1
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
2
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
3
|
Wang LY. Selective p300 degradation via peptide PROTAC: a new therapeutic strategy for advanced prostate cancers. EBioMedicine 2024; 106:105245. [PMID: 38981160 PMCID: PMC11292422 DOI: 10.1016/j.ebiom.2024.105245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Affiliation(s)
- Ling-Yu Wang
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan 33302, Taiwan; Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
4
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592966. [PMID: 38766099 PMCID: PMC11100730 DOI: 10.1101/2024.05.07.592966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Christopher M. McNair
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Saswati N. Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K. Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J. Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107, USA
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| | - Xiaofeng A. Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lisa M. Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johann S. de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Karen E. Knudsen
- The American Cancer Society, Philadelphia, Pennsylvania, 19103, USA
| | - Ayesha A. Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, 20817, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, 20817 USA
| |
Collapse
|
5
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
7
|
Li X, Wang Y, Deng S, Zhu G, Wang C, Johnson NA, Zhang Z, Tirado CR, Xu Y, Metang LA, Gonzalez J, Mukherji A, Ye J, Yang Y, Peng W, Tang Y, Hofstad M, Xie Z, Yoon H, Chen L, Liu X, Chen S, Zhu H, Strand D, Liang H, Raj G, He HH, Mendell JT, Li B, Wang T, Mu P. Loss of SYNCRIP unleashes APOBEC-driven mutagenesis, tumor heterogeneity, and AR-targeted therapy resistance in prostate cancer. Cancer Cell 2023; 41:1427-1449.e12. [PMID: 37478850 PMCID: PMC10530398 DOI: 10.1016/j.ccell.2023.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nickolas A Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lauren A Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Wei Peng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Heewon Yoon
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Liping Chen
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xihui Liu
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Hong Zhu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX, USA; Department of Systems Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Gioukaki C, Georgiou A, Gkaralea LE, Kroupis C, Lazaris AC, Alamanis C, Thomopoulou GE. Unravelling the Role of P300 and TMPRSS2 in Prostate Cancer: A Literature Review. Int J Mol Sci 2023; 24:11299. [PMID: 37511059 PMCID: PMC10379122 DOI: 10.3390/ijms241411299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is one of the most common malignant diseases in men, and it contributes significantly to the increased mortality rate in men worldwide. This study aimed to review the roles of p300 and TMPRSS2 (transmembrane protease, serine 2) in the AR (androgen receptor) pathway as they are closely related to the development and progression of prostate cancer. This paper represents a library-based study conducted by selecting the most suitable, up-to-date scientific published articles from online journals. We focused on articles that use similar techniques, particularly those that use prostate cancer cell lines and immunohistochemical staining to study the molecular impact of p300 and TMPRSS2 in prostate cancer specimens. The TMPRSS2:ERG fusion is considered relevant to prostate cancer, but its association with the development and progression as well as its clinical significance have not been fully elucidated. On the other hand, high p300 levels in prostate cancer biopsies predict larger tumor volumes, extraprostatic extension of disease, and seminal vesicle involvement at prostatectomy, and may be associated with prostate cancer progression after surgery. The inhibition of p300 has been shown to reduce the proliferation of prostate cancer cells with TMPRSS2:ETS (E26 transformation-specific) fusions, and combining p300 inhibitors with other targeted therapies may increase their efficacy. Overall, the interplay between the p300 and TMPRSS2 pathways is an active area of research.
Collapse
Affiliation(s)
- Charitomeni Gioukaki
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros Georgiou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Alamanis
- 1st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
9
|
Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules 2023; 13:biom13030417. [PMID: 36979352 PMCID: PMC10046601 DOI: 10.3390/biom13030417] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Collapse
|
10
|
New approaches to targeting epigenetic regulation in prostate cancer. Curr Opin Urol 2022; 32:472-480. [DOI: 10.1097/mou.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Kanada R, Kagoshima Y, Asano M, Suzuki T, Murata T, Haruta M, Takahashi M, Ubukata O, Hashimoto K, Obata K, Kihara K, Kuroha M, Banjo T, Togashi N, Sato K, Yamamoto Y, Suzuki K, Isoyama T, Tominaga Y, Higuchi S, Naito H. Discovery of EP300/CBP histone acetyltransferase inhibitors through scaffold hopping of 1,4-oxazepane ring. Bioorg Med Chem Lett 2022; 66:128726. [PMID: 35413416 DOI: 10.1016/j.bmcl.2022.128726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/02/2022]
Abstract
EP300 and its paralog CBP play an important role in post-translational modification as histone acetyltransferases (HATs). EP300/CBP inhibition has been gaining attention as an anticancer treatment target in recent years. Herein, we describe the identification of a novel, highly selective EP300/CBP inhibitor, compound 11 (DS17701585), by scaffold hopping and structure-based optimization of a high-throughput screening hit 1. Compound 11 (DS17701585) shows dose-dependent inhibition of SRY-box transcription factor 2 (SOX2) mRNA expression in a human lung squamous cell carcinoma cell line LK2-xenografted mouse model.
Collapse
Affiliation(s)
- Ryutaro Kanada
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | - Yoshiko Kagoshima
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Masayoshi Asano
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takeshi Murata
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Makoto Haruta
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Mizuki Takahashi
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Osamu Ubukata
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kazuyuki Hashimoto
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kenichi Obata
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kawori Kihara
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Mutsumi Kuroha
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Toshihiro Banjo
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Noriko Togashi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kazumi Sato
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Yuka Yamamoto
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Kanae Suzuki
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takeshi Isoyama
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yuichi Tominaga
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Saito Higuchi
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hiroyuki Naito
- Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
12
|
Dahiya UR, Heemers HV. Analyzing the Androgen Receptor Interactome in Prostate Cancer: Implications for Therapeutic Intervention. Cells 2022; 11:936. [PMID: 35326387 PMCID: PMC8946651 DOI: 10.3390/cells11060936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022] Open
Abstract
The androgen receptor (AR) is a member of the ligand-activated nuclear receptor family of transcription factors. AR's transactivation activity is turned on by the binding of androgens, the male sex steroid hormones. AR is critical for the development and maintenance of the male phenotype but has been recognized to also play an important role in human diseases. Most notably, AR is a major driver of prostate cancer (CaP) progression, which remains the second leading cause of cancer deaths in American men. Androgen deprivation therapies (ADTs) that interfere with interactions between AR and its activating androgen ligands have been the mainstay for treatment of metastatic CaP. Although ADTs are effective and induce remissions, eventually they fail, while the growth of the majority of ADT-resistant CaPs remains under AR's control. Alternative approaches to inhibit AR activity and bypass resistance to ADT are being sought, such as preventing the interaction between AR and its cofactors and coregulators that is needed to execute AR-dependent transcription. For such strategies to be efficient, the 3D conformation of AR complexes needs to be well-understood and AR-regulator interaction sites resolved. Here, we review current insights into these 3D structures and the protein interaction sites in AR transcriptional complexes. We focus on methods and technological approaches used to identify AR interactors and discuss challenges and limitations that need to be overcome for efficient therapeutic AR complex disruption.
Collapse
Affiliation(s)
| | - Hannelore V. Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, NB-40, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| |
Collapse
|
13
|
Jaiswal B, Agarwal A, Gupta A. Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer. Front Endocrinol (Lausanne) 2022; 13:886594. [PMID: 36060957 PMCID: PMC9428678 DOI: 10.3389/fendo.2022.886594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The development and growth of a normal prostate gland, as well as its physiological functions, are regulated by the actions of androgens through androgen receptor (AR) signaling which drives multiple cellular processes including transcription, cellular proliferation, and apoptosis in prostate cells. Post-translational regulation of AR plays a vital role in directing its cellular activities via modulating its stability, nuclear localization, and transcriptional activity. Among various post-translational modifications (PTMs), acetylation is an essential PTM recognized in AR and is governed by the regulated actions of acetyltransferases and deacetyltransferases. Acetylation of AR has been identified as a critical step for its activation and depending on the site of acetylation, the intracellular dynamics and activity of the AR can be modulated. Various acetyltransferases such as CBP, p300, PCAF, TIP60, and ARD1 that are known to acetylate AR, may directly coactivate the AR transcriptional function or help to recruit additional coactivators to functionally regulate the transcriptional activity of the AR. Aberrant expression of acetyltransferases and their deregulated activities have been found to interfere with AR signaling and play a key role in development and progression of prostatic diseases, including prostate cancer (PCa). In this review, we summarized recent research advances aimed at understanding the role of various lysine acetyltransferases (KATs) in the regulation of AR activity at the level of post-translational modifications in normal prostate physiology, as well as in development and progression of PCa. Considering the critical importance of KATs in modulating AR activity in physiological and patho-physiological context, we further discussed the potential of targeting these enzymes as a therapeutic option to treat AR-related pathology in combination with hormonal therapy.
Collapse
Affiliation(s)
- Bharti Jaiswal
- Integrative Chemical Biology (ICB), Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| | - Akanksha Agarwal
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
| | - Ashish Gupta
- Epigenetics and Human Disease Laboratory, Centre of Excellence in Epigenetics (CoEE) Department of Life Sciences, Shiv Nadar University, Delhi, UP, India
- *Correspondence: Ashish Gupta, ; Bharti Jaiswal,
| |
Collapse
|
14
|
Epigenetic Coregulation of Androgen Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:277-293. [DOI: 10.1007/978-3-031-11836-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
16
|
Somatic Alterations Impact AR Transcriptional Activity and Efficacy of AR-Targeting Therapies in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13163947. [PMID: 34439101 PMCID: PMC8393938 DOI: 10.3390/cancers13163947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary For patients whose prostate cancer spreads beyond the confines of the prostate, treatment options continue to increase. However, we are missing the information that is needed to choose for each patient the best treatment at each step of his cancer progression so we can ensure that maximal remissions and prolonged survival are achieved. In this review, we examine whether a better understanding of how the activity of the target for the default first treatment, the androgen receptor, is regulated in prostate cancer tissues can improve prostate cancer treatment plans. We consider the evidence for variability of androgen receptor activity among patients and examine the molecular basis for this variable action. We summarize clinical evidence supporting that information on a prostate cancer’s genomic composition may inform on its level of androgen receptor action, which may facilitate choice for the most effective first-line therapy and ultimately improve prostate cancer treatment plans overall. Abstract Inhibiting the activity of the ligand-activated transcription factor androgen receptor (AR) is the default first-line treatment for metastatic prostate cancer (CaP). Androgen deprivation therapy (ADT) induces remissions, however, their duration varies widely among patients. The reason for this heterogeneity is not known. A better understanding of its molecular basis may improve treatment plans and patient survival. AR’s transcriptional activity is regulated in a context-dependent manner and relies on an interplay between its associated transcriptional regulators, DNA recognition motifs, and ligands. Alterations in one or more of these factors induce shifts in the AR cistrome and transcriptional output. Significant variability in AR activity is seen in both castration-sensitive (CS) and castration-resistant CaP (CRPC). Several AR transcriptional regulators undergo somatic alterations that impact their function in clinical CaPs. Some alterations occur in a significant fraction of cases, resulting in CaP subtypes, while others affect only a few percent of CaPs. Evidence is emerging that these alterations may impact the response to CaP treatments such as ADT, radiation therapy, and chemotherapy. Here, we review the contribution of recurring somatic alterations on AR cistrome and transcriptional output and the efficacy of CaP treatments and explore strategies to use these insights to improve treatment plans and outcomes for CaP patients.
Collapse
|
17
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
18
|
Furlan T, Kirchmair A, Sampson N, Puhr M, Gruber M, Trajanoski Z, Santer FR, Parson W, Handle F, Culig Z. MYC-Mediated Ribosomal Gene Expression Sensitizes Enzalutamide-resistant Prostate Cancer Cells to EP300/CREBBP Inhibitors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1094-1107. [PMID: 33705753 DOI: 10.1016/j.ajpath.2021.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.
Collapse
Affiliation(s)
- Tobias Furlan
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kirchmair
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
19
|
Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand SN, Pal A, Figueiredo I, Riisnaes R, Gurel B, Rekowski J, Bogdan D, West W, Young B, Raja M, Prosser A, Lane J, Thomson S, Worthington J, Onions S, Shannon J, Paoletta S, Brown R, Smyth D, Harbottle GW, Gil VS, Miranda S, Crespo M, Ferreira A, Pereira R, Tunariu N, Carreira S, Neeb AJ, Ning J, Swain A, Taddei D, Schiewer MJ, Knudsen KE, Pegg N, de Bono JS. Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discov 2021; 11:1118-1137. [PMID: 33431496 PMCID: PMC8102310 DOI: 10.1158/2159-8290.cd-20-0751] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC-regulated gene expression. In AR-SV-driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. SIGNIFICANCE: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies.See related commentary by Rasool et al., p. 1011.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Jonathan Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Abhijit Pal
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | | | - Barbara Young
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Meera Raja
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Amy Prosser
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Jordan Lane
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Stuart Thomson
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | - Stuart Onions
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | | | - Richard Brown
- Sygnature Discovery Services, Nottingham, United Kingdom
| | - Don Smyth
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | - Veronica S Gil
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | - Rita Pereira
- The Institute of Cancer Research, London, United Kingdom
| | - Nina Tunariu
- The Royal Marsden Hospital, London, United Kingdom
| | | | - Antje J Neeb
- The Institute of Cancer Research, London, United Kingdom
| | - Jian Ning
- The Institute of Cancer Research, London, United Kingdom
| | - Amanda Swain
- The Institute of Cancer Research, London, United Kingdom
| | - David Taddei
- Sygnature Discovery Services, Nottingham, United Kingdom
| | | | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom.
- The Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
20
|
Wu SL, Zhao J, Sun HB, Li HY, Yin YY, Zhang LL. Insights into interaction mechanism of inhibitors E3T, E3H and E3B with CREB binding protein by using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:221-246. [PMID: 33661069 DOI: 10.1080/1062936x.2021.1887351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
CREB binding protein (CBP) and its paralog E1A binding protein (p300) are related to the development of inflammatory diseases, cancers and other diseases, and have been potential targets for the treatment of human diseases. In this work, interaction mechanism of three small molecules E3T, E3H, and E3B with CBP was investigated by employing molecular dynamics (MD) simulations, principal component analysis (PCA), and molecular mechanics/generalized born surface area (MM-GBSA) method. The results indicate that inhibitor bindings cause the changes of movement modes and structural flexibility of CBP, and van der Waals interactions mostly drive associations of inhibitors with CBP. In the meantime, the results based on inhibitor-residue interactions not only show that eight residues of CBP can strongly interact with E3T, E3H and E3B but also verify that the CH-CH, CH-π, and π-π interactions are responsible for vital contributions in associations of E3T, E3H and E3B with CBP. In addition, the H-O radial distribution functions (RDFs) were computed to assess the stability of hydrogen bonding interactions between inhibitors and CBP, and the obtained information identifies several key hydrogen bonds playing key roles in bindings of E3T, E3H and E3B to CBP. Potential new inhibitors have been proposed.
Collapse
Affiliation(s)
- S L Wu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H Y Li
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
21
|
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression. Biomolecules 2021; 11:247. [PMID: 33572160 PMCID: PMC7915076 DOI: 10.3390/biom11020247] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
While a protein primary structure is determined by genetic code, its specific functional form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved in post-translational modifications. This versatile repertoire is widely used by cells to direct their response to external stimuli, regulate transcription and protein localization and to keep proteostasis. Herein, post-translational modifications with evident potency to drive prostate cancer are explored. A comprehensive list of proteome-wide and single protein post-translational modifications and their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer cells do not differ in the expression or mutational status of a protein, but its differential activity is regulated on the level of post-translational modifications. Since their driving roles in prostate cancer, post-translational modifications are widely studied in attempts to advance prostate cancer treatment. Current strategies that exploit the potential of post-translational modifications in prostate cancer therapy are presented.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
MED19 alters AR occupancy and gene expression in prostate cancer cells, driving MAOA expression and growth under low androgen. PLoS Genet 2021; 17:e1008540. [PMID: 33513133 PMCID: PMC7875385 DOI: 10.1371/journal.pgen.1008540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2021] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a mainstay of prostate cancer treatment, given the dependence of prostate cells on androgen and the androgen receptor (AR). However, tumors become ADT-resistant, and there is a need to understand the mechanism. One possible mechanism is the upregulation of AR co-regulators, although only a handful have been definitively linked to disease. We previously identified the Mediator subunit MED19 as an AR co-regulator, and reported that MED19 depletion inhibits AR transcriptional activity and growth of androgen-insensitive LNCaP-abl cells. Therefore, we proposed that MED19 upregulation would promote AR activity and drive androgen-independent growth. Here, we show that stable overexpression of MED19 in androgen-dependent LNCaP cells promotes growth under conditions of androgen deprivation. To delineate the mechanism, we determined the MED19 and AR transcriptomes and cistromes in control and MED19-overexpressing LNCaP cells. We also examined genome-wide H3K27 acetylation. MED19 overexpression selectively alters AR occupancy, H3K27 acetylation, and gene expression. Under conditions of androgen deprivation, genes regulated by MED19 correspond to genes regulated by ELK1, a transcription factor that binds the AR N-terminus to induce select AR target gene expression and proliferation, and genomic sites occupied by MED19 and AR are enriched for motifs associated with ELK1. Strikingly, MED19 upregulates expression of monoamine oxidase A (MAOA), a factor that promotes prostate cancer growth. MAOA depletion reduces androgen-independent growth. MED19 and AR occupy the MAOA promoter, with MED19 overexpression enhancing AR occupancy and H3K27 acetylation. Furthermore, MED19 overexpression increases ELK1 occupancy at the MAOA promoter, and ELK1 depletion reduces MAOA expression and androgen-independent growth. This suggests that MED19 cooperates with ELK1 to regulate AR occupancy and H3K27 acetylation at MAOA, upregulating its expression and driving androgen independence in prostate cancer cells. This study provides important insight into the mechanisms of prostate cancer cell growth under low androgen, and underscores the importance of the MED19-MAOA axis in this process.
Collapse
|
23
|
Tafessu A, Banaszynski LA. Establishment and function of chromatin modification at enhancers. Open Biol 2020; 10:200255. [PMID: 33050790 PMCID: PMC7653351 DOI: 10.1098/rsob.200255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
How a single genome can give rise to distinct cell types remains a fundamental question in biology. Mammals are able to specify and maintain hundreds of cell fates by selectively activating unique subsets of their genome. This is achieved, in part, by enhancers-genetic elements that can increase transcription of both nearby and distal genes. Enhancers can be identified by their unique chromatin signature, including transcription factor binding and the enrichment of specific histone post-translational modifications, histone variants, and chromatin-associated cofactors. How each of these chromatin features contributes to enhancer function remains an area of intense study. In this review, we provide an overview of enhancer-associated chromatin states, and the proteins and enzymes involved in their establishment. We discuss recent insights into the effects of the enhancer chromatin state on ongoing transcription versus their role in the establishment of new transcription programmes, such as those that occur developmentally. Finally, we highlight the role of enhancer chromatin in new conceptual advances in gene regulation such as condensate formation.
Collapse
Affiliation(s)
| | - Laura A. Banaszynski
- UT Southwestern Medical Center, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Research Institute, Hamon Center for Regenerative Science and Medicine, Dallas, TX 75390-8511, USA
| |
Collapse
|
24
|
Xu YY, Shen HB, Murphy RF. Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images. Bioinformatics 2020; 36:1908-1914. [PMID: 31722369 DOI: 10.1093/bioinformatics/btz844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/20/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION Systematic and comprehensive analysis of protein subcellular location as a critical part of proteomics ('location proteomics') has been studied for many years, but annotating protein subcellular locations and understanding variation of the location patterns across various cell types and states is still challenging. RESULTS In this work, we used immunohistochemistry images from the Human Protein Atlas as the source of subcellular location information, and built classification models for the complex protein spatial distribution in normal and cancerous tissues. The models can automatically estimate the fractions of protein in different subcellular locations, and can help to quantify the changes of protein distribution from normal to cancer tissues. In addition, we examined the extent to which different annotated protein pathways and complexes showed similarity in the locations of their member proteins, and then predicted new potential proteins for these networks. AVAILABILITY AND IMPLEMENTATION The dataset and code are available at: www.csbio.sjtu.edu.cn/bioinf/complexsubcellularpatterns. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.,Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Robert F Murphy
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Baumgart SJ, Nevedomskaya E, Lesche R, Newman R, Mumberg D, Haendler B. Darolutamide antagonizes androgen signaling by blocking enhancer and super-enhancer activation. Mol Oncol 2020; 14:2022-2039. [PMID: 32333502 PMCID: PMC7463324 DOI: 10.1002/1878-0261.12693] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequent tumor types in the male Western population. Early-stage PCa and late-stage PCa are dependent on androgen signaling, and inhibitors of the androgen receptor (AR) axis represent the standard therapy. Here, we studied in detail the global impact of darolutamide, a newly approved AR antagonist, on the transcriptome and AR-bound cistrome in two PCa cell models. Darolutamide strongly depleted the AR from gene regulatory regions and abolished AR-driven transcriptional signaling. Enhancer activation was blocked at the chromatin level as evaluated by H3K27 acetylation (H3K27ac), H3K4 monomethylation (H3K4me1), and FOXA1, MED1, and BRD4 binding. We identified genomic regions with high affinities for the AR in androgen-stimulated, but also in androgen-depleted conditions. A similar AR affinity pattern was observed in healthy and PCa tissue samples. High FOXA1, BRD4, H3K27ac, and H3K4me1 levels were found to mark regions showing AR binding in the hormone-depleted setting. Conversely, low FOXA1, BRD4, and H3K27ac levels were observed at regulatory sites that responded strongly to androgen stimulation, and AR interactions at these sites were blocked by darolutamide. Beside marked loss of AR occupancy, FOXA1 recruitment to chromatin was also clearly reduced after darolutamide treatment. We furthermore identified numerous androgen-regulated super-enhancers (SEs) that were associated with hallmark androgen and cell proliferation-associated gene sets. Importantly, these SEs are also active in PCa tissues and sensitive to darolutamide treatment in our models. Our findings demonstrate that darolutamide is a potent AR antagonist blocking genome-wide AR enhancer and SE activation, and downstream transcription. We also show the existence of a dynamic AR cistrome that depends on the androgen levels and on high AR affinity regions present in PCa cell lines and also in tissue samples.
Collapse
Affiliation(s)
| | | | - Ralf Lesche
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Richard Newman
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Dominik Mumberg
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | | |
Collapse
|
26
|
Martire S, Nguyen J, Sundaresan A, Banaszynski LA. Differential contribution of p300 and CBP to regulatory element acetylation in mESCs. BMC Mol Cell Biol 2020; 21:55. [PMID: 32690000 PMCID: PMC7370441 DOI: 10.1186/s12860-020-00296-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/25/2020] [Indexed: 01/12/2023] Open
Abstract
Background The transcription coactivators CREB binding protein (CBP) and p300 are highly homologous acetyltransferases that mediate histone 3 lysine 27 acetylation (H3K27ac) at regulatory elements such as enhancers and promoters. Although in most cases, CBP and p300 are considered to be functionally identical, both proteins are indispensable for development and there is evidence of tissue-specific nonredundancy. However, characterization of chromatin and transcription states regulated by each protein is lacking. Results In this study we analyze the individual contribution of p300 and CBP to the H3K27ac landscape, chromatin accessibility, and transcription in mouse embryonic stem cells (mESC). We demonstrate that p300 is the predominant H3K27 acetyltransferase in mESCs and that loss of acetylation in p300KD mESCs is more pronounced at enhancers compared to promoters. While loss of either CBP or p300 has little effect on the open state of chromatin, we observe that distinct gene sets are transcriptionally dysregulated upon depletion of p300 or CBP. Transcriptional dysregulation is generally correlated with dysregulation of promoter acetylation upon depletion of p300 (but not CBP) and appears to be relatively independent of dysregulated enhancer acetylation. Interestingly, both our transcriptional and genomic analyses demonstrate that targets of the p53 pathway are stabilized upon depletion of p300, suggesting an unappreciated view of the relationship between p300 and p53 in mESCs. Conclusions This genomic study sheds light on distinct functions of two important transcriptional regulators in the context of a developmentally relevant cell type. Given the links to both developmental disorders and cancer, we believe that our study may promote new ways of thinking about how these proteins function in settings that lead to disease.
Collapse
Affiliation(s)
- Sara Martire
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Medical Center Research Institute, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jennifer Nguyen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Medical Center Research Institute, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Aishwarya Sundaresan
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Medical Center Research Institute, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laura A Banaszynski
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynecology, Children's Medical Center Research Institute, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
27
|
Yang L, Jin M, Park SJ, Seo SY, Jeong KW. SETD1A Promotes Proliferation of Castration-Resistant Prostate Cancer Cells via FOXM1 Transcription. Cancers (Basel) 2020; 12:1736. [PMID: 32629770 PMCID: PMC7407996 DOI: 10.3390/cancers12071736] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
Androgen deprivation therapy eventually leads to the development of castration-resistant prostate cancer (CRPC). Here, we demonstrate for the first time that the histone H3K4 methyltransferase SETD1A is a major regulator for the proliferation of metastatic CRPC (mCRPC). The expression of SETD1A was significantly correlated with the survival rate of patients with prostate cancer. SETD1A, which is expressed at a higher level in mCRPC than in primary prostate cancer cells, promotes the expression of FOXM1, a gene encoding a cell proliferation-specific transcription factor. SETD1A is recruited to the promoter region of FOXM1 (forkhead box M1) upon binding to E2F1, a protein that regulates the transcription of FOXM1 and contributes to the trimethylation of H3K4 in the FOXM1 promoter region. In addition, SETD1A is essential for the expression of stem cell factor (e.g., OCT4, octamer-binding transcription factor 4) and stem cell formation in mCRPC, suggesting the importance of SETD1A expression in mCRPC tumor formation. Notably, poor prognosis is associated with high expression of the SETD1A-FOXM1 pair in clinical data sets. Therefore, our study suggests that SETD1A plays an important role in the proliferation of mCRPC by regulating FOXM1 transcription.
Collapse
Affiliation(s)
| | | | | | | | - Kwang Won Jeong
- Gachon Research Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.Y.); (M.J.); (S.J.P.); (S.-Y.S.)
| |
Collapse
|
28
|
Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, Carbone GM, Cavalli A, Pagano F, Ragazzi E, Prayer-Galetti T, Alimonti A. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol 2020; 31:1040-1045. [PMID: 32387456 PMCID: PMC7202813 DOI: 10.1016/j.annonc.2020.04.479] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cell entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) depends on binding of the viral spike (S) proteins to angiotensin-converting enzyme 2 and on S protein priming by TMPRSS2. Inhibition of TMPRSS2 may work to block or decrease the severity of SARS-CoV-2 infections. Intriguingly, TMPRSS2 is an androgen-regulated gene that is up-regulated in prostate cancer where it supports tumor progression and is involved in a frequent genetic translocation with the ERG gene. First- or second-generation androgen-deprivation therapies (ADTs) decrease the levels of TMPRSS2. Here we put forward the hypothesis that ADTs may protect patients affected by prostate cancer from SARS-CoV-2 infections. Materials and methods We extracted data regarding 9280 patients (4532 males) with laboratory-confirmed SARS-CoV-2 infection from 68 hospitals in Veneto, one of the Italian regions that was most affected by the coronavirus disease 2019 (COVID-19) pandemic. The parameters used for each COVID-19-positive patient were sex, hospitalization, admission to intensive care unit, death, tumor diagnosis, prostate cancer diagnosis, and ADT. Results There were evaluable 9280 SARS-CoV-2-positive patients in Veneto on 1 April 2020. Overall, males developed more severe complications, were more frequently hospitalized, and had a worse clinical outcome than females. Considering only the Veneto male population (2.4 million men), 0.2% and 0.3% of non-cancer and cancer patients, respectively, tested positive for SARS-CoV-2. Comparing the total number of SARS-CoV-2-positive cases, prostate cancer patients receiving ADT had a significantly lower risk of SARS-CoV-2 infection compared with patients who did not receive ADT (OR 4.05; 95% CI 1.55–10.59). A greater difference was found comparing prostate cancer patients receiving ADT with patients with any other type of cancer (OR 4.86; 95% CI 1.88–12.56). Conclusion Our data suggest that cancer patients have an increased risk of SARS-CoV-2 infections compared with non-cancer patients. However, prostate cancer patients receiving ADT appear to be partially protected from SARS-CoV-2 infections. SARS-CoV-2-infected men have a worse clinical outcome than women. Cancer patients have an increased risk of SARS-CoV-2 infection. Prostate cancer patients receiving androgen-deprivation therapies appear to be partially protected from the infection.
Collapse
Affiliation(s)
- M Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy; VIMM - Veneto Institute of Molecular Medicine, Fondazione per la Ricerca Biomedica Avanzata, Padova, Italy
| | - S Zumerle
- VIMM - Veneto Institute of Molecular Medicine, Fondazione per la Ricerca Biomedica Avanzata, Padova, Italy; Department of Medicine, Università degli Studi di Padova, Padova, Italy
| | - R Vettor
- Department of Medicine, Università degli Studi di Padova, Padova, Italy
| | - M Rugge
- Department of Medicine, Università degli Studi di Padova, Padova, Italy; Veneto Tumour Registry - Azienda Zero, Padova, Italy
| | - M Zorzi
- Veneto Tumour Registry - Azienda Zero, Padova, Italy
| | - C V Catapano
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - G M Carbone
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - A Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - F Pagano
- VIMM - Veneto Institute of Molecular Medicine, Fondazione per la Ricerca Biomedica Avanzata, Padova, Italy
| | - E Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Padova, Italy
| | - T Prayer-Galetti
- Department of Oncological and Gastroenterological Sciences - Urology Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | - A Alimonti
- VIMM - Veneto Institute of Molecular Medicine, Fondazione per la Ricerca Biomedica Avanzata, Padova, Italy; Department of Medicine, Università degli Studi di Padova, Padova, Italy; Institute of Oncology Research, Oncology Institute of Southern Switzerland, Università della Svizzera Italiana, Bellinzona, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
29
|
Wu F, Hua Y, Kaochar S, Nie S, Lin YL, Yao Y, Wu J, Wu X, Fu X, Schiff R, Davis CM, Robertson M, Ehli EA, Coarfa C, Mitsiades N, Song Y. Discovery, Structure-Activity Relationship, and Biological Activity of Histone-Competitive Inhibitors of Histone Acetyltransferases P300/CBP. J Med Chem 2020; 63:4716-4731. [PMID: 32314924 DOI: 10.1021/acs.jmedchem.9b02164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Histone acetyltransferase (HAT) p300 and its paralog CBP acetylate histone lysine side chains and play critical roles in regulating gene transcription. The HAT domain of p300/CBP is a potential drug target for cancer. Through compound screening and medicinal chemistry, novel inhibitors of p300/CBP HAT with their IC50 values as low as 620 nM were discovered. The most potent inhibitor is competitive against histone substrates and exhibits a high selectivity for p300/CBP. It inhibited cellular acetylation and had strong activity with EC50 of 1-3 μM against proliferation of several tumor cell lines. Gene expression profiling in estrogen receptor (ER)-positive breast cancer MCF-7 cells showed that inhibitor treatment recapitulated siRNA-mediated p300 knockdown, inhibited ER-mediated gene transcription, and suppressed expression of numerous cancer-related gene signatures. These results demonstrate that the inhibitor is not only a useful probe for biological studies of p300/CBP HAT but also a pharmacological lead for further drug development targeting cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Christel M Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, United States
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, United States
| | | | | | | |
Collapse
|
30
|
Lu C, Brown LC, Antonarakis ES, Armstrong AJ, Luo J. Androgen receptor variant-driven prostate cancer II: advances in laboratory investigations. Prostate Cancer Prostatic Dis 2020; 23:381-397. [PMID: 32139878 PMCID: PMC7725416 DOI: 10.1038/s41391-020-0217-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Background: The androgen receptor (AR) is a key prostate cancer drug target.
Suppression of AR signaling mediated by the full-length AR (AR-FL) is the
therapeutic goal of all existing AR-directed therapies. AR-targeting agents
impart therapeutic benefit, but lead to AR aberrations that underlie disease
progression and therapeutic resistance. Among the AR aberrations specific to
castration-resistant prostate cancer (CRPC), AR variants (AR-Vs) have
emerged as important indicators of disease progression and therapeutic
resistance. Methods: We conducted a systemic review of the literature focusing on recent
laboratory studies on AR-Vs following our last review article published in
2016. Topics ranged from measurement and detection, molecular origin,
regulation, genomic function, and preclinical therapeutic targeting of
AR-Vs. We provide expert opinions and perspectives on these topics. Results: Transcript sequences for 22 AR-Vs have been reported in the
literature. Different AR-Vs may arise through different mechanisms, and can
be regulated by splicing factors and dictated by genomic rearrangements, but
a low-androgen environment is a prerequisite for generation of AR-Vs. The
unique transcript structures allowed development of in-situ and in-solution
measurement and detection methods, including mRNA and protein detection, in
both tissue and blood specimens. AR variant-7 (AR-V7) remains the main
measurement target and the most extensively characterized AR-V. Although
AR-V7 co-exists with AR-FL, genomic functions mediated by AR-V7 do not
require the presence of AR-FL. The distinct cistromes and transcriptional
programs directed by AR-V7 and their co-regulators are consistent with
genomic features of progressive disease in a low-androgen environment.
Preclinical development of AR-V-directed agents currently focuses on
suppression of mRNA expression and protein degradation as well as targeting
of the amino-terminal domain. Conclusions: Current literature continues to support AR-Vs as biomarkers and
therapeutic targets in prostate cancer. Laboratory investigations reveal
both challenges and opportunities in targeting AR-Vs to overcome resistance
to current AR-directed therapies.
Collapse
Affiliation(s)
- Changxue Lu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Landon C Brown
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Emmanuel S Antonarakis
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J Armstrong
- Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Departments of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Yan Y, Ma J, Wang D, Lin D, Pang X, Wang S, Zhao Y, Shi L, Xue H, Pan Y, Zhang J, Wahlestedt C, Giles FJ, Chen Y, Gleave ME, Collins CC, Ye D, Wang Y, Huang H. The novel BET-CBP/p300 dual inhibitor NEO2734 is active in SPOP mutant and wild-type prostate cancer. EMBO Mol Med 2019; 11:e10659. [PMID: 31559706 PMCID: PMC6835201 DOI: 10.15252/emmm.201910659] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 01/26/2023] Open
Abstract
CULLIN3‐based E3 ubiquitin ligase substrate‐binding adaptor gene SPOP is frequently mutated in prostate cancer (PCa). PCa harboring SPOP hotspot mutants (e.g., F133V) are resistant to BET inhibitors because of aberrant elevation of BET proteins. Here, we identified a previously unrecognized mutation Q165P at the edge of SPOP MATH domain in primary and metastatic PCa of a patient. The Q165P mutation causes structural changes in the MATH domain and impairs SPOP dimerization and substrate degradation. Different from F133V hotspot mutant tumors, Q165P mutant patient‐derived xenografts (PDXs) and organoids were modestly sensitive to the BET inhibitor JQ1. Accordingly, protein levels of AR, BRD4 and downstream effectors such as RAC1 and phosphorylated AKT were not robustly elevated in Q165P mutant cells as in F133V mutant cells. However, NEO2734, a novel dual inhibitor of BET and CBP/p300, is active in both hotspot mutant (F133V) and non‐hotspot mutant (Q165P) PCa cells in vitro and in vivo. These data provide a strong rationale to clinically investigate the anti‐cancer efficacy of NEO2734 in SPOP‐mutated PCa patients.
Collapse
Affiliation(s)
- Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jian Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Xiaodong Pang
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai, China
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Phoenix, AZ, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin E Gleave
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Collin C Collins
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada.,The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
32
|
Dysregulated Transcriptional Control in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20122883. [PMID: 31200487 PMCID: PMC6627928 DOI: 10.3390/ijms20122883] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Recent advances in whole-genome and transcriptome sequencing of prostate cancer at different stages indicate that a large number of mutations found in tumors are present in non-protein coding regions of the genome and lead to dysregulated gene expression. Single nucleotide variations and small mutations affecting the recruitment of transcription factor complexes to DNA regulatory elements are observed in an increasing number of cases. Genomic rearrangements may position coding regions under the novel control of regulatory elements, as exemplified by the TMPRSS2-ERG fusion and the amplified enhancer identified upstream of the androgen receptor (AR) gene. Super-enhancers are increasingly found to play important roles in aberrant oncogenic transcription. Several players involved in these processes are currently being evaluated as drug targets and may represent new vulnerabilities that can be exploited for prostate cancer treatment. They include factors involved in enhancer and super-enhancer function such as bromodomain proteins and cyclin-dependent kinases. In addition, non-coding RNAs with an important gene regulatory role are being explored. The rapid progress made in understanding the influence of the non-coding part of the genome and of transcription dysregulation in prostate cancer could pave the way for the identification of novel treatment paradigms for the benefit of patients.
Collapse
|
33
|
Li X, Dong P, Wei W, Jiang L, Guo S, Huang C, Liu Z, Chen J, Zhou F, Xie D, Liu Z. Overexpression of CEP72 Promotes Bladder Urothelial Carcinoma Cell Aggressiveness via Epigenetic CREB-Mediated Induction of SERPINE1. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1284-1297. [DOI: 10.1016/j.ajpath.2019.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 01/20/2023]
|
34
|
Martins VF, Dent JR, Svensson K, Tahvilian S, Begur M, Lakkaraju S, Buckner EH, LaBarge SA, Hetrick B, McCurdy CE, Schenk S. Germline or inducible knockout of p300 or CBP in skeletal muscle does not alter insulin sensitivity. Am J Physiol Endocrinol Metab 2019; 316:E1024-E1035. [PMID: 30888860 PMCID: PMC6620570 DOI: 10.1152/ajpendo.00497.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. We used Cre-LoxP methodology to generate mice with germline [muscle creatine kinase promoter (P-MCK and C-MCK)] or inducible [tamoxifen-activated, human skeletal actin promoter (P-iHSA and C-iHSA)] knockout of p300 or CBP. A subset of P-MCK and C-MCK mice were switched to a calorie-restriction diet (60% of ad libitum intake) or high-fat diet at 10 wk of age. For P-iHSA and C-iHSA mice, knockout was induced at 10 wk of age. At 13-15 wk of age, we measured whole-body energy expenditure, oral glucose tolerance, and/or ex vivo skeletal muscle insulin sensitivity. Although p300 and CBP protein abundance and mRNA expression were reduced 55%-90% in p300 and CBP knockout mice, there were no genotype differences in energy expenditure or fasting glucose and insulin concentrations. Moreover, neither loss of p300 or CBP impacted oral glucose tolerance or skeletal muscle insulin sensitivity, nor did their loss impact alterations in these parameters in response to a calorie restriction or high-fat diet. Muscle-specific loss of either p300 or CBP, be it germline or in adulthood, does not impact energy expenditure, glucose tolerance, or skeletal muscle insulin action.
Collapse
Affiliation(s)
- Vitor F Martins
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| | - Jessica R Dent
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Shahriar Tahvilian
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Maedha Begur
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Shivani Lakkaraju
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Elisa H Buckner
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Samuel A LaBarge
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California
| |
Collapse
|
35
|
Zucconi BE, Makofske JL, Meyers DJ, Hwang Y, Wu M, Kuroda MI, Cole PA. Combination Targeting of the Bromodomain and Acetyltransferase Active Site of p300/CBP. Biochemistry 2019; 58:2133-2143. [PMID: 30924641 DOI: 10.1021/acs.biochem.9b00160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
p300 and CBP are highly related histone acetyltransferase (HAT) enzymes that regulate gene expression, and their dysregulation has been linked to cancer and other diseases. p300/CBP is composed of a number of domains including a HAT domain, which is inhibited by the small molecule A-485, and an acetyl-lysine binding bromodomain, which was recently found to be selectively antagonized by the small molecule I-CBP112. Here we show that the combination of I-CBP112 and A-485 can synergize to inhibit prostate cancer cell proliferation. We find that the combination confers a dramatic reduction in p300 chromatin occupancy compared to the individual effects of blocking either domain alone. Accompanying this loss of p300 on chromatin, combination treatment leads to the reduction of specific mRNAs including androgen-dependent and pro-oncogenic prostate genes such as KLK3 (PSA) and c-Myc. Consistent with p300 directly affecting gene expression, mRNAs that are significantly reduced by combination treatment also exhibit a strong reduction in p300 chromatin occupancy at their gene promoters. The relatively few mRNAs that are up-regulated upon combination treatment show no correlation with p300 occupancy. These studies provide support for the pharmacologic advantage of concurrent targeting of two domains within one key epigenetic modification enzyme.
Collapse
Affiliation(s)
- Beth E Zucconi
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jessica L Makofske
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - David J Meyers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Yousang Hwang
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Mingxuan Wu
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Mitzi I Kuroda
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Genetics , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Philip A Cole
- Division of Genetics, Department of Medicine , Brigham and Women's Hospital , Boston , Massachusetts 02115 , United States.,Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| |
Collapse
|
36
|
Clegg MA, Tomkinson NCO, Prinjha RK, Humphreys PG. Advancements in the Development of non-BET Bromodomain Chemical Probes. ChemMedChem 2019; 14:362-385. [PMID: 30624862 DOI: 10.1002/cmdc.201800738] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 01/07/2023]
Abstract
The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.
Collapse
Affiliation(s)
- Michael A Clegg
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK.,WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Thomas Graham Building, Glasgow, G1 1XL, UK
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Philip G Humphreys
- Epigenetics Discovery Performance Unit, GlaxoSmithKline R&D, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
37
|
Schiewer MJ, Mandigo AC, Gordon N, Huang F, Gaur S, de Leeuw R, Zhao SG, Evans J, Han S, Parsons T, Birbe R, McCue P, McNair C, Chand SN, Cendon-Florez Y, Gallagher P, McCann JJ, Poudel Neupane N, Shafi AA, Dylgjeri E, Brand LJ, Visakorpi T, Raj GV, Lallas CD, Trabulsi EJ, Gomella LG, Dicker AP, Kelly WK, Leiby BE, Knudsen B, Feng FY, Knudsen KE. PARP-1 regulates DNA repair factor availability. EMBO Mol Med 2018; 10:e8816. [PMID: 30467127 PMCID: PMC6284389 DOI: 10.15252/emmm.201708816] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Amy C Mandigo
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Nicolas Gordon
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Renée de Leeuw
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Evans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sumin Han
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore Parsons
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruth Birbe
- Cooper University Health, Camden, NJ, USA
| | - Peter McCue
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher McNair
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Saswati N Chand
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Ylenia Cendon-Florez
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Peter Gallagher
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Jennifer J McCann
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Neermala Poudel Neupane
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Ayesha A Shafi
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucas J Brand
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Costas D Lallas
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Edouard J Trabulsi
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard G Gomella
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam P Dicker
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wm Kevin Kelly
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin E Leiby
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Felix Y Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center Thomas Jefferson University, Philadelphia, PA, USA
- Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Hou X, Gong R, Zhan J, Zhou T, Ma Y, Zhao Y, Zhang Y, Chen G, Zhang Z, Ma S, Chen X, Gao F, Hong S, Luo F, Fang W, Yang Y, Huang Y, Chen L, Yang H, Zhang L. p300 promotes proliferation, migration, and invasion via inducing epithelial-mesenchymal transition in non-small cell lung cancer cells. BMC Cancer 2018; 18:641. [PMID: 29879950 PMCID: PMC5992873 DOI: 10.1186/s12885-018-4559-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Histone acetyltransferase p300 is a crucial transcriptional coactivator and has been implicated as a poor prognostic factor in human cancers. However, little is known about the substantial functions and mechanisms of p300 in NSCLC proliferation and distant metastasis. Methods We constructed p300 down-regulated and up-regulated cell lines through RNAi and recombinant plasmid transfection. Cell Counting Kit-8 assays were used to test the cell proliferation and confirmed by colony formation assays. Wound healing assays and transwell chamber assays were used to test the migration and invasion ability. Based upon these results, we measured the epithelial markers and mesenchymal markers after regulating p300 expression to explore epithelial-mesenchymal transition as a potential mechanism of p300 promoting NSCLC metastasis. Results In NSCLC cells NCI-H1975 and NCI-H1993, down-regulation of p300 leads to inhibition of cell proliferation and colony formation. Cells with reduced p300 expression also demonstrate inhibited migration and invasion ability. Contrarily, up-regulation of p300 significantly enhanced the proliferation, colony formation, migration and invasion ability of NCI-H460. Importantly, further investigation shows that decreased p300 expression is associated with reduced expression of mesenchymal markers and increased expression of epithelial markers, while up-regulated p300 expression correlated with decreased expression of epithelial markers and increased expression of mesenchymal markers. Conclusions As a crucial tumor promoter, p300 promotes cell proliferation, migration, and invasion in NSCLC cells. Epithelial-mesenchymal transition is a potential mechanism of p300 promoting NSCLC metastasis.
Collapse
Affiliation(s)
- Xue Hou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Run Gong
- Department of Medical Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong, People's Republic of China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yuxiang Ma
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yaxiong Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Gang Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Shuxiang Ma
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Xi Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Fangfang Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Fan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Haoxian Yang
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China. .,Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 637300, Guangzhou City, Guangdong, People's Republic of China.
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.
| |
Collapse
|
39
|
Xiang Q, Wang C, Zhang Y, Xue X, Song M, Zhang C, Li C, Wu C, Li K, Hui X, Zhou Y, Smaill JB, Patterson AV, Wu D, Ding K, Xu Y. Discovery and optimization of 1-(1H-indol-1-yl)ethanone derivatives as CBP/EP300 bromodomain inhibitors for the treatment of castration-resistant prostate cancer. Eur J Med Chem 2018; 147:238-252. [PMID: 29448139 DOI: 10.1016/j.ejmech.2018.01.087] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/11/2018] [Accepted: 01/26/2018] [Indexed: 01/08/2023]
Abstract
The CREB (cAMP responsive element binding protein) binding protein (CBP) and its homolog EP300 have emerged as new therapeutic targets for the treatment of cancer and inflammatory diseases. Here we report the identification, optimization and evaluation of 1-(1H-indol-1-yl)ethanone derivatives as CBP/EP300 inhibitors starting from fragment-based virtual screening (FBVS). A cocrystal structure of the inhibitor (22e) in complex with CBP provides a solid structural basis for further optimization. The most potent compound 32h binds to the CBP bromodomain and has an IC50 value of 0.037 μM in the AlphaScreen assay which was 2 times more potent than the reported CBP bromodomain inhibitor SGC-CBP30 in our hands. 32h also exhibit high selectivity for CBP/EP300 over other bromodomain-containing proteins. Notably, the ester derivative (29h) of compound 32h markedly inhibits cell growth in several prostate cancer cell lines including LNCaP, 22Rv1 and LNCaP derived C4-2B. Compound 29h suppresses the mRNA expression of full length AR (AR-FL), AR target genes and other oncogene in LNCaP cells. 29h also reduces the expression of PSA, the biomarker of prostate cancer. CBP/EP300 inhibitor 29h represents a promising lead compound for the development of new therapeutics for the treatment of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; School of Pharmaceutical Sciences, Jilin University, Changchun, China, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Ming Song
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; School of Pharmaceutical Sciences, Jilin University, Changchun, China, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; School of Pharmaceutical Sciences, Jilin University, Changchun, China, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Chun Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Kuai Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, China, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Jeff B Smaill
- University of Auckland, Auckland Cancer Society Research Centre, School of Medical Sciences, Private Bag 92019, Auckland, New Zealand
| | - Adam V Patterson
- University of Auckland, Auckland Cancer Society Research Centre, School of Medical Sciences, Private Bag 92019, Auckland, New Zealand
| | - Donghai Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Chow CC, Simons SS. An Approach to Greater Specificity for Glucocorticoids. Front Endocrinol (Lausanne) 2018; 9:76. [PMID: 29593646 PMCID: PMC5859375 DOI: 10.3389/fendo.2018.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid steroids are among the most prescribed drugs each year. Nonetheless, the many undesirable side effects, and lack of selectivity, restrict their greater usage. Research to increase glucocorticoid specificity has spanned many years. These efforts have been hampered by the ability of glucocorticoids to both induce and repress gene transcription and also by the lack of success in defining any predictable properties that control glucocorticoid specificity. Correlations of transcriptional specificity have been observed with changes in steroid structure, receptor and chromatin conformation, DNA sequence for receptor binding, and associated cofactors. However, none of these studies have progressed to the point of being able to offer guidance for increased specificity. We summarize here a mathematical theory that allows a novel and quantifiable approach to increase selectivity. The theory applies to all three major actions of glucocorticoid receptors: induction by agonists, induction by antagonists, and repression by agonists. Simple graphical analysis of competition assays involving any two factors (steroid, chemical, peptide, protein, DNA, etc.) yields information (1) about the kinetically described mechanism of action for each factor at that step where the factor acts in the overall reaction sequence and (2) about the relative position of that step where each factor acts. These two pieces of information uniquely provide direction for increasing the specificity of glucocorticoid action. Consideration of all three modes of action indicate that the most promising approach for increased specificity is to vary the concentrations of those cofactors/pharmaceuticals that act closest to the observed end point. The potential for selectivity is even greater when varying cofactors/pharmaceuticals in conjunction with a select class of antagonists.
Collapse
Affiliation(s)
- Carson C. Chow
- Mathematical Biology Section, NIDDK/LBM, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| | - S. Stoney Simons
- Steroid Hormones Section, NIDDK/LERB, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Carson C. Chow, ; S. Stoney Simons, Jr.,
| |
Collapse
|
41
|
Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer — uncovering new and evolving roles through genomic analysis. Nat Rev Genet 2017; 19:160-174. [DOI: 10.1038/nrg.2017.102] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Bronner SM, Murray J, Romero FA, Lai KW, Tsui V, Cyr P, Beresini MH, de Leon Boenig G, Chen Z, Choo EF, Clark KR, Crawford TD, Jayaram H, Kaufman S, Li R, Li Y, Liao J, Liang X, Liu W, Ly J, Maher J, Wai J, Wang F, Zheng A, Zhu X, Magnuson S. A Unique Approach to Design Potent and Selective Cyclic Adenosine Monophosphate Response Element Binding Protein, Binding Protein (CBP) Inhibitors. J Med Chem 2017; 60:10151-10171. [PMID: 29155580 DOI: 10.1021/acs.jmedchem.7b01372] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epigenetic regulator CBP/P300 presents a novel therapeutic target for oncology. Previously, we disclosed the development of potent and selective CBP bromodomain inhibitors by first identifying pharmacophores that bind the KAc region and then building into the LPF shelf. Herein, we report the "hybridization" of a variety of KAc-binding fragments with a tetrahydroquinoline scaffold that makes optimal interactions with the LPF shelf, imparting enhanced potency and selectivity to the hybridized ligand. To demonstrate the utility of our hybridization approach, two analogues containing unique Asn binders and the optimized tetrahydroquinoline moiety were rapidly optimized to yield single-digit nanomolar inhibitors of CBP with exquisite selectivity over BRD4(1) and the broader bromodomain family.
Collapse
Affiliation(s)
- Sarah M Bronner
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeremy Murray
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - F Anthony Romero
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Kwong Wah Lai
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Vickie Tsui
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Patrick Cyr
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Maureen H Beresini
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Zhongguo Chen
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Edna F Choo
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Kevin R Clark
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Terry D Crawford
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Hariharan Jayaram
- Editas Medicine, Inc. , 11 Hurley Street, Cambridge, Massachusetts 02141, United States
| | - Susan Kaufman
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Ruina Li
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Yingjie Li
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Jiangpeng Liao
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Xiaorong Liang
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Wenfeng Liu
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Justin Ly
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | - John Wai
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Fei Wang
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Aijun Zheng
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Xiaoyu Zhu
- Wuxi Apptec Co., Ltd. , 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, People's Republic of China
| | - Steven Magnuson
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
43
|
Gang X, Yang Y, Zhong J, Jiang K, Pan Y, Karnes RJ, Zhang J, Xu W, Wang G, Huang H. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 2017; 7:15135-49. [PMID: 26934656 PMCID: PMC4924775 DOI: 10.18632/oncotarget.7715] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 01/30/2016] [Indexed: 11/25/2022] Open
Abstract
De novo fatty acid (FA) synthesis is required for prostate cancer (PCa) survival and progression. As a key enzyme for FA synthesis fatty acid synthase (FASN) is often overexpressed in human prostate cancers and its expression correlates with worse prognosis and poor survival. P300 is an acetyltransferase that acts as a transcription co-activator. Increasing evidence suggests that P300 is a major PCa promoter, although the underlying mechanism remains poorly understood. Here, we demonstrated that P300 binds to and increases histone H3 lysine 27 acetylation (H3K27Ac) in the FASN gene promoter. We provided evidence that P300 transcriptionally upregulates FASN expression and promotes lipid accumulation in human PCa cells in culture and Pten knockout prostate tumors in mice. Pharmacological inhibition of P300 decreased FASN expression and lipid droplet accumulation in PCa cells. Immunohistochemistry analysis revealed that expression of P300 protein positively correlates with FASN protein levels in a cohort of human PCa specimens. We further showed that FASN is a key mediator of P300-induced growth of PCa cells in culture and in mice. Together, our findings demonstrate P300 as a key factor that regulates FASN expression, lipid accumulation and cell growth in PCa. They also suggest that this regulatory pathway can serve as a new therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yinhui Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jian Zhong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kui Jiang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Oncology, The Second affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - R Jeffrey Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Wanhai Xu
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
44
|
Abstract
The androgen-signaling axis plays a pivotal role in the pathogenesis of prostate cancer. Since the landmark discovery by Huggins and Hodges, gonadal depletion of androgens has remained a mainstay of therapy for advanced disease. However, progression to castration-resistant prostate cancer (CRPC) typically follows and is largely the result of restored androgen signaling. Efforts to understand the mechanisms behind CRPC have revealed new insights into dysregulated androgen signaling and intratumoral androgen synthesis, which has ultimately led to the development of several novel androgen receptor (AR)-directed therapies for CRPC. However, emergence of resistance to these newer agents has also galvanized new directions in investigations of prereceptor and postreceptor AR regulation. Here, we review our current understanding of AR signaling as it pertains to the biology and natural history of prostate cancer.
Collapse
Affiliation(s)
- Charles Dai
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Hannelore Heemers
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nima Sharifi
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Hematology & Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
45
|
Liu S, Kumari S, Hu Q, Senapati D, Venkadakrishnan VB, Wang D, DePriest AD, Schlanger SE, Ben-Salem S, Valenzuela MM, Willard B, Mudambi S, Swetzig WM, Das GM, Shourideh M, Koochekpour S, Falzarano SM, Magi-Galluzzi C, Yadav N, Chen X, Lao C, Wang J, Billaud JN, Heemers HV. A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. eLife 2017; 6:e28482. [PMID: 28826481 PMCID: PMC5608510 DOI: 10.7554/elife.28482] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023] Open
Abstract
Standard treatment for metastatic prostate cancer (CaP) prevents ligand-activation of androgen receptor (AR). Despite initial remission, CaP progresses while relying on AR. AR transcriptional output controls CaP behavior and is an alternative therapeutic target, but its molecular regulation is poorly understood. Here, we show that action of activated AR partitions into fractions that are controlled preferentially by different coregulators. In a 452-AR-target gene panel, each of 18 clinically relevant coregulators mediates androgen-responsiveness of 0-57% genes and acts as a coactivator or corepressor in a gene-specific manner. Selectivity in coregulator-dependent AR action is reflected in differential AR binding site composition and involvement with CaP biology and progression. Isolation of a novel transcriptional mechanism in which WDR77 unites the actions of AR and p53, the major genomic drivers of lethal CaP, to control cell cycle progression provides proof-of-principle for treatment via selective interference with AR action by exploiting AR dependence on coregulators.
Collapse
Affiliation(s)
- Song Liu
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Sangeeta Kumari
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
| | - Qiang Hu
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | | | - Dan Wang
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Adam D DePriest
- Department of Cancer GeneticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | - Salma Ben-Salem
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
| | | | - Belinda Willard
- Department of Research Core ServicesCleveland ClinicClevelandUnited States
| | - Shaila Mudambi
- Department of Cell Stress BiologyRoswell Park Cancer InstituteBuffaloUnited States
| | - Wendy M Swetzig
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Gokul M Das
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Mojgan Shourideh
- Department of Cancer GeneticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | | | | | - Neelu Yadav
- Department of Pharmacology and TherapeuticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Xiwei Chen
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | - Changshi Lao
- Institute for Nanosurface Science and EngineeringShenzhen UniversityShenzhenChina
| | - Jianmin Wang
- Department of Biostatistics and BioinformaticsRoswell Park Cancer InstituteBuffaloUnited States
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland ClinicClevelandUnited States
- Department of UrologyCleveland ClinicClevelandUnited States
- Department of Hematology/Medical OncologyCleveland ClinicClevelandUnited States
| |
Collapse
|
46
|
Jin L, Garcia J, Chan E, de la Cruz C, Segal E, Merchant M, Kharbanda S, Raisner R, Haverty PM, Modrusan Z, Ly J, Choo E, Kaufman S, Beresini MH, Romero FA, Magnuson S, Gascoigne KE. Therapeutic Targeting of the CBP/p300 Bromodomain Blocks the Growth of Castration-Resistant Prostate Cancer. Cancer Res 2017; 77:5564-5575. [PMID: 28819026 DOI: 10.1158/0008-5472.can-17-0314] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/23/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022]
Abstract
Resistance invariably develops to antiandrogen therapies used to treat newly diagnosed prostate cancers, but effective treatments for castration-resistant disease remain elusive. Here, we report that the transcriptional coactivator CBP/p300 is required to maintain the growth of castration-resistant prostate cancer. To exploit this vulnerability, we developed a novel small-molecule inhibitor of the CBP/p300 bromodomain that blocks prostate cancer growth in vitro and in vivo Molecular dissection of the consequences of drug treatment revealed a critical role for CBP/p300 in histone acetylation required for the transcriptional activity of the androgen receptor and its target gene expression. Our findings offer a preclinical proof of concept for small-molecule therapies to target the CBP/p300 bromodomain as a strategy to treat castration-resistant prostate cancer. Cancer Res; 77(20); 5564-75. ©2017 AACR.
Collapse
Affiliation(s)
- Lingyan Jin
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Jesse Garcia
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Emily Chan
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Cecile de la Cruz
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Ehud Segal
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Mark Merchant
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | | | - Ryan Raisner
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California
| | - Peter M Haverty
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California
| | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California
| | - Justin Ly
- Department of DMPK, Genentech, Inc., South San Francisco, California
| | - Edna Choo
- Department of DMPK, Genentech, Inc., South San Francisco, California
| | - Susan Kaufman
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California
| | - Maureen H Beresini
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California
| | | | - Steven Magnuson
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California
| | - Karen E Gascoigne
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California.
| |
Collapse
|
47
|
Kim YM, Gang EJ, Kahn M. CBP/Catenin antagonists: Targeting LSCs' Achilles heel. Exp Hematol 2017; 52:1-11. [PMID: 28479420 PMCID: PMC5526056 DOI: 10.1016/j.exphem.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs), including leukemia stem cells (LSCs), exhibit self-renewal capacity and differentiation potential and have the capacity to maintain or renew and propagate a tumor/leukemia. The initial isolation of CSCs/LSCs was in adult myelogenous leukemia, although more recently, the existence of CSCs in a wide variety of other cancers has been reported. CSCs, in general, and LSCs, specifically with respect to this review, are responsible for initiation of disease, therapeutic resistance and ultimately disease relapse. One key focus in cancer research over the past decade has been the development of therapies that safely eliminate the LSC/CSC population. One major obstacle to this goal is the identification of key mechanisms that distinguish LSCs from normal endogenous hematopoietic stem cells. An additional daunting feature that has recently come to light with advances in next-generation sequencing and single-cell sequencing is the heterogeneity within leukemias/tumors, with multiple combinations of mutations, gain and loss of function of genes, and so on being capable of driving disease, even within the CSC/LSC population. The focus of this review/perspective is on our work in identifying and validating, in both chronic myelogenous leukemia and acute lymphoblastic leukemia, a safe and efficacious mechanism to target an evolutionarily conserved signaling nexus, which constitutes a common "Achilles heel" for LSCs/CSCs, using small molecule-specific CBP/catenin antagonists.
Collapse
Affiliation(s)
- Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Eun-Ji Gang
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA; Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.
| |
Collapse
|
48
|
Kumari S, Senapati D, Heemers HV. Rationale for the development of alternative forms of androgen deprivation therapy. Endocr Relat Cancer 2017; 24:R275-R295. [PMID: 28566530 PMCID: PMC5886376 DOI: 10.1530/erc-17-0121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022]
Abstract
With few exceptions, the almost 30,000 prostate cancer deaths annually in the United States are due to failure of androgen deprivation therapy. Androgen deprivation therapy prevents ligand-activation of the androgen receptor. Despite initial remission after androgen deprivation therapy, prostate cancer almost invariably progresses while continuing to rely on androgen receptor action. Androgen receptor's transcriptional output, which ultimately controls prostate cancer behavior, is an alternative therapeutic target, but its molecular regulation is poorly understood. Recent insights in the molecular mechanisms by which the androgen receptor controls transcription of its target genes are uncovering gene specificity as well as context-dependency. Heterogeneity in the androgen receptor's transcriptional output is reflected both in its recruitment to diverse cognate DNA binding motifs and in its preferential interaction with associated pioneering factors, other secondary transcription factors and coregulators at those sites. This variability suggests that multiple, distinct modes of androgen receptor action that regulate diverse aspects of prostate cancer biology and contribute differentially to prostate cancer's clinical progression are active simultaneously in prostate cancer cells. Recent progress in the development of peptidomimetics and small molecules, and application of Chem-Seq approaches indicate the feasibility for selective disruption of critical protein-protein and protein-DNA interactions in transcriptional complexes. Here, we review the recent literature on the different molecular mechanisms by which the androgen receptor transcriptionally controls prostate cancer progression, and we explore the potential to translate these insights into novel, more selective forms of therapies that may bypass prostate cancer's resistance to conventional androgen deprivation therapy.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
| | | | - Hannelore V Heemers
- Department of Cancer BiologyCleveland Clinic, Cleveland, Ohio, USA
- Department of UrologyCleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical OncologyCleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Mitchnick KA, Creighton SD, Cloke JM, Wolter M, Zaika O, Christen B, Van Tiggelen M, Kalisch BE, Winters BD. Dissociable roles for histone acetyltransferases p300 and PCAF in hippocampus and perirhinal cortex-mediated object memory. GENES BRAIN AND BEHAVIOR 2017; 15:542-57. [PMID: 27251651 DOI: 10.1111/gbb.12303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short-interference RNAs to evaluate the roles of CREB-binding protein (CBP), E1A-binding protein (p300) and p300/CBP-associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)-mediated object memory. Rats were tested for short- (STM) and long-term memory (LTM) in the object-in-place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small-interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long-term but not short-term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh-mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe.
Collapse
Affiliation(s)
- K A Mitchnick
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - S D Creighton
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - J M Cloke
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - M Wolter
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - O Zaika
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B Christen
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - M Van Tiggelen
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B E Kalisch
- Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.,Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - B D Winters
- Department of Psychology, University of Guelph, Guelph, ON, Canada.,Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
50
|
Baumgart SJ, Haendler B. Exploiting Epigenetic Alterations in Prostate Cancer. Int J Mol Sci 2017; 18:ijms18051017. [PMID: 28486411 PMCID: PMC5454930 DOI: 10.3390/ijms18051017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer affects an increasing number of men worldwide and is a leading cause of cancer-associated deaths. Beside genetic mutations, many epigenetic alterations including DNA and histone modifications have been identified in clinical prostate tumor samples. They have been linked to aberrant activity of enzymes and reader proteins involved in these epigenetic processes, leading to the search for dedicated inhibitory compounds. In the wake of encouraging anti-tumor efficacy results in preclinical models, epigenetic modulators addressing different targets are now being tested in prostate cancer patients. In addition, the assessment of microRNAs as stratification biomarkers, and early clinical trials evaluating suppressor microRNAs as potential prostate cancer treatment are being discussed.
Collapse
Affiliation(s)
- Simon J Baumgart
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| | - Bernard Haendler
- Drug Discovery, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|