1
|
Moran-Alvarez P, Messia V, Matteo V, Soscia F, Prencipe G, De Benedetti F, Insalaco A. Anifrolumab in Monogenic Lupus caused by TREX1 Mutation. J Clin Immunol 2024; 45:60. [PMID: 39738734 DOI: 10.1007/s10875-024-01851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Patricia Moran-Alvarez
- Division of Rheumatology, and the Unit of Medical Genetics, Laboratory of Cytogenetics and Molecular Genetics, Institute for Research and Health Care (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Virginia Messia
- Division of Rheumatology, and the Unit of Medical Genetics, Laboratory of Cytogenetics and Molecular Genetics, Institute for Research and Health Care (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Valentina Matteo
- Division of Rheumatology, and the Unit of Medical Genetics, Laboratory of Cytogenetics and Molecular Genetics, Institute for Research and Health Care (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Francesca Soscia
- Pediatric Division, Sant'Eugenio Hospital, ASL Roma 2, Rome, Italy
| | - Giusi Prencipe
- Division of Rheumatology, and the Unit of Medical Genetics, Laboratory of Cytogenetics and Molecular Genetics, Institute for Research and Health Care (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Fabrizio De Benedetti
- Division of Rheumatology, and the Unit of Medical Genetics, Laboratory of Cytogenetics and Molecular Genetics, Institute for Research and Health Care (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, and the Unit of Medical Genetics, Laboratory of Cytogenetics and Molecular Genetics, Institute for Research and Health Care (IRCCS), Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| |
Collapse
|
2
|
Luca D, Kato H. Mouse models of type I interferonopathies. Hum Mol Genet 2024:ddae187. [PMID: 39680957 DOI: 10.1093/hmg/ddae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024] Open
Abstract
Type I interferonopathies are severe monogenic diseases caused by mutations that result in chronically upregulated production of type I interferon. They present with a broad variety of symptoms, the mechanisms of which are being extensively studied. Mouse models of type I interferonopathies are an important resource for this purpose, and in this context, we review several key molecular and phenotypic findings that are advancing our understanding of the respective diseases. We focus on genotypes related to nucleic acid metabolism, sensing by cytosolic receptors and downstream signalling.
Collapse
Affiliation(s)
- Domnica Luca
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| |
Collapse
|
3
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner J, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024; 327:83-99. [PMID: 39473130 PMCID: PMC11672868 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J. Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; NHMRC Ideas Grant to MJH APP2001543
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nicole G. Coufal
- Department of Pediatrics, University of California, San Diego CA 92093, Rady Children’s Hospital, San Diego CA 92123. Sanford Consortium for Regenerative Medicine, San Diego CA 92037
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Jonathan Miner
- Departments of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| |
Collapse
|
4
|
Al Khatib I, Deng J, Lei Y, Torres-Odio S, Rojas GR, Newman LE, Chung BK, Symes A, Zhang H, Huang SYN, Pommier Y, Khan A, Shadel GS, West AP, Gibson WT, Shutt TE. Activation of the cGAS-STING innate immune response in cells with deficient mitochondrial topoisomerase TOP1MT. Hum Mol Genet 2023; 32:2422-2440. [PMID: 37129502 PMCID: PMC10360396 DOI: 10.1093/hmg/ddad062] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
The recognition that cytosolic mitochondrial DNA (mtDNA) activates cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) innate immune signaling has unlocked novel disease mechanisms. Here, an uncharacterized variant predicted to affect TOP1MT function, P193L, was discovered in a family with multiple early onset autoimmune diseases, including Systemic Lupus Erythematosus (SLE). Although there was no previous genetic association between TOP1MT and autoimmune disease, the role of TOP1MT as a regulator of mtDNA led us to investigate whether TOP1MT could mediate the release of mtDNA to the cytosol, where it could then activate the cGAS-STING innate immune pathway known to be activated in SLE and other autoimmune diseases. Through analysis of cells with reduced TOP1MT expression, we show that loss of TOP1MT results in release of mtDNA to the cytosol, which activates the cGAS-STING pathway. We also characterized the P193L variant for its ability to rescue several TOP1MT functions when expressed in TOP1MT knockout cells. We show that the P193L variant is not fully functional, as its re-expression at high levels was unable to rescue mitochondrial respiration deficits, and only showed partial rescue for other functions, including repletion of mtDNA replication following depletion, nucleoid size, steady state mtDNA transcripts levels and mitochondrial morphology. Additionally, expression of P193L at endogenous levels was unable to rescue mtDNA release-mediated cGAS-STING signaling. Overall, we report a link between TOP1MT and mtDNA release leading to cGAS-STING activation. Moreover, we show that the P193L variant has partial loss of function that may contribute to autoimmune disease susceptibility via cGAS-STING mediated activation of the innate immune system.
Collapse
Affiliation(s)
- Iman Al Khatib
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jingti Deng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - Gladys R Rojas
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura E Newman
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian K Chung
- Norwegian PSC Research Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andrew Symes
- Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shar-yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aneal Khan
- Discovery DNA, Calgary, Alberta T2L 1Y8, Canada
- M.A.G.I.C. Clinic Ltd. (Metabolics and Genetics in Calgary)
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital Research Institute, Calgary, Alberta T2M OL6, Canada
| | - Gerald S Shadel
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Phillip West
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX, USA
| | - William T Gibson
- Department of Medical Genetics, Faculty of Medicine, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
5
|
Xu H, Pu J, Lin S, Hu R, Yao J, Li X. Preimplantation genetic testing for Aicardi-Goutières syndrome induced by novel compound heterozygous mutations of TREX1: an unaffected live birth. Mol Cytogenet 2023; 16:9. [PMID: 37277873 DOI: 10.1186/s13039-023-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a rare, autosomal recessive, hereditary neurodegenerative disorder. It is characterized mainly by early onset progressive encephalopathy, concomitant with an increase in interferon-α levels in the cerebrospinal fluid. Preimplantation genetic testing (PGT) is a procedure that could be used to choose unaffected embryos for transfer after analysis of biopsied cells, which prevents at-risk couples from facing the risk of pregnancy termination. METHODS Trio-based whole exome sequencing, karyotyping and chromosomal microarray analysis were used to determine the pathogenic mutations for the family. To block the inheritance of the disease, multiple annealing and looping-based amplification cycles was used for whole genome amplification of the biopsied trophectoderm cells. Sanger sequencing and next-generation sequencing (NGS)-based single nucleotide polymorphism (SNP) haplotyping were used to detect the state of the gene mutations. Copy number variation (CNV) analysis was also carried out to prevent embryonic chromosomal abnormalities. Prenatal diagnosis was preformed to verify the PGT outcomes. RESULTS A novel compound heterozygous mutation in TREX1 gene was found in the proband causing AGS. A total of 3 blastocysts formed after intracytoplasmic sperm injection were biopsied. After genetic analyses, an embryo harbored a heterozygous mutation in TREX1 and without CNV was transferred. A healthy baby was born at 38th weeks and prenatal diagnosis results confirmed the accuracy of PGT. CONCLUSIONS In this study, we identified two novel pathogenic mutations in TREX1, which has not been previously reported. Our study extends the mutation spectrum of TREX1 gene and contributes to the molecular diagnosis as well as genetic counseling for AGS. Our results demonstrated that combining NGS-based SNP haplotyping for PGT-M with invasive prenatal diagnosis is an effective approach to block the transmission of AGS and could be applied to prevent other monogenic diseases.
Collapse
Affiliation(s)
- Huiling Xu
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Jiajie Pu
- Department of Bioinformatics, 01life Institute, Shenzhen, 518000, Guangdong, China
| | - Suiling Lin
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Jilong Yao
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Xuemei Li
- Department of Reproductive Medicine, Southern Medical University Affiliated Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Fang L, Ying S, Xu X, Wu D. TREX1 cytosolic DNA degradation correlates with autoimmune disease and cancer immunity. Clin Exp Immunol 2023; 211:193-207. [PMID: 36745566 PMCID: PMC10038326 DOI: 10.1093/cei/uxad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
The N-terminal domain of Three Prime Repair Exonuclease 1 (TREX1) is catalytically active and can degrade dsDNA or ssDNA in the cytosol, whereas the C-terminal domain is primarily involved in protein localization. TREX1 deficiency induces cytosolic DNA accumulation as well as activation of the cGAS-STING-IFN signaling pathway, which results in tissue inflammation and autoimmune diseases. Furthermore, TREX1 expression in cancer immunity can be adaptively regulated to promote tumor proliferation, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Liwei Fang
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xi Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De Wu
- Pediatric Neurorehabilitation Center, Pediatric Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Bowen NE, Oo A, Kim B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022; 14:v14081622. [PMID: 35893688 PMCID: PMC9331428 DOI: 10.3390/v14081622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Collapse
Affiliation(s)
- Nicole E. Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
- Correspondence:
| |
Collapse
|
8
|
Zhou W, Richmond-Buccola D, Wang Q, Kranzusch PJ. Structural basis of human TREX1 DNA degradation and autoimmune disease. Nat Commun 2022; 13:4277. [PMID: 35879334 PMCID: PMC9314330 DOI: 10.1038/s41467-022-32055-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/11/2022] [Indexed: 01/13/2023] Open
Abstract
TREX1 is a cytosolic DNA nuclease essential for regulation of cGAS-STING immune signaling. Existing structures of mouse TREX1 establish a mechanism of DNA degradation and provide a key model to explain autoimmune disease, but these structures incompletely explain human disease-associated mutations and have limited ability to guide development of small-molecule therapeutics. Here we determine crystal structures of human TREX1 in apo and DNA-bound conformations that provide high-resolution detail of all human-specific features. A 1.25 Å structure of human TREX1 establishes a complete model of solvation of the exonuclease active site and a 2.2 Å structure of the human TREX1-DNA complex enables identification of specific substitutions involved in DNA recognition. We map each TREX1 mutation associated with autoimmune disease and establish distinct categories of substitutions predicted to impact enzymatic function, protein stability, and interaction with cGAS-DNA liquid droplets. Our results explain how human-specific substitutions regulate TREX1 function and provide a foundation for structure-guided design of TREX1 therapeutics.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Desmond Richmond-Buccola
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Qiannan Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Amico G, Hemphill WO, Severino M, Moratti C, Pascarella R, Bertamino M, Napoli F, Volpi S, Rosamilia F, Signa S, Perrino F, Zedde M, Ceccherini I, on behalf of the Gaslini Stroke Study Group. Genotype-Phenotype Correlation and Functional Insights for Two Monoallelic TREX1 Missense Variants Affecting the Catalytic Core. Genes (Basel) 2022; 13:1179. [PMID: 35885962 PMCID: PMC9323106 DOI: 10.3390/genes13071179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The TREX1 exonuclease degrades DNA to prevent aberrant nucleic-acid sensing through the cGAS-STING pathway, and dominant Aicardi-Goutières Syndrome type 1 (AGS1) represents one of numerous TREX1-related autoimmune diseases. Monoallelic TREX1 mutations were identified in patients showing early-onset cerebrovascular disease, ascribable to small vessel disease, and CADASIL-like neuroimaging. We report the clinical-neuroradiological features of two patients with AGS-like (Patient A) and CADASIL-like (Patient B) phenotypes carrying the heterozygous p.A136V and p.R174G TREX1 variants, respectively. Genetic findings, obtained by a customized panel including 183 genes associated with monogenic stroke, were combined with interferon signature testing and biochemical assays to determine the mutations' effects in vitro. Our results for the p.A136V variant are inconsistent with prior biochemistry-pathology correlates for dominant AGS-causing TREX1 mutants. The p.R174G variant modestly altered exonuclease activity in a manner consistent with perturbation of substrate interaction rather than catalysis, which represents the first robust enzymological data for a TREX1 variant identified in a CADASIL-like patient. In conclusion, functional analysis allowed us to interpret the impact of TREX1 variants on patients' phenotypes. While the p.A136V variant is unlikely to be causative for AGS in Patient A, Patient B's phenotype is potentially related to the p.R174G variant. Therefore, further functional investigations of TREX1 variants found in CADASIL-like patients are warranted to determine any causal link and interrogate the molecular disease mechanism(s).
Collapse
Affiliation(s)
- Giulia Amico
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy;
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Wayne O. Hemphill
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (C.M.); (R.P.)
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Flavia Napoli
- Departments of Pediatrics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Stefano Volpi
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Francesca Rosamilia
- Biostatistic Unit, Health Science Department (DISSAL), University of Genoa, 16132 Genoa, Italy;
| | - Sara Signa
- Autoinflammatory Diseases and Immunodeficiencies Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (S.S.)
| | - Fred Perrino
- Center for Structural Biology, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | | |
Collapse
|
10
|
Zhang H, Chen Y, Jiang Y, Mao Z. DNA double-strand break repair and nucleic acid-related immunity. Acta Biochim Biophys Sin (Shanghai) 2022; 54:828-835. [PMID: 35975605 PMCID: PMC9828507 DOI: 10.3724/abbs.2022061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA damage repair and innate immunity are two conserved mechanisms that both function in cellular stress responses. Recently, an increasing amount of evidence has uncovered the close relationship between these two ancient biological processes. Here, we review the classical function of factors involved in DNA repair, and especially double-strand break repair, in innate immunity; more importantly, we discuss the novel roles of DNA repair factors in regulating innate immunity and vice versa. In addition, we also review the roles of DNA repair, innate immunity and their crosstalk in human diseases, which suggest that these two pathways may be compelling targets for disease prevention and treatment.
Collapse
Affiliation(s)
| | | | | | - Zhiyong Mao
- Correspondence address. Tel: +86-21-65978166; E-mail:
| |
Collapse
|
11
|
Wang Q, Du J, Hua S, Zhao K. TREX1 Plays Multiple Roles in Human Diseases. Cell Immunol 2022; 375:104527. [DOI: 10.1016/j.cellimm.2022.104527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/12/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
|
12
|
Baris AM, Fraile-Bethencourt E, Anand S. Nucleic Acid Sensing in the Tumor Vasculature. Cancers (Basel) 2021; 13:4452. [PMID: 34503262 PMCID: PMC8431390 DOI: 10.3390/cancers13174452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells form a powerful interface between tissues and immune cells. In fact, one of the underappreciated roles of endothelial cells is to orchestrate immune attention to specific sites. Tumor endothelial cells have a unique ability to dampen immune responses and thereby maintain an immunosuppressive microenvironment. Recent approaches to trigger immune responses in cancers have focused on activating nucleic acid sensors, such as cGAS-STING, in combination with immunotherapies. In this review, we present a case for targeting nucleic acid-sensing pathways within the tumor vasculature to invigorate tumor-immune responses. We introduce two specific nucleic acid sensors-the DNA sensor TREX1 and the RNA sensor RIG-I-and discuss their functional roles in the vasculature. Finally, we present perspectives on how these nucleic acid sensors in the tumor endothelium can be targeted in an antiangiogenic and immune activation context. We believe understanding the role of nucleic acid-sensing in the tumor vasculature can enhance our ability to design more effective therapies targeting the tumor microenvironment by co-opting both vascular and immune cell types.
Collapse
Affiliation(s)
- Adrian M. Baris
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
| | - Sudarshan Anand
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; (A.M.B.); (E.F.-B.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
13
|
Hu J, Tang L, Cheng J, Zhou T, Li Y, Chang J, Zhao Q, Guo JT. Hepatitis B virus nucleocapsid uncoating: biological consequences and regulation by cellular nucleases. Emerg Microbes Infect 2021; 10:852-864. [PMID: 33870849 PMCID: PMC8812769 DOI: 10.1080/22221751.2021.1919034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upon infection of hepatocyte, Hepatitis B virus (HBV) genomic DNA in nucleocapsid is transported into the nucleus and converted into a covalently closed circular (ccc) DNA to serve as the template for transcription of viral RNAs. Viral DNA in the cytoplasmic progeny nucleocapsid is another resource to fuel cccDNA amplification. Apparently, nucleocapsid disassembly, or viral genomic DNA uncoating, is an essential step for cccDNA synthesis from both de novo infection and intracellular amplification pathways, and has a potential to activate DNA sensors and induce an innate immune response in infected hepatocytes. However, where and how the nucleocapsid disassembly occurs is not well understood. The work reported herein showed that the enhanced disassembly of progeny mature nucleocapsids in the cytoplasm supported cccDNA intracellular amplification, but failed to activate the cGAS-STING-mediated innate immune response in hepatocytes. Interestingly, while expression of a cytoplasmic exonuclease TREX1 in human hepatoma cells supporting HBV replication significantly reduced the amounts of cccDNA as well as its precursor, deproteinized relaxed circular (rc) DNA, expression of TREX1 in sodium taurocholate cotransporting polypeptide-expressing human hepatoma cells did not inhibit cccDNA synthesis from de novo HBV infection. The results from this cytoplasmic nuclease protection assay imply that the disassembly of progeny mature nucleocapsids and removal of viral DNA polymerase covalently linked to the 5′ end of minus strand of rcDNA take place in the cytoplasm. On the contrary, the disassembly of virion-derived nucleocapsids during de novo infection may occur at a different subcellular compartment and possibly via distinct mechanisms.
Collapse
Affiliation(s)
- Jin Hu
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Liudi Tang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA.,Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Junjun Cheng
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Tianlun Zhou
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jinhong Chang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Qiong Zhao
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| | - Ju-Tao Guo
- Department of Experimental Medicine, Baruch S. Blumberg Institute, Doylestown, PA, USA
| |
Collapse
|
14
|
Hemphill WO, Simpson SR, Liu M, Salsbury FR, Hollis T, Grayson JM, Perrino FW. TREX1 as a Novel Immunotherapeutic Target. Front Immunol 2021; 12:660184. [PMID: 33868310 PMCID: PMC8047136 DOI: 10.3389/fimmu.2021.660184] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TREX1 3' → 5' exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Wayne O. Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sean R. Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, United States
| | - Thomas Hollis
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fred W. Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Mohr L, Toufektchan E, von Morgen P, Chu K, Kapoor A, Maciejowski J. ER-directed TREX1 limits cGAS activation at micronuclei. Mol Cell 2021; 81:724-738.e9. [PMID: 33476576 PMCID: PMC7897315 DOI: 10.1016/j.molcel.2020.12.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Micronuclei are aberrant nuclear compartments that can form as a result of chromosome mis-segregation. Frequent loss of micronuclear envelope integrity exposes DNA to the cytoplasm, leading to chromosome fragmentation and immune activation. Here, we use micronuclei purification to show that the endoplasmic reticulum (ER)-associated nuclease TREX1 inhibits cGAS activation at micronuclei by degrading micronuclear DNA upon micronuclear envelope rupture. We demonstrate that the ER accesses ruptured micronuclei and plays a critical role in enabling TREX1 nucleolytic attack. TREX1 mutations, previously implicated in immune disease, untether TREX1 from the ER, disrupt TREX1 localization to micronuclei, diminish micronuclear DNA damage, and enhance cGAS activation. These results establish ER-directed resection of micronuclear DNA by TREX1 as a critical regulator of cytosolic DNA sensing in chromosomally unstable cells and provide a mechanistic basis for the importance of TREX1 ER tethering in preventing autoimmunity.
Collapse
Affiliation(s)
- Lisa Mohr
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eléonore Toufektchan
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Patrick von Morgen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kevan Chu
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aakanksha Kapoor
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
16
|
Liu Y, Lu X, Qin N, Qiao Y, Xing S, Liu W, Feng F, Liu Z, Sun H. STING, a promising target for small molecular immune modulator: A review. Eur J Med Chem 2020; 211:113113. [PMID: 33360799 DOI: 10.1016/j.ejmech.2020.113113] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
Stimulator of interferon genes (STING) plays a crucial role in human innate immune system, which is gradually concerned following the emerging immunotherapy. Activated STING induces the production of type I interferons (IFNs) and proinflammatory cytokines through STING-TBK1-IRF3/NF-κB pathway, which could be applied into the treatment of infection, inflammation, and tumorigenesis. Here, we provided a detailed summary of STING from its structure, function and regulation. Especially, we illustrated the canonical or noncanonical cyclic dinucleotides (CDNs) and synthetic small molecules for STING activation or inhibition and their efficacy in related diseases. Importantly, we particularly emphasized the discovery, development and modification of STING agonist or antagonist, attempting to enlighten reader's mind for enriching small molecular modulator of STING. In addition, we summarized biological evaluation methods for the assessment of small molecules activity.
Collapse
Affiliation(s)
- Yijun Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Nan Qin
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yuting Qiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China; Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.
| |
Collapse
|
17
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
18
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|
19
|
Sintim HO, Mikek CG, Wang M, Sooreshjani MA. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. MEDCHEMCOMM 2019; 10:1999-2023. [PMID: 32206239 PMCID: PMC7069516 DOI: 10.1039/c8md00555a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/13/2019] [Indexed: 12/19/2022]
Abstract
The cyclic dinucleotide-cGAS-STING axis plays important roles in host immunity. Activation of this signaling pathway, via cytosolic sensing of bacterial-derived c-di-GMP/c-di-AMP or host-derived cGAMP, leads to the production of inflammatory interferons and cytokines that help resolve infection. Small molecule activators of the cGAS-STING axis have the potential to augment immune response against various pathogens or cancer. The aberrant activation of this pathway, due to gain-of-function mutations in any of the proteins that are part of the signaling axis, could lead to various autoimmune diseases. Inhibiting various nodes of the cGAS-STING axis could provide relief to patients with autoimmune diseases. Many excellent reviews on the cGAS-STING axis have been published recently, and these have mainly focused on the molecular details of the cGAS-STING pathway. This review however focuses on small molecules that can be used to modulate various aspects of the cGAS-STING pathway, as well as other parallel inflammatory pathways.
Collapse
Affiliation(s)
- Herman O Sintim
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
- Institute for Drug Discovery , Purdue University , 720 Clinic Drive , West Lafayette , IN 47907 , USA
- Purdue Institute of Inflammation and Infectious Diseases , Purdue University , West Lafayette , IN 47907 , USA
| | - Clinton G Mikek
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Modi Wang
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| | - Moloud A Sooreshjani
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , IN 47907 , USA .
| |
Collapse
|
20
|
Mandhana R, Qian LK, Horvath CM. Constitutively Active MDA5 Proteins Are Inhibited by Paramyxovirus V Proteins. J Interferon Cytokine Res 2019; 38:319-332. [PMID: 30130154 DOI: 10.1089/jir.2018.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Excessive interferon (IFN) production and signaling can lead to immunological and developmental defects giving rise to autoimmune diseases referred to collectively as "type I interferonopathies." A subset of these diseases is caused by monogenic mutations affecting proteins involved in nucleic acid sensing, homeostasis, and metabolism. Interferonopathic mutations in the cytosolic antiviral sensor MDA5 render it constitutively hyperactive, resulting in chronic IFN production and IFN-stimulated gene expression. Few therapeutic options are available for patients with interferonopathic diseases, but a large number of IFN evasion and antagonism strategies have evolved in viral pathogens that can counteract IFN production and signaling to enhance virus replication. To test the hypothesis that these natural IFN suppressors could be used to subdue the activity of interferonopathic signaling proteins, hyperactive MDA5 variants were assessed for susceptibility to a family of viral MDA5 inhibitors. In this study, Paramyxovirus V proteins were tested for their ability to counteract constitutively active MDA5 proteins. Results indicate that the V proteins are able to bind to and disrupt the signaling activity of these MDA5 proteins, irrespective of their specific mutations, reducing IFN production and IFN-stimulated gene expression to effectively suppress the hyperactive antiviral response.
Collapse
Affiliation(s)
- Roli Mandhana
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Lily K Qian
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| |
Collapse
|
21
|
Abstract
Three-prime Repair Exonuclease (TREX1) degrades ssDNA and dsDNA. TREX1 localizes to the perinuclear space in cells and degrades cytosolic DNA to prevent aberrant nucleic acid sensing and immune activation in humans and mice. Mutations in the TREX1 gene cause a spectrum of human autoimmune diseases including Aicardi-Goutières syndrome, familial chilblain lupus, retinal vasculopathy with cerebral leukodystrophy, and are associated with systemic lupus erythematosus. More than 60 disease-causing TREX1 variants have been identified including dominant and recessive, missense, and frameshift mutations that map to the catalytic core region and to the C-terminal cell localization region. The TREX1-disease causing mutations affect exonuclease activity at varied levels. In this chapter, we describe methods to purify variant recombinant TREX1 enzymes and measure the exonuclease activity using ssDNA and dsDNA substrates. The relationships between TREX1 activities, types of TREX1 mutations, and TREX1-associated autoimmune diseases are considered.
Collapse
Affiliation(s)
- Wayne O Hemphill
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fred W Perrino
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
22
|
cGAS activation causes lupus-like autoimmune disorders in a TREX1 mutant mouse model. J Autoimmun 2019; 100:84-94. [PMID: 30872080 DOI: 10.1016/j.jaut.2019.03.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/11/2022]
Abstract
TREX1 encodes a major cellular DNA exonuclease. Mutations of this gene in human cause cellular accumulation of DNA that triggers autoimmune diseases including Aicardi-Goutieres Syndrome (AGS) and systemic lupus erythematosus (SLE). We created a lupus mouse model by engineering a D18 N mutation in the Trex1 gene which inactivates the enzyme and has been found in human patients with lupus-like disorders. The Trex1D18N/D18N mice exhibited systemic inflammation that consistently recapitulates many characteristics of human AGS and SLE. Importantly, ablation of cGas gene in the Trex1D18N/D18N mice rescued the lethality and all detectable pathological phenotypes, including multi-organ inflammation, interferon stimulated gene induction, autoantibody production and aberrant T-cell activation. These results indicate that cGAS is a key mediator in the autoimmune disease associated with defective TREX1 function, providing additional insights into disease pathogenesis and guidance to the development of therapeutics for human systemic autoimmune disorders.
Collapse
|
23
|
Paradis C, Cadieux-Dion M, Meloche C, Gravel M, Paradis J, Des Roches A, Leclerc G, Cossette P, Begin P. TREX-1-Related Disease Associated with the Presence of Cryofibrinogenemia. J Clin Immunol 2019; 39:118-125. [DOI: 10.1007/s10875-018-0584-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
|
24
|
Rego SL, Harvey S, Simpson SR, Hemphill WO, McIver ZA, Grayson JM, Perrino FW. TREX1 D18N mice fail to process erythroblast DNA resulting in inflammation and dysfunctional erythropoiesis. Autoimmunity 2018; 51:333-344. [PMID: 30422000 DOI: 10.1080/08916934.2018.1522305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anaemia is commonly observed in chronic inflammatory conditions, including systemic lupus erythematosus (SLE), where ∼50% of patients display clinical signs of anaemia. Mutation at the aspartate residue 18 of the three prime repair exonuclease 1 (TREX1) gene causes a monogenic form of cutaneous lupus in humans and the genetically precise TREX1 D18N mice recapitulate a lupus-like disease. TREX1 degrades single- and double-stranded DNA (dsDNA), and the link between failed DNA degradation by nucleases, including nucleoside-diphosphate kinases (NM23H1/H2) and Deoxyribonuclease II (DNase II), and anaemia prompted our studies to investigate whether TREX1 dysfunction contributes to anaemia. Utilizing the TREX1 D18N mice we demonstrate that (1) TREX1 mutant mice develop normocytic normochromic anaemia and (2) TREX1 exonuclease participates in the degradation of DNA originating from erythroblast nuclei during definitive erythropoiesis. Gene expression, hematocrit, hemoglobin, immunohistochemistry (IHC) and flow cytometry were used to quantify dysfunctional erythropoiesis. An altered response to induced anaemia in the TREX1 D18N mice was determined through IHC, flow cytometry, and interferon-stimulated gene (ISG) expression analysis of the liver, spleen and erythroblastic islands (EBIs). IHC, flow cytometry, and ISG expression studies were performed in vitro to determine the role of TREX1 in the degradation of erythroblast DNA within EBIs. The TREX1 D18N mice exhibit altered erythropoiesis including a 20% reduction in hematocrit, 10-20 fold increased erythropoietic gene expression levels in the spleen and phenotypic signs of normocytic normochromic anaemia. Anaemia in TREX1 D18N mice is accompanied by increased erythropoietin (Epo), normal hepcidin levels and the TREX1 D18N mice display an inappropriate response to anaemic challenge. Enhanced ISG expression results from failed processing and subsequent sensing of undegraded erythroblast DNA in EBIs. TREX1 participates in the degradation of erythroblast DNA in the EBI and TREX1 D18N mice exhibit a normocytic normochromic anaemia.
Collapse
Affiliation(s)
- Stephen L Rego
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Scott Harvey
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zachariah A McIver
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
25
|
HIV-1 Activation of Innate Immunity Depends Strongly on the Intracellular Level of TREX1 and Sensing of Incomplete Reverse Transcription Products. J Virol 2018; 92:JVI.00001-18. [PMID: 29769349 DOI: 10.1128/jvi.00001-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
TREX1 has been reported to degrade cytosolic immune-stimulatory DNA, including viral DNA generated during HIV-1 infection; but the dynamic range of its capacity to suppress innate immune stimulation is unknown, and its full role in the viral life cycle remains unclear. A main purpose of our study was to determine how the intracellular level of TREX1 affects HIV-1 activation and avoidance of innate immunity. Using stable overexpression and CRISPR-mediated gene disruption, we engineered a range of TREX1 levels in human THP-1 monocytes. Increasing the level of TREX1 dramatically suppressed HIV-1 induction of interferon-stimulated genes (ISGs). Productive infection and integrated proviruses were equal or increased. Knocking out TREX1 impaired viral infectivity, increased early viral cDNA, and caused 10-fold or greater increases in HIV-1 ISG induction. Knockout of cyclic GMP-AMP synthase (cGAS) abrogated all ISG induction. Moreover, cGAS knockout produced no increase in single-cycle infection, establishing that HIV-1 DNA-triggered signaling is not rapid enough to impair the initial ISG-triggering infection cycle. Disruption of the HIV-1 capsid by PF74 also induced ISGs, and this was TREX1 level dependent, required reverse transcriptase catalysis, and was eliminated by cGAS gene knockout. Thus, the intracellular level of TREX1 pivotally modulates innate immune induction by HIV-1. Partial HIV-1 genomes are the TREX1 target and are sensed by cGAS. The nearly complete lack of innate immune induction despite equal or increased viral integration observed when the TREX1 protein level is experimentally elevated indicates that integration-competent genomes are shielded from cytosolic sensor-effectors during uncoating and transit to the nucleus.IMPORTANCE Much remains unknown about how TREX1 influences HIV-1 replication: whether it targets full-length viral DNA versus partial intermediates, how intracellular TREX1 protein levels correlate with ISG induction, and whether TREX1 digestion of cytoplasmic DNA and subsequent cGAS pathway activation affects both initial and subsequent cycles of infection. To answer these questions, we experimentally varied the intracellular level of TREX1 and showed that this strongly determines the innate immunogenicity of HIV-1. In addition, several lines of evidence, including time-of-addition experiments with drugs that impair reverse transcription or capsid integrity, showed that the pathogen-associated molecular patterns sensed after viral entry contain DNA, are TREX1 and cGAS substrates, and are derived from incomplete reverse transcriptase (RT) products. In contrast, the experiments demonstrate that full-length integration-competent viral DNA is immune to TREX1. Treatment approaches that reduce TREX1 levels or facilitate release of DNA intermediates may advantageously combine enhanced innate immunity with antiviral effects.
Collapse
|
26
|
Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. Future Med Chem 2018; 10:1301-1317. [PMID: 29558821 DOI: 10.4155/fmc-2017-0322] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Persistent activation of STING pathway is the basis for several autoimmune diseases. STING is activated by cGAMP, which is produced by cGAS in the presence of DNA. Results/methodology: HPLC-based medium throughput screening for inhibitors of cGAS identified suramin as a potent inhibitor. Unlike other reported cGAS inhibitors, which bind to the ATP/GTP binding site, suramin displaced the bound DNA from cGAS. Addition of suramin to THP1 cells reduced the levels of IFN-β mRNA and protein. Suramin did not inhibit lipopolysaccharide- or Pam3CSK4-induced IL-6 mRNA expression. Conclusion: Suramin inhibits STING pathway via the inhibition of cGAS enzymatic activity. Suramin or analogs thereof that displace DNA from cGAS could be used as anti-inflammatory drugs.
Collapse
|
27
|
Structural basis for overhang excision and terminal unwinding of DNA duplexes by TREX1. PLoS Biol 2018; 16:e2005653. [PMID: 29734329 PMCID: PMC5957452 DOI: 10.1371/journal.pbio.2005653] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/17/2018] [Accepted: 04/03/2018] [Indexed: 01/12/2023] Open
Abstract
Three prime repair exonuclease 1 (TREX1) is an essential exonuclease in mammalian cells, and numerous in vivo and in vitro data evidenced its participation in immunity regulation and in genotoxicity remediation. In these very complicated cellular functions, the molecular mechanisms by which duplex DNA substrates are processed are mostly elusive because of the lack of structure information. Here, we report multiple crystal structures of TREX1 complexed with various substrates to provide the structure basis for overhang excision and terminal unwinding of DNA duplexes. The substrates were designed to mimic the intermediate structural DNAs involved in various repair pathways. The results showed that the Leu24-Pro25-Ser26 cluster of TREX1 served to cap the nonscissile 5′-end of the DNA for precise removal of the short 3′-overhang in L- and Y-structural DNA or to wedge into the double-stranded region for further digestion along the duplex. Biochemical assays were also conducted to demonstrate that TREX1 can indeed degrade double-stranded DNA (dsDNA) to a full extent. Overall, this study provided unprecedented knowledge at the molecular level on the enzymatic substrate processing involved in prevention of immune activation and in responses to genotoxic stresses. For example, Arg128, whose mutation in TREX1 was linked to a disease state, were shown to exhibit consistent interaction patterns with the nonscissile strand in all of the structures we solved. Such structure basis is expected to play an indispensable role in elucidating the functional activities of TREX1 at the cellular level and in vivo. Three prime repair exonuclease 1 (TREX1) was shown to participate in various cellular events such as DNA repair, immunity regulation, and viral infection. In addition to relating to autoimmune diseases, this exonuclease also acts as a potential protein target for anticancer or antiviral therapies. A key for such broad attendance of TREX1 is the activities of precise trimming of the 3′-overhang in a double-stranded (dsDNA) and breaking of the terminal base pairing of the duplex. Here, we designed a series of structural DNA substrates and activity assays to delineate the underlying mechanisms. The structures newly resolved in this work indicated that the Leu24-Pro25-Ser26 cluster of TREX1 is essential for the enzyme to carry out the aforementioned activities. Together, our results established an integrated structure view into the versatile exonuclease functions of TREX1 and illuminated the molecular origin for the unique catalytic properties of TREX1 in processing various DNA intermediates in DNA repair and in cytosolic immunity regulation.
Collapse
|
28
|
Abstract
The innate immune system is the first line of defense against invading pathogens. One important feature of innate immune recognition is self versus nonself discrimination. The selectivity for microbial ligands is achieved through substrate motif specificity, spatial compartmentalization, and functions of negative regulators. Loss-of-function mutations in negative regulators or gain-of-function mutations in drivers of innate immune signaling have been associated with autoimmune diseases such as lupus, rheumatoid arthritis, inflammatory vasculopathy, and a variety of interferonopathies. This review will focus on TREX1 and STING, which are opposing regulators of the cytosolic DNA-sensing pathway. Tremendous effort over the past decade among academic and clinical research groups has elucidated molecular mechanisms underlying immune diseases associated with TREX1 and STING dysfunction. We have also witnessed rapid therapeutic translation of the molecular findings. Several targeted treatment options or druggable candidates are now available for these once incurable diseases. With great enthusiasm from both academia and industry partners, we look forward to seeing the remaining scientific questions answered and, more importantly, the affected patients benefited from these discoveries.
Collapse
Affiliation(s)
- Nan Yan
- Department of Immunology, Department of Microbiology, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
29
|
Simultaneous detection of nucleotide excision repair events and apoptosis-induced DNA fragmentation in genotoxin-treated cells. Sci Rep 2018; 8:2265. [PMID: 29396432 PMCID: PMC5797224 DOI: 10.1038/s41598-018-20527-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/18/2018] [Indexed: 01/27/2023] Open
Abstract
Novel in vivo excision assays for monitoring the excised oligonucleotide products of nucleotide excision repair in UV-irradiated cells have provided unprecedented views of the kinetics and genomic distribution of repair events. However, an unresolved issue is the fate of the excised oligonucleotide products of repair and their mechanism of degradation. Based on our observation that decreases in excised oligonucleotide abundance coincide with the induction of apoptotic signaling in UV-irradiated cells, we considered the possibility that caspase-mediated apoptotic signaling contributes to excised oligonucleotide degradation or to a general inhibition of the excision repair system. However, genetic and pharmacological approaches to inhibit apoptotic signaling demonstrated that caspase-mediated apoptotic signaling does not affect excision repair or excised oligonucleotide stability. Nonetheless, our assay for detecting soluble DNAs produced by repair also revealed the production of larger DNAs following DNA damage induction that was dependent on caspase activation. We therefore further exploited the versatility of this assay by showing that soluble DNAs produced by both nucleotide excision repair and apoptotic signaling can be monitored simultaneously with a diverse set of DNA damaging agents. Thus, our in vivo excision repair assay provides a sensitive measure of both repair kinetics and apoptotic signaling in genotoxin-treated cells.
Collapse
|
30
|
Kisla Ekinci RM, Balci S, Bisgin A, Altintas DU, Yilmaz M. A homozygote TREX1 mutation in two siblings with different phenotypes: Chilblains and cerebral vasculitis. Eur J Med Genet 2017; 60:690-694. [PMID: 28919362 DOI: 10.1016/j.ejmg.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/10/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Three prime repair exonuclease 1 degrades single and double stranded DNA with 3'-5' nuclease activity and its mutations are related to type 1 IFN mediated autoinflammation due to accumulated intracellular nucleic acids. To date, several cases of systemic lupus erythematosus, Aicardi-Goutieres syndrome, familial chilblain lupus, retinal vasculopathy-cerebral leukodystrophy have been reported with TREX1 mutations. Chilblain lupus is a skin disease characterized by blue-reddish coloring, swelling or ulcers on acral regions of body such as fingertips, heels, nose and auricles. Central nervous system vasculitis is a prominent cause of childhood strokes. 10 families with familial chilblain lupus related to TREX1 mutations were reported previously in the literature, in which homozygote D18N variant in TREX1 gene was related to chilblains with cerebral vasculitis. In this report, whole-exome-sequencing revealed a homozygote R114C mutation in TREX1 gene was shown in two siblings with recurrent chilblains whom one of them was the second case accompanied by cerebral vasculitis in the literature. As a result, the approach of WES in clinical use revealed a novel mutation in clinically heterogenous patients to provide genetic counseling.
Collapse
Affiliation(s)
| | - Sibel Balci
- Department of Pediatric Rheumatology, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Atil Bisgin
- Department of Medical Genetics, AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Derya Ufuk Altintas
- Department of Pediatric Allergy and Immunology, Cukurova University Faculty of Medicine, Adana, Turkey.
| | - Mustafa Yilmaz
- Department of Pediatric Rheumatology, Cukurova University Faculty of Medicine, Adana, Turkey.
| |
Collapse
|
31
|
Mavragani CP, Sagalovskiy I, Guo Q, Nezos A, Kapsogeorgou EK, Lu P, Liang Zhou J, Kirou KA, Seshan SV, Moutsopoulos HM, Crow MK. Expression of Long Interspersed Nuclear Element 1 Retroelements and Induction of Type I Interferon in Patients With Systemic Autoimmune Disease. Arthritis Rheumatol 2017; 68:2686-2696. [PMID: 27338297 DOI: 10.1002/art.39795] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Increased expression of type I interferon (IFN) and a broad signature of type I IFN-induced gene transcripts are observed in patients with systemic lupus erythematosus (SLE) and other systemic autoimmune diseases. To identify disease-relevant triggers of the type I IFN pathway, this study sought to investigate whether endogenous virus-like genomic repeat elements, normally silent, are expressed in patients with systemic autoimmune disease, and whether these retroelements could activate an innate immune response and induce type I IFN. METHODS Expression of type I IFN and long interspersed nuclear element 1 (LINE-1; L1) was studied by polymerase chain reaction, Western blotting, and immunohistochemistry in samples of kidney tissue from patients with lupus nephritis and minor salivary gland (MSG) tissue from patients with primary Sjögren's syndrome (SS). Induction of type I IFN by L1 was investigated by transfection of plasmacytoid dendritic cells (PDCs) or monocytes with an L1-encoding plasmid or L1 RNA. Involvement of innate immune pathways and altered L1 methylation were assessed. RESULTS Levels of L1 messenger RNA transcripts were increased in lupus nephritis kidneys and in MSG tissue from patients with SS. Transcript expression correlated with the expression of type I IFN and L1 DNA demethylation. L1 open-reading frame 1/p40 protein and IFNβ were expressed in MSG ductal epithelial cells and in lupus nephritis kidneys, and IFNα was detected in infiltrating PDCs. Transfection of PDCs or monocytes with L1-encoding DNA or RNA induced type I IFN. Inhibition of Toll-like receptor 7 (TLR-7)/TLR-8 reduced the induction of IFNα by L1 in PDCs, and an inhibitor of IKKε/TANK-binding kinase 1 abrogated the induction of type I IFN by L1 RNA in monocytes. CONCLUSION L1 genomic repeat elements represent endogenous nucleic acid triggers of the type I IFN pathway in SLE and SS and may contribute to initiation or amplification of autoimmune disease.
Collapse
Affiliation(s)
- Clio P Mavragani
- Hospital for Special Surgery, New York, New York, and National and Kapodistrian University of Athens, Athens, Greece
| | | | - Qiu Guo
- Hospital for Special Surgery, New York, New York
| | - Adrianos Nezos
- National and Kapodistrian University of Athens, Athens, Greece
| | | | - Pin Lu
- Hospital for Special Surgery, New York, New York
| | | | | | | | | | - Mary K Crow
- Hospital for Special Surgery, New York, New York.
| |
Collapse
|
32
|
White TE, Brandariz-Nuñez A, Martinez-Lopez A, Knowlton C, Lenzi G, Kim B, Ivanov D, Diaz-Griffero F. A SAMHD1 mutation associated with Aicardi-Goutières syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans. Hum Mutat 2017; 38:658-668. [PMID: 28229507 DOI: 10.1002/humu.23201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/09/2017] [Accepted: 02/19/2017] [Indexed: 12/23/2022]
Abstract
Mutations in the human SAMHD1 gene are known to correlate with the development of the Aicardi-Goutières syndrome (AGS), which is an inflammatory encephalopathy that exhibits neurological dysfunction characterized by increased production of type I interferon (IFN); this evidence has led to the concept that the SAMHD1 protein negatively regulates the type I IFN response. Additionally, the SAMHD1 protein has been shown to prevent efficient HIV-1 infection of macrophages, dendritic cells, and resting CD4+ T cells. To gain insights on the SAMHD1 molecular determinants that are responsible for the deregulated production of type I IFN, we explored the biochemical, cellular, and antiviral properties of human SAMHD1 mutants known to correlate with the development of AGS. Most of the studied SAMHD1 AGS mutants exhibit defects in the ability to oligomerize, decrease the levels of cellular deoxynucleotide triphosphates in human cells, localize exclusively to the nucleus, and restrict HIV-1 infection. At least half of the tested variants preserved the ability to be degraded by the lentiviral protein Vpx, and all of them interacted with RNA. Our investigations revealed that the SAMHD1 AGS variant p.G209S preserve all tested biochemical, cellular, and antiviral properties, suggesting that this residue is a determinant for the ability of SAMHD1 to negatively regulate the type I IFN response in human patients with AGS. Overall, our work genetically separated the ability of SAMHD1 to negatively regulate the type I IFN response from its ability to restrict HIV-1.
Collapse
Affiliation(s)
- Tommy E White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| | - Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| | | | - Gina Lenzi
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Dmitri Ivanov
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| |
Collapse
|
33
|
Restriction of Human Cytomegalovirus Replication by ISG15, a Host Effector Regulated by cGAS-STING Double-Stranded-DNA Sensing. J Virol 2017; 91:JVI.02483-16. [PMID: 28202760 DOI: 10.1128/jvi.02483-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Accumulation of the interferon-stimulated gene 15 (ISG15) protein product, which is reversibly conjugated to numerous polypeptide targets, impacts the proteome and physiology of uninfected and infected cells. While many viruses, including human cytomegalovirus (HCMV), blunt host antiviral defenses by limiting ISG expression, the overall abundance of ISG15 monomer and protein conjugates rises in HCMV-infected cells. However, the molecular signals underlying ISG15 accumulation and whether the ISG15 polypeptide itself influences HCMV infection biology remain unknown. Here, we establish that the ISG15 gene product itself directly regulates HCMV replication and that its accumulation restricts productive virus growth. Although ISG15 monomer and protein conjugate accumulation was induced in cells infected with UV-inactivated HCMV, it was subsequently reduced, but not eliminated, by an immediate-early (IE) or early (E) virus-encoded function(s). Instead, HCMV-induced ISG15 monomer and protein conjugate accumulation was dependent upon the double-stranded DNA (dsDNA) sensor cyclic GMP-AMP synthase (cGAS), the innate immune adaptor STING, and interferon signaling. Significantly, dsDNA itself was sufficient to induce cGAS-, STING-, and interferon signaling-dependent ISG15 monomer and conjugate protein accumulation in uninfected cells. Accumulation of ISGylated proteins in uninfected cells treated with dsDNA was prevented by expressing the HCMV multifunctional IE1 transactivator. This demonstrates that expression of a single host interferon-stimulated gene, ISG15, restricts HCMV replication, and that IE1 is sufficient to blunt ISGylation in response to dsDNA sensing in uninfected cells. Moreover, it establishes that ISGylation modifies the proteomes of virus-infected and uninfected normal cells in response to cell-intrinsic dsDNA sensing dependent upon cGAS-STING.IMPORTANCE By antagonizing type I interferon production and action, many viruses, including human cytomegalovirus (HCMV), evade host defenses. However, levels of the interferon-induced ISG15 protein, which is covalently conjugated to host and viral proteins, increase in HCMV-infected cells. How ISG15 accumulation is regulated and whether the ISG15 polypeptide influences HCMV replication remain unknown. This study establishes that ISG15 itself restricts HCMV replication and that HCMV-induced ISG15 accumulation is triggered by host defenses that detect cytoplasmic double-stranded DNA (dsDNA). Remarkably, dsDNA triggered ISG15 accumulation even in uninfected cells, and this was reduced by HCMV IE1 expression. This shows that ISG15 itself controls the replication of HCMV, which causes life-threatening disease among the immunocompromised and is a significant source of congenital morbidity and mortality among newborns. Moreover, it demonstrates that ISG15 modifies the uninfected cell proteome in response to dsDNA, potentially impacting responses to DNA vaccines, gene therapy, and autoimmune disease pathogenesis.
Collapse
|
34
|
Topoisomerase II Inhibitors Induce DNA Damage-Dependent Interferon Responses Circumventing Ebola Virus Immune Evasion. mBio 2017; 8:mBio.00368-17. [PMID: 28377530 PMCID: PMC5380843 DOI: 10.1128/mbio.00368-17] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication. Ebola virus and other emerging RNA viruses are significant but unpredictable public health threats. Therapeutic approaches with broad-spectrum activity could provide an attractive response to such infections. We describe a novel assay that can identify small molecules that overcome Ebola virus-encoded innate immune evasion mechanisms. This assay identified as hits cancer chemotherapeutic drugs, including doxorubicin. Follow-up studies provide new insight into how doxorubicin induces interferon (IFN) responses, revealing activation of both the DNA damage response kinase ATM and the DNA sensor cGAS and its partner signaling protein STING. The studies further demonstrate that the ATM and cGAS-STING pathways of IFN induction are a point of vulnerability not only for Ebola virus but for other RNA viruses as well, because viral innate immune antagonists consistently fail to block these signals. These studies thereby define a novel avenue for therapeutic intervention against emerging RNA viruses.
Collapse
|
35
|
Margery-Muir AA, Bundell C, Nelson D, Groth DM, Wetherall JD. Gender balance in patients with systemic lupus erythematosus. Autoimmun Rev 2017; 16:258-268. [DOI: 10.1016/j.autrev.2017.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022]
|
36
|
Phairoh P, Suthibatpong T, Rattanarojpong T, Jongruja N, Senapin S, Choowongkomon K, Khunrae P. ICP35 Is a TREX-Like Protein Identified in White Spot Syndrome Virus. PLoS One 2016; 11:e0158301. [PMID: 27348862 PMCID: PMC4922627 DOI: 10.1371/journal.pone.0158301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022] Open
Abstract
ICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35. The thioredoxin-fused ICP35 (thio-ICP35) was strongly expressed in E. coli and be able to form itself into dimers. Investigation of the interaction between ICP35 and DNA revealed that ICP35 can perform DNase activity. Structural model of ICP35 was successfully built on TREX1, suggesting that ICP35 might adopt the folding similar to that of TREX1 protein. Several residues important for dimerization in TREX1 are also conserved in ICP35. Residue Asn126 and Asp132, which are seen to be in close proximity to metal ions in the ICP35 model, were shown through site-directed mutagenesis to be critical for DNase activity.
Collapse
Affiliation(s)
- Panapat Phairoh
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Thana Suthibatpong
- Department of Physics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Mahidol University, 272 Rama VI Road, Bangkok, 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry Faculty of Science Kasetsart University, Bangkok, 10900, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangmod, Bangkok, 10140, Thailand
- * E-mail:
| |
Collapse
|
37
|
Allenspach E, Torgerson TR. Autoimmunity and Primary Immunodeficiency Disorders. J Clin Immunol 2016; 36 Suppl 1:57-67. [PMID: 27210535 DOI: 10.1007/s10875-016-0294-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Advances in DNA sequencing technologies have led to a quickening in the pace at which new genetic immunodeficiency disorders have been identified. Among the newly identified defects are a number of disorders that present primarily with autoimmunity as opposed to recurrent infections. These "immune dysregulation" disorders have begun to cluster together to form an increased understanding of some of the basic molecular mechanisms that underlie the establishment and maintenance of immune tolerance and the development of autoimmunity. This review will present three major themes that have emerged in our understanding of the mechanisms that underlie autoimmunity and immune dysregulation in humans.
Collapse
Affiliation(s)
- Eric Allenspach
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
- Seattle Children's Research Institute, 1900 9th Ave., JMB-7, Seattle, WA, 98101-1304, USA.
| |
Collapse
|
38
|
Hasan M, Fermaintt CS, Gao N, Sakai T, Miyazaki T, Jiang S, Li QZ, Atkinson JP, Morse HC, Lehrman MA, Yan N. Cytosolic Nuclease TREX1 Regulates Oligosaccharyltransferase Activity Independent of Nuclease Activity to Suppress Immune Activation. Immunity 2015; 43:463-74. [PMID: 26320659 DOI: 10.1016/j.immuni.2015.07.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/04/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
TREX1 is an endoplasmic reticulum (ER)-associated negative regulator of innate immunity. TREX1 mutations are associated with autoimmune and autoinflammatory diseases. Biallelic mutations abrogating DNase activity cause autoimmunity by allowing immunogenic self-DNA to accumulate, but it is unknown how dominant frameshift (fs) mutations that encode DNase-active but mislocalized proteins cause disease. We found that the TREX1 C terminus suppressed immune activation by interacting with the ER oligosaccharyltransferase (OST) complex and stabilizing its catalytic integrity. C-terminal truncation of TREX1 by fs mutations dysregulated the OST complex, leading to free glycan release from dolichol carriers, as well as immune activation and autoantibody production. A connection between OST dysregulation and immune disorders was demonstrated in Trex1(-/-) mice, TREX1-V235fs patient lymphoblasts, and TREX1-V235fs knock-in mice. Inhibiting OST with aclacinomycin corrects the glycan and immune defects associated with Trex1 deficiency or fs mutation. This function of the TREX1 C terminus suggests a potential therapeutic option for TREX1-fs mutant-associated diseases.
Collapse
Affiliation(s)
- Maroof Hasan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles S Fermaintt
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningguo Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tomomi Sakai
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Takuya Miyazaki
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sixin Jiang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Nan Yan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
39
|
Yuan F, Dutta T, Wang L, Song L, Gu L, Qian L, Benitez A, Ning S, Malhotra A, Deutscher MP, Zhang Y. Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA. J Biol Chem 2015; 290:13344-53. [PMID: 25855793 DOI: 10.1074/jbc.m115.653915] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 01/22/2023] Open
Abstract
3' repair exonuclease 1 (TREX1) is a known DNA exonuclease involved in autoimmune disorders and the antiviral response. In this work, we show that TREX1 is also a RNA exonuclease. Purified TREX1 displays robust exoribonuclease activity that degrades single-stranded, but not double-stranded, RNA. TREX1-D200N, an Aicardi-Goutieres syndrome disease-causing mutant, is defective in degrading RNA. TREX1 activity is strongly inhibited by a stretch of pyrimidine residues as is a bacterial homolog, RNase T. Kinetic measurements indicate that the apparent Km of TREX1 for RNA is higher than that for DNA. Like RNase T, human TREX1 is active in degrading native tRNA substrates. Previously reported TREX1 crystal structures have revealed that the substrate binding sites are open enough to accommodate the extra hydroxyl group in RNA, further supporting our conclusion that TREX1 acts on RNA. These findings indicate that its RNase activity needs to be taken into account when evaluating the physiological role of TREX1.
Collapse
Affiliation(s)
- Fenghua Yuan
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Tanmay Dutta
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ling Wang
- the Department of Medicine, Center for Inflammation, Infectious Diseases, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Lei Song
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Liya Gu
- the Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Liangyue Qian
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Anaid Benitez
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Shunbin Ning
- the Department of Medicine, Center for Inflammation, Infectious Diseases, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Arun Malhotra
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Murray P Deutscher
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Yanbin Zhang
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136,
| |
Collapse
|
40
|
Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc Natl Acad Sci U S A 2015; 112:5117-22. [PMID: 25848017 DOI: 10.1073/pnas.1423804112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The TREX1 gene encodes a potent DNA exonuclease, and mutations in TREX1 cause a spectrum of lupus-like autoimmune diseases. Most lupus patients develop autoantibodies to double-stranded DNA (dsDNA), but the source of DNA antigen is unknown. The TREX1 D18N mutation causes a monogenic, cutaneous form of lupus called familial chilblain lupus, and the TREX1 D18N enzyme exhibits dysfunctional dsDNA-degrading activity, providing a link between dsDNA degradation and nucleic acid-mediated autoimmune disease. We determined the structure of the TREX1 D18N protein in complex with dsDNA, revealing how this exonuclease uses a novel DNA-unwinding mechanism to separate the polynucleotide strands for single-stranded DNA (ssDNA) loading into the active site. The TREX1 D18N dsDNA interactions coupled with catalytic deficiency explain how this mutant nuclease prevents dsDNA degradation. We tested the effects of TREX1 D18N in vivo by replacing the TREX1 WT gene in mice with the TREX1 D18N allele. The TREX1 D18N mice exhibit systemic inflammation, lymphoid hyperplasia, vasculitis, and kidney disease. The observed lupus-like inflammatory disease is associated with immune activation, production of autoantibodies to dsDNA, and deposition of immune complexes in the kidney. Thus, dysfunctional dsDNA degradation by TREX1 D18N induces disease in mice that recapitulates many characteristics of human lupus. Failure to clear DNA has long been linked to lupus in humans, and these data point to dsDNA as a key substrate for TREX1 and a major antigen source in mice with dysfunctional TREX1 enzyme.
Collapse
|
41
|
Human Disease Phenotypes Associated With Mutations in TREX1. J Clin Immunol 2015; 35:235-43. [DOI: 10.1007/s10875-015-0147-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/19/2015] [Indexed: 12/25/2022]
|
42
|
Dey-Rao R, Sinha AA. Genome-wide transcriptional profiling of chronic cutaneous lupus erythematosus (CCLE) peripheral blood identifies systemic alterations relevant to the skin manifestation. Genomics 2014; 105:90-100. [PMID: 25451738 DOI: 10.1016/j.ygeno.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 12/15/2022]
Abstract
Major gaps remain regarding pathogenetic mechanisms underlying clinical heterogeneity in lupus erythematosus (LE). As systemic changes are likely to underlie skin specific manifestation, we analyzed global gene expression in peripheral blood of a small cohort of chronic cutaneous LE (CCLE) patients and healthy individuals. Unbiased hierarchical clustering distinguished patients from controls revealing a "disease" based signature. Functional annotation of the differentially expressed genes (DEGs) highlight enrichment of interferon related immune response and apoptosis signatures, along with other key pathways. There is a 26% overlap of the blood and lesional skin transcriptional profile from a previous analysis by our group. We identified four transcriptional "hot spots" at chromosomal regions harboring statistically increased numbers of DEGs which offer prioritized potential loci for downstream fine mapping studies in the search for CCLE specific susceptibility loci. Additionally, we uncover evidence to support both shared and distinct mechanisms for cutaneous and systemic manifestations of lupus.
Collapse
Affiliation(s)
- R Dey-Rao
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA
| | - A A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
43
|
Kemp MG, Gaddameedhi S, Choi JH, Hu J, Sancar A. DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair. J Biol Chem 2014; 289:26574-26583. [PMID: 25107903 DOI: 10.1074/jbc.m114.597088] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ultraviolet (UV) photoproducts are removed from genomic DNA by dual incisions in humans in the form of 24- to 32-nucleotide-long oligomers (canonical 30-mers) by the nucleotide excision repair system. How the small, excised, damage-containing DNA oligonucleotides (sedDNAs) are processed in cells following the dual incision event is not known. Here, we demonstrate that sedDNAs are localized to the nucleus in two biochemically distinct forms, which include chromatin-associated, transcription factor II H-bound complexes and more readily solubilized, RPA-bound complexes. Because the nuclear mobility and repair functions of transcription factor II H and RPA are influenced by post-incision gap-filling events, we examined how DNA repair synthesis and DNA ligation affect sedDNA processing. We found that although these gap filling activities are not essential for the dual incision/sedDNA generation event per se, the inhibition of DNA repair synthesis and ligation is associated with a decrease in UV photoproduct removal rate and an accumulation of RPA-sedDNA complexes in the cell. These findings indicate that sedDNA processing and association with repair proteins following the dual incisions may be tightly coordinated with gap filling during nucleotide excision repair in vivo.
Collapse
Affiliation(s)
- Michael G Kemp
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - Shobhan Gaddameedhi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - Jun-Hyuk Choi
- Center for Bioanalysis, Department of Metrology for Quality of Life, Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea
| | - Jinchuan Hu
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599 and.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Cutaneous Lupus Erythematous (CLE) is an autoimmune disease in which patients may present with isolated skin findings or have CLE associated with underlying systemic disease. The most significant recent studies on its pathogenesis and therapeutic management are reviewed here. RECENT FINDINGS Patients with subacute and Discoid Lupus Erythematous had elevated Interferon score, about a third of all cases of SCLE could be attributed to previous drug exposure, and smoking may be more closely associated with CLE than Systemic Lupus Erythematous (SLE). An underlying genetic defect in some subsets of CLE patients may also be shared with SLE. Efficacy of antimalarial therapy is enhanced by increasing treatment duration or maintaining higher blood drug concentrations. Combination antimalarials that include quinacrine, thalidomide analogs, and Mycophenalate Mofetil may also be effective in refractory CLE. SUMMARY The pathogenesis of CLE remains unclear, and is likely multifactorial. Identified associations with subsets of CLE suggest future research questions in CLE pathogenesis. Subsets of CLE associated with interface dermatitis may share an underlying genetic defect in interferon signaling with SLE. The Cutaneous Lupus Disease Area and Severity Index is a valuable and widely used tool allowing standardized assessment and reporting of cutaneous disease activity and damage. More evidence is available to guide treatment of refractory CLE, but larger studies are needed. VIDEO ABSTRACT http://links.lww.com/COR/A4.
Collapse
|
45
|
Fye JM, Coffin SR, Orebaugh CD, Hollis T, Perrino FW. The Arg-62 residues of the TREX1 exonuclease act across the dimer interface contributing to catalysis in the opposing protomers. J Biol Chem 2014; 289:11556-11565. [PMID: 24616097 DOI: 10.1074/jbc.m114.559252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TREX1 is a 3'-deoxyribonuclease that degrades single- and double-stranded DNA (ssDNA and dsDNA) to prevent inappropriate nucleic acid-mediated immune activation. More than 40 different disease-causing TREX1 mutations have been identified exhibiting dominant and recessive genetic phenotypes in a spectrum of autoimmune disorders. Mutations in TREX1 at positions Asp-18 and Asp-200 to His and Asn exhibit dominant autoimmune phenotypes associated with the clinical disorders familial chilblain lupus and Aicardi-Goutières syndrome. Our previous biochemical studies showed that the TREX1 dominant autoimmune disease phenotype depends upon an intact DNA-binding process coupled with dysfunctional active site chemistry. Studies here show that the TREX1 Arg-62 residues extend across the dimer interface into the active site of the opposing protomer to coordinate substrate DNA and to affect catalysis in the opposing protomer. The TREX1(R62A/R62A) homodimer exhibits ∼50-fold reduced ssDNA and dsDNA degradation activities relative to TREX1(WT). The TREX1 D18H, D18N, D200H, and D200N dominant mutant enzymes were prepared as compound heterodimers with the TREX1 R62A substitution in the opposing protomer. The TREX1(D18H/R62A), TREX1(D18N/R62A), TREX1(D200H/R62A), and TREX1(D200N/R62A) compound heterodimers exhibit higher levels of ss- and dsDNA degradation activities than the homodimers demonstrating the requirement for TREX1 Arg-62 residues to provide necessary structural elements for full catalytic activity in the opposing TREX1 protomer. This concept is further supported by the loss of dominant negative effects in the TREX1 D18H, D18N, D200H, and D200N compound heterodimers. These data provide compelling evidence for the required TREX1 dimeric structure for full catalytic function.
Collapse
Affiliation(s)
- Jason M Fye
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Stephanie R Coffin
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Clinton D Orebaugh
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Fred W Perrino
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.
| |
Collapse
|
46
|
Abe J, Nakamura K, Nishikomori R, Kato M, Mitsuiki N, Izawa K, Awaya T, Kawai T, Yasumi T, Toyoshima I, Hasegawa K, Ohshima Y, Hiragi T, Sasahara Y, Suzuki Y, Kikuchi M, Osaka H, Ohya T, Ninomiya S, Fujikawa S, Akasaka M, Iwata N, Kawakita A, Funatsuka M, Shintaku H, Ohara O, Ichinose H, Heike T. A nationwide survey of Aicardi-Goutières syndrome patients identifies a strong association between dominant TREX1 mutations and chilblain lesions: Japanese cohort study. Rheumatology (Oxford) 2013; 53:448-58. [PMID: 24300241 DOI: 10.1093/rheumatology/ket372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Aicardi-Goutières syndrome (AGS) is a rare, genetically determined, early onset progressive encephalopathy associated with autoimmune manifestations. AGS is usually inherited in an autosomal recessive manner. The disease is rare, therefore the clinical manifestations and genotype-phenotype correlations, particularly with regard to autoimmune diseases, are still unclear. Here we performed a nationwide survey of AGS patients in Japan and analysed the genetic and clinical data. METHODS Patients were recruited via questionnaires sent to paediatric or adult neurologists in Japanese hospitals and institutions. Genetic analysis was performed and clinical data were collected. RESULTS Fourteen AGS patients were identified from 13 families; 10 harboured genetic mutations. Three patients harboured dominant-type TREX1 mutations. These included two de novo cases: one caused by a novel heterozygous p.His195Tyr mutation and the other by a novel somatic mosaicism resulting in a p.Asp200Asn mutation. Chilblain lesions were observed in all patients harbouring dominant-type TREX1 mutations. All three patients harbouring SAMHD1 mutations were diagnosed with autoimmune diseases, two with SLE and one with SS. The latter is the first reported case. CONCLUSION This study is the first to report a nationwide AGS survey, which identified more patients with sporadic AGS carrying de novo dominant-type TREX1 mutations than expected. There was a strong association between the dominant-type TREX1 mutations and chilblain lesions, and between SAMHD1 mutations and autoimmunity. These findings suggest that rheumatologists should pay attention to possible sporadic AGS cases presenting with neurological disorders and autoimmune manifestations.
Collapse
Affiliation(s)
- Junya Abe
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Orebaugh CD, Fye JM, Harvey S, Hollis T, Wilkinson JC, Perrino FW. The TREX1 C-terminal region controls cellular localization through ubiquitination. J Biol Chem 2013; 288:28881-92. [PMID: 23979357 DOI: 10.1074/jbc.m113.503391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TREX1 is an autonomous 3'-exonuclease that degrades DNA to prevent inappropriate immune activation. The TREX1 protein is composed of 314 amino acids; the N-terminal 242 amino acids contain the catalytic domain, and the C-terminal region (CTR) localizes TREX1 to the cytosolic compartment. In this study, we show that TREX1 modification by ubiquitination is controlled by a highly conserved sequence in the CTR to affect cellular localization. Transfection of TREX1 deletion constructs into human cells demonstrated that this sequence is required for ubiquitination at multiple lysine residues through a "non-canonical" ubiquitin linkage. A proteomic approach identified ubiquilin 1 as a TREX1 CTR-interacting protein, and this interaction was verified in vitro and in vivo. Cotransfection studies indicated that ubiquilin 1 localizes TREX1 to cytosolic punctate structures dependent upon the TREX1 CTR and lysines within the TREX1 catalytic core. Several TREX1 mutants linked to the autoimmune diseases Aicardi-Goutières syndrome and systemic lupus erythematosus that exhibit full catalytic function were tested for altered ubiquitin modification and cellular localization. Our data show that these catalytically competent disease-causing TREX1 mutants exhibit differential levels of ubiquitination relative to WT TREX1, suggesting a novel mechanism of dysfunction. Furthermore, these differentially ubiquitinated disease-causing mutants also exhibit altered ubiquilin 1 co-localization. Thus, TREX1 post-translational modification indicates an additional mechanism by which mutations disrupt TREX1 biology, leading to human autoimmune disease.
Collapse
Affiliation(s)
- Clinton D Orebaugh
- From the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | |
Collapse
|
48
|
Olivieri I, Cattalini M, Tonduti D, Piana RL, Uggetti C, Galli J, Meini A, Tincani A, Moratto D, Fazzi E, Balottin U, Orcesi S. Dysregulation of the immune system in Aicardi-Goutières syndrome: another example in a TREX1-mutated patient. Lupus 2013; 22:1064-9. [DOI: 10.1177/0961203313498800] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare genetic encephalopathy characterized by neurological and extraneurological involvement. A clinical overlap between AGS and systemic lupus erythematosus (SLE) has been reported. We describe an AGS patient who developed autoimmune manifestations: thyroiditis, cANCA positivity, antiphospholipid antibodies and cerebral ischemia. This first description of antiphospholipid syndrome in a TREX1-mutated patient further expands the clinical spectrum of AGS. Although the clinical overlap with SLE may indicate common pathogenic mechanisms, the autoimmune manifestations in AGS are so extensive that we suggest they should be considered a clinical feature of the disease, rather than a sign of coexistent SLE.
Collapse
Affiliation(s)
- I Olivieri
- Child Neuropsychiatry Unit, National Neurological Institute C. Mondino, Pavia, Italy
| | - M Cattalini
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
- Pediatric Immunology and Rheumatology Unit, Pediatric Clinic, Spedali Civili and University of Brescia, Italy
| | - D Tonduti
- Child Neuropsychiatry Unit, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - R La Piana
- Department of Neuroradiology, Montreal Neurological Institute, McGill University, Canada
| | - C Uggetti
- Neuroradiology Unit, Department of Radiology, San Carlo Borromeo Hospital, Milan, Italy
| | - J Galli
- Child Neurology and Psychiatry Unit, Clinical and Experimental Sciences Department, Spedali Civili, University of Brescia, Italy
| | - A Meini
- Pediatric Immunology and Rheumatology Unit, Pediatric Clinic, Spedali Civili and University of Brescia, Italy
| | - A Tincani
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
- Rheumatology and Clinical Immunology Unit, Spedali Civili and University of Brescia, Italy
| | - D Moratto
- Laboratory of Genetic Disorders of Childhood, “Angelo Nocivelli” Institute for Molecular Medicine, Spedali Civili of Brescia, Italy
| | - E Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Italy
- Child Neurology and Psychiatry Unit, Clinical and Experimental Sciences Department, Spedali Civili, University of Brescia, Italy
| | - U Balottin
- Child Neuropsychiatry Unit, National Neurological Institute C. Mondino, Pavia, Italy
- Child Neuropsychiatry Unit, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - S Orcesi
- Child Neuropsychiatry Unit, National Neurological Institute C. Mondino, Pavia, Italy
| |
Collapse
|
49
|
Wang T, Sun HL, Cheng F, Zhang XE, Bi L, Jiang T. Recognition and processing of double-stranded DNA by ExoX, a distributive 3'-5' exonuclease. Nucleic Acids Res 2013; 41:7556-65. [PMID: 23771145 PMCID: PMC3753628 DOI: 10.1093/nar/gkt495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Members of the DnaQ superfamily are major 3'-5' exonucleases that degrade either only single-stranded DNA (ssDNA) or both ssDNA and double-stranded DNA (dsDNA). However, the mechanism by which dsDNA is recognized and digested remains unclear. Exonuclease X (ExoX) is a distributive DnaQ exonuclease that cleaves both ssDNA and dsDNA substrates. Here, we report the crystal structures of Escherichia coli ExoX in complex with three different dsDNA substrates: 3' overhanging dsDNA, blunt-ended dsDNA and 3' recessed mismatch-containing dsDNA. In these structures, ExoX binds to dsDNA via both a conserved substrate strand-interacting site and a previously uncharacterized complementary strand-interacting motif. When ExoX complexes with blunt-ended dsDNA or 5' overhanging dsDNA, a 'wedge' composed of Leu12 and Gln13 penetrates between the first two base pairs to break the 3' terminal base pair and facilitates precise feeding of the 3' terminus of the substrate strand into the ExoX cleavage active site. Site-directed mutagenesis showed that the complementary strand-binding site and the wedge of ExoX are dsDNA specific. Together with the results of structural comparisons, our data support a mechanism by which normal and mismatched dsDNA are recognized and digested by E. coli ExoX. The crystal structures also provide insight into the structural framework of the different substrate specificities of the DnaQ family members.
Collapse
Affiliation(s)
- Tianyu Wang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Han-Li Sun
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Cheng
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lijun Bi
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,*To whom correspondence should be addressed. Tel/Fax: +86 10 64888510;
| | - Tao Jiang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China, Graduate School of Chinese Academy of Sciences, Beijing 100039, China and State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,*To whom correspondence should be addressed. Tel/Fax: +86 10 64888510;
| |
Collapse
|
50
|
Tomicic MT, Aasland D, Nikolova T, Kaina B, Christmann M. Human three prime exonuclease TREX1 is induced by genotoxic stress and involved in protection of glioma and melanoma cells to anticancer drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1832-43. [PMID: 23578789 DOI: 10.1016/j.bbamcr.2013.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/15/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
To counteract genotoxic stress, DNA repair functions are in effect. Most of them are constitutively expressed while some of them can be up-regulated depending on the level of DNA damage. In human cells, only few DNA repair functions are subject of induction following DNA damage, and thus there is a need to identify and characterize inducible repair functions more thoroughly. Here, we provide evidence that the "three prime exonuclease I" (TREX1) is up-regulated in human fibroblasts and cancer cells on mRNA and protein level. Transcriptional upregulation of TREX1 was observed upon exposure to ultraviolet light and various anticancer drugs in glioma and malignant melanoma cells. Induction of TREX1 was found following treatment with the crosslinking alkylating agents nimustine, carmustine, fotemustine and the topoisomerase I inhibitor topotecan, but not following temozolomide, etoposide and ionizing radiation. Induction of TREX1 following DNA damage requires the AP-1 components c-Jun and c-Fos, as shown by siRNA knockdown, EMSA experiments, ChIP analysis and reporter assays with the TREX1 promoter and constructs harboring mutations in the AP-1 binding site. To analyze whether TREX1 expression impacts the sensitivity of cancer cells to therapeutics, TREX1 expression was down-regulated by siRNA in malignant glioma and melanoma cells. TREX1 knockdown resulted in enhanced cell death following nimustine, fotemustine and topotecan and to a reduced recovery from the anticancer drug induced block to replication. The data revealed that induction of TREX1 is a survival response evoked by various genotoxic anticancer drugs and identified TREX1 as a potential therapeutic target for anticancer therapy.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | | | | | | |
Collapse
|