1
|
Orlando C, Bellei M, Zampolli J, Mangiagalli M, Di Gennaro P, Lotti M, De Gioia L, Marino T, Di Rocco G, Greco C, Arrigoni F, Bertini L. Comparative analysis of Polyethylene-Degrading Laccases: Redox Properties and Enzyme-Polyethylene Interaction Mechanism. CHEMSUSCHEM 2025; 18:e202402253. [PMID: 39791943 DOI: 10.1002/cssc.202402253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators. In this study, we compared the redox potential and the LDPE-binding properties of three different PE-oxidizing laccases: a fungal high-redox potential laccase from Trametes versicolor, a bacterial low-redox potential laccase from Bacillus subtilis, and the recently characterized LMCO2 from Rhodococcus opacus R7. First we found that LMCO2 is a low-potential laccase (E°=413 mV), as reported in other bacterial variants. Using computational tools, we simulated the interactions of these laccases with a large LDPE model and highlighted the key role of hydrophobic residues surrounding the T1 site. Notably, a methionine-rich loop in LMCO2 appears to enhance the formation of a stable complex with LDPE, potentially facilitating electron transfer. This study underscores the necessity for comprehensive computational strategies to analyze enzyme-polymer interactions beyond simplistic models, uncovering critical binding determinants and informing future mutagenesis experiments, in order to enhance laccase performance and rationalize variations in enzymatic activity.
Collapse
Affiliation(s)
- Carla Orlando
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
- Department of Chemistry and Chemical Technologies, Università della, Ponte Pietro Bucci, cubo 14c, 87036, Rende (CS), Calabria, Italy
| | - Marzia Bellei
- Dipartimento di Scienze della Vita, Università degli Studi di, Via Campi 103, Modena, Modena e Reggio Emilia, Italy
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, Università della, Ponte Pietro Bucci, cubo 14c, 87036, Rende (CS), Calabria, Italy
| | - Giulia Di Rocco
- Dipartimento di Scienze della Vita, Università degli Studi di, Via Campi 103, Modena, Modena e Reggio Emilia, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milano, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
2
|
Contaldo U, Santucci P, Vergnes A, Leone P, Becam J, Biaso F, Ilbert M, Ezraty B, Lojou E, Mazurenko I. How the Larger Methionine-Rich Domain of CueO from Hafnia alvei Enhances Cuprous Oxidation. JACS AU 2025; 5:1833-1844. [PMID: 40313819 PMCID: PMC12041951 DOI: 10.1021/jacsau.5c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
CueOs, members of the multicopper oxidase family, play a crucial role in bacterial copper detoxification. These enzymes feature a unique methionine-rich (Met-rich) domain, which is essential for the oxidation of Cu+ to Cu2+. Recent studies using CueO from Escherichia coli (EcCueO) suggest that the Met-rich domain facilitates Cu+ recruitment from highly chelated species. To further explore this hypothesis, we produced and characterized a novel CueO from the bacterium Hafnia alvei (HaCueO). HaCueO possesses a significantly larger Met-rich domain than EcCueO, providing new insights into the role of this domain in cuprous oxidase activity. We first showed that HaCueO was as efficient in copper detoxification as EcCueO in vivo. The structures of both wild-type HaCueO and a variant lacking the Met-rich domain were resolved by X-ray crystallography and simulated by molecular dynamics, offering a detailed structural basis for understanding their functions. Cuprous oxidase activity was then quantified either from free electrogenerated Cu+ with CueO immobilized on an electrode or from different Cu+-complexes with CueO in solution. These methods enabled the fine-tuning of Cu+ chelation strength. Consistent with findings for EcCueO, it was confirmed that the Met-rich domain of HaCueO is dispensable for Cu+ oxidation when weakly chelated Cu+ is used. However, its role becomes crucial as chelation strength increases. Comparative analyses of cuprous oxidase activity between HaCueO and EcCueO revealed that HaCueO outperforms EcCueO, demonstrating superior efficiency in oxidizing Cu+ from chelated forms. This enhanced activity correlates with the higher methionine content in HaCueO, which appears to play a pivotal role in facilitating Cu+ oxidation under conditions of stronger chelation.
Collapse
Affiliation(s)
- Umberto Contaldo
- CNRS,
Laboratoire de Bioénergétique et Ingénierie des
Protéines (BIP), Institut de Microbiologie de la Méditerranée, Aix Marseille Université, 13402 Marseille, France
| | - Paolo Santucci
- CNRS,
Laboratoire de Bioénergétique et Ingénierie des
Protéines (BIP), Institut de Microbiologie de la Méditerranée, Aix Marseille Université, 13402 Marseille, France
| | - Alexandra Vergnes
- CNRS,
Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie
de la Méditerranée, Aix Marseille
Université, 13402 Marseille, France
| | - Philippe Leone
- CNRS,
Laboratoire d’Ingénierie des Systèmes Macromoléculaires
(LISM), Institut de Microbiologie de la Méditerranée, Aix Marseille Université, 13402 Marseille, France
| | - Jérôme Becam
- CNRS,
Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie
de la Méditerranée, Aix Marseille
Université, 13402 Marseille, France
| | - Frédéric Biaso
- CNRS,
Laboratoire de Bioénergétique et Ingénierie des
Protéines (BIP), Institut de Microbiologie de la Méditerranée, Aix Marseille Université, 13402 Marseille, France
| | - Marianne Ilbert
- CNRS,
Laboratoire de Bioénergétique et Ingénierie des
Protéines (BIP), Institut de Microbiologie de la Méditerranée, Aix Marseille Université, 13402 Marseille, France
| | - Benjamin Ezraty
- CNRS,
Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie
de la Méditerranée, Aix Marseille
Université, 13402 Marseille, France
| | - Elisabeth Lojou
- CNRS,
Laboratoire de Bioénergétique et Ingénierie des
Protéines (BIP), Institut de Microbiologie de la Méditerranée, Aix Marseille Université, 13402 Marseille, France
| | - Ievgen Mazurenko
- CNRS,
Laboratoire de Bioénergétique et Ingénierie des
Protéines (BIP), Institut de Microbiologie de la Méditerranée, Aix Marseille Université, 13402 Marseille, France
| |
Collapse
|
3
|
Chauhan R, Patel H, Bhardwaj B, Suryawanshi V, Rawat S. Copper induced augmentation of antibiotic resistance in Acinetobacter baumannii MCC 3114. Biometals 2025; 38:485-504. [PMID: 39708209 DOI: 10.1007/s10534-024-00657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Increasing antibiotic resistance among the common nosocomial pathogen i.e. Acinetobacter baumannii poses life threat to the health care workers as well as to the society. The dissemination of antibiotic resistance in this pathogen at an alarming rate could be not only due to the overuse of antibiotics but also due to the stress caused by exposure of bacterium to several environmental contaminants in their niches. In the present study, effect of copper stress on augmentation in the antibiotic resistance of A. baumannii MCC 3114 against three clinically used antibiotics was investigated along with the phenotypic and genotypic alterations in the cell. It induced 8, 44 and 22-fold increase in resistance against colistin, ciprofloxacin and levofloxacin, respectively. Moreover, the biofilm formation of adapted culture was significantly enhanced due to a dense EPS around the cell (as revealed by SEM images). The structural changes in EPS were demonstrated by FTIR spectroscopy. The adequate growth of adapted MCC 3114 despite increased level of ROS indicates its persistence in copper and ROS stress. The physiological alterations in cell viz., increased efflux pump activity and decreased membrane permeability was observed. Molecular analysis revealed increased expression of efflux pump related genes, oxidative stress genes, integron and antibiotic resistance genes. In sum, our study revealed that the exposure of the critical pathogen, A. baunmannii to copper in hospital settings and environmental reservoirs can impose adaptive pressure which may lead to genotypic as well phenotypic changes in cell resulting into the augmentation of antibiotic resistance.
Collapse
Affiliation(s)
- Ravi Chauhan
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Hardi Patel
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Bhavna Bhardwaj
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Vijay Suryawanshi
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Seema Rawat
- Microbiology Lab, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India.
| |
Collapse
|
4
|
Deng H, Li S, Huang Y, Li J, Ni Q, Zhao Y, Chen J, Peng X, Li B, Yu D. Molecular cloning, expression, and bioinformatics analysis of the CueO laccase gene from Escherichia coli SDB2. Mol Biol Rep 2025; 52:307. [PMID: 40080262 DOI: 10.1007/s11033-025-10388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Laccase CueO, a multicopper oxidase, possesses the capability to degrade phenolic compounds. In prior research, a strain of Escherichia coli named SDB2, isolated from chicken cecum, was found to degrade sinapine (a phenolic constituent of rapeseed meal) through the secretion of laccase CueO. Herein, the cloning, expression, and bioinformatics analysis of the CueO gene derived from E. coli SDB2 are reported. METHODS AND RESULTS Sequence analysis indicated that SDB2 CueO comprised 1551 bp, 516 amino acids, a putative molecular weight of 56.65 kDa, and an isoelectric point (pI) of 6.21. BLAST comparisons showed that the CueO protein sequence from E. coli SDB2 exhibited 65-90% identity with CueO from other bacteria. Multiple alignment analysis further confirmed the similarity and identity of SDB2 CueO with CueO from other species, and the amino acids surrounding the Cu-binding sites were highly conserved. A phylogenetic tree demonstrated a close evolutionary relationship between CueO from E. coli and CueO from Citrobacter amalonaticus. The three-dimensional (3D) structural model revealed four copper (Cu)-binding regions. Recombinant CueO was successfully obtained by expressing the CueO gene in E. coli BL21 after isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Bioinformatics analysis confirmed the similarity of recombinant CueO with native CueO. CONCLUSIONS These findings established a basis for understanding the characteristics and functions of laccase CueO from E. coli SDB2, paving the way for future research to explore the properties of recombinant CueO and its potential practical applications in optimizing feed resources, such as rapeseed meal, in the feed production industry.
Collapse
Affiliation(s)
- Hui Deng
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Sicong Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Yanling Huang
- Key Laboratory of Animal Science of State Ethnic Affairs Commission, College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Jiangling Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Qingsong Ni
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Yang Zhao
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Jin Chen
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Xiurong Peng
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Bin Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China.
| | - Dan Yu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, China.
| |
Collapse
|
5
|
Badillo‐Gómez JI, Suarez‐Antuña I, Mazurenko I, Biaso F, Pécaut J, Lojou E, Delangle P, Hostachy S. Biomimetic Pseudopeptides to Decipher the Interplay between Cu and Methionine-Rich Domains in Proteins. Chemistry 2025; 31:e202403896. [PMID: 39715023 PMCID: PMC11840665 DOI: 10.1002/chem.202403896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive. In this work, we designed biomimetic compounds recapitulating the possible Cu(I) binding sites in these domains, in order to examine the parameters important for Cu(I) binding. Five different biomimetic pseudopeptides were synthesized, exhibiting either three methionines or two methionines and a third amino acid likely to be present in the Met-rich domain. The affinities for Cu(I) of these model binding sites were determined, as well as their redox properties and behavior in the presence of Cu(II). Our results highlight the importance of Met residues, and their abundance in Met-rich domains, to efficiently bind Cu(I) in the periplasmic space.
Collapse
Affiliation(s)
| | - Irene Suarez‐Antuña
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| | - Ievgen Mazurenko
- Aix Marseille UnivCNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée31 Chemin Aiguier13402MarseilleFrance
| | - Frédéric Biaso
- Aix Marseille UnivCNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée31 Chemin Aiguier13402MarseilleFrance
| | - Jacques Pécaut
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| | - Elisabeth Lojou
- Aix Marseille UnivCNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée31 Chemin Aiguier13402MarseilleFrance
| | - Pascale Delangle
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| | - Sarah Hostachy
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| |
Collapse
|
6
|
Contaldo U, Savant-Aira D, Vergnes A, Becam J, Biaso F, Ilbert M, Aussel L, Ezraty B, Lojou E, Mazurenko I. Methionine-rich domains emerge as facilitators of copper recruitment in detoxification systems. Proc Natl Acad Sci U S A 2024; 121:e2402862121. [PMID: 39378088 PMCID: PMC11494321 DOI: 10.1073/pnas.2402862121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Copper homeostasis mechanisms are critical for bacterial resistance to copper-induced stress. The Escherichia coli multicopper oxidase copper efflux oxidase (CueO) is part of the copper detoxification system in aerobic conditions. CueO contains a methionine-rich (Met-rich) domain believed to interact with copper, but its exact function and the importance of related copper-binding sites remain unclear. This study investigates these open questions by employing a multimodal and multiscale approach. Through the design of various E. coli CueO (EcCueO) variants with altered copper-coordinating residues and domain deletions, we employ biological, biochemical, and physico-chemical approaches to unravel in vitro CueO catalytic properties and in vivo copper resistance. Strong correlation between the different methods enables evaluation of EcCueO variants' activity as a function of Cu+ availability. Our findings demonstrate the Met-rich domain is not essential for cuprous oxidation, but it facilitates Cu+ recruitment from strongly chelated forms, acting as transient copper binding domain thanks to multiple methionines. They also indicate that the Cu6/7 copper-binding sites previously observed within the Met-rich domain play a negligible role. Meanwhile, Cu5, located at the interface with the Met-rich domain, emerges as the primary and sole substrate-binding active site for cuprous oxidation. The Cu5 coordination sphere strongly affects the enzyme activity and the in vivo copper resistance. This study provides insights into the nuanced role of CueO Met-rich domain, enabling the functions of copper-binding sites and the entire domain itself to be decoupled. This paves the way for a deeper understanding of Met-rich domains in the context of bacterial copper homeostasis.
Collapse
Affiliation(s)
- Umberto Contaldo
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Dylan Savant-Aira
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Alexandra Vergnes
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Jérôme Becam
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Frédéric Biaso
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Marianne Ilbert
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Laurent Aussel
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Benjamin Ezraty
- Aix Marseille University, CNRS, LCB – UMR 7283, IMM – FR3479, 13402 Marseille, France
| | - Elisabeth Lojou
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| | - Ievgen Mazurenko
- Aix Marseille University, CNRS, BIP – UMR 7281, IMM – FR3479, 13402 Marseille, France
| |
Collapse
|
7
|
Dai JX, Yu Y, You LX, Zhong HL, Li YP, Wang AJ, Chorover J, Feng RW, Alwathnani HA, Herzberg M, Rensing C. Integrated induction of silver resistance determinants and production of extracellular polymeric substances in Cupriavidus metallidurans BS1 in response to silver ions and silver nanoparticles. CHEMOSPHERE 2024; 366:143503. [PMID: 39401671 DOI: 10.1016/j.chemosphere.2024.143503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024]
Abstract
Although the antimicrobial mechanisms of nanomaterials have been extensively investigated, bacterial defense mechanisms associated with AgNPs have not been fully elucidated. We here report that dissolved Ag+ (>0.05 μg mL-1) displayed higher toxicity on cell growth of strain Cupriavidus metallidurans BS1 (GCA_003260185.2) in comparison to 2 and 20 nm AgNPs. The genes necessary for synthesis of distinct abundance and composition of extracellular polymeric substances (EPS) were induced in strain BS1 exposed to Ag stress. This resulted in 20.1% (Ag(I)-EPS) and 24.2% (2 nm AgNPs-EPS) of the CO band integrated intensities being converted into C-OH/C-O-C group vibrations and the Ag-O bond was formed between EPS and 20 nm AgNPs. Meanwhile, the expression of primary resistance genes of the cus, sil and cup operon encoding HME-RND-driven efflux systems as well as a PIB1-type ATPase (CupA) were significantly induced after exposure to Ag(I), 2 and 20 nm AgNPs, respectively. Furthermore, distinct genes involved in biosynthesis pathways responsible for production of EPS were induced to relieve the toxicity of Ag(I), 2 nm and 20 nm AgNPs. This combined action is one potential reason why strain BS1 displayed distinct resistances in response to Ag(I) compared to 2 and 20 nm AgNPs. This work will help in understanding processes important in bacterial defensive mechanisms to AgNPs.
Collapse
Affiliation(s)
- Jia-Xin Dai
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yanshuang Yu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Hong-Lin Zhong
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Yuan-Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Jon Chorover
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85719, USA
| | - Ren-Wei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Herzberg
- Department of Solar Materials Biotechnology (SOMA), Helmholtz Centre for Environmental Research GmbH (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
8
|
Olmeda I, Paredes-Martínez F, Sendra R, Casino P, Pardo I, Ferrer S. Biochemical and Structural Characterization of a Novel Psychrophilic Laccase (Multicopper Oxidase) Discovered from Oenococcus oeni 229 (ENOLAB 4002). Int J Mol Sci 2024; 25:8521. [PMID: 39126090 PMCID: PMC11312515 DOI: 10.3390/ijms25158521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, prokaryotic laccases from lactic acid bacteria (LAB), which can degrade biogenic amines, were discovered. A laccase enzyme has been cloned from Oenococcus oeni, a very important LAB in winemaking, and it has been expressed in Escherichia coli. This enzyme has similar characteristics to those previously isolated from LAB as the ability to oxidize canonical substrates such as 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (2,6-DMP), and potassium ferrocyanide K4[Fe(CN6)], and non-conventional substrates as biogenic amines. However, it presents some distinctiveness, the most characteristic being its psychrophilic behaviour, not seen before among these enzymes. Psychrophilic enzymes capable of efficient catalysis at low temperatures are of great interest due to their potential applications in various biotechnological processes. In this study, we report the discovery and characterization of a new psychrophilic laccase, a multicopper oxidase (MCO), from the bacterium Oenococcus oeni. The psychrophilic laccase gene, designated as LcOe 229, was identified through the genomic analysis of O. oeni, a Gram-positive bacterium commonly found in wine fermentation. The gene was successfully cloned and heterologously expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Biochemical characterization of the psychrophilic laccase revealed its optimal activity at low temperatures, with a peak at 10 °C. To our knowledge, this is the lowest optimum temperature described so far for laccases. Furthermore, the psychrophilic laccase demonstrated remarkable stability and activity at low pH (optimum pH 2.5 for ABTS), suggesting its potential for diverse biotechnological applications. The kinetic properties of LcOe 229 were determined, revealing a high catalytic efficiency (kcat/Km) for several substrates at low temperatures. This exceptional cold adaptation of LcOe 229 indicates its potential as a biocatalyst in cold environments or applications requiring low-temperature processes. The crystal structure of the psychrophilic laccase was determined using X-ray crystallography demonstrating structural features similar to other LAB laccases, such as an extended N-terminal and an extended C-terminal end, with the latter containing a disulphide bond. Also, the structure shows two Met residues at the entrance of the T1Cu site, common in LAB laccases, which we suggest could be involved in substrate binding, thus expanding the substrate-binding pocket for laccases. A structural comparison of LcOe 229 with Antarctic laccases has not revealed specific features assigned to cold-active laccases versus mesophilic. Thus, further investigation of this psychrophilic laccase and its engineering could lead to enhanced cold-active enzymes with improved properties for future biotechnological applications. Overall, the discovery of this novel psychrophilic laccase from O. oeni expands our understanding of cold-adapted enzymes and presents new opportunities for their industrial applications in cold environments.
Collapse
Affiliation(s)
- Isidoro Olmeda
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Francisco Paredes-Martínez
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Ramón Sendra
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Patricia Casino
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain;
- Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Pardo
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| | - Sergi Ferrer
- Enolab, Departament de Microbiologia i Ecologia, Universitat de València, 46100 Burjassot, Valencia, Spain; (I.O.); (S.F.)
- Institut de Biotecnologia i Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Valencia, Spain;
| |
Collapse
|
9
|
Deng S, Wang WX. Dynamic Regulation of Intracellular Labile Cu(I)/Cu(II) Cycle in Microalgae Chlamydomonas reinhardtii: Disrupting the Balance by Cu Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5255-5266. [PMID: 38471003 DOI: 10.1021/acs.est.3c10257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The labile metal pool involved in intracellular trafficking and homeostasis is the portion susceptible to environmental stress. Herein, we visualized the different intracellular distributions of labile Cu(I) and Cu(II) pools in the alga Chlamydomonas reinhardtii. We first demonstrated that labile Cu(I) predominantly accumulated in the granules within the cytoplasmic matrix, whereas the labile Cu(II) pool primarily localized in the pyrenoid and chloroplast. The cell cycle played an integral role in balancing the labile Cu(I)/Cu(II) pools. Specifically, the labile Cu(II) pool primarily accumulated during the SM phase following cell division, while the labile Cu(I) pool dynamically changed during the G phase as cell size increased. Notably, the labile Cu(II) pool in algae at the SM stage exhibited heightened sensitivity to environmental Cu stress. Exogenous Cu stress disrupted the intracellular labile Cu(I)/Cu(II) cycle and balance, causing a shift toward the labile Cu(II) pool. Our proteomic analysis further identified a putative cupric reductase, potentially capable of reducing Cu(II) to Cu(I), and four putative multicopper oxidases, potentially capable of oxidizing Cu(I) to Cu(II), which may be involved in the conversion between the labile Cu(I) pool and labile Cu(II) pool. Our study elucidated a dynamic cycle of the intracellular labile Cu(I)/Cu(II) pools, which were accessible and responsive to environmental changes.
Collapse
Affiliation(s)
- Shaoxi Deng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
10
|
Zhou X, Xiang Q, Wu Y, Li Y, Peng T, Xu X, Zhou Y, Zhang L, Li J, Du L, Tan G, Wang W. A low-cost and eco-friendly recombinant protein expression system using copper-containing industrial wastewater. Front Microbiol 2024; 15:1367583. [PMID: 38585706 PMCID: PMC10995868 DOI: 10.3389/fmicb.2024.1367583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
The development of innovative methods for highly efficient production of recombinant proteins remains a prominent focus of research in the biotechnology field, primarily due to the fact that current commercial protein expression systems rely on expensive chemical inducers, such as isopropyl β-D-thiogalactoside (IPTG). In our study, we designed a novel approach for protein expression by creating a plasmid that responds to copper. This specialized plasmid was engineered through the fusion of a copper-sensing element with an optimized multiple cloning site (MCS) sequence. This MCS sequence can be easily customized by inserting the coding sequences of target recombinant proteins. Once the plasmid was generated, it was introduced into an engineered Escherichia coli strain lacking copA and cueO. With this modified E. coli strain, we demonstrated that the presence of copper ions can efficiently trigger the induction of recombinant protein expression, resulting in the production of active proteins. Most importantly, this expression system can directly utilize copper-containing industrial wastewater as an inducer for protein expression while simultaneously removing copper from the wastewater. Thus, this study provides a low-cost and eco-friendly strategy for the large-scale recombinant protein production. To the best of our knowledge, this is the first report on the induction of recombinant proteins using industrial wastewater.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yubei Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongjuan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiantian Peng
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianxian Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongguang Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lihe Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyong Du
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoqiang Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wu Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
11
|
Ishihara JI, Mekubo T, Kusaka C, Kondo S, Oiko R, Igarashi K, Aiba H, Ishikawa S, Ogasawara N, Oshima T, Takahashi H. A critical role of the periplasm in copper homeostasis in Gram-negative bacteria. Biosystems 2023; 231:104980. [PMID: 37453610 DOI: 10.1016/j.biosystems.2023.104980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/18/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Copper is essential for life, but is toxic in excess. Copper homeostasis is achieved in the cytoplasm and the periplasm as a unique feature of Gram-negative bacteria. Especially, it has become clear the role of the periplasm and periplasmic proteins regarding whole-cell copper homeostasis. Here, we addressed the role of the periplasm and periplasmic proteins in copper homeostasis using a Systems Biology approach integrating experiments with models. Our analysis shows that most of the copper-bound molecules localize in the periplasm but not cytoplasm, suggesting that Escherichia coli utilizes the periplasm to sense the copper concentration in the medium and sequester copper ions. In particular, a periplasmic multi-copper oxidase CueO and copper-responsive transcriptional factor CusS contribute both to protection against Cu(I) toxicity and to incorporating copper into the periplasmic components/proteins. We propose that Gram-negative bacteria have evolved mechanisms to sense and store copper in the periplasm to expand their living niches.
Collapse
Affiliation(s)
- Jun-Ichi Ishihara
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8673, Japan
| | - Tomohiro Mekubo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Chikako Kusaka
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Suguru Kondo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ryotaro Oiko
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama, 939-0398, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohiraku, Sapporo, Hokkaido, 062-8517, Japan
| | - Hirofumi Aiba
- Graduate School of Pharmaceutical Sciences, Nagoya University, Pharmaceutical Sciences Building, Furocho, Chikusa-ku, Aichi, 464-8601, Japan
| | - Shu Ishikawa
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku Kobe, 657-8501, Japan
| | - Naotake Ogasawara
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Taku Oshima
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu City, Toyama, 939-0398, Japan.
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8673, Japan; Molecular Chirality Research Center, Chiba University, Chiba, Japan; Plant Molecular Science Center, Chiba University, Chiba, Japan.
| |
Collapse
|
12
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
13
|
Guo H, Sun N, Guo J, Zhou TP, Tang L, Zhang W, Deng Y, Liao RZ, Wu Y, Wu G, Zhong F. Expanding the Promiscuity of a Copper-Dependent Oxidase for Enantioselective Cross-Coupling of Indoles. Angew Chem Int Ed Engl 2023; 62:e202219034. [PMID: 36789864 DOI: 10.1002/anie.202219034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket. This study is significant with regard to expanding the catalytic repertoire of natural multicopper oxidases as well as enlarging the synthetic toolbox for sustainable asymmetric oxidative coupling.
Collapse
Affiliation(s)
- Huan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Ningning Sun
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Juan Guo
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Tai-Ping Zhou
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Langyu Tang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Wentao Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yaming Deng
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Rong-Zhen Liao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Guojiao Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| | - Fangrui Zhong
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
14
|
Copper Binding and Redox Activity of α-Synuclein in Membrane-Like Environment. Biomolecules 2023; 13:biom13020287. [PMID: 36830656 PMCID: PMC9953312 DOI: 10.3390/biom13020287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
α-Synuclein (αSyn) constitutes the main protein component of Lewy bodies, which are the pathologic hallmark in Parkinson's disease. αSyn is unstructured in solution but the interaction of αSyn with lipid membrane modulates its conformation by inducing an α-helical structure of the N-terminal region. In addition, the interaction with metal ions can trigger αSyn conformation upon binding and/or through the metal-promoted generation of reactive oxygen species which lead to a cascade of structural alterations. For these reasons, the ternary interaction between αSyn, copper, and membranes needs to be elucidated in detail. Here, we investigated the structural properties of copper-αSyn binding through NMR, EPR, and XAS analyses, with particular emphasis on copper(I) coordination since the reduced state is particularly relevant for oxygen activation chemistry. The analysis was performed in different membrane model systems, such as micellar sodium dodecyl sulfate (SDS) and unilamellar vesicles, comparing the binding of full-length αSyn and N-terminal peptide fragments. The presence of membrane-like environments induced the formation of a copper:αSyn = 1:2 complex where Cu+ was bound to the Met1 and Met5 residues of two helical peptide chains. In this coordination, Cu+ is stabilized and is unreactive in the presence of O2 in catechol substrate oxidation.
Collapse
|
15
|
Structural Analyses of the Multicopper Site of CopG Support a Role as a Redox Enzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1414:97-121. [PMID: 36637718 DOI: 10.1007/5584_2022_753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal ions can be both essential components of cells as well as potential toxins if present in excess. Organisms utilize a variety of protein systems to maintain the concentration of metal ions within the appropriate range for cellular function, and to avoid concentrations where cellular damage can occur. In bacteria, numerous proteins contribute to copper homeostasis, including copper transporters, chelators, and redox enzymes. The genes that encode these proteins are often found in clusters, thus providing modular components that work together to achieve homeostasis. A better understanding of how these components function and cooperate to achieve metal ion resistance is needed, given the extensive use of metal ions, including copper, as broad-spectrum biocides in a variety of clinical and environmental settings. The copG gene is a common component of such copper resistance clusters, but its contribution to copper resistance is not well understood. In this review the available information about the CopG protein encoded by this gene is summarized. Comparison of the recent structure to diverse copper-containing metallochaperones, metalloenzymes, and electron transfer proteins suggests that CopG is a redox enzyme that uses multiple copper ions as active site redox cofactors to act on additional copper ion substrates. Mechanisms for both oxidase and reductase activity are proposed, and the biological advantages that these activities can contribute in conjunction with existing systems are described.
Collapse
|
16
|
Raya D, Shreya A, Kumar A, Giri SK, Salem DR, Gnimpieba EZ, Gadhamshetty V, Dhiman SS. Molecular regulation of conditioning film formation and quorum quenching in sulfate reducing bacteria. Front Microbiol 2022; 13:1008536. [PMID: 36386676 PMCID: PMC9659907 DOI: 10.3389/fmicb.2022.1008536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 09/19/2023] Open
Abstract
Sensing surface topography, an upsurge of signaling biomolecules, and upholding cellular homeostasis are the rate-limiting spatio-temporal events in microbial attachment and biofilm formation. Initially, a set of highly specialized proteins, viz. conditioning protein, directs the irreversible attachment of the microbes. Later signaling molecules, viz. autoinducer, take over the cellular communication phenomenon, resulting in a mature microbial biofilm. The mandatory release of conditioning proteins and autoinducers corroborated the existence of two independent mechanisms operating sequentially for biofilm development. However, both these mechanisms are significantly affected by the availability of the cofactor, e.g., Copper (Cu). Generally, the Cu concentration beyond threshold levels is detrimental to the anaerobes except for a few species of sulfate-reducing bacteria (SRB). Remarkably SRB has developed intricate ways to resist and thrive in the presence of Cu by activating numerous genes responsible for modifying the presence of more toxic Cu(I) to Cu(II) within the periplasm, followed by their export through the outer membrane. Therefore, the determinants of Cu toxicity, sequestration, and transportation are reconnoitered for their contribution towards microbial adaptations and biofilm formation. The mechanistic details revealing Cu as a quorum quencher (QQ) are provided in addition to the three pathways involved in the dissolution of cellular communications. This review articulates the Machine Learning based data curing and data processing for designing novel anti-biofilm peptides and for an in-depth understanding of QQ mechanisms. A pioneering data set has been mined and presented on the functional properties of the QQ homolog in Oleidesulfovibrio alaskensis G20 and residues regulating the multicopper oxidase properties in SRB.
Collapse
Affiliation(s)
- Dheeraj Raya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Aritree Shreya
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, Himachal Pradesh, India
| | - David R. Salem
- Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Etienne Z. Gnimpieba
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Biomedical Engineering, University of South Dakota, Vermillion, SD, United States
| | - Venkataramana Gadhamshetty
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
| | - Saurabh Sudha Dhiman
- Department of Civil and Environmental Engineering, South Dakota Mines, Rapid City, SD, United States
- 2DBEST Research Center, South Dakota Mines, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Sciences, South Dakota Mines, Rapid City, SD, United States
| |
Collapse
|
17
|
Adachi T, Mazurenko I, Mano N, Kitazumi Y, Kataoka K, Kano K, Sowa K, Lojou E. Kinetic and thermodynamic analysis of Cu2+-dependent reductive inactivation in direct electron transfer-type bioelectrocatalysis by copper efflux oxidase. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Jiang Q, Cui Z, Wei R, Nie K, Xu H, Liu L. Feasible Cluster Model Method for Simulating the Redox Potentials of Laccase CueO and Its Variant. Front Bioeng Biotechnol 2022; 10:957694. [PMID: 35935497 PMCID: PMC9354848 DOI: 10.3389/fbioe.2022.957694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Laccases are regarded as versatile green biocatalysts, and recent scientific research has focused on improving their redox potential for broader industrial and environmental applications. The density functional theory (DFT) quantum mechanics approach, sufficiently rigorous and efficient for the calculation of electronic structures, is conducted to better comprehend the connection between the redox potential and the atomic structural feature of laccases. According to the crystal structure of wild type laccase CueO and its variant, a truncated miniature cluster model method was established in this research. On the basic of thermodynamic cycle, the overall Gibbs free energy variations before and after the one-electron reduction were calculated. It turned out that the trends of redox potentials to increase after variant predicted by the theoretical calculations correlated well with those obtained by experiments, thereby validating the feasibility of this cluster model method for simulating the redox potentials of laccases.
Collapse
Affiliation(s)
- Qixuan Jiang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Ziheng Cui
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Ren Wei
- Junior Research Group Plastic Biodegradation at Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
| | - Haijun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Haijun Xu, ; Luo Liu,
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Haijun Xu, ; Luo Liu,
| |
Collapse
|
19
|
Vergnes A, Henry C, Grassini G, Loiseau L, El Hajj S, Denis Y, Galinier A, Vertommen D, Aussel L, Ezraty B. Periplasmic oxidized-protein repair during copper stress in E. coli: A focus on the metallochaperone CusF. PLoS Genet 2022; 18:e1010180. [PMID: 35816552 PMCID: PMC9302797 DOI: 10.1371/journal.pgen.1010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/21/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Methionine residues are particularly sensitive to oxidation by reactive oxygen or chlorine species (ROS/RCS), leading to the appearance of methionine sulfoxide in proteins. This post-translational oxidation can be reversed by omnipresent protein repair pathways involving methionine sulfoxide reductases (Msr). In the periplasm of Escherichia coli, the enzymatic system MsrPQ, whose expression is triggered by the RCS, controls the redox status of methionine residues. Here we report that MsrPQ synthesis is also induced by copper stress via the CusSR two-component system, and that MsrPQ plays a role in copper homeostasis by maintaining the activity of the copper efflux pump, CusCFBA. Genetic and biochemical evidence suggest the metallochaperone CusF is the substrate of MsrPQ and our study reveals that CusF methionines are redox sensitive and can be restored by MsrPQ. Thus, the evolution of a CusSR-dependent synthesis of MsrPQ allows conservation of copper homeostasis under aerobic conditions by maintenance of the reduced state of Met residues in copper-trafficking proteins.
Collapse
Affiliation(s)
- Alexandra Vergnes
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Camille Henry
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Gaia Grassini
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Laurent Loiseau
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Sara El Hajj
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Institut de Microbiologie de la Méditerranée, Plate-forme Transcriptomique, Marseille, France
| | - Anne Galinier
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Didier Vertommen
- de Duve Institute, MASSPROT Platform, Université Catholique de Louvain, Brussels, Belgium
| | - Laurent Aussel
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Benjamin Ezraty
- Aix-Marseille University, CNRS, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
20
|
Zhen Y, Ge L, Chen Q, Xu J, Duan Z, Loor JJ, Wang M. Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock-Environment-Plant-Human Health Axis and Microbial Homeostasis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6943-6962. [PMID: 35666880 DOI: 10.1021/acs.jafc.2c01367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The extensive use of high-concentration copper (Cu) in feed additives, fertilizers, pesticides, and nanoparticles (NPs) inevitably causes significant pollution in the ecological environment. This type of chain pollution begins with animal husbandry: first, Cu accumulation in animals poisons them; second, high Cu enters the soil and water sources with the feces and urine to cause toxicity, which may further lead to crop and plant pollution; third, this process ultimately endangers human health through consumption of livestock products, aquatic foods, plants, and even drinking water. High Cu potentially alters the antibiotic resistance of soil and water sources and further aggravates human disease risks. Thus, it is necessary to formulate reasonable Cu emission regulations because the benefits of Cu for livestock and plants cannot be ignored. The present review evaluates the potential hazards and benefits of high Cu in livestock, the environment, the plant industry, and human health. We also discuss aspects related to bacterial and fungal resistance and homeostasis and perspectives on the application of Cu-NPs and microbial high-Cu removal technology to reduce the spread of toxicity risks to humans.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoqing Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330000, China
| | - Zhenyu Duan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, Illinois 61801, United States
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang 832000, China
| |
Collapse
|
21
|
Makizuka T, Sowa K, Shirai O, Kitazumi Y. Inhibition of direct-electron-transfer-type bioelectrocatalysis of bilirubin oxidase by silver ions. ANAL SCI 2022; 38:907-912. [PMID: 35437692 DOI: 10.1007/s44211-022-00111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
In enzyme-based biosensors, Ag+ eluted from the reference electrode inhibits the enzyme activity. Herein, to suppress the inhibition of bilirubin oxidase (BOD) by Ag+, kinetic analysis was used to examine the effect of Ag+ on the activity of BOD. It was confirmed that the addition of Ag+ decreased the bioelectrocatalytic activity of BOD. Atomic absorption spectroscopy (AAS) suggested that Ag+ was attached to BOD. Moreover, the changes in the visible absorption spectra after Ag+ addition showed that Ag+ was bound to the type I Cu sites in BOD. During oxygen reduction by BOD, the direct-electron-transfer-type bioelectrocatalytic current decreased after Ag+ was added. The decay of the catalytic current was evaluated using kinetic analysis (assuming a pseudo-first-order reaction). Based on the analysis, the inhibition of BOD was suppressed when the Ag+ concentration was below 0.1 µM. Referring to the solubility product of AgCl, Cl- at a concentration of 1 mM suppressed the inhibition of the enzymatic activity by 95%.
Collapse
Affiliation(s)
- Taiki Makizuka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, 606-8502, Japan.
| |
Collapse
|
22
|
Algov I, Feiertag A, Shikler R, Alfonta L. Sensitive enzymatic determination of neurotransmitters in artificial sweat. Biosens Bioelectron 2022; 210:114264. [DOI: 10.1016/j.bios.2022.114264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022]
|
23
|
Roulling F, Godin A, Feller G. Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance. Biochimie 2022; 194:118-126. [PMID: 34982982 DOI: 10.1016/j.biochi.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022]
Abstract
Cuproxidases form a subgroup of the blue multicopper oxidase family. They display disordered methionine-rich loops, not observable in most available crystal structures, which have been suggested to bind toxic Cu(I) ions before oxidation into less harmful Cu(II) by the core enzyme. We found that the location of the Met-rich regions is highly variable in bacterial cuproxidases, but always inserted in solvent exposed surface loops, at close proximity of the conserved T1 copper binding site. We took advantage of the large differences in loop length between cold-adapted, mesophilic and thermophilic oxidase homologs to unravel the function of the methionine-rich regions involved in copper detoxification. Using a newly developed anaerobic assay for cuprous ions, it is shown that the number of Cu(I) bound is nearly proportional to the loop lengths in these cuproxidases and to the number of potential Cu(I) ligands in these loops. In order to substantiate this relation, the longest loop in the cold-adapted oxidase was deleted, lowering bound extra Cu(I) from 9 in the wild-type enzyme to 2-3 Cu(I) in deletion mutants. These results demonstrate that methionine-rich loops behave as molecular octopus scavenging toxic cuprous ions in the periplasm and that these regions are essential components of bacterial copper resistance.
Collapse
Affiliation(s)
- Frédéric Roulling
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Amandine Godin
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering - InBioS, University of Liège, Belgium.
| |
Collapse
|
24
|
Öztürk Y, Blaby-Haas CE, Daum N, Andrei A, Rauch J, Daldal F, Koch HG. Maturation of Rhodobacter capsulatus Multicopper Oxidase CutO Depends on the CopA Copper Efflux Pathway and Requires the cutF Product. Front Microbiol 2021; 12:720644. [PMID: 34566924 PMCID: PMC8456105 DOI: 10.3389/fmicb.2021.720644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/18/2021] [Indexed: 11/15/2022] Open
Abstract
Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb 3-type cytochrome oxidase (cbb 3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb 3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.
Collapse
Affiliation(s)
- Yavuz Öztürk
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Crysten E. Blaby-Haas
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Noel Daum
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Andreea Andrei
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Juna Rauch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Isaac M, Denisov SA, McClenaghan ND, Sénèque O. Bioinspired Luminescent Europium-Based Probe Capable of Discrimination between Ag + and Cu . Inorg Chem 2021; 60:10791-10798. [PMID: 34236828 DOI: 10.1021/acs.inorgchem.1c01486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Due to their similar coordination properties, discrimination of Cu+ and Ag+ by water-soluble luminescent probes is challenging. We have synthesized LCC4Eu, an 18 amino acid cyclic peptide bearing a europium complex, which is able to bind one Cu+ or Ag+ ion by the side chains of two methionines, a histidine and a 3-(1-naphthyl)-l-alanine. In this system, the naphthyl moiety establishes a cation-π interaction with these cations. It also acts as an antenna for the sensitization of Eu3+ luminescence. Interestingly, when excited at 280 nm, LCC4Eu behaves as a turn-on probe for Ag+ (+150% Eu emission) and as a turn-off probe for Cu+ (-50% Eu3+ emission). Shifting the excitation wavelength to 305 nm makes the probe responsive to Ag+ (+380% Eu3+ emission) but not to Cu+ or other physiological cations. Thus, LCC4Eu is uniquely capable of discriminating Ag+ from Cu+. A detailed spectroscopic characterization based on steady-state and time-resolved measurements clearly demonstrates that Eu3+ sensitization relies on electronic energy transfer from the naphthalene triplet state to the Eu3+ excited states and that the cation-π interaction lowers the energy of this triplet state by 700 and 2400 cm-1 for Ag+ and Cu+, respectively. Spectroscopic data point to a modulation of the efficiency of the electronic energy transfer caused by the differential red shift of the naphthalene triplet, deciphering the differential luminescence response of LCC4Eu toward Ag+ and Cu+.
Collapse
Affiliation(s)
- Manon Isaac
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| | - Sergey A Denisov
- Université Bordeaux, CNRS, ISM (UMR 5255), 33405 Talence, France
| | | | - Olivier Sénèque
- Université Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| |
Collapse
|
26
|
Miranda-Blancas R, Avelar M, Rodriguez-Arteaga A, Sinicropi A, Rudiño-Piñera E. The β-hairpin from the Thermus thermophilus HB27 laccase works as a pH-dependent switch to regulate laccase activity. J Struct Biol 2021; 213:107740. [PMID: 33962016 DOI: 10.1016/j.jsb.2021.107740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
The multi-copper oxidase from the hyper-thermophilic bacteria Thermus thermophilus (Tth-MCO), has been previously characterized and described as an example of a laccase with low catalytic properties, especially when it is compared with the activity of fungal laccases, but it is active at high temperatures. Structurally, Tth-MCO has a unique feature: a β-hairpin near the T1Cu site, which is not present in any other laccases deposited at the PDB. This β-hairpin has an expected crystallographic behavior in solvent-exposed areas of a crystallized protein: lack of electron density, high B-values and several crystalline contacts with neighboring crystallographic copies; however, its dynamical behavior in solution and its biological implications have not been described. Here, we describe four new Tth-MCO crystallographic structures, and the β-hairpin behavior has been analyzed by molecular dynamics simulations, considering the effect of pH and temperature. The β-hairpin new crystallographic conformations described here, together with their dynamics, were used to understand the pH-restrained laccase activity of Tth-MCO against substrates as syringaldazine. Remarkably, there are insertions in laccases from Thermus and Meiothermus genus, sharing the same position and a methionine-rich composition of the Tth-MCO β-hairpin. This unique high methionine content of the Tth-MCO β-hairpin is responsible to coordinate, Ag+1 and Hg+1 in oxidative conditions, but Cu+1 and Cu+2 are not coordinated in crystallographic experiments, regardless of the redox conditions; however, Ag+1 addition does not affect Tth-MCO laccase activity against syringaldazine. Here, we propose that the pH-dependent β-hairpin dynamical behavior could explain, at least in part, the inefficient laccase activity displayed by Tth-MCO in acidic pH values.
Collapse
Affiliation(s)
- R Miranda-Blancas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico; Instituto de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, 1001 Universidad Av., Cuernavaca, Morelos 62209, Mexico
| | - M Avelar
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - A Rodriguez-Arteaga
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico
| | - A Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - E Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 2001 Universidad Av., Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
27
|
Olmeda I, Casino P, Collins RE, Sendra R, Callejón S, Huesa J, Soares AS, Ferrer S, Pardo I. Structural analysis and biochemical properties of laccase enzymes from two Pediococcus species. Microb Biotechnol 2021; 14:1026-1043. [PMID: 33635570 PMCID: PMC8085982 DOI: 10.1111/1751-7915.13751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 11/29/2022] Open
Abstract
Prokaryotic laccases are emergent biocatalysts. However, they have not been broadly found and characterized in bacterial organisms, especially in lactic acid bacteria. Recently, a prokaryotic laccase from the lactic acid bacterium Pediococcus acidilactici 5930, which can degrade biogenic amines, was discovered. Thus, our study aimed to shed light on laccases from lactic acid bacteria focusing on two Pediococcus laccases, P. acidilactici 5930 and Pediococcus pentosaceus 4816, which have provided valuable information on their biochemical activities on redox mediators and biogenic amines. Both laccases are able to oxidize canonical substrates as ABTS, ferrocyanide and 2,6-DMP, and non-conventional substrates as biogenic amines. With ABTS as a substrate, they prefer an acidic environment and show sigmoidal kinetic activity, and are rather thermostable. Moreover, this study has provided the first structural view of two lactic acid bacteria laccases, revealing new structural features not seen before in other well-studied laccases, but which seem characteristic for this group of bacteria. We believe that understanding the role of laccases in lactic acid bacteria will have an impact on their biotechnological applications and provide a framework for the development of engineered lactic acid bacteria with enhanced properties.
Collapse
Affiliation(s)
- Isidoro Olmeda
- ENOLABInstitut de Biotecnologia i Biomedicina (BioTecMed)Universitat de ValènciaValenciaSpain
| | - Patricia Casino
- Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaValenciaSpain
- Institut de Biotecnologia i Biomedicina (BioTecMed)Universitat de ValènciaValenciaSpain
- Group 739 of the Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER) del Instituto de Salud Carlos IIIValenciaSpain
| | - Robert E. Collins
- Office of Educational ProgramsBrookhaven National LaboratoryUptonNY11973USA
- Department of Chemistry and Physical SciencesQuinnipiac UniversityHamdenCT06518USA
| | - Ramón Sendra
- Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaValenciaSpain
| | - Sara Callejón
- ENOLABInstitut de Biotecnologia i Biomedicina (BioTecMed)Universitat de ValènciaValenciaSpain
- Present address:
ENARTIS Wine TechENARTIS SEPSA S.A.U. PolIndustrial AlcesAvda de los vinos, 18Alcázar de San JuanCiudad Real13600Spain
| | - Juanjo Huesa
- Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaValenciaSpain
| | - Alexei S. Soares
- Photon Sciences DirectorateBrookhaven National LaboratoryUptonNY11973USA
| | - Sergi Ferrer
- ENOLABInstitut de Biotecnologia i Biomedicina (BioTecMed)Universitat de ValènciaValenciaSpain
| | - Isabel Pardo
- ENOLABInstitut de Biotecnologia i Biomedicina (BioTecMed)Universitat de ValènciaValenciaSpain
- Departament de Microbiologia i EcologiaUniversitat de ValènciaValenciaSpain
| |
Collapse
|
28
|
Cui H, Zhang L, Söder D, Tang X, Davari MD, Schwaneberg U. Rapid and Oriented Immobilization of Laccases on Electrodes via a Methionine-Rich Peptide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Lingling Zhang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Dominik Söder
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Xiaomei Tang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| |
Collapse
|
29
|
Mutations in the coordination spheres of T1 Cu affect Cu 2+-activation of the laccase from Thermus thermophilus. Biochimie 2021; 182:228-237. [PMID: 33535124 DOI: 10.1016/j.biochi.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Thermus thermophilus laccase belongs to the sub-class of multicopper oxidases that is activated by the extra binding of copper to a methionine-rich domain allowing an electron pathway from the substrate to the conventional first electron acceptor, the T1 Cu. In this work, two key amino acid residues in the 1st and 2nd coordination spheres of T1 Cu are mutated in view of tuning their redox potential and investigating their influence on copper-related activity. Evolution of the kinetic parameters after copper addition highlights that both mutations play a key role influencing the enzymatic activity in distinct unexpected ways. These results clearly indicate that the methionine rich domain is not the only actor in the cuprous oxidase activity of CueO-like enzymes.
Collapse
|
30
|
Wang H, Yang X, Wang M, Hu M, Xu X, Yan A, Hao Q, Li H, Sun H. Atomic differentiation of silver binding preference in protein targets: Escherichia coli malate dehydrogenase as a paradigm. Chem Sci 2020; 11:11714-11719. [PMID: 34123202 PMCID: PMC8162793 DOI: 10.1039/d0sc04151c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
Understanding how metallodrugs interact with their protein targets is of vital importance for uncovering their molecular mode of actions as well as overall pharmacological/toxicological profiles, which in turn facilitates the development of novel metallodrugs. Silver has been used as an antimicrobial agent since antiquity, yet there is limited knowledge about silver-binding proteins. Given the multiple dispersed cysteine residues and histidine-methionine pairs, Escherichia coli malate dehydrogenase (EcMDH) represents an excellent model to investigate silver coordination chemistry as well as its targeting sites in enzymes. We show by systematic biochemical characterizations that silver ions (Ag+) bind EcMDH at multiple sites including three cysteine-containing sites. By X-ray crystallography, we unravel the binding preference of Ag+ to multiple binding sites in EcMDH, i.e., Cys113 > Cys251 > Cys109 > Met227. Silver exhibits preferences to the donor atoms and residues in the order of S > N > O and Cys > Met > His > Lys > Val, respectively, in EcMDH. For the first time, we report the coordination of silver to a lysine in proteins. Besides, we also observed argentophilic interactions (Ag⋯Ag, 2.7 to 3.3 Å) between two silver ions coordinating to one thiolate. Combined with site-directed mutagenesis and an enzymatic activity test, we unveil that the binding of Ag+ to the site IV (His177-Ag-Met227 site) plays a vital role in Ag+-mediated MDH inactivation. This work stands as the first unusual and explicit study of silver binding preference to multiple binding sites in its authentic protein target at the atomic resolution. These findings enrich our knowledge on the biocoordination chemistry of silver(i), which in turn facilitates the prediction of the unknown silver-binding proteins and extends the pharmaceutical potentials of metal-based drugs.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Xinming Yang
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Minji Wang
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University No. 3663 Zhongshan Road North Shanghai 200062 P. R. China
| | - Menglong Hu
- School of Biomedical Sciences, The University of Hong Kong, Laboratory Block 21 Sassoon Road, Pokfulam Hong Kong P. R. China
| | - Xiaohan Xu
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Quan Hao
- School of Biomedical Sciences, The University of Hong Kong, Laboratory Block 21 Sassoon Road, Pokfulam Hong Kong P. R. China
| | - Hongyan Li
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Hongzhe Sun
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
31
|
Zhang Y, Lin DF, Hao J, Zhao ZH, Zhang YJ. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons. World J Microbiol Biotechnol 2020; 36:116. [PMID: 32661601 DOI: 10.1007/s11274-020-02888-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Laccases (EC 1.10.3.2) are a class of metallo-oxidases found in a variety of fungi, plants, and bacteria as well as in certain insects. They can oxidize a wide variety of organic compounds and can be widely applied in many fields, especially in the field of biodegradation and detoxification of environmental pollutants. The practical efficacy of laccases depends on their ability to capture the target substance as well as their catalytic activity, which is related to their catalytic center, substrate selectivity, and substrate tolerance. Over the past few decades, many laccases have been identified in plants and fungi. Concurrently, bacterial laccases have received increasing attention because of their high thermostability and high tolerance to organic compounds. The aim of this review is to summarize the role of bacterial laccases in the bioremediation of petroleum hydrocarbons and to outline the correlation between the molecular structure of the mononuclear T1 Cu center of bacterial laccases and their substrate preference.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Dong-Fa Lin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Jun Hao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Zhi-Hao Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China
| | - Ying-Jiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China. .,School of Life Science, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
32
|
Borges PT, Brissos V, Hernandez G, Masgrau L, Lucas MF, Monza E, Frazão C, Cordeiro TN, Martins LO. Methionine-Rich Loop of Multicopper Oxidase McoA Follows Open-to-Close Transitions with a Role in Enzyme Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patrícia T. Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Vânia Brissos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Laura Masgrau
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | - Emanuele Monza
- Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018 Barcelona, Spain
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
33
|
Zhang L, Cui H, Dhoke GV, Zou Z, Sauer DF, Davari MD, Schwaneberg U. Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semi-Rational Design. Chemistry 2020; 26:4974-4979. [PMID: 31985091 PMCID: PMC7186830 DOI: 10.1002/chem.201905598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Copper efflux oxidase (CueO) from Escherichia coli is a special bacterial laccase due to its fifth copper binding site. Herein, it is discovered that the fifth Cu occupancy plays a crucial and favorable role of electron relay in bioelectrocatalytic oxygen reduction. By substituting the residues at the four coordinated positions of the fifth Cu, 11 beneficial variants are identified with ≥2.5-fold increased currents at -250 mV (up to 6.13 mA cm-2 ). Detailed electrocatalytic characterization suggests the microenvironment of the fifth Cu binding site governs the electrocatalytic current of CueO. Additionally, further electron transfer analysis assisted by molecular dynamics (MD) simulation demonstrates that an increase in localized structural stability and a decrease of distance between the fifth Cu and the T1 Cu are two main factors contributing to the improved kinetics of CueO variants. It may guide a novel way to tailor laccases and perhaps other oxidoreductases for bioelectrocatalytic applications.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Gaurao V. Dhoke
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Zhi Zou
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| | - Daniel F. Sauer
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
34
|
Kaur K, Sidhu H, Capalash N, Sharma P. Multicopper oxidase of Acinetobacter baumannii: Assessing its role in metal homeostasis, stress management and virulence. Microb Pathog 2020; 143:104124. [PMID: 32169492 DOI: 10.1016/j.micpath.2020.104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
A putative multicopper oxidase, encoded as CopA in the proteome of Acinetobacter baumannii 19606, and designated as AbMCO, was expressed heterologously in E. coli (pET-28a) and purified by Ni-NTA affinity chromatography. The purified AbMCO exhibited in vitro oxidase activities upon exogenous addition of ≥1 μM copper ions. Kinetic studies revealed its phenol oxidase activity as it could catalyze the oxidation of substrates viz. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol, pyrogallol and catechol. Additionally, AbMCO displayed siderophore oxidase activity which depicted its role in metal homeostasis and protection from the toxic redox states of copper and iron. Importantly, expression of abMCO increased manifold upon challenge with high concentrations of copper sulphate (CuSO4, 1.5 mM) and sodium chloride (NaCl, 700 mM) which suggested its protective role in stress adaptation and management. Intra-macrophage assay of abMCO-expressing and abMCO-non expressing cells depicted no significant change in the survival rate of A. baumannii inside the macrophages. These findings indicate that A. baumannii encodes a multicopper oxidase, conferring copper tolerance and survival under stress conditions but had no role in virulence of this pathogen.
Collapse
Affiliation(s)
- Kavleen Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
35
|
Bazzi W, Abou Fayad AG, Nasser A, Haraoui LP, Dewachi O, Abou-Sitta G, Nguyen VK, Abara A, Karah N, Landecker H, Knapp C, McEvoy MM, Zaman MH, Higgins PG, Matar GM. Heavy Metal Toxicity in Armed Conflicts Potentiates AMR in A. baumannii by Selecting for Antibiotic and Heavy Metal Co-resistance Mechanisms. Front Microbiol 2020; 11:68. [PMID: 32117111 PMCID: PMC7008767 DOI: 10.3389/fmicb.2020.00068] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Acinetobacter baumannii has become increasingly resistant to leading antimicrobial agents since the 1970s. Increased resistance appears linked to armed conflicts, notably since widespread media stories amplified clinical reports in the wake of the American invasion of Iraq in 2003. Antimicrobial resistance is usually assumed to arise through selection pressure exerted by antimicrobial treatment, particularly where treatment is inadequate, as in the case of low dosing, substandard antimicrobial agents, or shortened treatment course. Recently attention has focused on an emerging pathogen, multi-drug resistant A. baumannii (MDRAb). MDRAb gained media attention after being identified in American soldiers returning from Iraq and treated in US military facilities, where it was termed "Iraqibacter." However, MDRAb is strongly associated in the literature with war injuries that are heavily contaminated by both environmental debris and shrapnel from weapons. Both may harbor substantial amounts of toxic heavy metals. Interestingly, heavy metals are known to also select for antimicrobial resistance. In this review we highlight the potential causes of antimicrobial resistance by heavy metals, with a focus on its emergence in A. baumanni in war zones.
Collapse
Affiliation(s)
- Wael Bazzi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Antoine G. Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Aya Nasser
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| | - Louis-Patrick Haraoui
- Department of Microbiology and Infectious Diseases, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Omar Dewachi
- Rutgers, The State University of New Jersey, Newark, NJ, United States
| | | | - Vinh-Kim Nguyen
- The Graduate Institute of International and Developmental Studies, Geneva, Switzerland
| | - Aula Abara
- Department of Infection, Imperial College London, London, United Kingdom
| | - Nabil Karah
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Hannah Landecker
- Department of Sociology and Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Charles Knapp
- Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Megan M. McEvoy
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Ghassan M. Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
- World Health Organisation (WHO) Collaborating Center for Reference and Research on Bacterial Pathogens, Beirut, Lebanon
| |
Collapse
|
36
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
37
|
Hitaishi VP, Clément R, Quattrocchi L, Parent P, Duché D, Zuily L, Ilbert M, Lojou E, Mazurenko I. Interplay between Orientation at Electrodes and Copper Activation of Thermus thermophilus Laccase for O2 Reduction. J Am Chem Soc 2019; 142:1394-1405. [DOI: 10.1021/jacs.9b11147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vivek Pratap Hitaishi
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Romain Clément
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Ludovica Quattrocchi
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Philippe Parent
- Aix Marseille Univ, CNRS, CINAM UMR 7325, Campus de Luminy, 13288 Marseille, Cedex 09, France
| | - David Duché
- Aix Marseille Univ, Université de Toulon, CNRS, IM2NP UMR 7334, 13397 Marseille, France
| | - Lisa Zuily
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Marianne Ilbert
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
- Aix Marseille Univ, CNRS, IMM FR 3479, 31 Chemin Aiguier, CS 70071, 13402 Marseille, Cedex 09, France
| |
Collapse
|
38
|
Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019; 222:1-13. [DOI: 10.1016/j.micres.2019.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
39
|
Hecel A, Kolkowska P, Krzywoszynska K, Szebesczyk A, Rowinska-Zyrek M, Kozlowski H. Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy. Curr Med Chem 2019; 26:624-647. [DOI: 10.2174/0929867324666170920125943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022]
Abstract
Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summarized.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Paulina Kolkowska
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Karolina Krzywoszynska
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | - Agnieszka Szebesczyk
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | | | - Henryk Kozlowski
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| |
Collapse
|
40
|
Zhang L, Cui H, Zou Z, Garakani TM, Novoa-Henriquez C, Jooyeh B, Schwaneberg U. Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angew Chem Int Ed Engl 2019; 58:4562-4565. [PMID: 30689276 DOI: 10.1002/anie.201814069] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/25/2019] [Indexed: 11/10/2022]
Abstract
Escherichia coli's copper efflux oxidase (CueO) has rarely been employed in the cathodic compartment of enzymatic biofuel cells (EBFCs) due to its low redox potential (0.36 V vs. Ag/AgCl, pH 5.5) towards O2 reduction. Herein, directed evolution of CueO towards a more positive onset potential was performed in an electrochemical screening system. An improved CueO variant (D439T/L502K) was obtained with a significantly increased onset potential (0.54 V), comparable to that of high-redox-potential fungal laccases. Upon coupling with an anodic compartment, the EBFC exhibited an open-circuit voltage (Voc ) of 0.56 V. Directed enzyme evolution by tailoring enzymes to application conditions in EBFCs has been validated and might, in combination with molecular understanding, enable future breakthroughs in EBFC performance.
Collapse
Affiliation(s)
- Lingling Zhang
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Zhi Zou
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | | | - Catalina Novoa-Henriquez
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| | - Bahareh Jooyeh
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.,DWI Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52074, Aachen, Germany
| |
Collapse
|
41
|
Zhang L, Cui H, Zou Z, Garakani TM, Novoa‐Henriquez C, Jooyeh B, Schwaneberg U. Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lingling Zhang
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Haiyang Cui
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Zhi Zou
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | | | - Catalina Novoa‐Henriquez
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| | - Bahareh Jooyeh
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology RWTH Aachen University Worringer Weg 3 52074 Aachen Germany
- DWI Leibniz-Institute for Interactive Materials Forckenbeckstrasse 50 52074 Aachen Germany
| |
Collapse
|
42
|
Sana B, Chee SMQ, Wongsantichon J, Raghavan S, Robinson RC, Ghadessy FJ. Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions. J Biol Chem 2019; 294:7002-7012. [PMID: 30770473 PMCID: PMC6497955 DOI: 10.1074/jbc.ra118.007141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Protein–protein interactions (PPIs) are ubiquitous in almost all biological processes and are often corrupted in diseased states. A detailed understanding of PPIs is therefore key to understanding cellular physiology and can yield attractive therapeutic targets. Here, we describe the development and structural characterization of novel Escherichia coli CueO multi-copper oxidase variants engineered to recapitulate protein–protein interactions with commensurate modulation of their enzymatic activities. The fully integrated single-protein sensors were developed through modular grafting of ligand-specific peptides into a highly compliant and flexible methionine-rich loop of CueO. Sensitive detection of diverse ligand classes exemplified by antibodies, an E3 ligase, MDM2 proto-oncogene (MDM2), and protease (SplB from Staphylococcus aureus) was achieved in a simple mix and measure homogeneous format with visually observable colorimetric readouts. Therapeutic antagonism of MDM2 by small molecules and peptides in clinical development for treatment of cancer patients was assayed using the MDM2-binding CueO enzyme. Structural characterization of the free and MDM2-bound CueO variant provided functional insight into signal-transducing mechanisms of the engineered enzymes and highlighted the robustness of CueO as a stable and compliant scaffold for multiple applications.
Collapse
Affiliation(s)
- Barindra Sana
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sharon M Q Chee
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Jantana Wongsantichon
- the Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok 10400, Thailand, and.,the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sarada Raghavan
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore
| | - Robert C Robinson
- the Institute of Molecular and Cellular Biology, A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Farid J Ghadessy
- From the p53 Laboratory, Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Singapore 138648, Singapore,
| |
Collapse
|
43
|
Interaction of Copper Toxicity and Oxidative Stress in Campylobacter jejuni. J Bacteriol 2018; 200:JB.00208-18. [PMID: 30150230 DOI: 10.1128/jb.00208-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/16/2018] [Indexed: 11/20/2022] Open
Abstract
Copper is both a required micronutrient and a source of toxicity in most organisms, including Campylobacter jejuni Two proteins expressed in C. jejuni (termed CopA and CueO) have been shown to be a copper transporter and multicopper oxidase, respectively. We have isolated strains with mutations in these genes, and here we report that they were more susceptible to both the addition of copper in the growth media and to induced oxidative stress. Both mutant strains were defective in colonization of an avian host, and copper in the feed exacerbated the colonization deficiency. Overexpression of a cytoplasmic peptide derived from the normally periplasmic copper-binding region of CueO also caused copper intolerance compared to nonexpressing strains or strains expressing the non-copper-binding versions of the peptide. Taken together, the results indicate that copper toxicity in C. jejuni is due to a failure to effectively sequester cytoplasmic copper, resulting in an increase in copper-mediated oxidative damage.IMPORTANCE Copper is a required micronutrient for most aerobic organisms, but it is universally toxic at elevated levels. These organisms use homeostatic mechanisms that allow for cells to acquire enough of the element to sustain metabolic requirements while ensuring that lethal levels cannot build up in the cell. Campylobacter jejuni is an important foodborne pathogen that typically makes its way into the food chain through contaminated poultry. C. jejuni has a metabolic requirement for copper and encodes a copper detoxification system. In the course of studying this system, we have learned that it is important for avian colonization. We have also gained insight into how copper exerts its toxic effects in C. jejuni by promoting oxidative stress.
Collapse
|
44
|
Crystal structures of multicopper oxidase CueO G304K mutant: structural basis of the increased laccase activity. Sci Rep 2018; 8:14252. [PMID: 30250139 PMCID: PMC6155172 DOI: 10.1038/s41598-018-32446-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
The multicopper oxidase CueO is involved in copper homeostasis and copper (Cu) tolerance in Escherichia coli. The laccase activity of CueO G304K mutant is higher than wild-type CueO. To explain this increase in activity, we solved the crystal structure of G304K mutant at 1.49 Å. Compared with wild-type CueO, the G304K mutant showed dramatic conformational changes in methionine-rich helix and the relative regulatory loop (R-loop). We further solved the structure of Cu-soaked enzyme, and found that the addition of Cu ions induced further conformational changes in the R-loop and methionine-rich helix as a result of the new Cu-binding sites on the enzyme's surface. We propose a mechanism for the enhanced laccase activity of the G304K mutant, where movements of the R-loop combined with the changes of the methionine-rich region uncover the T1 Cu site allowing greater access of the substrate. Two of the G304K double mutants showed the enhanced or decreased laccase activity, providing further evidence for the interaction between the R-loop and the methionine-rich region. The cuprous oxidase activity of these mutants was about 20% that of wild-type CueO. These structural features of the G304K mutant provide clues for designing specific substrate-binding mutants in the biotechnological applications.
Collapse
|
45
|
Pacheco CC, Büttel Z, Pinto F, Rodrigo G, Carrera J, Jaramillo A, Tamagnini P. Modulation of Intracellular O 2 Concentration in Escherichia coli Strains Using Oxygen Consuming Devices. ACS Synth Biol 2018; 7:1742-1752. [PMID: 29952558 DOI: 10.1021/acssynbio.7b00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of cell factories for the production of bulk and value-added compounds is nowadays an advantageous alternative to the traditional petrochemical methods. Nevertheless, the efficiency and productivity of several of these processes can improve with the implementation of micro-oxic or anoxic conditions. In the industrial setting, laccases are appealing catalysts that can oxidize a wide range of substrates and reduce O2 to H2O. In this work, several laccase-based devices were designed and constructed to modulate the intracellular oxygen concentration in bacterial chassis. These oxygen consuming devices (OCDs) included Escherichia coli's native laccase (CueO) and three variants of this protein obtained by directed evolution. The OCDs were initially characterized in vitro using E. coli DH5α protein extracts and subsequently using extracts obtained from other E. coli strains and in vivo. Upon induction of the OCDs, no major effect on growth was observed in four of the strains tested, and analysis of the cell extract protein profiles revealed increased levels of laccase. Moreover, oxygen consumption associated with the OCDs occurred under all of the conditions tested, but the performance of the devices was shown to be strain-dependent, highlighting the importance of the genetic background even in closely related strains. One of the laccase variants showed 13- and 5-fold increases in oxidase activity and O2 consumption rate, respectively. Furthermore, it was also possible to demonstrate O2 consumption in vivo using l-DOPA as the substrate, which represents a proof of concept that these OCDs generate an intracellular oxygen sink, thereby manipulating the redox status of the cells. In addition, the modularity and orthogonality principles used for the development of these devices allow easy reassembly and fine-tuning, foreseeing their introduction into other chassis/systems.
Collapse
Affiliation(s)
- Catarina C. Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Zsófia Büttel
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipe Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Guillermo Rodrigo
- Instituto de Biologia Molecular y Celular de Plantas, CSIC, Universidad Politècnica de València, Camí de Vera s/n, 46022 València, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Javier Carrera
- Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, California 94305-4125, United States
| | - Alfonso Jaramillo
- Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- CNRS-UMR8030, Laboratoire iSSB and Université Paris-Saclay and Université d’Évry and CEA, DRF, IG, Genoscope, Évry 91000, France
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, 46980 Paterna, Spain
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
46
|
Tao L, Stich TA, Soldatova AV, Tebo BM, Spiro TG, Casey WH, Britt RD. Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy. J Biol Inorg Chem 2018; 23:1093-1104. [PMID: 29968177 DOI: 10.1007/s00775-018-1587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023]
Abstract
The multi-copper oxidase (MCO) MnxG from marine Bacillus bacteria plays an essential role in geochemical cycling of manganese by oxidizing Mn2+(aq) to form manganese oxide minerals at rates that are three to five orders of magnitude faster than abiotic rates. The MCO MnxG protein is isolated as part of a multi-protein complex, denoted as Mnx, which includes one MnxG unit and a hexamer of MnxE3F3 subunit. During the oxidation of Mn2+(aq) catalyzed by the Mnx protein complex, an enzyme-bound Mn(III) species was trapped recently in the presence of pyrophosphate (PP) and analyzed using parallel-mode electron paramagnetic resonance (EPR) spectroscopy. Herein, we provide a full analysis of this enzyme-bound Mn(III) intermediate via temperature dependence studies and spectral simulations. This Mnx-bound Mn(III) species is characterized by a hyperfine-coupling value of A(55Mn) = 4.2 mT (corresponding to 120 MHz) and a negative zero-field splitting (ZFS) value of D = - 2.0 cm-1. These magnetic properties suggest that the Mnx-bound Mn(III) species could be either six-coordinate with a 5B1g ground state or square-pyramidal five-coordinate with a 5B1 ground state. In addition, as a control, Mn(III)PP is also analyzed by parallel-mode EPR spectroscopy. It exhibits distinctly different magnetic properties with a hyperfine-coupling value of A(55Mn) = 4.8 mT (corresponding to 140 MHz) and a negative ZFS value of D = - 2.5 cm-1. The different ZFS values suggest differences in ligand environment of Mnx-bound Mn(III) and aqueous Mn(III)PP species. These studies provide further insights into the mechanism of biological Mn2+(aq) oxidation.
Collapse
Affiliation(s)
- Lizhi Tao
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Troy A Stich
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - William H Casey
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Department of Geology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - R David Britt
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
47
|
Antimicrobial properties of ternary eutectic aluminum alloys. Biometals 2018; 31:759-770. [PMID: 29946993 DOI: 10.1007/s10534-018-0119-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/12/2018] [Indexed: 01/05/2023]
Abstract
Several Escherichia coli deletion mutants of the Keio collection were selected for analysis to better understand which genes may play a key role in copper or silver homeostasis. Each of the selected E. coli mutants had a deletion of a single gene predicted to encode proteins for homologous recombination or contained functions directly linked to copper or silver transport or transformation. The survival of these strains on pure copper surfaces, stainless steel, and alloys of aluminum, copper and/or silver was investigated. When exposed to pure copper surfaces, E. coli ΔcueO was the most sensitive, whereas E. coli ΔcopA was the most resistant amongst the different strains tested. However, we observed a different trend in sensitivities in E. coli strains upon exposure to alloys of the system Al-Ag-Cu. While minor antimicrobial effects were detected after exposure of E. coli ΔcopA and E. coli ΔrecA to Al-Ag alloys, no effect was detected after exposure to Al-Cu alloys. The release of copper ions and cell-associated copper ion concentrations were determined for E. coli ΔcopA and the wild-type E. coli after exposure to pure copper surfaces. Altogether, compared to binary alloys, ternary eutectic alloys (Al-Ag-Cu) had the highest antimicrobial effect and thus, warrant further investigation.
Collapse
|
48
|
Rensing C, Moodley A, Cavaco LM, McDevitt SF. Resistance to Metals Used in Agricultural Production. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0025-2017. [PMID: 29676247 PMCID: PMC11633777 DOI: 10.1128/microbiolspec.arba-0025-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Metals and metalloids have been used alongside antibiotics in livestock production for a long time. The potential and acute negative impact on the environment and human health of these livestock feed supplements has prompted lawmakers to ban or discourage the use of some or all of these supplements. This article provides an overview of current use in the European Union and the United States, detected metal resistance determinants, and the proteins and mechanisms responsible for conferring copper and zinc resistance in bacteria. A detailed description of the most common copper and zinc metal resistance determinants is given to illustrate not only the potential danger of coselecting antibiotic resistance genes but also the potential to generate bacterial strains with an increased potential to be pathogenic to humans. For example, the presence of a 20-gene copper pathogenicity island is highlighted since bacteria containing this gene cluster could be readily isolated from copper-fed pigs, and many pathogenic strains, including Escherichia coli O104:H4, contain this potential virulence factor, suggesting a potential link between copper supplements in livestock and the evolution of pathogens.
Collapse
Affiliation(s)
- Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Arshnee Moodley
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lina M Cavaco
- Department for Bacteria, Parasites, and Fungi, Infectious Disease Preparedness, Statens Serum Institut and Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | | |
Collapse
|
49
|
Schlesinger O, Pasi M, Dandela R, Meijler MM, Alfonta L. Electron transfer rate analysis of a site-specifically wired copper oxidase. Phys Chem Chem Phys 2018; 20:6159-6166. [DOI: 10.1039/c8cp00041g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron transfer kinetic parameters of site-specifically wired copper oxidase were investigated.
Collapse
Affiliation(s)
- Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Mor Pasi
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Rambabu Dandela
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Michael M. Meijler
- Department of Chemistry and National Institute for Biotechnology in the Negev
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| |
Collapse
|
50
|
Yue Q, Yang Y, Zhao J, Zhang L, Xu L, Chu X, Liu X, Tian J, Wu N. Identification of bacterial laccase cueO mutation from the metagenome of chemical plant sludge. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0178-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|