- Hirofumi Tokuoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takayuki Hatanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch F-67400, France; CNRS UMR7104, Illkirch, France; INSERM U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Hiroshi Ichinose
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
49
|
Decressac M, Volakakis N, Björklund A, Perlmann T. NURR1 in Parkinson disease--from pathogenesis to therapeutic potential. Nat Rev Neurol 2013; 9:629-36. [PMID: 24126627 DOI: 10.1038/nrneurol.2013.209] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Parkinson disease (PD), affected midbrain dopamine (DA) neurons lose specific dopaminergic properties before the neurons die. How the phenotype of DA neurons is normally established and the ways in which pathology affects the maintenance of cell identity are, therefore, important considerations. Orphan nuclear receptor NURR1 (NURR1, also known as NR4A2) is involved in the differentiation of midbrain DA neurons, but also has an important role in the adult brain. Emerging evidence indicates that impaired NURR1 function might contribute to the pathogenesis of PD: NURR1 and its transcriptional targets are downregulated in midbrain DA neurons that express high levels of the disease-causing protein α-synuclein. Clinical and experimental data indicate that disrupted NURR1 function contributes to induction of DA neuron dysfunction, which is seen in early stages of PD. The likely involvement of NURR1 in the development and progression of PD makes this protein a potentially interesting target for therapeutic intervention.
Collapse
Affiliation(s)
- Mickael Decressac
- Wallenberg Neuroscience Centre, Department of Experimental Medical Sciences, Lund University, BMC A11, Lund 22184, Sweden
| | | | | | | |
Collapse
|
50
|
Zhou X, Ding Q, Chen Z, Yun H, Wang H. Involvement of the GluN2A and GluN2B subunits in synaptic and extrasynaptic N-methyl-D-aspartate receptor function and neuronal excitotoxicity. J Biol Chem 2013; 288:24151-9. [PMID: 23839940 DOI: 10.1074/jbc.m113.482000] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GluN2A and GluN2B are the major subunits of functional NMDA receptors (NMDAR). Previous studies have suggested that GluN2A and GluN2B may differentially mediate NMDAR function at synaptic and extrasynaptic locations and play opposing roles in excitotoxicity, such as neurodegeneration triggered by ischemic stroke and brain injury. By using pharmacological and molecular approaches to suppress or enhance the function of GluN2A and GluN2B in cultured cortical neurons, we examined NMDAR-mediated, bidirectional regulation of prosurvival signaling (i.e. the cAMP response element-binding protein (CREB)-Bdnf cascade) and cell death. Inhibition of GluN2A or GluN2B attenuated the up-regulation of prosurvival signaling triggered by the activation of either synaptic or extrasynaptic NMDAR. Inhibition of GluN2A or GluN2B also attenuated the down-regulation of prosurvival signaling triggered by the coactivation of synaptic and extrasynaptic receptors. The effects of GluN2B on CREB-Bdnf signaling were larger than those of GluN2A. Consistently, compared with suppression of GluN2A, suppression of GluN2B resulted in more reduction of NMDA- and oxygen glucose deprivation-induced excitotoxicity as well as NMDAR-mediated elevation of intracellular calcium. Moreover, excitotoxicity and down-regulation of CREB were exaggerated in neurons overexpressing GluN2A or GluN2B. Together, we found that GluN2A and GluN2B are involved in the function of both synaptic and extrasynaptic NMDAR, demonstrating that they play similar rather than opposing roles in NMDAR-mediated bidirectional regulation of prosurvival signaling and neuronal death.
Collapse
Affiliation(s)
- Xianju Zhou
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|