1
|
Khurshid S, Venkataramany AS, Montes M, Kipp JF, Roberts RD, Wein N, Rigo F, Wang PY, Cripe TP, Chandler DS. Employing splice-switching oligonucleotides and AAVrh74.U7 snRNA to target insulin receptor splicing and cancer hallmarks in osteosarcoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200908. [PMID: 39720325 PMCID: PMC11666956 DOI: 10.1016/j.omton.2024.200908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/10/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024]
Abstract
Patients with osteosarcoma (OS), a debilitating pediatric bone malignancy, have limited treatment options to combat aggressive disease. OS thrives on insulin growth factor (IGF)-mediated signaling that can facilitate cell proliferation. Previous efforts to target IGF-1R signaling were mostly unsuccessful, likely due to compensatory signaling through alternative splicing of the insulin receptor (IR) to the proliferative IR-A isoform. Here, we leverage splice-switching oligonucleotides (SSOs) to mitigate IR splicing toward the IR-B isoform. We show that SSOs can modulate cancer cell hallmarks and anoikis-resistant growth. Furthermore, we engineered the SSO sequence in an U7 snRNA packaged in an adeno-associated virus (AAV) to test the feasibility of viral vector-mediated gene therapy delivery. We noted modest increases in IR-B isoform levels after virus transduction, which prompted us to investigate the role of combinatorial treatments with dalotuzumab, an anti-IGF-1R monoclonal antibody. After observing additive impacts on phosphoprotein phosphorylation and anoikis-resistant growth with the dalotuzumab and SSO combination, we treated OS cells with dalotuzumab and the AAVrh74.U7 snRNA IR virus, which significantly slowed OS cell proliferation. While these viruses require further optimization, we highlight the potential for SSO therapy and viral vector delivery, as it may offer new treatment avenues for OS patients and be translated to other cancers.
Collapse
Affiliation(s)
- Safiya Khurshid
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Akila S. Venkataramany
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Matias Montes
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - John F. Kipp
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Ryan D. Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Nicolas Wein
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Pin-Yi Wang
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| | - Dawn S. Chandler
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Qin WJ, Shi JJ, Chen RY, Li CY, Liu YJ, Lu JF, Yang GJ, Cao JF, Chen J. Curriculum vitae of CUG binding protein 1 (CELF1) in homeostasis and diseases: a systematic review. Cell Mol Biol Lett 2024; 29:32. [PMID: 38443798 PMCID: PMC10916161 DOI: 10.1186/s11658-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.
Collapse
Affiliation(s)
- Wan-Jia Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Nasiri-Aghdam M, Garcia-Garduño TC, Jave-Suárez LF. CELF Family Proteins in Cancer: Highlights on the RNA-Binding Protein/Noncoding RNA Regulatory Axis. Int J Mol Sci 2021; 22:11056. [PMID: 34681716 PMCID: PMC8537729 DOI: 10.3390/ijms222011056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/17/2022] Open
Abstract
Post-transcriptional modifications to coding and non-coding RNAs are unquestionably a pivotal way in which human mRNA and protein diversity can influence the different phases of a transcript's life cycle. CELF (CUGBP Elav-like family) proteins are RBPs (RNA-binding proteins) with pleiotropic capabilities in RNA processing. Their responsibilities extend from alternative splicing and transcript editing in the nucleus to mRNA stability, and translation into the cytoplasm. In this way, CELF family members have been connected to global alterations in cancer proliferation and invasion, leading to their identification as potential tumor suppressors or even oncogenes. Notably, genetic variants, alternative splicing, phosphorylation, acetylation, subcellular distribution, competition with other RBPs, and ultimately lncRNAs, miRNAs, and circRNAs all impact CELF regulation. Discoveries have emerged about the control of CELF functions, particularly via noncoding RNAs, and CELF proteins have been identified as competing, antagonizing, and regulating agents of noncoding RNA biogenesis. On the other hand, CELFs are an intriguing example through which to broaden our understanding of the RBP/noncoding RNA regulatory axis. Balancing these complex pathways in cancer is undeniably pivotal and deserves further research. This review outlines some mechanisms of CELF protein regulation and their functional consequences in cancer physiology.
Collapse
Affiliation(s)
- Maryam Nasiri-Aghdam
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Texali C. Garcia-Garduño
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Luis Felipe Jave-Suárez
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico;
| |
Collapse
|
4
|
CELF2 regulates the species-specific alternative splicing of TREM2. Sci Rep 2020; 10:17995. [PMID: 33093587 PMCID: PMC7582162 DOI: 10.1038/s41598-020-75057-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer’s disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.
Collapse
|
5
|
Tian Y, Zeng Z, Li X, Wang Y, Chen R, Mattijssen S, Gaidamakov S, Wu Y, Maraia RJ, Peng W, Zhu J. Transcriptome-wide stability analysis uncovers LARP4-mediated NFκB1 mRNA stabilization during T cell activation. Nucleic Acids Res 2020; 48:8724-8739. [PMID: 32735645 PMCID: PMC7470963 DOI: 10.1093/nar/gkaa643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/30/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
T cell activation is a well-established model for studying cellular responses to exogenous stimulation. Motivated by our previous finding that intron retention (IR) could lead to transcript instability, in this study, we performed BruChase-Seq to experimentally monitor the expression dynamics of nascent transcripts in resting and activated CD4+ T cells. Computational modeling was then applied to quantify the stability of spliced and intron-retained transcripts on a genome-wide scale. Beyond substantiating that intron-retained transcripts were considerably less stable than spliced transcripts, we found a global stabilization of spliced mRNAs upon T cell activation, although the stability of intron-retained transcripts remained relatively constant. In addition, we identified that La-related protein 4 (LARP4), an RNA-binding protein (RBP) known to enhance mRNA stability, was involved in T cell activation-dependent mRNA stabilization. Knocking out Larp4 in mice destabilized Nfκb1 mRNAs and reduced secretion of interleukin-2 (IL2) and interferon-gamma (IFNγ), two factors critical for T cell proliferation and function. We propose that coordination between splicing regulation and mRNA stability may provide a novel paradigm to control spatiotemporal gene expression during T cell activation.
Collapse
Affiliation(s)
- Yi Tian
- Department of Physics, George Washington University, Washington, DC 20052, USA
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Zhouhao Zeng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Xiang Li
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Yiyin Wang
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Runsen Chen
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Sandy Mattijssen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sergei Gaidamakov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Richard J Maraia
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Weiqun Peng
- Department of Physics, George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Jiang C, Trudeau SJ, Cheong TC, Guo R, Teng M, Wang LW, Wang Z, Pighi C, Gautier-Courteille C, Ma Y, Jiang S, Wang C, Zhao B, Paillard L, Doench JG, Chiarle R, Gewurz BE. CRISPR/Cas9 Screens Reveal Multiple Layers of B cell CD40 Regulation. Cell Rep 2020; 28:1307-1322.e8. [PMID: 31365872 PMCID: PMC6684324 DOI: 10.1016/j.celrep.2019.06.079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/06/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
CD40 has major roles in B cell development, activation, and germinal center responses. CD40 hypoactivity causes immunodeficiency whereas its overexpression causes autoimmunity and lymphomagenesis. To systematically identify B cell autonomous CD40 regulators, we use CRISPR/Cas9 genome-scale screens in Daudi B cells stimulated by multimeric CD40 ligand. These highlight known CD40 pathway components and reveal multiple additional mechanisms regulating CD40. The nuclear ubiquitin ligase FBXO11 supports CD40 expression by targeting repressors CTBP1 and BCL6. FBXO11 knockout decreases primary B cell CD40 abundance and impairs class-switch recombination, suggesting that frequent lymphoma monoallelic FBXO11 mutations may balance BCL6 increase with CD40 loss. At the mRNA level, CELF1 controls exon splicing critical for CD40 activity, while the N6-adenosine methyltransferase WTAP negatively regulates CD40 mRNA abundance. At the protein level, ESCRT negatively regulates activated CD40 levels while the negative feedback phosphatase DUSP10 limits downstream MAPK responses. These results serve as a resource for future studies and highlight potential therapeutic targets. CD40 is critical for B cell development, germinal center formation, somatic hypermutation, and class-switch recombination. Increased CD40 abundance is associated with autoimmunity and cancer, whereas CD40 hypoactivity causes immunodeficiency. Jiang et al. performed a genome-wide CRISPR/Cas9 screen to reveal key B cell factors that control CD40 abundance and that regulate CD40 responses.
Collapse
Affiliation(s)
- Chang Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Taek-Chin Cheong
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Liang Wei Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chiara Pighi
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Carole Gautier-Courteille
- Biosit, Université de Rennes 1, 35043 Rennes, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sizun Jiang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chong Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Luc Paillard
- Biosit, Université de Rennes 1, 35043 Rennes, France; Centre National de la Recherche Scientifique UMR 6290, Institut de Génétique et Développement de Rennes, 35043 Rennes, France
| | - John G Doench
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Roberto Chiarle
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Structure of an Unfolding Intermediate of an RRM Domain of ETR-3 Reveals Its Native-like Fold. Biophys J 2020; 118:352-365. [PMID: 31866002 DOI: 10.1016/j.bpj.2019.11.3392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022] Open
Abstract
Prevalence of one or more partially folded intermediates during protein unfolding with different secondary and ternary conformations has been identified as an integral character of protein unfolding. These transition-state species need to be characterized structurally for elucidation of their folding pathways. We have determined the three-dimensional structure of an intermediate state with increased conformational space sampling under urea-denaturing condition. The protein unfolds completely at 10 M urea but retains residual secondary structural propensities with restricted motion. Here, we describe the native state, observable intermediate state, and unfolded state for ETR-3 RRM-3, which has canonical RRM fold. These observations can shed more light on unfolding events for RRM-containing proteins.
Collapse
|
8
|
Timchenko L. Correction of RNA-Binding Protein CUGBP1 and GSK3β Signaling as Therapeutic Approach for Congenital and Adult Myotonic Dystrophy Type 1. Int J Mol Sci 2019; 21:ijms21010094. [PMID: 31877772 PMCID: PMC6982105 DOI: 10.3390/ijms21010094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex genetic disease affecting many tissues. DM1 is caused by an expansion of CTG repeats in the 3′-UTR of the DMPK gene. The mechanistic studies of DM1 suggested that DMPK mRNA, containing expanded CUG repeats, is a major therapeutic target in DM1. Therefore, the removal of the toxic RNA became a primary focus of the therapeutic development in DM1 during the last decade. However, a cure for this devastating disease has not been found. Whereas the degradation of toxic RNA remains a preferential approach for the reduction of DM1 pathology, other approaches targeting early toxic events downstream of the mutant RNA could be also considered. In this review, we discuss the beneficial role of the restoring of the RNA-binding protein, CUGBP1/CELF1, in the correction of DM1 pathology. It has been recently found that the normalization of CUGBP1 activity with the inhibitors of GSK3 has a positive effect on the reduction of skeletal muscle and CNS pathologies in DM1 mouse models. Surprisingly, the inhibitor of GSK3, tideglusib also reduced the toxic CUG-containing RNA. Thus, the development of the therapeutics, based on the correction of the GSK3β-CUGBP1 pathway, is a promising option for this complex disease.
Collapse
Affiliation(s)
- Lubov Timchenko
- Departments of Neurology and Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
9
|
Litterman AJ, Kageyama R, Le Tonqueze O, Zhao W, Gagnon JD, Goodarzi H, Erle DJ, Ansel KM. A massively parallel 3' UTR reporter assay reveals relationships between nucleotide content, sequence conservation, and mRNA destabilization. Genome Res 2019; 29:896-906. [PMID: 31152051 PMCID: PMC6581050 DOI: 10.1101/gr.242552.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/02/2019] [Indexed: 01/02/2023]
Abstract
Compared to coding sequences, untranslated regions of the transcriptome are not well conserved, and functional annotation of these sequences is challenging. Global relationships between nucleotide composition of 3′ UTR sequences and their sequence conservation have been appreciated since mammalian genomes were first sequenced, but the functional relevance of these patterns remain unknown. We systematically measured the effect on gene expression of the sequences of more than 25,000 RNA-binding protein (RBP) binding sites in primary mouse T cells using a massively parallel reporter assay. GC-rich sequences were destabilizing of reporter mRNAs and come from more rapidly evolving regions of the genome. These sequences were more likely to be folded in vivo and contain a number of structural motifs that reduced accumulation of a heterologous reporter protein. Comparison of full-length 3′ UTR sequences across vertebrate phylogeny revealed that strictly conserved 3′ UTRs were GC-poor and enriched in genes associated with organismal development. In contrast, rapidly evolving 3′ UTRs tended to be GC-rich and derived from genes involved in metabolism and immune responses. Cell-essential genes had lower GC content in their 3′ UTRs, suggesting a connection between unstructured mRNA noncoding sequences and optimal protein production. By reducing gene expression, GC-rich RBP-occupied sequences act as a rapidly evolving substrate for gene regulatory interactions.
Collapse
Affiliation(s)
- Adam J Litterman
- Department of Microbiology and Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Robin Kageyama
- Department of Microbiology and Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Olivier Le Tonqueze
- Department of Medicine and Lung Biology Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Wenxue Zhao
- Department of Medicine and Lung Biology Center, University of California San Francisco, San Francisco, California 94143, USA.,School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China, 510245
| | - John D Gagnon
- Department of Microbiology and Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, Department of Urology, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94143, USA
| | - David J Erle
- Department of Medicine and Lung Biology Center, University of California San Francisco, San Francisco, California 94143, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
10
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
11
|
Abstract
Viruses alter host-cell gene expression at many biochemical levels, such as transcription, translation, mRNA splicing and mRNA decay in order to create a cellular environment suitable for viral replication. In this review, we discuss mechanisms by which viruses manipulate host-gene expression at the level of mRNA decay in order to enable the virus to evade host antiviral responses to allow viral survival and replication. We discuss different cellular RNA decay pathways, including the deadenylation-dependent mRNA decay pathway, and various strategies that viruses exploit to manipulate these pathways in order to create a virus-friendly cellular environment.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St Louis
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R Bohjanen
- Department of Medicine, Division of Infectious Diseases & International Medicine, Program in Infection & Immunity, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology & Immunology, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA.,Graduate Program in Comparative & Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
12
|
Guo L, Louis IVS, Bohjanen PR. Post-transcriptional regulation of cytokine expression and signaling. CURRENT TRENDS IN IMMUNOLOGY 2018; 19:33-40. [PMID: 30568341 PMCID: PMC6296478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cytokines and cytokine signaling pathways are crucial for regulating cellular functions, including cell growth, proliferation, differentiation, and cell death. Cytokines regulate physiological processes such as immune responses and maintain immune homeostasis, and they also mediate pathological conditions such as autoimmune diseases and cancer. Hence, the precise control of the expression of cytokines and the transduction of cytokine signals is tightly regulated at transcriptional and post-transcriptional levels. In particular, post-transcriptional regulation at the level of mRNA stability is critical for coordinating cytokine expression and cytokine signaling. Numerous cytokine transcripts contain AU-rich elements (AREs), whereas transcripts encoding numerous components of cytokine signaling pathways contain GU-rich elements (GREs). AREs and GREs are mRNA decay elements that mediate rapid mRNA degradation. Through ARE- and GRE-mediated decay mechanisms, immune cells selectively and specifically regulate cytokine networks during immune responses. Aberrant expression and stability of ARE- or GRE-containing transcripts that encode cytokines or components of cytokine signaling pathways are observed in disease states, including cancer. In this review, we focus on the role of AREs and GREs in regulating cytokine expression and signal transduction at the level of mRNA stability.
Collapse
Affiliation(s)
- Liang Guo
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Irina Vlasova-St. Louis
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul R. Bohjanen
- Department of Medicine, Division of Infectious Diseases and International Medicine, Program in Infection and Immunity, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology Training Program, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Cifdaloz M, Osterloh L, Graña O, Riveiro-Falkenbach E, Ximénez-Embún P, Muñoz J, Tejedo C, Calvo TG, Karras P, Olmeda D, Miñana B, Gómez-López G, Cañon E, Eyras E, Guo H, Kappes F, Ortiz-Romero PL, Rodríguez-Peralto JL, Megías D, Valcárcel J, Soengas MS. Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nat Commun 2017; 8:2249. [PMID: 29269732 PMCID: PMC5740069 DOI: 10.1038/s41467-017-02353-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 11/23/2017] [Indexed: 12/19/2022] Open
Abstract
Melanomas are well-known for their altered mRNA expression profiles. Yet, the specific contribution of mRNA binding proteins (mRBPs) to melanoma development remains unclear. Here we identify a cluster of melanoma-enriched genes under the control of CUGBP Elav-like family member 1 (CELF1). CELF1 was discovered with a distinct prognostic value in melanoma after mining the genomic landscape of the 692 known mRBPs across different cancer types. Genome-wide transcriptomic, proteomic, and RNA-immunoprecipitation studies, together with loss-of-function analyses in cell lines, and histopathological evaluation in clinical biopsies, revealed an intricate repertoire of CELF1-RNA interactors with minimal overlap with other malignancies. This systems approach uncovered the oncogene DEK as an unexpected target and downstream effector of CELF1. Importantly, CELF1 and DEK were found to represent early-induced melanoma genes and adverse indicators of overall patient survival. These results underscore novel roles of CELF1 in melanoma, illustrating tumor type-restricted functions of RBPs in cancer.
Collapse
Affiliation(s)
- Metehan Cifdaloz
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Lisa Osterloh
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | | | - Erica Riveiro-Falkenbach
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | | | | | - Cristina Tejedo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Tonantzin G Calvo
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Panagiotis Karras
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - David Olmeda
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Belén Miñana
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | | | - Estela Cañon
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain
| | - Eduardo Eyras
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona, 08002, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Haihong Guo
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
| | - Ferdinand Kappes
- Institute of Biochemistry and Molecular Biology; Medical School, RWTH Aachen University, Aachen, 52074, Germany
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No. 111, Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park (SIP), Suzhou, 215123, China
| | - Pablo L Ortiz-Romero
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Jose L Rodríguez-Peralto
- Instituto de Investigación i+12, Hospital 12 de Octubre Medical School, Universidad Complutense, 28041, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, (CNIO), Madrid, 28029, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - María S Soengas
- Melanoma Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
14
|
Gu L, Wang H, Wang J, Guo Y, Tang Y, Mao Y, Chen L, Lou H, Ji G. Reconstitution of HuR-Inhibited CUGBP1 Expression Protects Cardiomyocytes from Acute Myocardial Infarction-Induced Injury. Antioxid Redox Signal 2017; 27:1013-1026. [PMID: 28350193 DOI: 10.1089/ars.2016.6880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM Myocardial infarction (MI) is one of the leading causes of death in elderly people. Expanding the knowledge of the molecular mechanisms underlying MI is of profound importance to developing a cure for MI. The CUGBP- and ETR-3-like factor (CELF) proteins, a family of RNA-binding proteins, play key roles in RNA metabolism. To determine the functions and molecular mechanisms of CELF proteins in MI, an animal model of acute myocardial infarction (AMI) was used in our study. RESULTS We found that the CUG triplet repeat RNA-binding protein 1 (CUGBP1)/CELF1 expression levels were decreased in AMI-injured hearts, and further studies showed that two highly conserved adenylate-uridylate-rich (AU-rich) elements in the 3'UTR of CUGBP1 were responsible for the decreased CUGBP1 expression. Upon AMI, human antigen R (HuR) was relocated to the cytoplasm from the nucleus and interacted with these AU-rich elements to affect the expression of CUGBP1. Reintroduction of CUGBP1 via gene delivery by recombinant adenovirus improved cardiac function in AMI mice. Our studies also indicated that CUGBP1 protected cardiomyocytes from ischemia-induced injury through the promotion of angiogenesis and inhibition of apoptosis by regulating the vascular endothelial growth factor-A gene. Innovation and Conclusion: Our studies indicate a role for CUGBP1 in cardiac disease and reveal a novel MI post-transcriptional gene regulatory mechanism. The reconstitution of CUGBP1 could be developed as a potential therapeutic option for the management of MI. Antioxid. Redox Signal. 27, 1013-1026.
Collapse
Affiliation(s)
- Lei Gu
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China .,2 University of the Chinese Academy of Sciences , Beijing, China
| | - Huiwen Wang
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China
| | - Jun Wang
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China .,2 University of the Chinese Academy of Sciences , Beijing, China
| | - Yuting Guo
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China .,2 University of the Chinese Academy of Sciences , Beijing, China
| | - Yinglong Tang
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China
| | - Yang Mao
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China .,2 University of the Chinese Academy of Sciences , Beijing, China
| | - Lijuan Chen
- 3 Beijing Institutes of Life Science , Chinese Academy of Sciences, Beijing, China
| | - Hua Lou
- 4 Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Guangju Ji
- 1 National Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Chang KT, Cheng CF, King PC, Liu SY, Wang GS. CELF1 Mediates Connexin 43 mRNA Degradation in Dilated Cardiomyopathy. Circ Res 2017; 121:1140-1152. [DOI: 10.1161/circresaha.117.311281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/10/2017] [Accepted: 09/01/2017] [Indexed: 12/26/2022]
Abstract
Rationale:
Downregulation of Cx43 (connexin 43), the major cardiac gap junction protein, is often associated with arrhythmia, dilated cardiomyopathy (DCM), and heart failure. However, the cause of the reduced expression remains elusive. Reinduction of a nuclear RNA-binding protein CELF1 (CUGBP Elav-like family member 1) in the adult heart has been implicated in the cardiac pathogenesis of myotonic dystrophy type 1. However, how elevated CELF1 level leads to cardiac dysfunction, such as conduction defect, DCM, and heart failure, remains unclear.
Objective:
We investigated the mechanism of CELF1-mediated Cx43 mRNA degradation and determined whether elevated CELF1 expression is also a shared feature of the DCM heart.
Methods and Results:
RNA immunoprecipitation revealed the involvement of CELF1-regulated genes, including Cx43, in controlling contractility and conduction. CELF1 mediated Cx43 mRNA degradation by binding the UG-rich element in the 3′ untranslated region of Cx43. Mutation of the nuclear localization signal in CELF1 abolished the ability to downregulate Cx43 mRNA, so nuclear localization was required for its function. We further identified a 3′ to 5′ exoribonuclease, RRP6 (ribosomal RNA processing protein 6), as a CELF1-interacting protein. The interaction of CELF1 and RRP6 was RNA-independent and nucleus specific. With knockdown of endogenous RRP6, CELF1 failed to downregulate Cx43 mRNA, which suggests that RRP6 was required for CELF1-mediated Cx43 mRNA degradation. In addition, increased CELF1 level accompanied upregulated RRP6, and reduced Cx43 level was detected in mouse models with DCM, including myotonic dystrophy type 1 and CELF1 overexpression models and a myocardial infarction model. Importantly, depletion of CELF1 in the infarcted heart preserved Cx43 mRNA level and ameliorated the cardiac phenotypes of the infarcted heart.
Conclusions:
Our results suggest a mechanism for increased CELF1 expression downregulating Cx43 mRNA level and a pathogenic role for elevated CELF1 level in the DCM heart.
Collapse
Affiliation(s)
- Kuei-Ting Chang
- From the Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan (K.-T.C., G.-S.W.); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (K.-T.C., C.-F.C., P.-C.K., S.-Y.L., G.-S.W.); Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (C.-F.C.); and Department of Pediatrics, Tzu Chi University, Hualien, Taiwan (C.-F.C.)
| | - Ching-Feng Cheng
- From the Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan (K.-T.C., G.-S.W.); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (K.-T.C., C.-F.C., P.-C.K., S.-Y.L., G.-S.W.); Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (C.-F.C.); and Department of Pediatrics, Tzu Chi University, Hualien, Taiwan (C.-F.C.)
| | - Pei-Chih King
- From the Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan (K.-T.C., G.-S.W.); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (K.-T.C., C.-F.C., P.-C.K., S.-Y.L., G.-S.W.); Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (C.-F.C.); and Department of Pediatrics, Tzu Chi University, Hualien, Taiwan (C.-F.C.)
| | - Shin-Yi Liu
- From the Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan (K.-T.C., G.-S.W.); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (K.-T.C., C.-F.C., P.-C.K., S.-Y.L., G.-S.W.); Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (C.-F.C.); and Department of Pediatrics, Tzu Chi University, Hualien, Taiwan (C.-F.C.)
| | - Guey-Shin Wang
- From the Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan (K.-T.C., G.-S.W.); Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (K.-T.C., C.-F.C., P.-C.K., S.-Y.L., G.-S.W.); Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (C.-F.C.); and Department of Pediatrics, Tzu Chi University, Hualien, Taiwan (C.-F.C.)
| |
Collapse
|
16
|
Kim JH, Kwon HY, Ryu DH, Nam MH, Shim BS, Kim JH, Lee JY, Kim SH. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells. PLoS One 2017; 12:e0186490. [PMID: 29036189 PMCID: PMC5643113 DOI: 10.1371/journal.pone.0186490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs). Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT) assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT) dUTP Nick End Labeling (TUNEL) positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI) staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3), cleaved poly (ADP-ribose) polymerase (PARP), and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1) in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hee Young Kwon
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong Hoon Ryu
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ho Nam
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin Han Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Russo J, Lee JE, López CM, Anderson J, Nguyen TMP, Heck AM, Wilusz J, Wilusz CJ. The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts. PLoS One 2017; 12:e0170680. [PMID: 28129347 PMCID: PMC5271678 DOI: 10.1371/journal.pone.0170680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/09/2017] [Indexed: 02/06/2023] Open
Abstract
We previously identified several mRNAs encoding components of the secretory pathway, including signal recognition particle (SRP) subunit mRNAs, among transcripts associated with the RNA-binding protein CELF1. Through immunoprecipitation of RNAs crosslinked to CELF1 in myoblasts and in vitro binding assays using recombinant CELF1, we now provide evidence that CELF1 directly binds the mRNAs encoding each of the subunits of the SRP. Furthermore, we determined the half-lives of the Srp transcripts in control and CELF1 knockdown myoblasts. Our results indicate CELF1 is a destabilizer of at least five of the six Srp transcripts and that the relative abundance of the SRP proteins is out of balance when CELF1 is depleted. CELF1 knockdown myoblasts exhibit altered secretion of a luciferase reporter protein and are impaired in their ability to migrate and close a wound, consistent with a defect in the secreted extracellular matrix. Importantly, similar defects in wound healing are observed when SRP subunit imbalance is induced by over-expression of SRP68. Our studies support the existence of an RNA regulon containing Srp mRNAs that is controlled by CELF1. One implication is that altered function of CELF1 in myotonic dystrophy may contribute to changes in the extracellular matrix of affected muscle through defects in secretion.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jerome E. Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carolina M. López
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - John Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thuy-mi P. Nguyen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Adam M. Heck
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
18
|
Nicholson CO, Friedersdorf M, Keene JD. Quantifying RNA binding sites transcriptome-wide using DO-RIP-seq. RNA (NEW YORK, N.Y.) 2017; 23:32-46. [PMID: 27742911 PMCID: PMC5159647 DOI: 10.1261/rna.058115.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 05/27/2023]
Abstract
RNA-binding proteins (RBPs) and noncoding RNAs orchestrate post-transcriptional processes through the recognition of specific sites on targeted transcripts. Thus, understanding the connection between binding to specific sites and active regulation of the whole transcript is essential. Many immunoprecipitation techniques have been developed that identify either whole transcripts or binding sites of RBPs on each transcript using cell lysates. However, none of these methods simultaneously measures the strength of each binding site and quantifies binding to whole transcripts. In this study, we compare current procedures and present digestion optimized (DO)-RIP-seq, a simple method that locates and quantifies RBP binding sites using a continuous metric. We have used the RBP HuR/ELAVL1 to demonstrate that DO-RIP-seq can quantify HuR binding sites with high coverage across the entire human transcriptome, thereby generating metrics of relative RNA binding strength. We demonstrate that this quantitative enrichment of binding sites is proportional to the relative in vitro binding strength for these sites. In addition, we used DO-RIP-seq to quantify and compare HuR's binding to whole transcripts, thus allowing for seamless integration of binding site data with whole-transcript measurements. Finally, we demonstrate that DO-RIP-seq is useful for identifying functional mRNA target sets and binding sites where combinatorial interactions between HuR and AGO-microRNAs regulate the fate of the transcripts. Our data indicate that DO-RIP-seq will be useful for quantifying RBP binding events that regulate dynamic biological processes.
Collapse
Affiliation(s)
- Cindo O Nicholson
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Matthew Friedersdorf
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Center for RNA Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
19
|
Vlasova-St Louis I, Bohjanen PR. Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev 2016; 33:83-93. [PMID: 27956133 DOI: 10.1016/j.cytogfr.2016.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
Cytokines and growth factors regulate cell proliferation, differentiation, migration and apoptosis, and play important roles in coordinating growth signal responses during development. The expression of cytokine genes and the signals transmitted through cytokine receptors are tightly regulated at several levels, including transcriptional and post-transcriptional levels. A majority of cytokine mRNAs, including growth factor transcripts, contain AU-rich elements (AREs) in their 3' untranslated regions that control gene expression by regulating mRNA degradation and changing translational rates. In addition, numerous proteins involved in transmitting signals downstream of cytokine receptors are regulated at the level of mRNA degradation by GU-rich elements (GREs) found in their 3' untranslated regions. Abnormal stabilization and overexpression of ARE or GRE-containing transcripts had been observed in many malignancies, which is a consequence of the malfunction of RNA-binding proteins. In this review, we briefly summarize the role of AREs and GREs in regulating mRNA turnover to coordinate cytokine and growth factor expression, and we describe how dysregulation of mRNA degradation mechanisms contributes to the development and progression of cancer.
Collapse
Affiliation(s)
| | - Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Nicholson CO, Friedersdorf MB, Bisogno LS, Keene JD. DO-RIP-seq to quantify RNA binding sites transcriptome-wide. Methods 2016; 118-119:16-23. [PMID: 27840290 DOI: 10.1016/j.ymeth.2016.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 01/20/2023] Open
Abstract
Post-transcriptional processes orchestrate gene expression through dynamic protein-RNA interactions. These interactions occur at specific sites determined by RNA sequence, secondary structure, or nucleotide modifications. Methods have been developed either to quantify binding of whole transcripts or to identify the binding sites, but there is none proven to quantify binding at both the whole transcript and binding site levels. Here we describe digestion optimized RNA immunoprecipitation with deep sequencing (DO-RIP-seq) as a method that quantitates at the whole transcript target (RIP-Seq-Like or RSL) level and at the binding site level (BSL) using continuous metrics. DO-RIP-seq methodology was developed using the RBP HuR/ELAVL1 as a test case (Nicholson et al., 2016). DO-RIP-seq employs treatment of cell lysates with a nuclease under optimized conditions to yield partially digested RNA fragments bound by RNA binding proteins, followed by immunoprecipitations that capture the digested RNA-protein complexes and assess non-specific or background interactions. Analyses of sequenced cDNA libraries made from the bound RNA fragments yielded two types of enrichment scores; one for RSL binding events and the other for BSL events (Nicholson et al., 2016). These analyses plus the extensive read coverage of DO-RIP-seq allows seamless integration of binding site and whole transcript information. Therefore, DO-RIP-seq is useful for quantifying RBP binding events that are regulated during dynamic biological processes.
Collapse
Affiliation(s)
- Cindo O Nicholson
- Department of Molecular Genetics & Microbiology, USA; Duke University Medical Center, Durham, NC 27710, USA.
| | - Matthew B Friedersdorf
- Department of Molecular Genetics & Microbiology, USA; Duke University Medical Center, Durham, NC 27710, USA.
| | | | - Jack D Keene
- Department of Molecular Genetics & Microbiology, USA; Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
21
|
House RP, Talwar S, Hazard ES, Hill EG, Palanisamy V. RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. Oncotarget 2016; 6:43620-34. [PMID: 26498364 PMCID: PMC4791255 DOI: 10.18632/oncotarget.6204] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
The RNA binding protein CELF1 (also known as CUGBP1) is emerging as a critical regulator of cancer cell proliferation and apoptosis. Here, to provide a global prospective of CELF1 regulation of oral squamous cell carcinoma, we performed RNA-sequencing in oral cancer cells and CELF1 overexpression analysis in non-malignant human oral keratinocytes. Our approaches identified 1283 mRNAs differentially regulated as a function of CELF1 expression and more importantly CELF1 promoted alternative splicing of several target pre-mRNAs, which are known to be involved in various cancer biological processes. Overexpression of CELF1 in non-malignant human oral keratinocytes protected cells against oxidative damage and altered gene expression patterns. Finally, we provide evidence that reduction of CELF1 protein using a xenograft tumorigenesis mouse model decreased tumor growth. Altogether, these data provided a comprehensive view of the CELF1 mRNA regulatory network in oral cancer and suggests that CELF1 and/or its target mRNAs are viable candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Reniqua P House
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sudha Talwar
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - E Starr Hazard
- Division of Bioinformatics, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth G Hill
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Viswanathan Palanisamy
- Department of Oral Health Sciences and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
22
|
Blech-Hermoni Y, Dasgupta T, Coram RJ, Ladd AN. Identification of Targets of CUG-BP, Elav-Like Family Member 1 (CELF1) Regulation in Embryonic Heart Muscle. PLoS One 2016; 11:e0149061. [PMID: 26866591 PMCID: PMC4750973 DOI: 10.1371/journal.pone.0149061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
CUG-BP, Elav-like family member 1 (CELF1) is a highly conserved RNA binding protein that regulates pre-mRNA alternative splicing, polyadenylation, mRNA stability, and translation. In the heart, CELF1 is expressed in the myocardium, where its levels are tightly regulated during development. CELF1 levels peak in the heart during embryogenesis, and aberrant up-regulation of CELF1 in the adult heart has been implicated in cardiac pathogenesis in myotonic dystrophy type 1, as well as in diabetic cardiomyopathy. Either inhibition of CELF activity or over-expression of CELF1 in heart muscle causes cardiomyopathy in transgenic mice. Nonetheless, many of the cardiac targets of CELF1 regulation remain unknown. In this study, to identify cardiac targets of CELF1 we performed cross-linking immunoprecipitation (CLIP) for CELF1 from embryonic day 8 chicken hearts. We identified a previously unannotated exon in MYH7B as a novel target of CELF1-mediated regulation. We demonstrated that knockdown of CELF1 in primary chicken embryonic cardiomyocytes leads to increased inclusion of this exon and decreased MYH7B levels. We also investigated global changes in the transcriptome of primary embryonic cardiomyocytes following CELF1 knockdown in a published RNA-seq dataset. Pathway and network analyses identified strong associations between CELF1 and regulation of cell cycle and translation. Important regulatory proteins, including both RNA binding proteins and a cardiac transcription factor, were affected by loss of CELF1. Together, these data suggest that CELF1 is a key regulator of cardiomyocyte gene expression.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Twishasri Dasgupta
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ryan J. Coram
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrea N. Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Vlasova-St Louis I, Bohjanen PR. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs. Cells 2016; 5:cells5010004. [PMID: 26821046 PMCID: PMC4810089 DOI: 10.3390/cells5010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
Abstract
In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP.
Collapse
Affiliation(s)
- Irina Vlasova-St Louis
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Blackinton JG, Keene JD. Functional coordination and HuR-mediated regulation of mRNA stability during T cell activation. Nucleic Acids Res 2015; 44:426-36. [PMID: 26490963 PMCID: PMC4705648 DOI: 10.1093/nar/gkv1066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/05/2015] [Indexed: 01/30/2023] Open
Abstract
Global mRNA abundance depends on the balance of synthesis and decay of a population of mRNAs. To account for this balance during activation of T cells, we used metabolic labeling to quantify the contributions of RNA transcription and decay over a 4 h time course during activation of leukemia-derived Jurkat T cells. While prior studies suggested more than half of the changes in mRNA abundance were due to RNA stability, we found a smaller but more interesting population of mRNAs changed stability. These mRNAs clustered into functionally related subpopulations that included replicative histones, ribosomal biogenesis and cell motility functions. We then applied a novel analysis based on integrating global protein-RNA binding with concurrent changes in RNA stability at specific time points following activation. This analysis demonstrated robust stabilization of mRNAs by the HuR RNA-binding protein 4 h after activation. Our unexpected findings demonstrate that the temporal regulation of mRNA stability coordinates vital cellular pathways and is in part controlled by the HuR RNA binding protein in Jurkat T cells following activation.
Collapse
Affiliation(s)
- Jeff G Blackinton
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
25
|
Bohjanen PR, Moua ML, Guo L, Taye A, Vlasova-St Louis IA. Altered CELF1 binding to target transcripts in malignant T cells. RNA (NEW YORK, N.Y.) 2015; 21:1757-1769. [PMID: 26249002 PMCID: PMC4574752 DOI: 10.1261/rna.049940.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The RNA-binding protein, CELF1, binds to a regulatory sequence known as the GU-rich element (GRE) and controls a network of mRNA transcripts that regulate cellular activation, proliferation, and apoptosis. We performed immunoprecipitation using an anti-CELF1 antibody, followed by identification of copurified transcripts using microarrays. We found that CELF1 is bound to a distinct set of target transcripts in the H9 and Jurkat malignant T-cell lines, compared with primary human T cells. CELF1 was not phosphorylated in resting normal T cells, but in malignant T cells, phosphorylation of CELF1 correlated with its inability to bind to GRE-containing mRNAs that served as CELF1 targets in normal T cells. Lack of binding by CELF1 to these mRNAs in malignant T cells correlated with stabilization and increased expression of these transcripts. Several of these GRE-containing transcripts that encode regulators of cell growth were also stabilized and up-regulated in primary tumor cells from patients with T-cell acute lymphoblastic leukemia. Interestingly, transcripts encoding numerous suppressors of cell proliferation that served as targets of CELF1 in malignant T cells, but not normal T cells, exhibited accelerated degradation and reduced expression in malignant compared with normal T cells, consistent with the known function of CELF1 to mediate degradation of bound transcripts. Overall, CELF1 dysfunction in malignant T cells led to the up-regulation of a subset of GRE-containing transcripts that promote cell growth and down-regulation of another subset that suppress cell growth, producing a net effect that would drive a malignant phenotype.
Collapse
Affiliation(s)
- Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mai Lee Moua
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Liang Guo
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ammanuel Taye
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Irina A Vlasova-St Louis
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
26
|
Paraboschi EM, Cardamone G, Rimoldi V, Gemmati D, Spreafico M, Duga S, Soldà G, Asselta R. Meta-Analysis of Multiple Sclerosis Microarray Data Reveals Dysregulation in RNA Splicing Regulatory Genes. Int J Mol Sci 2015; 16:23463-81. [PMID: 26437396 PMCID: PMC4632709 DOI: 10.3390/ijms161023463] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in RNA metabolism and alternative splicing (AS) are emerging as important players in complex disease phenotypes. In particular, accumulating evidence suggests the existence of pathogenic links between multiple sclerosis (MS) and altered AS, including functional studies showing that an imbalance in alternatively-spliced isoforms may contribute to disease etiology. Here, we tested whether the altered expression of AS-related genes represents a MS-specific signature. A comprehensive comparative analysis of gene expression profiles of publicly-available microarray datasets (190 MS cases, 182 controls), followed by gene-ontology enrichment analysis, highlighted a significant enrichment for differentially-expressed genes involved in RNA metabolism/AS. In detail, a total of 17 genes were found to be differentially expressed in MS in multiple datasets, with CELF1 being dysregulated in five out of seven studies. We confirmed CELF1 downregulation in MS (p = 0.0015) by real-time RT-PCRs on RNA extracted from blood cells of 30 cases and 30 controls. As a proof of concept, we experimentally verified the unbalance in alternatively-spliced isoforms in MS of the NFAT5 gene, a putative CELF1 target. In conclusion, for the first time we provide evidence of a consistent dysregulation of splicing-related genes in MS and we discuss its possible implications in modulating specific AS events in MS susceptibility genes.
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, Milan 20133, Italy.
| | - Giulia Cardamone
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Viotti 3/5, Milan 20133, Italy.
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Donato Gemmati
- Center Haemostasis & Thrombosis, Department of Medical Sciences, Corso Giovecca 203, University of Ferrara, Ferrara 44121, Italy.
| | - Marta Spreafico
- Department of Transfusion Medicine and Hematology, Azienda Ospedaliera della Provincia di Lecco, Alessandro Manzoni Hospital, Via dell'Eremo 9/11, Lecco 23900, Italy.
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan 20089, Italy.
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
27
|
Hypogonadism Associated with Cyp19a1 (Aromatase) Posttranscriptional Upregulation in Celf1 Knockout Mice. Mol Cell Biol 2015; 35:3244-53. [PMID: 26169831 DOI: 10.1128/mcb.00074-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/06/2015] [Indexed: 12/19/2022] Open
Abstract
CELF1 is a multifunctional RNA-binding protein that controls several aspects of RNA fate. The targeted disruption of the Celf1 gene in mice causes male infertility due to impaired spermiogenesis, the postmeiotic differentiation of male gametes. Here, we investigated the molecular reasons that underlie this testicular phenotype. By measuring sex hormone levels, we detected low concentrations of testosterone in Celf1-null mice. We investigated the effect of Celf1 disruption on the expression levels of steroidogenic enzyme genes, and we observed that Cyp19a1 was upregulated. Cyp19a1 encodes aromatase, which transforms testosterone into estradiol. Administration of testosterone or the aromatase inhibitor letrozole partly rescued the spermiogenesis defects, indicating that a lack of testosterone associated with excessive aromatase contributes to the testicular phenotype. In vivo and in vitro interaction assays demonstrated that CELF1 binds to Cyp19a1 mRNA, and reporter assays supported the conclusion that CELF1 directly represses Cyp19a1 translation. We conclude that CELF1 downregulates Cyp19a1 (Aromatase) posttranscriptionally to achieve high concentrations of testosterone compatible with spermiogenesis completion. We discuss the implications of these findings with respect to reproductive defects in men, including patients suffering from isolated hypogonadotropic hypogonadism and myotonic dystrophy type I.
Collapse
|
28
|
Vlasova-St Louis I, Bohjanen PR. Post-transcriptional regulation of cytokine signaling by AU-rich and GU-rich elements. J Interferon Cytokine Res 2015; 34:233-41. [PMID: 24697201 DOI: 10.1089/jir.2013.0108] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytokines are necessary for cell communication to enable responses to external stimuli that are imperative for the survival and maintenance of homeostasis. Dysfunction of the cytokine network has detrimental effects on intra- and extracellular environments. Thus, it is critical that the expression of cytokines and the signals transmitted by cytokines to target cells are tightly regulated at numerous levels, including transcriptional and post-transcriptional levels. Here, we briefly summarize the role of AU-rich elements (AREs) in the regulation of cytokine gene expression at the post-transcriptional level and describe a role for GU-rich elements (GREs) in coordinating the regulation of cytokine signaling. GREs function as post-transcriptional regulators of proteins that control cellular activation, growth, and apoptosis. GREs and AREs work in concert to coordinate cytokine signal transduction pathways. The precise regulation of cytokine signaling is particularly important, because its dysregulation can lead to human diseases.
Collapse
|
29
|
Gao C, Yu Z, Liu S, Xin H, Li X. Overexpression of CUGBP1 is associated with the progression of non-small cell lung cancer. Tumour Biol 2015; 36:4583-9. [PMID: 25619475 DOI: 10.1007/s13277-015-3103-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/06/2023] Open
Abstract
The multifunctional RNA-binding protein CUGBP1 regulates multiple aspects of nuclear and cytoplasmic messenger RNA (mRNA) processing, including splicing, stabilization, and translation of mRNAs. Previous studies have shown that CUGBP1 is overexpressed in non-small-cell lung cancer (NSCLC) tissues, but the pathological functions of CUGBP1 in tumorigenesis and development are unknown. Here, we provide the first evidence demonstrating the clinicopathological significance of CUGBP1 in NSCLC. Using immunohistochemistry, the levels of CUGBP1 expression in NSCLC tissues and adjacent non-cancerous tissues were examined and determined to be associated with differentiation. Short hairpin RNA-induced downregulation of CUGBP1 promoted apoptosis and decreased proliferation in the A549 NSCLC cell line. Moreover, Western blot analysis indicated that the depletion of CUGBP1 increased the protein levels of cyclin D1, BAD, BAX, Jun D, and E-cadherin, while the cyclin B1 level decreased. Knockdown of CUGBP1 decreased β-catenin and vimentin levels and increased E-cadherin expression, suggesting that CUGBP1 may contribute significantly to epithelial to mesenchymal transition (EMT) progression. These results demonstrate the importance of CUGBP1 in the biological and pathological functions of NSCLC and indicate its potential as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Caihong Gao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266071, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Beisang D, Reilly C, Bohjanen PR. Alternative polyadenylation regulates CELF1/CUGBP1 target transcripts following T cell activation. Gene 2014; 550:93-100. [PMID: 25123787 PMCID: PMC4162518 DOI: 10.1016/j.gene.2014.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/22/2014] [Accepted: 08/10/2014] [Indexed: 01/19/2023]
Abstract
Alternative polyadenylation (APA) is an evolutionarily conserved mechanism for regulating gene expression. Transcript 3' end shortening through changes in polyadenylation site usage occurs following T cell activation, but the consequences of APA on gene expression are poorly understood. We previously showed that GU-rich elements (GREs) found in the 3' untranslated regions of select transcripts mediate rapid mRNA decay by recruiting the protein CELF1/CUGBP1. Using a global RNA sequencing approach, we found that a network of CELF1 target transcripts involved in cell division underwent preferential 3' end shortening via APA following T cell activation, resulting in decreased inclusion of CELF1 binding sites and increased transcript expression. We present a model whereby CELF1 regulates APA site selection following T cell activation through reversible binding to nearby GRE sequences. These findings provide insight into the role of APA in controlling cellular proliferation during biological processes such as development, oncogenesis and T cell activation.
Collapse
Affiliation(s)
- Daniel Beisang
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology, University of Minnesota, Minneapolis, MN, USA.
| | - Cavan Reilly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA.
| | - Paul R Bohjanen
- Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA; Department of Microbiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
31
|
Li L, Xue X, Chen Z, Zhang Y, Ma Y, Pan C, Zhu J, Pan X, Zuo S. Isolation and characterization of rl (t), a gene that controls leaf rolling in rice. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0357-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Giudice J, Cooper TA. RNA-binding proteins in heart development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:389-429. [PMID: 25201112 DOI: 10.1007/978-1-4939-1221-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) are key players of posttranscriptional regulation occurring during normal tissue development. All tissues examined thus far have revealed the importance of RBPs in the regulation of complex networks involved in organ morphogenesis, maturation, and function. They are responsible for controlling tissue-specific gene expression by regulating alternative splicing, mRNA stability, translation, and poly-adenylation. The heart is the first organ form during embryonic development and is also the first to acquire functionality. Numerous remodeling processes take place during late cardiac development since fetal heart first adapts to birth and then undergoes a transition to adult functionality. This physiological remodeling involves transcriptional and posttranscriptional networks that are regulated by RBPs. Disruption of the normal regulatory networks has been shown to cause cardiomyopathy in humans and animal models. Here we review the complexity of late heart development and the current information regarding how RBPs control aspects of postnatal heart development. We also review how activities of RBPs are modulated adding complexity to the regulation of developmental networks.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA,
| | | |
Collapse
|
33
|
Tahara N, Bessho Y, Matsui T. Celf1 is required for formation of endoderm-derived organs in zebrafish. Int J Mol Sci 2013; 14:18009-23. [PMID: 24005864 PMCID: PMC3794766 DOI: 10.3390/ijms140918009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
We recently reported that an RNA binding protein called Cugbp Elav-like family member 1 (Celf1) regulates somite symmetry and left-right patterning in zebrafish. In this report, we show additional roles of Celf1 in zebrafish organogenesis. When celf1 is knocked down by using an antisense morpholino oligonucleotides (MO), liver buds fail to form, and pancreas buds do not form a cluster, suggesting earlier defects in endoderm organogenesis. As expected, we found failures in endoderm cell growth and migration during gastrulation in embryos injected with celf1-MOs. RNA immunoprecipitation revealed that Celf1 binds to gata5 and cdc42 mRNAs which are known to be involved in cell growth and migration, respectively. Our results therefore suggest that Celf1 regulates proper organogenesis of endoderm-derived tissues by regulating the expression of such targets.
Collapse
Affiliation(s)
- Naoyuki Tahara
- Gene Regulation Research, Nara Institute Science and Technology, 8916-5 Takayama, Nara 630-0101, Japan.
| | | | | |
Collapse
|
34
|
Edwards JM, Long J, de Moor CH, Emsley J, Searle MS. Structural insights into the targeting of mRNA GU-rich elements by the three RRMs of CELF1. Nucleic Acids Res 2013; 41:7153-66. [PMID: 23748565 PMCID: PMC3737555 DOI: 10.1093/nar/gkt470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CUG-BP, Elav-like family (CELF) of RNA-binding proteins control gene expression at a number of different levels by regulating pre-mRNA splicing, deadenylation and mRNA stability. We present structural insights into the binding selectivity of CELF member 1 (CELF1) for GU-rich mRNA target sequences of the general form 5'-UGUNxUGUNyUGU and identify a high affinity interaction (Kd ∼ 100 nM for x = 2 and y = 4) with simultaneous binding of all three RNA recognition motifs within a single 15-nt binding element. RNA substrates spin-labelled at either the 3' or 5' terminus result in differential nuclear magnetic resonance paramagnetic relaxation enhancement effects, which are consistent with a non-sequential 2-1-3 arrangement of the three RNA recognition motifs on UGU sites in a 5' to 3' orientation along the RNA target. We further demonstrate that CELF1 binds to dispersed single-stranded UGU sites at the base of an RNA hairpin providing a structural rationale for recognition of CUG expansion repeats and splice site junctions in the regulation of alternative splicing.
Collapse
Affiliation(s)
- John M Edwards
- School of Chemistry, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
35
|
Martinez NM, Lynch KW. Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol Rev 2013; 253:216-36. [PMID: 23550649 PMCID: PMC3621013 DOI: 10.1111/imr.12047] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most mammalian pre-mRNAs are alternatively spliced in a manner that alters the resulting open reading frame. Consequently, alternative pre-mRNA splicing provides an important RNA-based layer of protein regulation and cellular function. The ubiquitous nature of alternative splicing coupled with the advent of technologies that allow global interrogation of the transcriptome have led to an increasing awareness of the possibility that widespread changes in splicing patterns contribute to lymphocyte function during an immune response. Indeed, a few notable examples of alternative splicing have clearly been demonstrated to regulate T-cell responses to antigen. Moreover, several proteins key to the regulation of splicing in T cells have recently been identified. However, much remains to be done to truly identify the spectrum of genes that are regulated at the level of splicing in immune cells and to determine how many of these are controlled by currently known factors and pathways versus unknown mechanisms. Here, we describe the proteins, pathways, and mechanisms that have been shown to regulate alternative splicing in human T cells and discuss what is and is not known about the genes regulated by such factors. Finally, we highlight unifying themes with regards to the mechanisms and consequences of alternative splicing in the adaptive immune system and give our view of important directions for future studies.
Collapse
Affiliation(s)
- Nicole M Martinez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
36
|
Talwar S, Balasubramanian S, Sundaramurthy S, House R, Wilusz CJ, Kuppuswamy D, D'Silva N, Gillespie MB, Hill EG, Palanisamy V. Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biol 2013; 10:277-86. [PMID: 23324604 PMCID: PMC3594286 DOI: 10.4161/rna.23315] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
CELF1 RNA-binding protein, otherwise called CUGBP1, associates and coordinates the degradation of GU-rich element (GRE) containing mRNA’s encoding factors important for cell growth, migration and apoptosis. Although many substrates of CELF1 have been identified, the biological significance of CELF1-mediated mRNA decay remains unclear. As the processes modulated by CELF1 are frequently disrupted in cancer, we investigated the expression and role of CELF1 in oral squamous cancer cells (OSCCs). We determined that CELF1 is reproducibly overexpressed in OSCC tissues and cell lines. Moreover, depletion of CELF1 reduced proliferation and increased apoptosis in OSCCs, but had negligible effect in non-transformed cells. We found that CELF1 associates directly with the 3′UTR of mRNAs encoding the pro-apoptotic factors BAD, BAX and JunD and mediates their rapid decay. Specifically, 3′UTR fragment analysis of JunD revealed that the GRE region is critical for binding with CELF1 and expression of JunD in oral cancer cells. In addition, silencing of CELF1 rendered BAD, BAX and JunD mRNAs stable and increased their protein expression in oral cancer cells. Taken together, these results support a critical role for CELF1 in modulating apoptosis and implicate this RNA-binding protein as a cancer marker and potential therapeutic target.
Collapse
Affiliation(s)
- Sudha Talwar
- Department of Craniofacial Biology and Center for Oral Health Research, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Vlasova-St Louis I, Dickson AM, Bohjanen PR, Wilusz CJ. CELFish ways to modulate mRNA decay. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:695-707. [PMID: 23328451 DOI: 10.1016/j.bbagrm.2013.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 12/14/2022]
Abstract
The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements. After starting with an overview of the importance of CELF proteins during development and disease pathogenesis, we then review the mRNA networks and cellular pathways these proteins regulate and the mechanisms by which they influence mRNA decay. Finally, we discuss how CELF protein activity is modulated during development and in response to cellular signals. We conclude by highlighting the priorities for new experiments in this field. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
38
|
Mou Z, You J, Xiao Q, Wei Y, Yuan J, Liu Y, Brewer G, Ma WJ. HuR posttranscriptionally regulates early growth response-1 (Egr-1) expression at the early stage of T cell activation. FEBS Lett 2012; 586:4319-25. [PMID: 23127556 DOI: 10.1016/j.febslet.2012.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/26/2012] [Accepted: 10/23/2012] [Indexed: 01/03/2023]
Abstract
T cell activation depends on appropriate and precise regulation of gene expression. Here we find that rapidly translocated RNA-binding protein HuR, forms messenger ribonucleoprotein (mRNP) complexes with transiently expressed mRNAs encoding early-response transcription factors, including c-Fos, c-Jun, and Egr-1. Knockdown and overexpression assays demonstrated that proper posttranscriptional control of Egr-1 expression requires HuR-mediated translation control. Further analysis showed that the Egr-1 3'UTR, which contains AU-rich elements (AREs) and interacts directly with HuR, suppresses reporter gene expression and mediates posttranscriptional regulation of Egr-1 by HuR. These findings underscore an essential role for HuR in regulating early events during T cell activation.
Collapse
Affiliation(s)
- Zongchun Mou
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Khaziapoul S, Pearson MJ, Pryme IF, Stern B, Hesketh JE. CUG binding protein 1 binds to a specific region within the human albumin 3' untranslated region. Biochem Biophys Res Commun 2012; 426:539-43. [PMID: 22982313 DOI: 10.1016/j.bbrc.2012.08.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/27/2012] [Indexed: 01/28/2023]
Abstract
3' Untranslated regions (3'UTRs) of messenger RNAs have important roles in post-transcriptional regulation of gene expression and this is partly achieved through binding of specific proteins to sequences or structures within these regions. Previously, replacement of a native luciferase 3'UTR with the human albumin 3'UTR has been found to lead to a 10-fold increase in luciferase reporter activity. In this work we investigated protein binding to the human albumin 3'UTR. Electrophoretic mobility shift and UV cross-linking assays indicate that a ∼50kDa protein from Chinese Hamster Ovary (CHO) cells binds to the albumin 3'UTR, and affinity experiments followed by proteomics identified this protein as CUG binding protein 1 (CUG-BP1, also known as CELF1). Deletion analysis of the albumin 3'UTR showed that nucleotides 1-50 and nucleotides 101-150 are not required for binding but that removal of nucleotides 51-100 caused a loss in binding. The results suggest that CUG-BP1 binds to nucleotides 51-100 of the human albumin 3'UTR. In human cells CUG-BP1 binding may thus play a role in regulation of albumin expression and, additionally, it may have a function in post-transcriptional control in CHO cells.
Collapse
Affiliation(s)
- Siavash Khaziapoul
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
40
|
Jones K, Timchenko L, Timchenko NA. The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev 2012; 11:442-9. [PMID: 22446383 DOI: 10.1016/j.arr.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Aging liver is characterized by alterations of liver biology and by a reduction of many functions which are important for the maintenance of body homeostasis. The main dysfunctions include appearance of enlarged hepatocytes, impaired liver regeneration after partial hepatectomy (PH), development of hepatic steatosis, reduction of secretion of proteins and alterations in the hepatic sinusoid. RNA binding proteins are involved in the regulation of gene expression in all tissues including regulation of biological processes in the liver. This review is focused on the role of a conserved, multi-functional RNA-binding protein, CUGBP1, in the development of aging phenotype in the liver. CUGBP1 has been identified as a protein which binds to RNA CUG repeats expanded in Myotonic Dystrophy type 1 (DM1). CUGBP1 is highly expressed in the liver and regulates translation of proteins which are critical for maintenance of liver functions. In livers of young mice, CUGBP1 forms complexes with eukaryotic translation initiation factor eIF2 and supports translation of C/EBPβ and HDAC1 proteins, which are involved in liver growth, differentiation and liver cancer. Aging changes several signaling pathways which lead to the elevation of the CUGBP1-eIF2α complex and to an increase of translation of C/EBPβ and HDAC1. These proteins form multi-protein complexes with additional transcription factors and with chromatin remodeling proteins causing epigenetic alterations of gene expression in livers of old mice. It appears that CUGBP1-mediated translational elevation of HDAC1 is one of the key events in the epigenetic changes in livers of old mice, leading to the development of age-associated dysfunctions of the liver. This review will also discuss a possible role of CUGBP1 in liver dysfunction in patients affected with DM1.
Collapse
|
41
|
Beisang D, Bohjanen PR. Perspectives on the ARE as it turns 25 years old. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:719-31. [PMID: 22733578 DOI: 10.1002/wrna.1125] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The AU-rich element (ARE) was discovered in 1986 as a conserved mRNA sequence found in the 3' untranslated region of the TNF-α transcript and other transcripts encoding cytokines and inflammatory mediators. Shortly thereafter, the ARE was shown to function as a regulator of mRNA degradation, and AREs were later shown to regulate other posttranscriptional mechanisms such as translation and mRNA localization. AREs coordinately regulate networks of chemokine, cytokine, and growth regulatory transcripts involved in cellular activation, proliferation, and inflammation. ARE-mediated regulation is carried out by a host of ARE-binding proteins, whose activity is regulated in a cell type and activation-dependent manner. The last 25 years of ARE research has offered insight into the mechanisms and regulation of ARE-mediated mRNA decay, and has provided a road map for the discovery of additional mRNA regulatory motifs. The future of ARE research will transition from a discovery phase to a phase focused on translating basic biological findings into novel therapeutic targets. Our understanding of ARE-mediated gene regulation and posttranscriptional control has implications for many fields of study including developmental biology, neuroscience, immunobiology, and cancer biology.
Collapse
Affiliation(s)
- Daniel Beisang
- Department of Microbiology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
42
|
Abstract
Discoveries made over the past 20 years highlight the importance of mRNA decay as a means of modulating gene expression and thereby protein production. Up until recently, studies largely focused on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay and the ribonucleases that catalyse decay. Now, current studies have begun to elucidate how the decay process is regulated. This Review examines our current understanding of how mammalian cell mRNA decay is controlled by different signalling pathways and lays out a framework for future research.
Collapse
|
43
|
Turner M, Hodson DJ. An emerging role of RNA-binding proteins as multifunctional regulators of lymphocyte development and function. Adv Immunol 2012; 115:161-85. [PMID: 22608259 DOI: 10.1016/b978-0-12-394299-9.00006-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sequence-specific RNA-binding proteins (RBP) and the regulation of RNA decay have long been recognized as important regulators of the inflammatory response. RBP influence gene expression throughout the lifespan of the mRNA by regulating splicing, polyadenylation, cellular localization, translation, and decay. Increasing evidence now indicates that these proteins, together with the RNA decay machinery that they recruit, also regulate the development and activation of lymphocytes. The activity of RBP is regulated by the same signal transduction pathways that govern lymphocyte development and differentiation in response to antigen and cytokine receptor engagement. Roles for these proteins in regulating the diverse functions of lymphocytes are becoming increasingly apparent.
Collapse
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | | |
Collapse
|