1
|
Kaiser CS, Lubisch M, Schröder E, Ressmann L, Nicolaus M, Leusder D, Moyzio S, Peuss R, Miranda-Vizuete A, Liebau E. Unraveling the functional dynamics of Caenorhabditis elegans stress-responsive omega class GST-44. FEBS J 2025. [PMID: 40186509 DOI: 10.1111/febs.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Glutathione transferases from the omega class are notable for their roles in redox regulation and cellular stress response. In this study, we conducted a comprehensive functional characterization of GST-44, an omega-class glutathione S-transferase (GSTO), in Caenorhabditis elegans, focusing on its role in cellular defense mechanisms against stress. Biochemical analysis revealed GSTO-specific enzymatic activities of recombinant GST-44, including dehydroascorbate reductase, thioltransferase, and arsenate reductase activities. Using transgenic GFP reporter strains, we identified predominant expression of GST-44 in the intestine and excretory H-cell, with significant upregulation observed under diverse stress conditions. Induction of GST-44 was particularly pronounced in the intestine in response to pathogen-, oxidative-, and endoplasmic reticulum stress. Notably, under arsenic stress, the expression of gst-44 was significantly upregulated in the excretory system of the worm, underscoring its critical role in mediating arsenic detoxification. Moreover, we demonstrated the induction of GST-44 using dimethyl fumarate, a highly specific mammalian Nrf-2 activator. The upregulation of GST-44 during arsenic stress was dependent not only on the oxidative stress response transcription factor SKN-1/Nrf2 but also on PHA-4. The deletion mutant strain gst-44(tm6133) exhibited reduced stress resistance and a shortened lifespan, with a highly diminished survival rate under arsenic stress compared to other CRISPR-generated C. elegans GSTO deletion mutants. Our findings highlight the essential role of GST-44 in mediating arsenic detoxification, as well as in stress adaptation and defense mechanisms in C. elegans.
Collapse
Affiliation(s)
| | - Milena Lubisch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Emma Schröder
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Luka Ressmann
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Marie Nicolaus
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Dustin Leusder
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Sven Moyzio
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Robert Peuss
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Eva Liebau
- Institute of Integrative Cell Biology and Physiology, University of Münster, Germany
| |
Collapse
|
2
|
Chen G, Xia X, Xie J, Cao Y, Yuan C, Yu G, Wei S, Duan Y, Cai Y, Wang S, Liu J, Jiang J. Dose-dependent toxic effects of triclosan on Rana omeimontis larvae: Insights into potential implications for neurodegenerative diseases. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137187. [PMID: 39808961 DOI: 10.1016/j.jhazmat.2025.137187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/29/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The widespread use of antimicrobial agent triclosan (TCS) poses significant health risks to both aquatic organisms and humans. The research on its neurotoxicity and underlying mechanisms is, however, limited. Here we first conducted a 32-day exposure experiment with five TCS concentrations (10, 30, 60, 90 and 120 µg/L) to investigate its impact on overall gene expression in Rana omeimontis larvae. Transcriptomics analysis unveiled a strong dose-dependent pattern of gene expression alterations, with a distinct transcriptomic shift observed in the T030 (30 µg/L) group. In addition, neurodegenerative disease pathway and oxidative stress response GO (gene ontology) terms were found to be highly enriched across the regulated genes in all TCS-exposed groups, suggesting potential TCS-induced neurotoxicity. To further explore this, we performed a 40-day experiment with a low (30 µg/L) or high (90 µg/L) TCS concentration. Morphological assessments revealed that TCS-exposed larvae exhibited developmental and growth inhibition. Using RT-qPCR and immunohistochemical analysis, we confirmed that TCS exposure induced neurotoxicity and triggered neurodegenerative diseases as suggested by Tau protein aggregation in the midbrain. Consistent with these findings, TCS-exposed larvae displayed abnormal behaviors. Our study thus for the first time presents a comprehensive assessment of the adverse effects of TCS exposure on amphibian larvae, encompassing morphological, biochemical, and physiological aspects. Notably, we identified RNF112 and Tau as potential molecular targets that may mediate TCS-induced neurotoxicity. These findings advance the knowledge on how organisms respond to environmental changes and highlight the importance of further investigation into the potential neurotoxicity of TCS within aquatic ecosystems and its implications for human health.
Collapse
Affiliation(s)
- Guiying Chen
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xuemei Xia
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Jiahui Xie
- The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yixin Cao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Chunling Yuan
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Guihua Yu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Siru Wei
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yu Duan
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yanmei Cai
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shouhong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Jiongyu Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| |
Collapse
|
3
|
Lomagno A, Yusuf I, Tosadori G, Bonanomi D, Luigi Mauri P, Di Silvestre D. CoPPIs algorithm: a tool to unravel protein cooperative strategies in pathophysiological conditions. Brief Bioinform 2025; 26:bbaf146. [PMID: 40194557 PMCID: PMC11975363 DOI: 10.1093/bib/bbaf146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
We present here the co-expressed protein-protein interactions algorithm. In addition to minimizing correlation-causality imbalance and contextualizing protein-protein interactions to the investigated systems, it combines protein-protein interactions and protein co-expression networks to identify differentially correlated functional modules. To test the algorithm, we processed a set of proteomic profiles from different brain regions of controls and subjects affected by idiopathic Parkinson's disease or carrying a GBA1 mutation. Its robustness was supported by the extraction of functional modules, related to translation and mitochondria, whose involvement in Parkinson's disease pathogenesis is well documented. Furthermore, the selection of hubs and bottlenecks from the weightedprotein-protein interactions networks provided molecular clues consistent with the Parkinson pathophysiology. Of note, like quantification, the algorithm revealed less variations when comparing disease groups than when comparing diseased and controls. However, correlation and quantification results showed low overlap, suggesting the complementarity of these measures. An observation that opens the way to a new investigation strategy that takes into account not only protein expression, but also the level of coordination among proteins that cooperate to perform a given function.
Collapse
Affiliation(s)
- Andrea Lomagno
- Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies – National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Ishak Yusuf
- Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies – National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy
| | - Gabriele Tosadori
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200 Praha 4, Czech Republic
| | - Dario Bonanomi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Olgettina 60, 20132 Milan, Italy
| | - Pietro Luigi Mauri
- Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies – National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” – National Research Council, Pietro Castellino 111, 80131 Naples, Italy
| | - Dario Di Silvestre
- Clinical Proteomics Laboratory, Elixir Infrastructure, Institute for Biomedical Technologies – National Research Council, F.lli Cervi 93, 20054 Segrate, Milan, Italy
| |
Collapse
|
4
|
Ma X, Zeng J, Zhang C, Dai W. Characterization of two glutathione S-transferase genes involved in clothianidin resistance in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2025; 81:1360-1372. [PMID: 39526310 DOI: 10.1002/ps.8535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glutathione S-transferase (GST) is a key phase II detoxification enzyme involved in xenobiotics metabolism, and plays a pivotal role in the evolution of resistance to various types of insecticides. However, the specific functions of GST genes in clothianidin resistance remain obscure in Bradysia odoriphaga. RESULTS Here, a specific GST inhibitor, diethyl maleate (DEM), significantly increased the mortality of Bradysia odoriphaga larvae following exposure to clothianidin, and the activity of GST enzyme in clothianidin-resistant (CL-R) strain of Bradysia odoriphaga was markedly greater than that in the SS strain. Two sigma BoGSTs (BoGSTs1 and BoGSTs2) were markedly overexpressed in the CL-R strain and exhibited a higher abundance in the Malpighian tubules or midgut. Exposure to clothianidin resulted in a significant increased expression of BoGSTs1 and BoGSTs2. The knockdown of BoGSTs1 and BoGSTs2 increased sensitivity of larvae to clothianidin in the resistant strain. Furthermore, overexpression of BoGSTs1 and BoGSTs2 led to a significant increase in Escherichia coli cells tolerance to clothianidin. In vitro metabolic assays indicate that these two GSTs cannot directly metabolize clothianidin and its secondary metabolite desmethyl-clothianidin. Disk diffusion assays and fluorescence competitive binding assays indicated that BoGSTs1 and BoGSTs2 play a critical role in clothianidin resistance by antioxidant activity and non-catalytic binding activity. The docking results showed that BoGSTs1 and BoGSTs2 have strong binding affinity toward clothianidin. CONCLUSION Collectively, these findings pinpoint the potential role of BoGSTs1 and BoGSTs2 in conferring insecticide resistance in Bradysia odoriphaga and contribute to our understanding of the underlying mechanisms of insecticide resistance. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingyu Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Junjie Zeng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chunni Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wu Dai
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Xie C, Zeng B, Du X, Yan S, Shen J, Zhang J. Detoxification of Chlorfenapyr by a Parkin-GSTd2 Module in Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25490-25499. [PMID: 39509650 DOI: 10.1021/acs.jafc.4c06416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly invasive and destructive pest. Chlorfenapyr is a widely used insecticide that disrupts mitochondrial activity. The Parkin protein plays conserved roles in maintaining mitochondrial homeostasis, but the role of Parkin in response to chlorfenapyr remains largely unknown. Here, we report that BdParkin is required for chlorfenapyr detoxification, and dsRNA targeting BdParkin improves the insecticidal efficacy of chlorfenapyr. Among the genes whose expression levels are affected by BdParkin RNAi, knock-down of the glutathione S-transferase gene BdGSTd2 increases the insecticidal efficacy of chlorfenapyr. Molecular docking reveals potential interactions between BdGSTd2 and tralopyril, an insecticidal metabolite of chlorfenapyr. These results suggest that BdParkin could impact the response of B. dorsalis to chlorfenapyr through metabolic processes regulated by BdGSTd2. Our findings could offer new insights into how insects detoxify chlorfenapyr and provide molecular targets for developing a sustainable management strategy for B. dorsalis.
Collapse
Affiliation(s)
- Chao Xie
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Biao Zeng
- Science and Technology Achievement Transformation Management Office, Yunnan Academy of Agricultural Sciences, Kunming 650224, China
| | - Xiangge Du
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Junzheng Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Qian K, Guan D, Wu Z, Zhuang A, Wang J, Meng X. Functional Analysis of Insecticide Inhibition and Metabolism of Six Glutathione S-Transferases in the Rice Stem Borer, Chilo suppressalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12489-12497. [PMID: 38773677 DOI: 10.1021/acs.jafc.4c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The glutathione S-transferases (GSTs) are important detoxifying enzymes in insects. Our previous studies found that the susceptibility of Chilo suppressalis to abamectin was significantly increased when the CsGST activity was inhibited by glutathione (GSH) depletory. In this study, the potential detoxification mechanisms of CsGSTs to abamectin were explored. Six CsGSTs of C. suppressalis were expressed in vitro. Enzymatic kinetic parameters including Km and Vmax of recombinant CsGSTs were determined, and results showed that all of the six CsGSTs were catalytically active and displaying glutathione transferase activity. Insecticide inhibitions revealed that a low concentration of abamectin could effectively inhibit the activities of CsGSTs including CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1. However, the in vitro metabolism assay found that the six CsGSTs could not metabolize abamectin directly. Additionally, the glutathione transferase activity of CsGSTs in C. suppressalis was significantly increased post-treatment with abamectin. Comprehensive analysis of the results in present and our previous studies demonstrated that CsGSTs play an important role in detoxification of abamectin by catalyzing the conjugation of GSH to abamectin in C. suppressalis, and the high binding affinities of CsGSTd1, CsGSTe4, CsGSTo2, CsGSTs3, and CsGSTu1 with abamectin might also suggest the involvement of CsGSTs in detoxification of abamectin via the noncatalytic passive binding and sequestration instead of direct metabolism. These studies are helpful to better understand the detoxification mechanisms of GSTs in insects.
Collapse
Affiliation(s)
- Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhaolu Wu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Anxiang Zhuang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiangkun Meng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
7
|
Lamontagne F, Paz-Trejo C, Zamorano Cuervo N, Grandvaux N. Redox signaling in cell fate: Beyond damage. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119722. [PMID: 38615720 DOI: 10.1016/j.bbamcr.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
This review explores the nuanced role of reactive oxygen species (ROS) in cell fate, challenging the traditional view that equates ROS with cellular damage. Through significant technological advancements in detecting localized redox states and identifying oxidized cysteines, a paradigm shift has emerged: from ROS as merely damaging agents to crucial players in redox signaling. We delve into the intricacies of redox mechanisms, which, although confined, exert profound influences on cellular physiological responses. Our analysis extends to both the positive and negative impacts of these mechanisms on cell death processes, including uncontrolled and programmed pathways. By unraveling these complex interactions, we argue against the oversimplified notion of a 'stress response', advocating for a more nuanced understanding of redox signaling. This review underscores the importance of localized redox states in determining cell fate, highlighting the sophistication and subtlety of ROS functions beyond mere damage.
Collapse
Affiliation(s)
- Felix Lamontagne
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Cynthia Paz-Trejo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Natalia Zamorano Cuervo
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 rue Saint Denis, Montréal H2X 0A9, Québec, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal H3C 3J7, Québec, Canada.
| |
Collapse
|
8
|
Zhu T, Wei B, Wang Y, Shang S. Glutathione S-Transferase Genes Involved in Response to Short-Term Heat Stress in Tetranychus urticae (Koch). Antioxidants (Basel) 2024; 13:442. [PMID: 38671890 PMCID: PMC11047457 DOI: 10.3390/antiox13040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Tetranychus urticae, a globally ubiquitous mite, poses a significant threat to agriculture. Elevated temperatures exacerbate the growth, development, and reproduction of T. urticae, leading to substantial crop damage. In this study, we employed comparative transcriptomic approaches with whole-genome information of T. urticae to identify six Glutathione S-transferase genes (GSTs) implicated in heat stress response. Through comprehensive bioinformatics analyses, we elucidated the tertiary structure and active sites of the corresponding proteins, providing a thorough characterization of these GST genes. Furthermore, we investigated the expression patterns of these six GST genes under short-term heat shock conditions. Our findings unveiled the involvement of T. urticae GST genes in combating oxidative stress induced by heat, underscoring their role in antioxidant defense mechanisms. This study contributes valuable insights into the molecular mechanisms underlying the response of T. urticae to heat stress, laying a foundation for the development of strategies aimed at mitigating its impact in high-temperature environments.
Collapse
Affiliation(s)
| | | | | | - Suqin Shang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (T.Z.); (B.W.); (Y.W.)
| |
Collapse
|
9
|
Hossain MS, Yao A, Qiao X, Shi W, Xie T, Chen C, Zhang YQ. Gbb glutathionylation promotes its proteasome-mediated degradation to inhibit synapse growth. J Cell Biol 2023; 222:e202202068. [PMID: 37389657 PMCID: PMC10316630 DOI: 10.1083/jcb.202202068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang S, Chen M, Meng L, Dou W, Wang J, Yuan G. Functional analysis of an overexpressed glutathione S-transferase BdGSTd5 involved in malathion and malaoxon detoxification in Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105498. [PMID: 37532320 DOI: 10.1016/j.pestbp.2023.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023]
Abstract
Glutathione S-transferases (GSTs) are one of the three detoxification enzyme families. The constitutive and inducible overexpression of GSTs genes plays an important role in insecticide resistance. Previous study showed that malathion resistance was polygenic, and elevated GSTs activity was one of the important factor participating in malathion resistance of Bactrocera dorsalis (Hendel), a serious economic pest worldwide. BdGSTd5 overexpression was inducible upon exposure to malathion. However, the involvement of BdGSTd5 in malathion resistance has not been clarified. In this study, we found that BdGSTd5 sequence harbored the conserved region of delta class GSTs, which were overexpressed in malathion resistant strain of B. dorsalis compared to malathion susceptible strain. The highest mRNA expression level of BdGSTd5 was found in 1-day-old adult, and the levels decreased with aging. The dsBdGSTd5 injection effectively silenced (73.4% reduction) the expression of BdGSTd5 and caused significant increase in susceptibility to malathion with a cumulative mortality increasing of 13.5% at 72 h post malathion treatment (p < 0.05). Cytotoxicity assay demonstrated that BdGSTd5 was capable of malathion detoxification. Molecular docking analysis further indicated the interactive potential of BdGSTd5 with malathion and its toxic oxide malaoxon. The recombinant BdGSTd5 exhibited glutathione-conjugating activity toward 1-chloro-2, 4-dinitrobenzene and malathion and malaoxon metabolic capacity with significant reduction (p < 0.05) of the peak areas by 90.0% and 73.1%, respectively. Taken together, the overexpressed BdGSTd5 contributes to malathion metabolism and resistance, which detoxify the malathion in B. dorsalis via directly depleting malathion and malaoxon.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key Laboratory of Entomology and Pest Control Engineering; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Mengling Chen
- Key Laboratory of Entomology and Pest Control Engineering; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Liwei Meng
- Key Laboratory of Entomology and Pest Control Engineering; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Jinjun Wang
- Key Laboratory of Entomology and Pest Control Engineering; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China
| | - Guorui Yuan
- Key Laboratory of Entomology and Pest Control Engineering; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China.
| |
Collapse
|
11
|
Moehlman AT, Kanfer G, Youle RJ. Loss of STING in parkin mutant flies suppresses muscle defects and mitochondria damage. PLoS Genet 2023; 19:e1010828. [PMID: 37440574 PMCID: PMC10368295 DOI: 10.1371/journal.pgen.1010828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The early pathogenesis and underlying molecular causes of motor neuron degeneration in Parkinson's Disease (PD) remains unresolved. In the model organism Drosophila melanogaster, loss of the early-onset PD gene parkin (the ortholog of human PRKN) results in impaired climbing ability, damage to the indirect flight muscles, and mitochondrial fragmentation with swelling. These stressed mitochondria have been proposed to activate innate immune pathways through release of damage associated molecular patterns (DAMPs). Parkin-mediated mitophagy is hypothesized to suppress mitochondrial damage and subsequent activation of the cGAS/STING innate immunity pathway, but the relevance of this interaction in the fly remains unresolved. Using a combination of genetics, immunoassays, and RNA sequencing, we investigated a potential role for STING in the onset of parkin-null phenotypes. Our findings demonstrate that loss of Drosophila STING in flies rescues the thorax muscle defects and the climbing ability of parkin-/- mutants. Loss of STING also suppresses the disrupted mitochondrial morphology in parkin-/- flight muscles, suggesting unexpected feedback of STING on mitochondria integrity or activation of a compensatory mitochondrial pathway. In the animals lacking both parkin and sting, PINK1 is activated and cell death pathways are suppressed. These findings support a unique, non-canonical role for Drosophila STING in the cellular and organismal response to mitochondria stress.
Collapse
Affiliation(s)
- Andrew T. Moehlman
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gil Kanfer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Jeong H, Yoon C, Lee JS, Byeon E. Differential susceptibility to arsenic in glutathione S-transferase omega 2 (GST-O2)-targeted freshwater water flea Daphnia magna mutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106364. [PMID: 36463774 DOI: 10.1016/j.aquatox.2022.106364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
To examine the role of glutathione S-transferase omega class (GST-O2) genes in the biotransformation and detoxification in Daphnia magna, various responses such as in vivo endpoints, arsenic speciation, enzymatic activities, and gene expression pathways related to arsenic metabolism were investigated in wild-type (WT) and GST-O2-mutant-type (MT) fleas produced by CRISPR/Cas9. Sensitivity to arsenic in MT fleas was higher than in WT fleas. Also, the reduction rate of arsenate (AsV) to arsenite (AsIII) in the MT group was significantly lower and led to accumulation of higher arsenic concentrations, resulting in decreased protection against arsenic toxicity. Relative mRNA expression of other GST genes in the GST-O2-targeted MT group generally increased but the enzymatic activity of GST decreased compared with the WT group. Oxidative stress on arsenic exposure was more strongly induced in the MT group compared with the WT group, resulting in a decrease in the ability to defend against toxicity in GST-O2-targeted mutant D. magna. Our results suggest that GST-O2 plays an important role in arsenic biotransformation and detoxification functions in D. magna.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
13
|
Vrettou S, Wirth B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:15849. [PMID: 36555492 PMCID: PMC9779533 DOI: 10.3390/ijms232415849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox post-translational modifications are derived from fluctuations in the redox potential and modulate protein function, localization, activity and structure. Amongst the oxidative reversible modifications, the S-glutathionylation of proteins was the first to be characterized as a post-translational modification, which primarily protects proteins from irreversible oxidation. However, a growing body of evidence suggests that S-glutathionylation plays a key role in core cell processes, particularly in mitochondria, which are the main source of reactive oxygen species. S-nitrosylation, another post-translational modification, was identified >150 years ago, but it was re-introduced as a prototype cell-signaling mechanism only recently, one that tightly regulates core processes within the cell’s sub-compartments, especially in mitochondria. S-glutathionylation and S-nitrosylation are modulated by fluctuations in reactive oxygen and nitrogen species and, in turn, orchestrate mitochondrial bioenergetics machinery, morphology, nutrients metabolism and apoptosis. In many neurodegenerative disorders, mitochondria dysfunction and oxidative/nitrosative stresses trigger or exacerbate their pathologies. Despite the substantial amount of research for most of these disorders, there are no successful treatments, while antioxidant supplementation failed in the majority of clinical trials. Herein, we discuss how S-glutathionylation and S-nitrosylation interfere in mitochondrial homeostasis and how the deregulation of these modifications is associated with Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and Friedreich’s ataxia.
Collapse
Affiliation(s)
- Sofia Vrettou
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
14
|
Cha SJ, Yoon JH, Han YJ, Kim K. Knockdown of glutathione S-transferase leads to mislocalization and accumulation of cabeza, a drosophila homolog of FUS, in the brain. J Neurogenet 2022:1-5. [DOI: 10.1080/01677063.2022.2149747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sun Joo Cha
- Department of Medical Science, Soonchunhyang University, Asan, Korea
| | - Ja Hoon Yoon
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea
| | - Yeo Jeong Han
- Department of Medical Science, Soonchunhyang University, Asan, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan, Korea
| |
Collapse
|
15
|
Karaj E, Sindi SH, Kuganesan N, Perera L, Taylor W, Viranga Tillekeratne LM. Tunable Cysteine-Targeting Electrophilic Heteroaromatic Warheads Induce Ferroptosis. J Med Chem 2022; 65:11788-11817. [PMID: 35984756 PMCID: PMC10408038 DOI: 10.1021/acs.jmedchem.2c00909] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Once considered potential liabilities, the modern era witnesses a renaissance of interest in covalent inhibitors in drug discovery. The available toolbox of electrophilic warheads is limited by constraints on tuning reactivity and selectivity. Following our work on a class of ferroptotic agents termed CETZOLEs, we discovered new tunable heterocyclic electrophiles which are capable of inducing ferroptosis. The biological evaluation demonstrated that thiazoles with an alkyne electrophile at the 2-position selectively induce ferroptosis with high potency. Density functional theory calculations and NMR kinetic studies demonstrated the ability of our heterocycles to undergo thiol addition, an apparent prerequisite for cytotoxicity. Chemoproteomic analysis indicated several potential targets, the most prominent among them being GPX4 protein. These results were further validated by western blot analysis and the cellular thermal shift assay. Incorporation of these heterocycles into appropriate pharmacophores generated highly cytotoxic agents such as the analogue BCP-T.A, with low nM IC50 values in ferroptosis-sensitive cell lines.
Collapse
Affiliation(s)
- Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606
| | - Shaimaa H. Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - William Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, University of Toledo, Toledo, OH 43606
| | - L. M. Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606
| |
Collapse
|
16
|
Cha SJ, Lee S, Choi HJ, Han YJ, Jeon YM, Jo M, Lee S, Nahm M, Lim SM, Kim SH, Kim HJ, Kim K. Therapeutic modulation of GSTO activity rescues FUS-associated neurotoxicity via deglutathionylation in ALS disease models. Dev Cell 2022; 57:783-798.e8. [PMID: 35320731 DOI: 10.1016/j.devcel.2022.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/25/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Fused in sarcoma (FUS) is a DNA/RNA-binding protein that is involved in DNA repair and RNA processing. FUS is associated with neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the molecular mechanisms underlying FUS-mediated neurodegeneration are largely unknown. Here, using a Drosophila model, we showed that the overexpression of glutathione transferase omega 2 (GstO2) reduces cytoplasmic FUS aggregates and prevents neurodegenerative phenotypes, including neurotoxicity and mitochondrial dysfunction. We found a FUS glutathionylation site at the 447th cysteine residue in the RanBP2-type ZnF domain. The glutathionylation of FUS induces FUS aggregation by promoting phase separation. GstO2 reduced cytoplasmic FUS aggregation by deglutathionylation in Drosophila brains. Moreover, we demonstrated that the overexpression of human GSTO1, the homolog of Drosophila GstO2, attenuates FUS-induced neurotoxicity and cytoplasmic FUS accumulation in mouse neuronal cells. Thus, the modulation of FUS glutathionylation might be a promising therapeutic strategy for FUS-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Sun Joo Cha
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61186, Korea
| | - Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan 31151, Korea
| | - Yeo Jeong Han
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Su Min Lim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea; Medical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul 04763, Korea; Medical Research Institute, Hanyang University, Seoul 04763, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea.
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea.
| |
Collapse
|
17
|
Ebanks B, Chakrabarti L. Mitochondrial ATP Synthase is a Target of Oxidative Stress in Neurodegenerative Diseases. Front Mol Biosci 2022; 9:854321. [PMID: 35237666 PMCID: PMC8882969 DOI: 10.3389/fmolb.2022.854321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial ATP synthase is responsible for the production of cellular ATP, and it does so by harnessing the membrane potential of the mitochondria that is produced by the sequential oxidation of select cellular metabolites. Since the structural features of ATP synthase were first resolved nearly three decades ago, significant progress has been made in understanding its role in health and disease. Mitochondrial dysfunction is common to neurodegeneration, with elevated oxidative stress a hallmark of this dysfunction. The patterns of this oxidative stress, including molecular targets and the form of oxidative modification, can vary widely. In this mini review we discuss the oxidative modifications of ATP synthase that have been observed in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. Oxidative modifications of ATP synthase in Alzheimer’s disease are well-documented, and there is a growing body of knowledge on the subject in Parkinson’s disease. The consideration of ATP synthase as a pharmacological target in a variety of diseases underlines the importance of understanding these modifications, both as a potential target, and also as inhibitors of any pharmacological intervention.
Collapse
Affiliation(s)
- Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Brad Ebanks,
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Nottingham, United Kingdom
| |
Collapse
|
18
|
Song XW, Zhong QS, Ji YH, Zhang YM, Tang J, Feng F, Bi JX, Xie J, Li B. Characterization of a sigma class GST (GSTS6) required for cellular detoxification and embryogenesis in Tribolium castaneum. INSECT SCIENCE 2022; 29:215-229. [PMID: 34048152 DOI: 10.1111/1744-7917.12930] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The sigma glutathione S-transferases (GSTSs) are a class of cytosolic glutathione S transferases (GSTs) that play important roles in antioxidant defense in insects, but the mechanisms by which GSTSs contribute to antioxidant activity remain unclear. Here, we isolated a GSTS (GSTS6) from Tribolium castaneum and explored its function. Homology and phylogenetic analysis revealed that TcGSTS6 shared high identity with other evolutionarily conserved GSTSs. The recombinant TcGSTS6 protein had strong activity toward cumene hydroperoxide and 4-hydroxynonenal but low activity toward the universal substrate 1-chloro-2,4-dinitrobenzene. Exposure to various types of oxidative stress, including heat, cold, UV and pathogenic microbes, significantly induced TcGSTs6 expression, which indicates that it is involved in antioxidant defense. Knockdown TcGSTs6 by using RNA interference (RNAi) caused reduced antioxidant capacity, which was accomplished by cooperating with other antioxidant genes. Moreover, treatment with various insecticides such as phoxim, lambda-cyhalothrin, dichlorvos and carbofuran revealed that TcGSTS6 plays an important role in insecticide detoxification. The RNAi results showed that TcGSTS6 is essential for embryogenesis in T. castaneum. Our study elucidates the mechanism by which a GSTS contributes to antioxidant activity and enhances our understanding of the functional diversity of GSTSs in insects.
Collapse
Affiliation(s)
- Xiao-Wen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Qi-Sheng Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Yan-Hao Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Yue-Mei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jing-Xiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| |
Collapse
|
19
|
Goyal S, Seth B, Chaturvedi RK. Polyphenols and Stem Cells for Neuroregeneration in Parkinson's Disease and Amyotrophic Lateral Sclerosis. Curr Pharm Des 2021; 28:806-828. [PMID: 34781865 DOI: 10.2174/1381612827666211115154450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS) are neurological disorders, pathologically characterized by chronic degeneration of dopaminergic neurons and motor neurons respectively. There is still no cure or effective treatment against the disease progression and most of the treatments are symptomatic. The present review offers an overview of the different factors involved in the pathogenesis of these diseases. Subsequently, we focused on the recent advanced studies of dietary polyphenols and stem cell therapies, which have made it possible to slow down the progression of neurodegeneration. To date, stem cells and different polyphenols have been used for the directional induction of neural stem cells into dopaminergic neurons and motor neurons. We have also discussed their involvement in the modulation of different signal transduction pathways and growth factor levels in various in vivo and in vitro studies. Likewise stem cells, polyphenols also exhibit the potential of neuroprotection by their anti-apoptotic, anti-inflammatory, anti-oxidant properties regulating the growth factors levels and molecular signaling events. Overall this review provides a detailed insight into recent strategies that promise the use of polyphenol with stem cell therapy for the possible treatment of PD and ALS.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001. India
| |
Collapse
|
20
|
Wongtrakul J, Thongtan T, Kumrapich B, Saisawang C, Ketterman AJ. Neuroprotective effects of Withania somnifera in the SH-SY5Y Parkinson cell model. Heliyon 2021; 7:e08172. [PMID: 34765761 PMCID: PMC8569401 DOI: 10.1016/j.heliyon.2021.e08172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/25/2021] [Accepted: 10/09/2021] [Indexed: 10/28/2022] Open
Abstract
Parkinson's disease is the most frequent neurodegenerative motor disorder. The clinical syndrome and pathology involve motor disturbance and the degeneration of dopaminergic neurons in the substantia nigra. Root extracts of Withania. somnifera, commonly called Ashwagandha, contain several major chemical constituents known as withanolides. Studies have shown that W. somnifera extracts exhibit numerous therapeutic effects including inflammation and oxidative stress reduction, memory and cognitive function improvement. This study aimed to evaluate the protective effects of KSM-66, W. somnifera root extract, on 6-hydroxydopamine (6-OHDA)-induced toxicity in the human neuroblastoma SH-SY5Y cell line, as well as the associated oxidative response protein expression and redox regulation activity focused on S-glutathionylation. SH-SY5Y cells were treated with 6-OHDA preceded or followed by treatment with the KSM-66 extract. Using KSM-66 concentrations ranging from 0.25 to 1 mg/ml before and after treatment of the cells with 6-OHDA has resulted in an increased viability of SH-SY5Y cells. Interestingly, the extract significantly increased glutathione peroxidase activity and thioltransferase activity upon pre- or post- 6-OHDA treatment. KSM-66 also modulated oxidative response proteins: peroxiredoxin-I, VGF and vimentin proteins upon 6-OHDA pre/post treatments. In addition, the extract controlled redox regulation via S-glutathionylation. Pre-treatment of SH-SY5Y cells with KSM-66 decreased protein-glutathionylation levels in the cells treated with 6-OHDA. The rescue of mitochondria with 0.5 mg/ml KSM-66 extract showed an increase in ATP levels. These findings suggest that W. somnifera root extract acts as a neuroprotectant, thereby introducing a potential agent for the treatment or prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeerang Wongtrakul
- Research Institute for Health Sciences, Chiang Mai University, 110 Intavaroros Road, Sriphum, Muang District, Chiang Mai, 50200, Thailand
| | - Thananya Thongtan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Benjawan Kumrapich
- Research Institute for Health Sciences, Chiang Mai University, 110 Intavaroros Road, Sriphum, Muang District, Chiang Mai, 50200, Thailand
| | - Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Albert J. Ketterman
- Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
21
|
Manzanza NDO, Sedlackova L, Kalaria RN. Alpha-Synuclein Post-translational Modifications: Implications for Pathogenesis of Lewy Body Disorders. Front Aging Neurosci 2021; 13:690293. [PMID: 34248606 PMCID: PMC8267936 DOI: 10.3389/fnagi.2021.690293] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative diseases now frequently categorized as the synucleinopathies. LBDs are considered to be among the second most common form of neurodegenerative dementias after Alzheimer's disease. They are progressive conditions with variable clinical symptoms embodied within specific cognitive and behavioral disorders. There are currently no effective treatments for LBDs. LBDs are histopathologically characterized by the presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs) such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation, and Truncation play important roles in the formation of toxic forms of the protein, which consequently facilitates the formation of these inclusions. This review focuses on the role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell membranes leading to the potential functional and pathogenic consequences detected so far, and their involvement in the development of LBDs.
Collapse
Affiliation(s)
- Nelson de Oliveira Manzanza
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lucia Sedlackova
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Raj N. Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Glutathione S-Transferase Rescues Motor Neuronal Toxicity in Fly Model of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2020; 9:antiox9070615. [PMID: 32674363 PMCID: PMC7402175 DOI: 10.3390/antiox9070615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Transactive response DNA-binding protein-43 (TDP-43) is involved in the pathology of familial and sporadic amyotrophic lateral sclerosis (ALS). TDP-43-mediated ALS models in mice, Drosophila melanogaster, and zebrafish exhibit dysfunction of locomotor function, defective neuromuscular junctions, and motor neuron defects. There is currently no effective cure for ALS, and the underlying mechanisms of TDP-43 in ALS remain poorly understood. In this study, a genetic screen was performed to identify modifiers of human TDP-43 (hTDP-43) in a Drosophila model, and glutathione S-transferase omega 2 (GstO2) was found to be involved in hTDP-43 neurotoxicity. GstO2 overexpressed on recovered defective phenotypes resulting from hTDP-43, including defective neuromuscular junction (NMJ) boutons, degenerated motor neuronal axons, and reduced larvae and adult fly locomotive activity, without modulating the levels of hTDP-43 protein expression. GstO2 modulated neurotoxicity by regulating reactive oxygen species (ROS) produced by hTDP-43 in the Drosophila model of ALS. Our results demonstrated that GstO2 was a key regulator in hTDP-43-related ALS pathogenesis and indicated its potential as a therapeutic target for ALS.
Collapse
|
23
|
Song X, Pei L, Zhang Y, Chen X, Zhong Q, Ji Y, Tang J, Feng F, Li B. Functional diversification of three delta-class glutathione S-transferases involved in development and detoxification in Tribolium castaneum. INSECT MOLECULAR BIOLOGY 2020; 29:320-336. [PMID: 31999035 DOI: 10.1111/imb.12637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Glutathione S-transferases (GSTs) are members of a multifunctional enzyme superfamily. Forty-one GSTs have been identified in Tribolium castaneum; however, none of the 41 GSTs has been functionally characterized. Here, three delta-class GSTs, TcGSTd1, TcGSTd2 and TcGSTd3, of T. castaneum were successfully cloned and expressed in Escherichia coli. All of the studied GSTs catalysed the conjugation of reduced glutathione with 1-chloro-2,4-dinitrobenzene. Insecticide treatment showed that the expression levels of TcGSTd3 and TcGSTd2 were significantly increased after exposure to phoxim and lambda-cyhalothrin, whereas TcGSTd1 was slightly upregulated only in response to phoxim. A disc diffusion assay showed that overexpression of TcGSTD3, but not TcGSTD1 or TcGSTD2, in E. coli increased resistance to paraquat-induced oxidative stress. RNA interference knockdown of TcGSTd1 caused metamorphosis deficiencies and reduced fecundity by regulating insulin/target-of-rapamycin signalling pathway-mediated ecdysteroid biosynthesis, and knockdown of TcGSTd3 led to reduced fertility and a decreased hatch rate of the offspring, probably caused by the reduced antioxidative activity in the reproductive organs. These results indicate that TcGSTd3 and TcGSTd2 may play vital roles in cellular detoxification, whereas TcGSTd1 may play essential roles in normal development of T. castaneum. These delta-class GSTs in T. castaneum have obtained different functions during the evolution.
Collapse
Affiliation(s)
- X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - L Pei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - X Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Q Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Y Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - J Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
24
|
Cha SJ, Choi HJ, Kim HJ, Choi EJ, Song KH, Im DS, Kim K. Parkin expression reverses mitochondrial dysfunction in fused in sarcoma-induced amyotrophic lateral sclerosis. INSECT MOLECULAR BIOLOGY 2020; 29:56-65. [PMID: 31290213 DOI: 10.1111/imb.12608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/24/2019] [Accepted: 07/07/2019] [Indexed: 06/09/2023]
Abstract
Fused in sarcoma (FUS) is a DNA/RNA-binding protein associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. The exact molecular mechanisms by which FUS results in neurotoxicity have not yet been fully elucidated. Here, we found that parkin is a genetic suppressor of defective phenotypes induced by exogenous human wild type FUS in Drosophila. Although parkin overexpression did not modulate the FUS protein expression level, the locomotive defects in FUS-expressing larvae and adult flies were rescued by parkin expression. We found that FUS expression in muscle tissues resulted in a reduction of the levels and assembly of mitochondrial complex I and III subunits, as well as decreased ATP. Remarkably, expression of parkin suppressed these mitochondrial dysfunctions. Our results indicate parkin as a neuroprotective regulator of FUS-induced proteinopathy by recovering the protein levels of mitochondrial complexes I and III. Our findings on parkin-mediated neuroprotection may expand our understanding of FUS-induced ALS pathogenesis.
Collapse
Affiliation(s)
- S J Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, South Korea
| | - H-J Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, South Korea
| | - H-J Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - E J Choi
- Department of Neurology, Ulsan University Hospital, Ulsan University College of Medicine, Ulsan, South Korea
| | - K-H Song
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, South Korea
| | - D S Im
- Department of Chemistry, Soonchunhyang University, Asan, South Korea
| | - K Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, South Korea
- Department of Medical Biotechnology, Soonchunhyang University, Asan, South Korea
| |
Collapse
|
25
|
Elvira R, Cha SJ, Noh GM, Kim K, Han J. PERK-Mediated eIF2α Phosphorylation Contributes to The Protection of Dopaminergic Neurons from Chronic Heat Stress in Drosophila. Int J Mol Sci 2020; 21:ijms21030845. [PMID: 32013014 PMCID: PMC7037073 DOI: 10.3390/ijms21030845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/05/2023] Open
Abstract
Environmental high-temperature heat exposure is linked to physiological stress such as disturbed protein homeostasis caused by endoplasmic reticulum (ER) stress. Abnormal proteostasis in neuronal cells is a common pathological factor of Parkinson’s disease (PD). Chronic heat stress is thought to induce neuronal cell death during the onset and progression of PD, but the exact role and mechanism of ER stress and the activation of the unfolded protein response (UPR) remains unclear. Here, we showed that chronic heat exposure induces ER stress mediated by the PKR-like eukaryotic initiation factor 2α kinase (PERK)/eIF2α phosphorylation signaling pathway in Drosophila neurons. Chronic heat-induced eIF2α phosphorylation was regulated by PERK activation and required for neuroprotection from chronic heat stress. Moreover, the attenuated protein synthesis by eIF2α phosphorylation was a critical factor for neuronal cell survival during chronic heat stress. We further showed that genetic downregulation of PERK, specifically in dopaminergic (DA) neurons, impaired motor activity and led to DA neuron loss. Therefore, our findings provide in vivo evidence demonstrating that chronic heat exposure may be a critical risk factor in the onset of PD, and eIF2α phosphorylation mediated by PERK may contribute to the protection of DA neurons against chronic heat stress in Drosophila.
Collapse
Affiliation(s)
- Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Sun Joo Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
| | - Gyeong-Mu Noh
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
| | - Kiyoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungcheongnam-do 31538, Korea;
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Chungcheongnam-do 31151, Korea; (R.E.); (S.J.C.)
- Correspondence: (K.K.); (J.H.); Tel.: +82-41-413-5024 (K.K.); +82-41-413-5027 (J.H.); Fax: +82-41-413-5006 (K.K. & J.H.)
| |
Collapse
|
26
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
27
|
Wang WW, Wang J, Zhang HJ, Wu SG, Qi GH. Transcriptome analysis reveals mechanism underlying the differential intestinal functionality of laying hens in the late phase and peak phase of production. BMC Genomics 2019; 20:970. [PMID: 31830910 PMCID: PMC6907226 DOI: 10.1186/s12864-019-6320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Background The compromised performance of laying hens in the late phase of production relative to the peak production was thought to be associated with the impairment of intestinal functionality, which plays essential roles in contributing to their overall health and production performance. In the present study, RNA sequencing was used to investigate differences in the expression profile of intestinal functionality-related genes and associated pathways between laying hens in the late phase and peak phase of production. Results A total of 104 upregulated genes with 190 downregulated genes were identified in the ileum (the distal small intestine) of laying hens in the late phase of production compared to those at peak production. These upregulated genes were found to be enriched in little KEGG pathway, however, the downregulated genes were enriched in the pathways of PPAR signaling pathway, oxidative phosphorylation and glutathione metabolism. Besides, these downregulated genes were mapped to several GO clusters in relation to lipid metabolism, electron transport of respiratory chain, and oxidation resistance. Similarly, there were lower activities of total superoxide dismutase, glutathione S-transferase and Na+/K+-ATPase, and reductions of total antioxidant capacity and ATP level, along with an elevation in malondialdehyde content in the ileum of laying hens in the late phase of production as compared with those at peak production. Conclusions The intestine of laying hens in the late phase of production were predominantly characterized by a disorder of lipid metabolism, concurrent with impairments of energy production and antioxidant property. This study uncovers the mechanism underlying differences between the intestinal functionality of laying hens in the late phase and peak phase of production, thereby providing potential targets for the genetic control or dietary modulation of intestinal hypofunction of laying hens in the late phase of production.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
28
|
Smith GA, Lin TH, Sheehan AE, Van der Goes van Naters W, Neukomm LJ, Graves HK, Bis-Brewer DM, Züchner S, Freeman MR. Glutathione S-Transferase Regulates Mitochondrial Populations in Axons through Increased Glutathione Oxidation. Neuron 2019; 103:52-65.e6. [PMID: 31101394 PMCID: PMC6616599 DOI: 10.1016/j.neuron.2019.04.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/13/2018] [Accepted: 04/10/2019] [Indexed: 01/14/2023]
Abstract
Mitochondria are essential in long axons to provide metabolic support and sustain neuron integrity. A healthy mitochondrial pool is maintained by biogenesis, transport, mitophagy, fission, and fusion, but how these events are regulated in axons is not well defined. Here, we show that the Drosophila glutathione S-transferase (GST) Gfzf prevents mitochondrial hyperfusion in axons. Gfzf loss altered redox balance between glutathione (GSH) and oxidized glutathione (GSSG) and initiated mitochondrial fusion through the coordinated action of Mfn and Opa1. Gfzf functioned epistatically with the thioredoxin peroxidase Jafrac1 and the thioredoxin reductase 1 TrxR-1 to regulate mitochondrial dynamics. Altering GSH:GSSG ratios in mouse primary neurons in vitro also induced hyperfusion. Mitochondrial changes caused deficits in trafficking, the metabolome, and neuronal physiology. Changes in GSH and oxidative state are associated with neurodegenerative diseases like Alzheimer's. Our demonstration that GSTs are key in vivo regulators of axonal mitochondrial length and number provides a potential mechanistic link.
Collapse
Affiliation(s)
- Gaynor A Smith
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK.
| | - Tzu-Huai Lin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy E Sheehan
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Lukas J Neukomm
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne VD, Switzerland
| | - Hillary K Graves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana M Bis-Brewer
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Stephan Züchner
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Marc R Freeman
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
29
|
Fernando N, Wooff Y, Aggio-Bruce R, Chu-Tan JA, Jiao H, Dietrich C, Rutar M, Rooke M, Menon D, Eells JT, Valter K, Board PG, Provis J, Natoli R. Photoreceptor Survival Is Regulated by GSTO1-1 in the Degenerating Retina. Invest Ophthalmol Vis Sci 2019; 59:4362-4374. [PMID: 30193308 DOI: 10.1167/iovs.18-24627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1β, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1β, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.
Collapse
Affiliation(s)
- Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yvette Wooff
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Joshua A Chu-Tan
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Haihan Jiao
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Catherine Dietrich
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melissa Rooke
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Deepthi Menon
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Janis T Eells
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States
| | - Krisztina Valter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Philip G Board
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jan Provis
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.,The ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
30
|
Choi HJ, Cha SJ, Kim K. Glutathione transferase modulates acute ethanol-induced sedation in Drosophila neurones. INSECT MOLECULAR BIOLOGY 2019; 28:246-252. [PMID: 30347459 DOI: 10.1111/imb.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heavy alcohol consumption leads to neuropathological damage and alcohol use disorder, which affects the health of people and results in a cost burden. However, the genes modulating sensitivity to ethanol remain largely unknown. Here, we identified a novel gene, Drosophila glutathione transferase omega 1 (GstO1), which plays a critical role in regulating sensitivity to ethanol sedation. GstO1 mutant flies showed highly increased ethanol sensitivity. Furthermore, the expression level of GstO1 regulates the behavioural response to ethanol, because decreasing and increasing GstO1 affects sedation sensitivity in a contrasting manner. In addition, the RNA interference-mediated knockdown of GstO1 expression reveals that GstO1 mediates sensitivity to ethanol sedation in neurones, including dopaminergic and serotonergic neurones. Altogether, our findings provide the first evidence for the involvement of glutathione transferase in the response to alcohol in Drosophila and provide a novel mechanistic insight into the toxicity and sensitivity of ethanol exposure.
Collapse
Affiliation(s)
- H-J Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
| | - S J Cha
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
| | - K Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, Korea
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Korea
| |
Collapse
|
31
|
Saisawang C, Wongsantichon J, Robinson RC, Ketterman AJ. Glutathione transferase Omega 1‐1 (GSTO1‐1) modulates Akt and MEK1/2 signaling in human neuroblastoma cell SH‐SY5Y. Proteins 2019; 87:588-595. [DOI: 10.1002/prot.25683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Chonticha Saisawang
- Institute of Molecular BiosciencesMahidol University Salaya Nakhon Pathom Thailand
| | - Jantana Wongsantichon
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) Singapore Singapore
- Mahidol‐Oxford Tropical Medicine Research Unit (MORU) Bangkok Thailand
| | - Robert C. Robinson
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) Singapore Singapore
- Research Institute for Interdisciplinary ScienceOkayama University Okayama Japan
| | - Albert J. Ketterman
- Institute of Molecular BiosciencesMahidol University Salaya Nakhon Pathom Thailand
| |
Collapse
|
32
|
Zhang J, Ye ZW, Singh S, Townsend DM, Tew KD. An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 2018; 120:204-216. [PMID: 29578070 PMCID: PMC5940525 DOI: 10.1016/j.freeradbiomed.2018.03.038] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Abstract
By nature of the reversibility of the addition of glutathione to low pKa cysteine residues, the post-translational modification of S-glutathionylation sanctions a cycle that can create a conduit for cell signaling events linked with cellular exposure to oxidative or nitrosative stress. The modification can also avert proteolysis by protection from over-oxidation of those clusters of target proteins that are substrates. Altered functions are associated with S-glutathionylation of proteins within the mitochondria and endoplasmic reticulum compartments, and these impact energy production and protein folding pathways. The existence of human polymorphisms of enzymes involved in the cycle (particularly glutathione S-transferase P) create a scenario for inter-individual variance in response to oxidative stress and a number of human diseases with associated aberrant S-glutathionylation have now been identified.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Shweta Singh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street, MSC141, Charleston, SC 29425, United States
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President Street, DDB410, Charleston, SC 29425, United States.
| |
Collapse
|
33
|
Protein Glutathionylation in the Pathogenesis of Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2818565. [PMID: 29456785 PMCID: PMC5804111 DOI: 10.1155/2017/2818565] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
Abstract
Protein glutathionylation is a redox-mediated posttranslational modification that regulates the function of target proteins by conjugating glutathione with a cysteine thiol group on the target proteins. Protein glutathionylation has several biological functions such as regulation of metabolic pathways, calcium homeostasis, signal transduction, remodeling of cytoskeleton, inflammation, and protein folding. However, the exact role and mechanism of glutathionylation during irreversible oxidative stress has not been completely defined. Irreversible oxidative damage is implicated in a number of neurological disorders. Here, we discuss and highlight the most recent findings and several evidences for the association of glutathionylation with neurodegenerative diseases and the role of glutathionylation of specific proteins in the pathogenesis of neurodegenerative diseases. Understanding the important role of glutathionylation in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions.
Collapse
|
34
|
Omega Class Glutathione S-Transferase: Antioxidant Enzyme in Pathogenesis of Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5049532. [PMID: 29435097 PMCID: PMC5757135 DOI: 10.1155/2017/5049532] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023]
Abstract
The omega class glutathione S-transferases (GSTOs) are multifunctional enzymes involved in cellular defense and have distinct structural and functional characteristics, which differ from those of other GSTs. Previous studies provided evidence for the neuroprotective effects of GSTOs. However, the molecular mechanisms underpinning the neuroprotective functions of GSTOs have not been fully elucidated. Recently, our genetic and molecular studies using the Drosophila system have suggested that GstO1 has a protective function against H2O2-induced neurotoxicity by regulating the MAPK signaling pathway, and GstO2 is required for the activation of mitochondrial ATP synthase in the Drosophila neurodegenerative disease model. The comprehensive understanding of various neuroprotection mechanisms of Drosophila GstOs from our studies provides valuable insight into the neuroprotective functions of GstOs in vivo. In this review, we briefly introduce recent studies and summarize the novel biological functions and mechanisms underpinning neuroprotective effects of GstOs in Drosophila.
Collapse
|
35
|
Resveratrol Modulation of Protein Expression in parkin-Mutant Human Skin Fibroblasts: A Proteomic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2198243. [PMID: 29138676 PMCID: PMC5613453 DOI: 10.1155/2017/2198243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
Abstract
In this study, we investigated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) analysis the effects of resveratrol treatment on skin primary fibroblasts from a healthy subject and from a parkin-mutant early onset Parkinson's disease patient. Parkin, an E3 ubiquitin ligase, is the most frequently mutated gene in hereditary Parkinson's disease. Functional alteration of parkin leads to impairment of the ubiquitin-proteasome system, resulting in the accumulation of misfolded or aggregated proteins accountable for the neurodegenerative process. The identification of proteins differentially expressed revealed that resveratrol treatment can act on deregulated specific biological process and molecular function such as cellular redox balance and protein homeostasis. In particular, resveratrol was highly effective at restoring the heat-shock protein network and the protein degradation systems. Moreover, resveratrol treatment led to a significant increase in GSH level, reduction of GSSG/GSH ratio, and decrease of reduced free thiol content in patient cells compared to normal fibroblasts. Thus, our findings provide an experimental evidence of the beneficial effects by which resveratrol could contribute to preserve the cellular homeostasis in parkin-mutant fibroblasts.
Collapse
|
36
|
Tito AJ, Cheema S, Jiang M, Zhang S. A Simple One-step Dissection Protocol for Whole-mount Preparation of Adult Drosophila Brains. J Vis Exp 2016. [PMID: 27929474 DOI: 10.3791/55128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is an increasing interest in using Drosophila to model human brain degenerative diseases, map neuronal circuitries in adult brains, and study the molecular and cellular basis of higher brain functions. A whole-mount preparation of adult brains with well-preserved morphology is critical for such whole brain-based studies, but can be technically challenging and time-consuming. This protocol describes an easy-to-learn, one-step dissection approach of an adult fly head in less than 10 s, while keeping the intact brain attached to the rest of the body to facilitate subsequent processing steps. The procedure helps remove most of the eye and tracheal tissues normally associated with the brain that can interfere with the later imaging step, and also places less demand on the quality of the dissecting forceps. Additionally, we describe a simple method that allows convenient flipping of the mounted brain samples on a coverslip, which is important for imaging both sides of the brains with similar signal intensity and quality. As an example of the protocol, we present an analysis of dopaminergic (DA) neurons in adult brains of WT (w1118) flies. The high efficacy of the dissection method makes it particularly useful for large-scale adult brain-based studies in Drosophila.
Collapse
Affiliation(s)
- Antonio J Tito
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, Programs in Human and Molecular Genetics and Neuroscience, The Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center at Houston
| | - Shebna Cheema
- Department of Natural Sciences, University of Houston - Downtown
| | - Mian Jiang
- Department of Natural Sciences, University of Houston - Downtown
| | - Sheng Zhang
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine, Programs in Human and Molecular Genetics and Neuroscience, The Graduate School of Biomedical Sciences at Houston, The University of Texas Health Science Center at Houston; Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston;
| |
Collapse
|
37
|
Saisawang C, Kuadkitkan A, Smith DR, Ubol S, Ketterman AJ. Glutathionylation of chikungunya nsP2 protein affects protease activity. Biochim Biophys Acta Gen Subj 2016; 1861:106-111. [PMID: 27984114 DOI: 10.1016/j.bbagen.2016.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/24/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Chikungunya fever is an emerging disease caused by the chikungunya virus and is now being spread worldwide by the mosquito Aedes albopictus. The infection can cause a persistent severe joint pain and recent reports link high levels of viremia to neuropathologies and fatalities. The viral protein nsP2 is a multifunctional enzyme that plays several critical roles in virus replication. Virus infection induces oxidative stress in host cells which the virus utilizes to aid viral propagation. Cellular oxidative stress also triggers glutathionylation which is a post-translational protein modification that can modulate physiological roles of affected proteins. METHODS The nsP2 protease is necessary for processing of the virus nonstructural polyprotein generated during replication. We use the recombinant nsP2 protein to measure protease activity before and after glutathionylation. Mass spectrometry allowed the identification of the glutathione-modified cysteines. Using immunoblots, we show that the glutathionylation of nsP2 occurs in virus-infected cells. RESULTS We show that in virus-infected cells, the chikungunya nsP2 can be glutathionylated and we show this modification can impact on the protease activity. We also identify 6 cysteine residues that are glutathionylated of the 20 cysteines in the protein. CONCLUSIONS The virus-induced oxidative stress causes modification of viral proteins which appears to modulate virus protein function. GENERAL SIGNIFICANCE Viruses generate oxidative stress to regulate and hijack host cell systems and this environment also appears to modulate virus protein function. This may be a general target for intervention in viral pathogenesis.
Collapse
Affiliation(s)
- Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Thailand
| | - Albert J Ketterman
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Thailand.
| |
Collapse
|
38
|
Mechanistic evaluation and transcriptional signature of a glutathione S-transferase omega 1 inhibitor. Nat Commun 2016; 7:13084. [PMID: 27703239 PMCID: PMC5059489 DOI: 10.1038/ncomms13084] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
Glutathione S-transferase omega 1 (GSTO1) is an atypical GST isoform that is overexpressed in several cancers and has been implicated in drug resistance. Currently, no small-molecule drug targeting GSTO1 is under clinical development. Here we show that silencing of GSTO1 with siRNA significantly impairs cancer cell viability, validating GSTO1 as a potential new target in oncology. We report on the development and characterization of a series of chloroacetamide-containing potent GSTO1 inhibitors. Co-crystal structures of GSTO1 with our inhibitors demonstrate covalent binding to the active site cysteine. These potent GSTO1 inhibitors suppress cancer cell growth, enhance the cytotoxic effects of cisplatin and inhibit tumour growth in colon cancer models as single agent. Bru-seq-based transcription profiling unravelled novel roles for GSTO1 in cholesterol metabolism, oxidative and endoplasmic stress responses, cytoskeleton and cell migration. Our findings demonstrate the therapeutic utility of GSTO1 inhibitors as anticancer agents and identify the novel cellular pathways under GSTO1 regulation in colorectal cancer. Glutathione S-transferase omega 1 (GSTO1) is an atypical GST isoform overexpressed in several cancers that has been implicated in drug resistance. Here the authors identify a small molecule inhibitor of GSTO1 that effectively inhibits tumor growth in colon cancer models, and establish its mechanism of action.
Collapse
|
39
|
Structure, function and disease relevance of Omega-class glutathione transferases. Arch Toxicol 2016; 90:1049-67. [PMID: 26993125 DOI: 10.1007/s00204-016-1691-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
The Omega-class cytosolic glutathione transferases (GSTs) have distinct structural and functional attributes that allow them to perform novel roles unrelated to the functions of other GSTs. Mammalian GSTO1-1 has been found to play a previously unappreciated role in the glutathionylation cycle that is emerging as significant mechanism regulating protein function. GSTO1-1-catalyzed glutathionylation or deglutathionylation of a key signaling protein may explain the requirement for catalytically active GSTO1-1 in LPS-stimulated pro-inflammatory signaling through the TLR4 receptor. The observation that ML175 a specific GSTO1-1 inhibitor can block LPS-stimulated inflammatory signaling has opened a new avenue for the development of novel anti-inflammatory drugs that could be useful in the treatment of toxic shock and other inflammatory disorders. The role of GSTO2-2 remains unclear. As a dehydroascorbate reductase, it could contribute to the maintenance of cellular redox balance and it is interesting to note that the GSTO2 N142D polymorphism has been associated with multiple diseases including Alzheimer's disease, Parkinson's disease, familial amyotrophic lateral sclerosis, chronic obstructive pulmonary disease, age-related cataract and breast cancer.
Collapse
|
40
|
Díaz S, Martín-González A, Cubas L, Ortega R, Amaro F, Rodríguez-Martín D, Gutiérrez JC. High resistance of Tetrahymena thermophila to paraquat: Mitochondrial alterations, oxidative stress and antioxidant genes expression. CHEMOSPHERE 2016; 144:909-917. [PMID: 26432532 DOI: 10.1016/j.chemosphere.2015.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Silvia Díaz
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Ana Martín-González
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Liliana Cubas
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Ruth Ortega
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Francisco Amaro
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Daniel Rodríguez-Martín
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain
| | - Juan-Carlos Gutiérrez
- Dpto. Microbiología-III, Facultad de Biología, Universidad Complutense, C/.José Antonio Novais 2, 28040 Madrid, Spain.
| |
Collapse
|
41
|
Paul S, Jakhar R, Bhardwaj M, Kang SC. Glutathione-S-transferase omega 1 (GSTO1-1) acts as mediator of signaling pathways involved in aflatoxin B1-induced apoptosis-autophagy crosstalk in macrophages. Free Radic Biol Med 2015; 89:1218-30. [PMID: 26561775 DOI: 10.1016/j.freeradbiomed.2015.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 12/29/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic aflatoxin species and has been shown to be associated with specific as well as non-specific immune responses. In the present study, using murine macrophage Raw 264.7 cells as a model, we report that short exposure (6h) to AFB1 caused an increase in the cellular calcium pool in mitochondria, which in turn elevated reactive oxygen species (ROS)-mediated oxidative stress and led to loss of mitochondrial membrane potential and ultimately c-Jun N-terminal kinases (JNK)-mediated caspase-dependent cell death. On the contrary, longer exposure (12h) to AFB1 reduced JNK phosphorylation and cell death in macrophages. Measurement of autophagic flux demonstrated that autophagy induction through the canonical pathway was responsible for suppressing AFB1-induced apoptosis after 12h. As a detailed molecular mechanism, we found that the unfolded protein response (UPR) machinery was active at 12h post-exposure to AFB1 and induced cytoprotective autophagy as confirmed by determination of major autophagic markers. Inhibition of autophagy by Beclin-1 siRNA also resulted in JNK-mediated cell death. We further established that glutathione S transferase omega1-1 (GSTO1-1), a specific class of GST, was the responsible factor between apoptosis and autophagy crosstalk. Targeting of GSTO1-1 increased JNK-mediated apoptosis by 2-fold compared to the control, whereas autophagy rate was reduced. Thus, increased expression of GSTO1-1 was associated with increased protein glutathionylation, an important protein modification in response to cellular redox status.
Collapse
Affiliation(s)
- Souren Paul
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Rekha Jakhar
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Monika Bhardwaj
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook 712-714, Republic of Korea.
| |
Collapse
|
42
|
GSTP1 and GSTO1 single nucleotide polymorphisms and the response of bladder cancer patients to intravesical chemotherapy. Sci Rep 2015; 5:14000. [PMID: 26354850 PMCID: PMC4564850 DOI: 10.1038/srep14000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023] Open
Abstract
SNPs may restrict cell detoxification activity and be a potential risk factor for cancer chemosensitivity. We evaluated the predictive value of these polymorphisms on the sensitivity of bladder cancer patients to epirubicin and mitomycin chemotherapy instillation as well as their toxicities. SNPs were analyzed by TaqMan genotyping assays in 130 patients treated with epirubicin and 114 patients treated with mitomycin. Recurrence-free survival (RFS) was estimated by the Kaplan-Meier method, and hazard ratios (HRs) and 95% confidence intervals (CIs) of the HRs were derived from multivariate Cox proportional hazard models. GSTP1 rs1695 and GSTO1 rs4925 were also associated with RFS in the epirubicin group. Patients carrying the GSTP1 AG+GG and GSTO1 AC+AA genotypes had an unfavorable RFS. Patients with the GSTP1 AA and GSTO1 CC genotypes had a reduced risk of recurrence after the instillation of epirubicin. In addition, patients with the GSTP1 rs1695 AA genotype had an increased risk of irritative voiding symptoms; while patients with the GSTO1 rs4925 CC genotype had a decreased risk of hematuria. Our results suggest that GSTP1 and GSTO1 polymorphisms are associated with epirubicin treatment outcomes as well as with epirubicin-related toxicity.
Collapse
|
43
|
Lee SY, Lim IA, Kang GU, Cha SJ, Altanbyek V, Kim HJ, Lee S, Kim K, Yim J. Protective effect of Drosophila glutathione transferase omega 1 against hydrogen peroxide-induced neuronal toxicity. Gene 2015; 568:203-10. [DOI: 10.1016/j.gene.2015.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023]
|
44
|
Hanna ME, Bednářová A, Rakshit K, Chaudhuri A, O'Donnell JM, Krishnan N. Perturbations in dopamine synthesis lead to discrete physiological effects and impact oxidative stress response in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2015; 73:11-19. [PMID: 25585352 PMCID: PMC4699656 DOI: 10.1016/j.jinsphys.2015.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
The impact of mutations in four essential genes involved in dopamine (DA) synthesis and transport on longevity, motor behavior, and resistance to oxidative stress was monitored in Drosophila melanogaster. The fly lines used for this study were: (i) a loss of function mutation in Catecholamines up (Catsup(26)), which is a negative regulator of the rate limiting enzyme for DA synthesis, (ii) a mutant for the gene pale (ple(2)) that encodes for the rate limiting enzyme tyrosine hydroxylase (TH), (iii) a mutant for the gene Punch (Pu(Z22)) that encodes guanosine triphosphate cyclohydrolase, required for TH activity, and (iv) a mutant in the vesicular monoamine transporter (VMAT(Δ14)), which is required for packaging of DA as vesicles inside DA neurons. Median lifespans of ple(2), Pu(Z22) and VMAT(Δ14) mutants were significantly decreased compared to Catsup(26) and wild type controls that did not significantly differ between each other. Catsup(26) flies survived longer when exposed to hydrogen peroxide (80 μM) or paraquat (10mM) compared to ple(2), Pu(Z22) or VMAT(Δ14) and controls. These flies also exhibited significantly higher negative geotaxis activity compared to ple(2), Pu(Z22), VMAT(Δ14) and controls. All mutant flies demonstrated rhythmic circadian locomotor activity in general, albeit Catsup(26) and VMAT(Δ14) flies had slightly weaker rhythms. Expression analysis of some key antioxidant genes revealed that glutathione S-transferase Omega-1 (GSTO1) expression was significantly up-regulated in all DA synthesis pathway mutants and especially in Catsup(26) and VMAT(Δ14) flies at both mRNA and protein levels. Taken together, we hypothesize that DA could directly influence GSTO1 transcription and thus play a significant role in the regulation of response to oxidative stress. Additionally, perturbations in DA synthesis do not appear to have a significant impact on circadian locomotor activity rhythms per se, but do have an influence on general locomotor activity levels.
Collapse
Affiliation(s)
- Marley E Hanna
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Andrea Bednářová
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; Institute of Entomology, Biology Centre, Academy of Sciences and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Anathbandhu Chaudhuri
- Department of Natural Sciences, Stinson Mathematics and Science Building, 3601 Stillman Blvd, Stillman College, Tuscaloosa, AL 35043, USA
| | - Janis M O'Donnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
45
|
|
46
|
Abstract
PURPOSE OF REVIEW Glutathione (GSH) is a major endogenous antioxidant. Several studies have implicated GSH redox imbalance in brain disorders. Here, we summarize current evidence on how GSH depletion and GSH-related enzyme deficit are involved in the pathology of brain disorders such as autism, schizophrenia, bipolar disorder, Alzheimer's disease, and Parkinson's disease. RECENT FINDINGS Many studies with animal models of various brain disorders and/or with clinical samples from humans with neurodegenerative and neuropsychiatric disorders have demonstrated altered levels of GSH and oxidized glutathione (GSSG), decreased ratio of GSH/GSSG, and/or impaired expressions or activities of GSH-related enzymes in the blood or brain of these individuals. GSH depletion can lead to abnormalities in methylation metabolism and mitochondrial function. A few studies showed that a GSH deficit occurs prior to neuropathological abnormalities in these diseases. The potential therapeutic agents for brain disorders include N-acetylcysteine, liposomes encapsulated with GSH, and whey protein supplement, which can increase the GSH levels in the brain and alleviate oxidative stress-associated damage and may improve the behavior of individuals with brain diseases. SUMMARY GSH plays an important role during the onset and progression of neuropsychiatric and neurodegenerative diseases. GSH redox imbalance may be a primary cause of these brain disorders and may be used as a biomarker for diagnosis of these diseases. N-acetylcysteine and other agents that can increase the concentration of GSH in the brain are promising approaches for the treatment of these brain disorders.
Collapse
Affiliation(s)
- Feng Gu
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | | | | |
Collapse
|
47
|
Burns R, Majczenko K, Xu J, Peng W, Yapici Z, Dowling JJ, Li JZ, Burmeister M. Homozygous splice mutation in CWF19L1 in a Turkish family with recessive ataxia syndrome. Neurology 2014; 83:2175-82. [PMID: 25361784 PMCID: PMC4276403 DOI: 10.1212/wnl.0000000000001053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/02/2014] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To elucidate the genetic cause of a rare recessive ataxia presented by 2 siblings from a consanguineous Turkish family with a nonprogressive, congenital ataxia with mental retardation of unknown etiology. METHODS Whole-exome sequencing was combined with homozygosity mapping, linkage, and expression analysis to identify candidate genes, confirmed by Sanger sequencing. Reverse transcription-PCR and immunoblotting were used to determine the functional consequences of the gene variant. A zebrafish model was developed using morpholino-mediated knockdown. RESULTS We identified a homozygous mutation at the invariant +1 position (c.964+1G>A) in intron 9 of the CWF19L1 (complexed with cdc5 protein 19-like 1) gene. This mutation is absent in >6,500 European and African American individuals and 200 Turkish control DNAs. The mutation causes exon skipping, reduction in messenger RNA levels, and protein loss in cell lines of affected individuals. Morpholino-mediated knockdown in a zebrafish model demonstrates that loss of the evolutionarily highly conserved CWF19L1, whose normal biological function is unknown, alters cerebellar morphology and causes movement abnormalities. CONCLUSIONS Our results suggest that CWF19L1 mutations may be a novel cause of recessive ataxia with developmental delay. Our research may help with diagnosis, especially in Turkey, identify causes of other ataxias, and may lead to novel therapies.
Collapse
Affiliation(s)
- Randi Burns
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Karen Majczenko
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Jishu Xu
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Weiping Peng
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Zuhal Yapici
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - James J Dowling
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Jun Z Li
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada
| | - Margit Burmeister
- From the Program in Cellular and Molecular Biology (R.B., M.B.), Molecular & Behavioral Neuroscience Institute (R.B., K.M., M.B.), Departments of Human Genetics (J.X., W.P., J.Z.L., M.B.), Neurology (J.J.D.), Pediatrics (J.J.D.), and Psychiatry (M.B.), University of Michigan Medical Center, Ann Arbor; and Department of Neurology (Z.Y.), Division of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Turkey. J.J.D. is currently affiliated with the Division of Neurology and Program of Genetics and Genome Biology, Hospital for Sick Children, Departments of Pediatrics and Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|
48
|
Quantification and visualization of glutathione S-transferase omega 1 in cells using inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence microscopy. Anal Bioanal Chem 2014; 407:2373-81. [DOI: 10.1007/s00216-014-8234-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/21/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022]
|
49
|
Micro-plasticity of genomes as illustrated by the evolution of glutathione transferases in 12 Drosophila species. PLoS One 2014; 9:e109518. [PMID: 25310450 PMCID: PMC4195677 DOI: 10.1371/journal.pone.0109518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/03/2014] [Indexed: 12/05/2022] Open
Abstract
Glutathione transferases (GST) are an ancient superfamily comprising a large number of paralogous proteins in a single organism. This multiplicity of GSTs has allowed the copies to diverge for neofunctionalization with proposed roles ranging from detoxication and oxidative stress response to involvement in signal transduction cascades. We performed a comparative genomic analysis using FlyBase annotations and Drosophila melanogaster GST sequences as templates to further annotate the GST orthologs in the 12 Drosophila sequenced genomes. We found that GST genes in the Drosophila subgenera have undergone repeated local duplications followed by transposition, inversion, and micro-rearrangements of these copies. The colinearity and orientations of the orthologous GST genes appear to be unique in many of the species which suggests that genomic rearrangement events have occurred multiple times during speciation. The high micro-plasticity of the genomes appears to have a functional contribution utilized for evolution of this gene family.
Collapse
|
50
|
Enya S, Ameku T, Igarashi F, Iga M, Kataoka H, Shinoda T, Niwa R. A Halloween gene noppera-bo encodes a glutathione S-transferase essential for ecdysteroid biosynthesis via regulating the behaviour of cholesterol in Drosophila. Sci Rep 2014; 4:6586. [PMID: 25300303 PMCID: PMC4192634 DOI: 10.1038/srep06586] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/17/2014] [Indexed: 11/09/2022] Open
Abstract
In insects, the precise timing of moulting and metamorphosis is strictly guided by ecdysteroids that are synthesised from dietary cholesterol in the prothoracic gland (PG). In the past decade, several ecdysteroidogenic enzymes, some of which are encoded by the Halloween genes, have been identified and characterised. Here, we report a novel Halloween gene, noppera-bo (nobo), that encodes a member of the glutathione S-transferase family. nobo was identified as a gene that is predominantly expressed in the PG of the fruit fly Drosophila melanogaster. We generated a nobo knock-out mutant, which displayed embryonic lethality and a naked cuticle structure. These phenotypes are typical for Halloween mutants showing embryonic ecdysteroid deficiency. In addition, the PG-specific nobo knock-down larvae displayed an arrested phenotype and reduced 20-hydroxyecdysone (20E) titres. Importantly, both embryonic and larval phenotypes were rescued by the administration of 20E or cholesterol. We also confirm that PG cells in nobo loss-of-function larvae abnormally accumulate cholesterol. Considering that cholesterol is the most upstream material for ecdysteroid biosynthesis in the PG, our results raise the possibility that nobo plays a crucial role in regulating the behaviour of cholesterol in steroid biosynthesis in insects.
Collapse
Affiliation(s)
- Sora Enya
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Tomotsune Ameku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Fumihiko Igarashi
- 1] Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan [2]
| | - Masatoshi Iga
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8562, Japan
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Ryusuke Niwa
- 1] Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan [2] PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|