1
|
Rai M, Rai A, Mori T, Nakabayashi R, Nakamura M, Kojoma M, Suzuki H, Saito K, Yamazaki M. Multi-omics analysis reveals tissue-specific biosynthesis and accumulation of diterpene alkaloids in Aconitum japonicum. J Nat Med 2025; 79:499-516. [PMID: 40111723 PMCID: PMC12058934 DOI: 10.1007/s11418-025-01881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
Aconitum japonicum, native to the mountainous regions of Japan, is a toxic perennial plant widely recognized for its therapeutic potential. Despite its pharmacological importance, the complete biosynthetic pathway of diterpene alkaloids, bioactive compounds with significant pharmaceutical implications and derived from Aconitum species, remains elusive. In this study, leveraging high-throughput metabolome and transcriptome analyses, we conducted a comprehensive investigation using four tissues of A. japonicum, including leaf, mother root, daughter root, and rootlet. By integrating these multi-omics datasets, we achieved a holistic insight into the gene expression patterns and metabolite profiles intricately linked with diterpene alkaloid biosynthesis. Our findings unveil potential regulatory networks and pinpoint key candidate genes pivotal in diterpene alkaloid synthesis. Through comparative analyses across tissues, we delineate tissue-specific variations in gene expression and metabolite accumulation, shedding light on the spatial regulation of these biosynthetic pathways within the plant. Furthermore, this study contributes to a deeper understanding of the molecular mechanisms dictating the production of diterpene alkaloids in A. japonicum. Besides advancing our knowledge of plant secondary metabolism in A. japonicum, this study also provides a high-quality multi-omics resource for future studies aimed at functionally characterizing the target genes involved in different metabolic processes.
Collapse
Affiliation(s)
- Megha Rai
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Crop Sciences, University of Illinois Urbana Champaign, Illinois, USA
| | - Amit Rai
- Crop Sciences, University of Illinois Urbana Champaign, Illinois, USA
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Michimi Nakamura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Marsheige Kojoma
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
- Plant Molecular Science Center, Chiba University, Chiba, Japan.
| |
Collapse
|
2
|
Priego‐Cubero S, Liu Y, Toyomasu T, Gigl M, Hasegawa Y, Nojiri H, Dawid C, Okada K, Becker C. Evolution and diversification of the momilactone biosynthetic gene cluster in the genus Oryza. THE NEW PHYTOLOGIST 2025; 245:2681-2697. [PMID: 39887739 PMCID: PMC11840401 DOI: 10.1111/nph.20416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025]
Abstract
Plants are master chemists and collectively are able to produce hundreds of thousands of different organic compounds. The genes underlying the biosynthesis of many specialized metabolites are organized in biosynthetic gene clusters (BGCs), which is hypothesized to ensure their faithful coinheritance and to facilitate their coordinated expression. In rice (Oryza sativa), momilactones are diterpenoids that act in plant defence and various organismic interactions. Many of the genes essential for momilactone biosynthesis are grouped in a BGC. We applied comparative genomics of diploid and allotetraploid Oryza species to reconstruct the species-specific architecture, evolutionary trajectory, and sub-functionalisation of the momilactone biosynthetic gene cluster (MBGC) in the Oryza genus. Our data show that the evolution of the MBGC is marked by lineage-specific rearrangements and gene copy number variation, as well as by occasional cluster loss. We identified a distinct cluster architecture in Oryza coarctata, which represents the first instance of an alternative architecture of the MBGC in Oryza and strengthens the idea of a common origin of the cluster in Oryza and the distantly related genus Echinochloa. Our research illustrates the evolutionary and functional dynamics of a biosynthetic gene cluster within a plant genus.
Collapse
Affiliation(s)
| | - Youming Liu
- Agro‐Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS)The University of TokyoTokyo113‐8657Japan
| | - Tomonobu Toyomasu
- Faculty of AgricultureYamagata UniversityTsuruokaYamagata997‐8555Japan
| | - Michael Gigl
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichLise‐Meitner‐Str. 3485354FreisingGermany
| | - Yuto Hasegawa
- Faculty of AgricultureYamagata UniversityTsuruokaYamagata997‐8555Japan
| | - Hideaki Nojiri
- Agro‐Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS)The University of TokyoTokyo113‐8657Japan
| | - Corinna Dawid
- Professorship for Functional Phytometabolomics, TUM School of Life SciencesTechnical University of MunichLise‐Meitner‐Str. 3485354FreisingGermany
| | - Kazunori Okada
- Agro‐Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS)The University of TokyoTokyo113‐8657Japan
| | - Claude Becker
- Faculty of BiologyLudwig‐Maximilians‐Universität München82152MartinsriedGermany
| |
Collapse
|
3
|
Bian S, Li Z, Song S, Zhang X, Shang J, Wang W, Zhang D, Ni D. Enhancing Crop Resilience: Insights from Labdane-Related Diterpenoid Phytoalexin Research in Rice ( Oryza sativa L.). Curr Issues Mol Biol 2024; 46:10677-10695. [PMID: 39329985 PMCID: PMC11430374 DOI: 10.3390/cimb46090634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Rice (Oryza sativa L.), as one of the most significant food crops worldwide, holds paramount importance for global food security. Throughout its extensive evolutionary journey, rice has evolved a diverse array of defense mechanisms to fend off pest and disease infestations. Notably, labdane-related diterpenoid phytoalexins play a crucial role in aiding rice in its response to both biotic and abiotic stresses. This article provides a comprehensive review of the research advancements pertaining to the chemical structures, biological activities, and biosynthetic pathways, as well as the molecular regulatory mechanisms, underlying labdane-related diterpenoid phytoalexins discovered in rice. This insight into the molecular regulation of labdane-related diterpenoid phytoalexin biosynthesis offers valuable perspectives for future research aimed at improving crop resilience and productivity.
Collapse
Affiliation(s)
- Shiquan Bian
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhong Li
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shaojie Song
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiao Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jintao Shang
- Agricultural Technology Extension Center of Linping District, Hangzhou 311199, China
| | - Wanli Wang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dewen Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dahu Ni
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
4
|
de Brito Machado D, Felisberto JS, Queiroz GAD, Guimarães EF, Ramos YJ, Moreira DDL. From Leaves to Reproductive Organs: Chemodiversity and Chemophenetics of Essential Oils as Important Tools to Evaluate Piper mollicomum Kunth Chemical Ecology Relevance in the Neotropics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2497. [PMID: 39273981 PMCID: PMC11397322 DOI: 10.3390/plants13172497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Piper mollicomum Kunth (Piperaceae) plays a vital role in the preservation of the Brazilian Atlantic Forest by contributing to the regeneration of deforested areas. Recent scientific investigations have analyzed the chemical constituents and seasonal dynamics of essential oils (EO) from various Piper L. species, highlighting the need to elucidate their chemical-ecological interactions. This study aims to expand the chemical-ecological knowledge of this important taxon in neotropical forests, using P. mollicomum as a model. The methodologies employed include the collection of plant material, EO extraction by hydrodistillation, analysis of EO by gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detector (GC-FID), recording the frequency of visits by potential pollinators and microclimatic variables, and by conducting calculations of chemodiversity and chemophenetic indices. Chemical analyses indicated that the diversity of EO and environmental factors are linked to the activities of potential pollinators. In the Tijuca Forest, P. mollicomum revealed significant interactions between its volatile constituents and microclimatic variables, showing that the chemodiversity of the leaves and reproductive organs correlates with pollinator visitation. Additionally, a notable difference in chemical evenness was observed between these vegetative structures. The chemophenetic indices by Ramos and Moreira also revealed correlations with chemical diversity.
Collapse
Affiliation(s)
- Daniel de Brito Machado
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Jéssica Sales Felisberto
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - George Azevedo de Queiroz
- West Zone Campus, State University of Rio de Janeiro, Rua Manuel Caldeira de Alvarenga, Rio de Janeiro 23070-200, Brazil
| | - Elsie Franklin Guimarães
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Ygor Jessé Ramos
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Earth's Pharmacy Laboratory, School of Pharmacy, Federal University of Bahia, Salvador 40170-215, Brazil
| | - Davyson de Lima Moreira
- Graduate Program in Plant Biology, Institute of Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Rio de Janeiro Botanical Garden Research Institute, Botanical Garden of Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Oswaldo Cruz Foundation, Farmanguinhos, Manguinhos, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
5
|
Liu Y, Esposto D, Mahdi LK, Porzel A, Stark P, Hussain H, Scherr-Henning A, Isfort S, Bathe U, Acosta IF, Zuccaro A, Balcke GU, Tissier A. Hordedane diterpenoid phytoalexins restrict Fusarium graminearum infection but enhance Bipolaris sorokiniana colonization of barley roots. MOLECULAR PLANT 2024; 17:1307-1327. [PMID: 39001606 DOI: 10.1016/j.molp.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-β-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.
Collapse
Affiliation(s)
- Yaming Liu
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Dario Esposto
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Lisa K Mahdi
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Pauline Stark
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Anja Scherr-Henning
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Simon Isfort
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ulschan Bathe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Iván F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alga Zuccaro
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
| |
Collapse
|
6
|
Miwa T, Ishikawa O, Takeda-Kimura Y, Toyomasu T. Essential residues in diterpene synthases for biosynthesis of oryzalexins A-F in rice phytoalexin. FEBS J 2024; 291:3653-3664. [PMID: 38775146 DOI: 10.1111/febs.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 08/15/2024]
Abstract
Cultivated rice (Oryza sativa) produces a variety of diterpenoid-type phytoalexins. Diterpene synthase genes that are responsible for the biosynthesis of momilactones, phytocassanes, and oryzalexins have been identified in O. sativa cv. Nipponbare. OsKSL10 (Os12t0491800 in RAP and LOC_Os12g30824 in MSU) was previously identified as an enzyme catalyzing the conversion of ent-copalyl diphosphate to ent-sandaracopimaradiene for the production of oryzalexins A to F. Our previous study on Oryza rufipogon, a wild progenitor of Asian cultivated rice, showed that both OrKSL10 and OrKSL10ind from O. rufipogon accessions W1943 and W0106, respectively, closely related to the japonica and indica subspecies, converted ent-copalyl diphosphate to ent-miltiradiene. Thus, the functional conversion of ent-miltiradiene synthase into ent-sandaracopimaradiene synthase is implied to have occurred through natural amino acid mutations, the details of which have not been elucidated. In this study, we show that introduction of A654G substitution into OrKSL10 significantly alters its function into more closely resembling that of OsKSL10. Moreover, double substitution V546I/A654G almost completely converts the function of OrKSL10 into that of OsKSL10. On the other hand, the reversed substitution I546V/G654A was insufficient to convert the function of OsKSL10 into OrKSL10, indicating the introduction of additional substitution S522I is required for the functionality of OsKSL10. Lastly, point mutations at the 654A residue in OrKSL10 suggest that hydrophobic side chains at this position have a negative influence on the production of ent-sandaracopimaradiene.
Collapse
Affiliation(s)
- Takumi Miwa
- Faculty of Agriculture, Yamagata University, Japan
| | - Oto Ishikawa
- Faculty of Agriculture, Yamagata University, Japan
| | | | | |
Collapse
|
7
|
Ishikawa E, Kanai S, Shinozawa A, Hyakutake M, Sue M. Hordeum vulgare CYP76M57 catalyzes C 2 shortening of tryptophan side chain by C-N bond rearrangement in gramine biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:892-904. [PMID: 38281119 DOI: 10.1111/tpj.16644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/25/2023] [Accepted: 01/07/2024] [Indexed: 01/29/2024]
Abstract
The indole alkaloid gramine, 3-(dimethylaminomethyl)indole, is a defensive specialized metabolite found in some barley cultivars. In its biosynthetic process, the tryptophan (Trp) side chain is shortened by two carbon atoms to produce 3-(aminomethyl)indole (AMI), which is then methylated by N-methyltransferase (HvNMT) to produce gramine. Although side chain shortening is one of the crucial scaffold formation steps of alkaloids originating from aromatic amino acids, the gene and enzyme involved in the Trp-AMI conversion reactions are unknown. In this study, through RNA-seq analysis, 35 transcripts were shown to correlate with gramine production; among them, an uncharacterized cytochrome P450 (CYP) gene, CYP76M57, and HvNMT were identified as candidate genes for gramine production. Transgenic Arabidopsis thaliana and rice overexpressing CYP and HvNMT accumulate AMI, N-methyl-AMI, and gramine. CYP76M57, heterologously expressed in Pichia pastoris, was able to act on Trp to produce AMI. Furthermore, the amino group nitrogen of Trp was retained during the CYP76M57-catalyzed reaction, indicating that the C2 shortening of Trp proceeds with an unprecedented biosynthetic process, the removal of the carboxyl group and Cα and the rearrangement of the nitrogen atom to Cβ. In some gramine-non-accumulating barley cultivars, arginine 104 in CYP76M57 is replaced by threonine, which abolished the catalytic activity of CYP76M57 to convert Trp into AMI. These results uncovered the missing committed enzyme of gramine biosynthesis in barley and contribute to the elucidation of the potential functions of CYPs in plants and undiscovered specialized pathways.
Collapse
Affiliation(s)
- Erika Ishikawa
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Shion Kanai
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Akihisa Shinozawa
- Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
- The NODAI Genome Research Center (NGRC), Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Mami Hyakutake
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Masayuki Sue
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| |
Collapse
|
8
|
Frey M, Bathe U, Meink L, Balcke GU, Schmidt J, Frolov A, Soboleva A, Hassanin A, Davari MD, Frank O, Schlagbauer V, Dawid C, Tissier A. Combinatorial biosynthesis in yeast leads to over 200 diterpenoids. Metab Eng 2024; 82:193-200. [PMID: 38387676 DOI: 10.1016/j.ymben.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyl diphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.
Collapse
Affiliation(s)
- Maximilian Frey
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ulschan Bathe
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany; Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL 32611, USA
| | - Luca Meink
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Jürgen Schmidt
- Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Alena Soboleva
- Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Ahmed Hassanin
- Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mehdi D Davari
- Department of Bioorganic Chemistry Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Oliver Frank
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Verena Schlagbauer
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Corinna Dawid
- Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany; Martin-Luther University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Strasse 3, 06120 Halle, Germany.
| |
Collapse
|
9
|
Bielecka M, Stafiniak M, Pencakowski B, Ślusarczyk S, Jastrzębski JP, Paukszto Ł, Łaczmański Ł, Gharibi S, Matkowski A. Comparative transcriptomics of two Salvia subg. Perovskia species contribute towards molecular background of abietane-type diterpenoid biosynthesis. Sci Rep 2024; 14:3046. [PMID: 38321199 PMCID: PMC10847172 DOI: 10.1038/s41598-024-53510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Tanshinones, are a group of diterpenoid red pigments present in Danshen - an important herbal drug of Traditional Chinese Medicine which is a dried root of Salvia miltiorrhiza Bunge. Some of the tanshinones are sought after as pharmacologically active natural products. To date, the biosynthetic pathway of tanshinones has been only partially elucidated. These compounds are also present in some of the other Salvia species, i.a. from subgenus Perovskia, such as S. abrotanoides (Kar.) Sytsma and S. yangii B.T. Drew. Despite of the close genetic relationship between these species, significant qualitative differences in their diterpenoid profile have been discovered. In this work, we have used the Liquid Chromatography-Mass Spectrometry analysis to follow the content of diterpenoids during the vegetation season, which confirmed our previous observations of a diverse diterpenoid profile. As metabolic differences are reflected in different transcript profile of a species or tissues, we used metabolomics-guided transcriptomic approach to select candidate genes, which expression possibly led to observed chemical differences. Using an RNA-sequencing technology we have sequenced and de novo assembled transcriptomes of leaves and roots of S. abrotanoides and S. yangii. As a result, 134,443 transcripts were annotated by UniProt and 56,693 of them were assigned as Viridiplantae. In order to seek for differences, the differential expression analysis was performed, which revealed that 463, 362, 922 and 835 genes indicated changes in expression in four comparisons. GO enrichment analysis and KEGG functional analysis of selected DEGs were performed. The homology and expression of two gene families, associated with downstream steps of tanshinone and carnosic acid biosynthesis were studied, namely: cytochromes P-450 and 2-oxoglutarate-dependend dioxygenases. Additionally, BLAST analysis revealed existence of 39 different transcripts related to abietane diterpenoid biosynthesis in transcriptomes of S. abrotanoides and S. yangii. We have used quantitative real-time RT-PCR analysis of selected candidate genes, to follow their expression levels over the vegetative season. A hypothesis of an existence of a multifunctional CYP76AH89 in transcriptomes of S. abrotanoides and S. yangii is discussed and potential roles of other CYP450 homologs are speculated. By using the comparative transcriptomic approach, we have generated a dataset of candidate genes which provides a valuable resource for further elucidation of tanshinone biosynthesis. In a long run, our investigation may lead to optimization of diterpenoid profile in S. abrotanoides and S. yangii, which may become an alternative source of tanshinones for further research on their bioactivity and pharmacological therapy.
Collapse
Affiliation(s)
- Monika Bielecka
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland.
| | - Marta Stafiniak
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Sylwester Ślusarczyk
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/113, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Rudolfa Weigla 12, Wrocław, Poland
| | - Shima Gharibi
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, Borowska 211A, 50-556, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wroclaw Medical University, Jana Kochanowskiego 14, Wrocław, Poland
| |
Collapse
|
10
|
Zhao Y, Liang F, Xie Y, Duan YT, Andeadelli A, Pateraki I, Makris AM, Pomorski TG, Staerk D, Kampranis SC. Oxetane Ring Formation in Taxol Biosynthesis Is Catalyzed by a Bifunctional Cytochrome P450 Enzyme. J Am Chem Soc 2024; 146:801-810. [PMID: 38129385 DOI: 10.1021/jacs.3c10864] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Taxol is a potent drug used in various cancer treatments. Its complex structure has prompted extensive research into its biosynthesis. However, certain critical steps, such as the formation of the oxetane ring, which is essential for its activity, have remained unclear. Previous proposals suggested that oxetane formation follows the acetylation of taxadien-5α-ol. Here, we proposed that the oxetane ring is formed by cytochrome P450-mediated oxidation events that occur prior to C5 acetylation. To test this hypothesis, we analyzed the genomic and transcriptomic information for Taxus species to identify cytochrome P450 candidates and employed two independent systems, yeast (Saccharomyces cerevisiae) and plant (Nicotiana benthamiana), for their characterization. We revealed that a single enzyme, CYP725A4, catalyzes two successive epoxidation events, leading to the formation of the oxetane ring. We further showed that both taxa-4(5)-11(12)-diene (endotaxadiene) and taxa-4(20)-11(12)-diene (exotaxadiene) are precursors to the key intermediate, taxologenic oxetane, indicating the potential existence of multiple routes in the Taxol pathway. Thus, we unveiled a long-elusive step in Taxol biosynthesis.
Collapse
Affiliation(s)
- Yong Zhao
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Feiyan Liang
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Yuman Xie
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Yao-Tao Duan
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Aggeliki Andeadelli
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), Thessaloniki 57001, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina 81100, Lemnos, Greece
| | - Irini Pateraki
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology, Hellas (CERTH), Thessaloniki 57001, Greece
| | - Thomas G Pomorski
- Transport Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Sotirios C Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| |
Collapse
|
11
|
Bai M, Jiang S, Chu S, Yu Y, Shan D, Liu C, Zong L, Liu Q, Liu N, Xu W, Mei Z, Jian J, Zhang C, Zhao S, Chiu TY, Simonsen HT. The telomere-to-telomere (T2T) genome of Peucedanum praeruptorum Dunn provides insights into the genome evolution and coumarin biosynthesis. Gigascience 2024; 13:giae025. [PMID: 38837945 PMCID: PMC11152176 DOI: 10.1093/gigascience/giae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine has used Peucedanum praeruptorum Dunn (Apiaceae) for a long time. Various coumarins, including the significant constituents praeruptorin (A-E), are the active constituents in the dried roots of P. praeruptorum. Previous transcriptomic and metabolomic studies have attempted to elucidate the distribution and biosynthetic network of these medicinal-valuable compounds. However, the lack of a high-quality reference genome impedes an in-depth understanding of genetic traits and thus the development of better breeding strategies. RESULTS A telomere-to-telomere (T2T) genome was assembled for P. praeruptorum by combining PacBio HiFi, ONT ultra-long, and Hi-C data. The final genome assembly was approximately 1.798 Gb, assigned to 11 chromosomes with genome completeness >98%. Comparative genomic analysis suggested that P. praeruptorum experienced 2 whole-genome duplication events. By the transcriptomic and metabolomic analysis of the coumarin metabolic pathway, we presented coumarins' spatial and temporal distribution and the expression patterns of critical genes for its biosynthesis. Notably, the COSY and cytochrome P450 genes showed tandem duplications on several chromosomes, which may be responsible for the high accumulation of coumarins. CONCLUSIONS A T2T genome for P. praeruptorum was obtained, providing molecular insights into the chromosomal distribution of the coumarin biosynthetic genes. This high-quality genome is an essential resource for designing engineering strategies for improving the production of these valuable compounds.
Collapse
Affiliation(s)
- Mingzhou Bai
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Sanjie Jiang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230000, China
| | - Yangyang Yu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Dai Shan
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liang Zong
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Qun Liu
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Weisong Xu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Zhanlong Mei
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Jianbo Jian
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chi Zhang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shancen Zhao
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Tsan-Yu Chiu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Henrik Toft Simonsen
- Laboratoire Biotechnologies Végétales Plantes aromatiques et médicinales, Université Jean Monnet, St. Étienne 42023, France
| |
Collapse
|
12
|
Sun W, Yin Q, Wan H, Gao R, Xiong C, Xie C, Meng X, Mi Y, Wang X, Wang C, Chen W, Xie Z, Xue Z, Yao H, Sun P, Xie X, Hu Z, Nelson DR, Xu Z, Sun X, Chen S. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis. Nat Commun 2023; 14:6470. [PMID: 37833361 PMCID: PMC10576086 DOI: 10.1038/s41467-023-42253-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- School of Life Science and Technology, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Chong Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xiaotong Wang
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ziyan Xie
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Peng Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xuehua Xie
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, 150040, Harbin, China.
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| |
Collapse
|
13
|
Zhou M, Jiang Y, Liu X, Kong W, Zhang C, Yang J, Ke S, Li Y. Genome-Wide Identification and Evolution Analysis of the CYP76 Subfamily in Rice ( Oryza sativa). Int J Mol Sci 2023; 24:ijms24108522. [PMID: 37239869 DOI: 10.3390/ijms24108522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The CYP76 subfamily, a member of the CYP superfamily, plays crucial roles in the biosynthesis of phytohormones in plants, involving biosynthesis of secondary metabolites, hormone signaling, and response to environmental stresses. Here, we conducted a genome-wide analysis of the CYP76 subfamily in seven AA genome species: Oryza sativa ssp. japonica, Oryza sativa ssp. indica, Oryza rufipogon, Oryza glaberrima, Oryza meridionalis, Oryza barthii, and Oryza glumaepatula. These were identified and classified into three groups, and it was found that Group 1 contained the largest number of members. Analysis of cis-acting elements revealed a large number of elements related to jasmonic acid and light response. The gene duplication analysis revealed that the CYP76 subfamily expanded mainly in SD/WGD and tandem forms and underwent strong purifying selection during evolution. Expression pattern analysis of OsCYP76s in various developmental stages revealed that the majority of OsCYP76s exhibit relatively restricted expression patterns in leaves and roots. We further analyzed the expression of CYP76s in O. sativa, japonica, and O. sativa, indica under cold, flooding, drought, and salt abiotic stresses by qRT-PCR. We found that OsCYP76-11 showed a huge increase in relative expression after drought and salt stresses. After flooding stress, OsiCYP76-4 showed a greater increase in expression compared to other genes. CYP76 in japonica and indica showed different response patterns to the same abiotic stresses, revealing functional divergence in the gene family during evolution; these may be the key genes responsible for the differences in tolerance to indica japonica. Our results provide valuable insights into the functional diversity and evolutionary history of the CYP76 subfamily and pave the way for the development of new strategies for improving stress tolerance and agronomic traits in rice.
Collapse
Affiliation(s)
- Mingao Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yifei Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuhui Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weilong Kong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Shenzhen Branch, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biomedical Informatics, School of Basic Medical Science, Peking University Health Science Center, Beijing 100191, China
| | - Jian Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Simin Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
14
|
Wang L, Fu J, Shen Q, Wang Q. OsWRKY10 extensively activates multiple rice diterpenoid phytoalexin biosynthesis to enhance rice blast resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37186469 DOI: 10.1111/tpj.16259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Phytoalexin is the main chemical weapon against disease pathogens in plants. Rice produces a number of phytoalexins to defend pathogens, most of which belong to diterpenoid phytoalexins. Three biosynthetic gene clusters (BGCs) and a few non-cluster genes are responsible for rice diterpenoid phytoalexin biosynthesis. The corresponding regulatory mechanism of these phytoalexins in response to pathogen challenges still remains unclear. Here we identified a transcription factor, OsWRKY10, positively regulating rice diterpenoid phytoalexin biosynthesis. Knockout mutants of OsWRKY10 obtained by the CRISPR/Cas9 technology are more susceptible to Magnaporthe oryzae infection, while overexpression of OsWRKY10 enhances resistance to rice blast. Further analysis reveals that overexpression of OsWRKY10 increases accumulation of multiple rice diterpenoid phytoalexins and expression of genes in three BGCs and non-clustered genes in response to M. oryzae infection. Knockout of OsWRKY10 impairs upregulation of rice diterpenoid phytoalexin biosynthesis gene expression by blast pathogen and CuCl2 treatment. OsWRKY10 directly binds to the W-boxes or W-box-like elements (WLEs) of rice diterpenoid phytoalexin biosynthesis gene promoters to regulate the corresponding gene expression. This study identified an extensive regulator (OsWRKY10) with the broad transcriptional regulation on rice diterpenoid phytoalexin biosynthesis, providing the insight to characterize regulation of rice chemical defense for improving disease resistance.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
15
|
Wisetsai A, Schevenels FT, Kanokmedhakul S, Kanokmedhakul K, Boonmak J, Youngme S, Suebrasri T, Lekphrom R. Isopimarane-type diterpenoids from the rhizomes of Kaempferia galanga L. and their biological activities. Nat Prod Res 2023; 37:1106-1115. [PMID: 34636702 DOI: 10.1080/14786419.2021.1989681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fourteen isopimarane diterpenoids (1-14) were isolated from the rhizomes of Kaempferia galanga, including four new compounds (1-4). The isolated secondary metabolites were identified through analysis of spectroscopic (1 D and 2 D NMR) and mass spectrometric data, together with X-ray diffraction studies. Compounds 4-5, 7-11, and 13 showed strong antimalarial activities, with IC50 values in the range of 1.46-3.99 μg/mL. Moreover, compounds 4, 5, 8, and 12 showed cytotoxicity against KB cell line with IC50 values in the range of 6.13-38.2 μg/mL, while compounds 4, 5, and 12 showed cytotoxicity against MCF-7 cell line with IC50 values in the range of 11.75-47.4 μg/mL. Eventually, the isolated compounds were screened against six bacterial strains and Mycobacterium tuberculosis, demonstrating weak to moderate activities.
Collapse
Affiliation(s)
- Awat Wisetsai
- Faculty of Science, Department of Chemistry, and Center for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Florian T Schevenels
- Faculty of Science, Department of Chemistry, and Center for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Somdej Kanokmedhakul
- Faculty of Science, Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Faculty of Science, Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Jaursup Boonmak
- Faculty of Science, Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Sujittra Youngme
- Faculty of Science, Materials Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| | - Thanapat Suebrasri
- Faculty of Medical Science, Nakhonratchasima College, Nakhonratchasima, Thailand.,Faculty of Science, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
| | - Ratsami Lekphrom
- Faculty of Science, Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
16
|
Du Z, Peng Z, Yang H, Wu H, Sun J, Huang L. Identification and functional characterization of three cytochrome P450 genes for the abietane diterpenoid biosynthesis in Isodon lophanthoides. PLANTA 2023; 257:90. [PMID: 36991182 DOI: 10.1007/s00425-023-04125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
We identify two ferruginol synthases and a 11-hydroxyferruginol synthase from a traditional Chinese medicinal herb Isodon lophanthoides and propose their involvement in two independent abietane diterpenoids biosynthetic pathways. Isodon lophanthoides is a traditional Chinese medicinal herb rich in highly oxidized abietane-type diterpenoids. These compounds exhibit a wide range of pharmaceutical activities, yet the biosynthesis is barely known. Here, we describe the screening and functional characterization of P450s that oxidize the abietane skeleton abietatriene. We mainly focused on CYP76 family and identified 12 CYP76AHs by mining the RNA-seq data of I. lophanthoides. Among the 12 CYP76AHs, 6 exhibited similar transcriptional expression features as upstream diterpene synthases, including root or leaf-preferential expression pattern and highly MeJA inducibility. These six P450s were considered as first-tier candidates and functionally characterized in yeast and plant cells. In yeast assays showed that both CYP76AH42 and CYP76AH43 were ferruginol synthases hydroxylating the C12 position of abietatriene, whereas CYP76AH46 was characterized as a 11-hydroxyferruginol synthase which catalyzes two successive oxidations at C12 and C11 of abietatriene. Heterologous expression of three CYP76AHs in Nicotiana benthamiana resulted in the formation of ferruginol. qPCR analysis showed CYP76AH42 and CYP76AH43 were mainly expressed in the root, which was consistent with the distribution of ferruginol in the root periderms. CYP76AH46 was primarily expressed in the leaves where barely ferruginol or 11-hydroxyferruginol was detected. In addition to distinct organ-specific expression pattern, three CYP76AHs exhibited different genomic structures (w or w/o introns), low protein sequence identities (51-63%) and were placed in separate subclades in the phylogenetic tree. These results suggest that the identified CYP76AHs may be involved in at least two independent abietane biosynthetic pathways in the aerial and underground parts of I. lophanthoides.
Collapse
Affiliation(s)
- Zuying Du
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ziqiu Peng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haisheng Wu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Lili Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
17
|
Zhao L, Oyagbenro R, Feng Y, Xu M, Peters RJ. Oryzalexin S biosynthesis: a cross-stitched disappearing pathway. ABIOTECH 2023; 4:1-7. [PMID: 37220540 PMCID: PMC10199973 DOI: 10.1007/s42994-022-00092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/25/2023]
Abstract
Rice produces many diterpenoid phytoalexins and, reflecting the importance of these natural products in this important cereal crop plant, its genome contains three biosynthetic gene clusters (BGCs) for such metabolism. The chromosome 4 BGC (c4BGC) is largely associated with momilactone production, in part due to the presence of the initiating syn-copalyl diphosphate (CPP) synthase gene (OsCPS4). Oryzalexin S is also derived from syn-CPP. However, the relevant subsequently acting syn-stemarene synthase gene (OsKSL8) is not located in the c4BGC. Production of oryzalexin S further requires hydroxylation at carbons 2 and 19 (C2 and C19), presumably catalyzed by cytochrome P450 (CYP) monooxygenases. Here it is reported the closely related CYP99A2 and CYP99A3, whose genes are also found in the c4BGC catalyze the necessary C19-hydroxylation, while the closely related CYP71Z21 and CYP71Z22, whose genes are found in the recently reported chromosome 7 BGC (c7BGC), catalyze subsequent hydroxylation at C2α. Thus, oryzalexin S biosynthesis utilizes two distinct BGCs, in a pathway cross-stitched together by OsKSL8. Notably, in contrast to the widely conserved c4BGC, the c7BGC is subspecies (ssp.) specific, being prevalent in ssp. japonica and only rarely found in the other major ssp. indica. Moreover, while the closely related syn-stemodene synthase OsKSL11 was originally considered to be distinct from OsKSL8, it has now been reported to be a ssp. indica derived allele at the same genetic loci. Intriguingly, more detailed analysis indicates that OsKSL8(j) is being replaced by OsKSL11 (OsKSL8i), suggesting introgression from ssp. indica to (sub)tropical japonica, with concurrent disappearance of oryzalexin S production. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00092-3.
Collapse
Affiliation(s)
- Le Zhao
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Richard Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Yiling Feng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
18
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
19
|
Werck-Reichhart D. Promiscuity, a Driver of Plant Cytochrome P450 Evolution? Biomolecules 2023; 13:biom13020394. [PMID: 36830762 PMCID: PMC9953472 DOI: 10.3390/biom13020394] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Plant cytochrome P450 monooxygenases were long considered to be highly substrate-specific, regioselective and stereoselective enzymes, in this respect differing from their animal counterparts. The functional data that have recently accumulated clearly counter this initial dogma. Highly promiscuous P450 enzymes have now been reported, mainly in terpenoid pathways with functions in plant adaptation, but also some very versatile xenobiotic/herbicide metabolizers. An overlap and predictable interference between endogenous and herbicide metabolism are starting to emerge. Both substrate preference and permissiveness vary between plant P450 families, with high promiscuity seemingly favoring retention of gene duplicates and evolutionary blooms. Yet significant promiscuity can also be observed in the families under high negative selection and with essential functions, usually enhanced after gene duplication. The strategies so far implemented, to systematically explore P450 catalytic capacity, are described and discussed.
Collapse
Affiliation(s)
- Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
20
|
Zhao Y, Yao S, Zhang X, Wang Z, Jiang C, Liu Y, Jiang X, Gao L, Xia T. Flavan-3-ol Galloylation-Related Functional Gene Cluster and the Functional Diversification of SCPL Paralogs in Camellia sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:488-498. [PMID: 36562642 DOI: 10.1021/acs.jafc.2c06433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The high accumulation of galloylated flavan-3-ols in Camellia sp. is a noteworthy phenomenon. We identified a flavan-3-ol galloylation-related functional gene cluster in tannin-rich plant Camellia sp., which included UGT84A22 and SCPL-AT gene clusters. We investigated the possible correlation between the accumulation of metabolites and the expression of SCPL-ATs and UGT84A22. The results revealed that C. sinensis, C. ptilophylla, and C. oleifera accumulated galloylated cis-flavan-3-ols (EGCG), galloylated trans-flavan-3-ols (GCG), and hydrolyzed tannins, respectively; however, C. nitidissima did not accumulate any galloylated compounds. C. nitidissima exhibited no expression of SCPL-AT or UGT84A22, whereas the other three species of Camellia exhibited various expression patterns. This indicated that the functions of the paralogs of SCPL-AT vary. Enzymatic analysis revealed that SCPL5 was neofunctionalized as a noncatalytic chaperone paralog, a type of chaerone-like protein, associating with flavan-3-ol galloylation; moreover, CsSCPL4 was subfunctionalized in association with the galloylation of cis- and trans-flavan-3-ols. In C. nitidissima, an SCPL4 homolog was noted with mutations in two cysteine residues forming a disulfide bond, which suggested that this homolog was defunctionalized. The findings of this study improve our understanding of the functional diversification of SCPL paralogs in Camellia sp.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Xue Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Zhihui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Changjuan Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, People's Republic of China
| |
Collapse
|
21
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
22
|
de Brito-Machado D, Ramos YJ, Defaveri ACAE, de Queiroz GA, Guimarães EF, de Lima Moreira D. Volatile Chemical Variation of Essential Oils and Their Correlation with Insects, Phenology, Ontogeny and Microclimate: Piper mollicomum Kunth, a Case of Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:3535. [PMID: 36559647 PMCID: PMC9785739 DOI: 10.3390/plants11243535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
The aim of this study was to monitor the volatile chemical composition from leaves and reproductive organs of Piper mollicomum Kunth (PM), in its reproduction period, as well as register inflorescence visitors, microclimate and phenological information. The essential oils (EOs) obtained from the different fresh organs by hydrodistillation were identified and quantified by Gas Chromatography/Mass Spectrometry (GC/MS) and by GC coupled to a Flame Ionization Detector (GC/FID), respectively. The cercentage content of some volatiles present in reproductive organs, such as limonene, 1,8-cineole, linalool and eupatoriochromene, increased during the maturation period of the inflorescences, and decreased during the fruiting period, suggesting a defense/attraction activities. Furtermore, a biosynthetic dichotomy between 1,8-cineole (leaves) and linalool (reproductive organs) was recorded. A high frequency of bee visits was registered weekly, and some correlations showed a positive relationship between this variable and terpenes. Microclimate has an impact on this species' phenological cycles and insect visiting behavior. All correlations between volatiles, insects, phenology and microclimate allowed us to present important data about the complex information network in PM. These results are extremely relevant for the understanding of the mechanisms of chemical-ecological plant-insect interactions in Piperaceae, a basal angiosperm.
Collapse
Affiliation(s)
- Daniel de Brito-Machado
- Instituto de Biologia, Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Centro de Responsabilidade Socioambiental do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Ygor Jessé Ramos
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Centro de Responsabilidade Socioambiental do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Anna Carina Antunes e Defaveri
- Centro de Responsabilidade Socioambiental do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - George Azevedo de Queiroz
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Elsie Franklin Guimarães
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Davyson de Lima Moreira
- Instituto de Biologia, Pós-Graduação em Biologia Vegetal, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, Brazil
- Diretoria de Pesquisa do Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
23
|
Zhan C, Lei L, Guo H, Zhou S, Xu C, Liu Z, Wu Z, Deng Y, Miao Y, Han Y, Zhang M, Li H, Huang S, Yang C, Zhang F, Li Y, Liu L, Liu X, Abbas HMK, Fernie AR, Yuan M, Luo J. Disease resistance conferred by components of essential chrysanthemum oil and the epigenetic regulation of OsTPS1. SCIENCE CHINA LIFE SCIENCES 2022; 66:1108-1118. [PMID: 36462108 DOI: 10.1007/s11427-022-2241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
The sesquiterpene alpha-bisabolol is the predominant active ingredient in essential oils that are highly valued in the cosmetics industry due to its wound healing, anti-inflammatory, and skin-soothing properties. Alpha-bisabolol was thought to be restricted to Compositae plants. Here we reveal that alpha-bisabolol is also synthesized in rice, a non-Compositae plant, where it acts as a novel sesquiterpene phytoalexin. Overexpressing the gene responsible for the biosynthesis of alpha-bisabolol, OsTPS1, conferred bacterial blight resistance in rice. Phylogenomic analyses revealed that alpha-bisabolol-synthesizing enzymes in rice and Compositae evolved independently. Further experiments demonstrated that the natural variation in the disease resistance level was associated with differential transcription of OsTPS1 due to polymorphisms in its promoter. We demonstrated that OsTPS1 was regulated at the epigenetic level by JMJ705 through the methyl jasmonate pathway. These data reveal the cross-family accumulation and regulatory mechanisms of alpha-bisabolol production.
Collapse
|
24
|
Knoch E, Kovács J, Deiber S, Tomita K, Shanmuganathan R, Serra Serra N, Okada K, Becker C, Schandry N. Transcriptional response of a target plant to benzoxazinoid and diterpene allelochemicals highlights commonalities in detoxification. BMC PLANT BIOLOGY 2022; 22:402. [PMID: 35974304 PMCID: PMC9382751 DOI: 10.1186/s12870-022-03780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Plants growing in proximity to other plants are exposed to a variety of metabolites that these neighbors release into the environment. Some species produce allelochemicals to inhibit growth of neighboring plants, which in turn have evolved ways to detoxify these compounds. RESULTS In order to understand how the allelochemical-receiving target plants respond to chemically diverse compounds, we performed whole-genome transcriptome analysis of Arabidopsis thaliana exposed to either the benzoxazinoid derivative 2-amino- 3H-phenoxazin-3-one (APO) or momilactone B. These two allelochemicals belong to two very different compound classes, benzoxazinoids and diterpenes, respectively, produced by different Poaceae crop species. CONCLUSIONS Despite their distinct chemical nature, we observed similar molecular responses of A. thaliana to these allelochemicals. In particular, many of the same or closely related genes belonging to the three-phase detoxification pathway were upregulated in both treatments. Further, we observed an overlap between genes upregulated by allelochemicals and those involved in herbicide detoxification. Our findings highlight the overlap in the transcriptional response of a target plant to natural and synthetic phytotoxic compounds and illustrate how herbicide resistance could arise via pathways involved in plant-plant interaction.
Collapse
Affiliation(s)
- Eva Knoch
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Judit Kovács
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Sebastian Deiber
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Keisuke Tomita
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Reshi Shanmuganathan
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Núria Serra Serra
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Kazunori Okada
- Agro-Biotechnology Research Center (AgTECH), Graduate School of Agricultural and Life Sciences (GSALS), The University of Tokyo, Tokyo, 113-8657, Japan
| | - Claude Becker
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| | - Niklas Schandry
- LMU Biocenter, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152, Martinsried, Germany.
- Gregor Mendel Institute of Molecular Plant Biology GmbH, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
25
|
Li CY, Yang L, Liu Y, Xu ZG, Gao J, Huang YB, Xu JJ, Fan H, Kong Y, Wei YK, Hu WL, Wang LJ, Zhao Q, Hu YH, Zhang YJ, Martin C, Chen XY. The sage genome provides insight into the evolutionary dynamics of diterpene biosynthesis gene cluster in plants. Cell Rep 2022; 40:111236. [PMID: 35977487 DOI: 10.1016/j.celrep.2022.111236] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022] Open
Abstract
The widely cultivated medicinal and ornamental plant sage (Salvia officinalis L.) is an evergreen shrub of the Lamiaceae family, native to the Mediterranean. We assembled a high-quality sage genome of 480 Mb on seven chromosomes, and identified a biosynthetic gene cluster (BGC) encoding two pairs of diterpene synthases (diTPSs) that, together with the cytochromes P450 (CYPs) genes located inside and outside the cluster, form two expression cascades responsible for the shoot and root diterpenoids, respectively, thus extending BGC functionality from co-regulation to orchestrating metabolite production in different organs. Phylogenomic analysis indicates that the Salvia clades diverged in the early Miocene. In East Asia, most Salvia species are herbaceous and accumulate diterpenoids in storage roots. Notably, in Chinese sage S. miltiorrhiza, the diterpene BGC has contracted and the shoot cascade has been lost. Our data provide genomic insights of micro-evolution of growth type-associated patterning of specialized metabolite production in plants.
Collapse
Affiliation(s)
- Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yan Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Zhou-Geng Xu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Jian Gao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Yan-Bo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yu-Kun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Wen-Li Hu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yi-Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China.
| |
Collapse
|
26
|
Yu J, Tu X, Huang AC. Functions and biosynthesis of plant signaling metabolites mediating plant-microbe interactions. Nat Prod Rep 2022; 39:1393-1422. [PMID: 35766105 DOI: 10.1039/d2np00010e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2015-2022Plants and microbes have coevolved since their appearance, and their interactions, to some extent, define plant health. A reasonable fraction of small molecules plants produced are involved in mediating plant-microbe interactions, yet their functions and biosynthesis remain fragmented. The identification of these compounds and their biosynthetic genes will open up avenues for plant fitness improvement by manipulating metabolite-mediated plant-microbe interactions. Herein, we integrate the current knowledge on their chemical structures, bioactivities, and biosynthesis with the view of providing a high-level overview on their biosynthetic origins and evolutionary trajectory, and pinpointing the yet unknown and key enzymatic steps in diverse biosynthetic pathways. We further discuss the theoretical basis and prospects for directing plant signaling metabolite biosynthesis for microbe-aided plant health improvement in the future.
Collapse
Affiliation(s)
- Jingwei Yu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xingzhao Tu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
27
|
Smit SJ, Lichman BR. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat Prod Rep 2022; 39:1465-1482. [PMID: 35441651 PMCID: PMC9298681 DOI: 10.1039/d2np00005a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Covering: up to 2022Plants produce a wide range of structurally and biosynthetically diverse natural products to interact with their environment. These specialised metabolites typically evolve in limited taxonomic groups presumably in response to specific selective pressures. With the increasing availability of sequencing data, it has become apparent that in many cases the genes encoding biosynthetic enzymes for specialised metabolic pathways are not randomly distributed on the genome. Instead they are physically linked in structures such as arrays, pairs and clusters. The exact function of these clusters is debated. In this review we take a broad view of gene arrangement in plant specialised metabolism, examining types of structures and variation. We discuss the evolution of biosynthetic gene clusters in the wider context of metabolism, populations and epigenetics. Finally, we synthesise our observations to propose a new hypothesis for biosynthetic gene cluster formation in plants.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
28
|
Jiang M, Yu N, Zhang Y, Liu L, Li Z, Wang C, Cheng S, Cao L, Liu Q. Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’. Int J Mol Sci 2022; 23:ijms23137234. [PMID: 35806236 PMCID: PMC9266670 DOI: 10.3390/ijms23137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Lesion mimic mutants (LMMs) are ideal materials for studying cell death and resistance mechanisms. Here, we identified and mapped a novel rice LMM, g380. The g380 exhibits a spontaneous hypersensitive response-like cell death phenotype accompanied by excessive accumulation of reactive oxygen species (ROS) and upregulated expression of pathogenesis-related genes, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). Using a map-based cloning strategy, a 184,916 bp deletion on chromosome 2 that overlaps with the diterpenoid biosynthetic gene cluster was identified in g380. Accordingly, the content of diterpenoids decreased in g380. In addition, lignin, one of the physical lines of plant defense, was increased in g380. RNA-seq analysis showed 590 significantly differentially expressed genes (DEG) between the wild-type 9311 and g380, 585 of which were upregulated in g380. Upregulated genes in g380 were mainly enriched in the monolignol biosynthesis branches of the phenylpropanoid biosynthesis pathway, the plant–pathogen interaction pathway and the phytoalexin-specialized diterpenoid biosynthesis pathway. Taken together, our results indicate that the diterpenoid biosynthetic gene cluster on chromosome 2 is involved in immune reprogramming, which in turn regulates cell death in rice.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Lin Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhi Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Chen Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
- Northern Center for China National Rice Research Institute, China National Rice Research Institute, Hangzhou 311400, China
- Correspondence: (L.C.); (Q.L.)
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
- Correspondence: (L.C.); (Q.L.)
| |
Collapse
|
29
|
Li R, Zhang J, Li Z, Peters RJ, Yang B. Dissecting the labdane-related diterpenoid biosynthetic gene clusters in rice reveals directional cross-cluster phytotoxicity. THE NEW PHYTOLOGIST 2022; 233:878-889. [PMID: 34655492 PMCID: PMC8688320 DOI: 10.1111/nph.17806] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/12/2021] [Indexed: 05/23/2023]
Abstract
Rice (Oryza sativa) is a staple food crop and serves as a model cereal plant. It contains two biosynthetic gene clusters (BGCs) for the production of labdane-related diterpenoids (LRDs), which serve important roles in combating biotic and abiotic stress. While plant BGCs have been subject to genetic analyses, these analyses have been largely confined to the investigation of single genes. CRISPR/Cas9-mediated genome editing was used to precisely remove each of these BGCs, as well as simultaneously knock out both BGCs. Deletion of the BGC from chromosome 2 (c2BGC), which is associated with phytocassane biosynthesis, but not that from chromosome 4 (c4BGC), which is associated with momilactone biosynthesis, led to a lesion mimic phenotype. This phenotype is dependent on two closely related genes encoding cytochrome P450 (CYP) mono-oxygenases, CYP76M7 and CYP76M8, from the c2BGC. However, rather than being redundant, CYP76M7 has been associated with the production of phytocassanes, whereas CYP76M8 is associated with momilactone biosynthesis. Intriguingly, the lesion mimic phenotype is not present in a line with both BGCs deleted. These results reveal directional cross-cluster phytotoxicity, presumably arising from the accumulation of LRD intermediates dependent on the c4BGC in the absence of CYP76M7 and CYP76M8, further highlighting their interdependent evolution and the selective pressures driving BGC assembly.
Collapse
Affiliation(s)
- Riqing Li
- Division of Plant SciencesBond Life Sciences CenterUniversity of MissouriColumbiaMO65211USA
| | - Juan Zhang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIA50011USA
| | - Zhaohu Li
- State Key Laboratory of Physiology and BiochemistryCollege of Agronomy and BiotechnologyChina Agricultural UniversityBeijing100193China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIA50011USA
| | - Bing Yang
- Division of Plant SciencesBond Life Sciences CenterUniversity of MissouriColumbiaMO65211USA
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| |
Collapse
|
30
|
Sun K, Fang H, Chen Y, Zhuang Z, Chen Q, Shan T, Khan MKR, Zhang J, Wang B. Genome-Wide Analysis of the Cytochrome P450 Gene Family Involved in Salt Tolerance in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2021; 12:685054. [PMID: 34925390 PMCID: PMC8674417 DOI: 10.3389/fpls.2021.685054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Plant cytochrome P450 (P450) participates in a wide range of biosynthetic reactions and targets a variety of biological molecules. These reactions lead to various fatty acid conjugates, plant hormones, secondary metabolites, lignin, and various defensive compounds. In our previous research, transcriptome analysis was performed on the salt-tolerant upland cotton "Tongyan No. 1." Many differentially expressed genes (DEGs) belong to the P450 family, and their domains occur widely in plants. In this current research, P450 genes were identified in Gossypium hirsutum with the aid of bioinformatics methods for investigating phylogenetic relations, gene structure, cis-elements, chromosomal localization, and collinearity within a genome. qRT-PCR was conducted to analyze P450 gene expression patterns under salt stress. The molecular weights of the 156 P450 genes were in the range of 5,949.6-245,576.3 Da, and the length of the encoded amino acids for all the identified P450 genes ranged from 51 to 2,144. P450 proteins are divided into four different subfamilies based on phylogenetic relationship, gene structure, and chromosomal localization of gene replication. The length of P450 genes in upland cotton differs greatly, ranging from 1,500 to 13,000 bp. The number of exons in the P450 family genes ranged from 1 to 9, while the number of introns ranged from 0 to 8, and there were similar trends within clusters. A total of 31 cis-acting elements were identified by analyzing 1,500 bp promoter sequences. Differences were found in cis-acting elements among genes. The consistency between qRT-PCR and previous transcriptome analysis of salt tolerance DEGs indicated that they were likely to be involved in the salt tolerance of cotton seedlings. Our results provide valuable information on the evolutionary relationships of genes and functional characteristics of the gene family, which is beneficial for further study of the cotton P450 gene family.
Collapse
Affiliation(s)
- Kangtai Sun
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhimin Zhuang
- School of Life Sciences, Nantong University, Nantong, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Tingyu Shan
- School of Life Sciences, Nantong University, Nantong, China
| | - Muhammad Kashif Riaz Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Cotton Research Center of Shandong Academy of Agricultural Sciences, Jinan, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
31
|
Shahi A, Mafu S. Specialized metabolites as mediators for plant-fungus crosstalk and their evolving roles. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102141. [PMID: 34814027 PMCID: PMC8671350 DOI: 10.1016/j.pbi.2021.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Plants, fungi, and bacteria produce numerous natural products with bioactive properties essential for ecological adaptation. Because of their chemical complexity, these natural products have been adapted for diverse applications in industry. The discovery of their biosynthetic pathways has been accelerated due to improved 'omics' approaches, metabolic engineering, and the availability of genetic manipulation techniques. Ongoing research into these metabolites is not only resolving the enzymatic diversity underlying their biosynthesis but also delving into the physiological and mechanistic basis of their modes of action. This review highlights progress made in the elucidation of biosynthetic pathways and biological roles of specialized metabolites, focusing on some that play important roles at the interface of plant-fungus interactions.
Collapse
Affiliation(s)
- Ayousha Shahi
- Plant Biology Graduate Program, University of Massachusetts-Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA
| | - Sibongile Mafu
- Plant Biology Graduate Program, University of Massachusetts-Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, University of Massachusetts - Amherst, 240 Thatcher Way, Life Science Laboratories, Amherst, MA 01003, USA.
| |
Collapse
|
32
|
Li G, Lin P, Wang K, Gu CC, Kusari S. Artificial intelligence-guided discovery of anticancer lead compounds from plants and associated microorganisms. Trends Cancer 2021; 8:65-80. [PMID: 34750090 DOI: 10.1016/j.trecan.2021.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
Plants and associated microorganisms are essential sources of natural products against human cancer diseases, partly exemplified by plant-derived anticancer drugs such as Taxol (paclitaxel). Natural products provide diverse mechanisms of action and can be used directly or as prodrugs for further anticancer optimization. Despite the success, major bottlenecks can delay anticancer lead discovery and implementation. Recent advances in sequencing and omics-related technology have provided a mine of information for developing new therapeutics from natural products. Artificial intelligence (AI), including machine learning (ML), has offered powerful techniques for extensive data analysis and prediction-making in anticancer leads discovery. This review presents an overview of current AI-guided solutions to discover anticancer lead compounds, focusing on natural products from plants and associated microorganisms.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China.
| | - Ping Lin
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ke Wang
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Chen-Chen Gu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Souvik Kusari
- Center for Mass Spectrometry, Faculty of Chemistry and Chemical Biology, Technische Universität Dortmund, Dortmund 44227, Germany.
| |
Collapse
|
33
|
Gao K, Zha WL, Zhu JX, Zheng C, Zi JC. A review: biosynthesis of plant-derived labdane-related diterpenoids. Chin J Nat Med 2021; 19:666-674. [PMID: 34561077 DOI: 10.1016/s1875-5364(21)60100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 11/16/2022]
Abstract
Plant-derived labdane-related diterpenoids (LRDs) represent a large group of terpenoids. LRDs possess either a labdane-type bicyclic core structure or more complex ring systems derived from labdane-type skeletons, such as abietane, pimarane, kaurane, etc. Due to their various pharmaceutical activities and unique properties, many of LRDs have been widely used in pharmaceutical, food and perfume industries. Biosynthesis of various LRDs has been extensively studied, leading to characterization of a large number of new biosynthetic enzymes. The biosynthetic pathways of important LRDs and the relevant enzymes (especially diterpene synthases and cytochrome P450 enzymes) were summarized in this review.
Collapse
Affiliation(s)
- Ke Gao
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Long Zha
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jian-Xun Zhu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou 310052, China.
| | - Jia-Chen Zi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
34
|
Villard C, Munakata R, Kitajima S, van Velzen R, Schranz ME, Larbat R, Hehn A. A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. THE NEW PHYTOLOGIST 2021; 231:1923-1939. [PMID: 33978969 DOI: 10.1111/nph.17458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Furanocoumarins are phytoalexins often cited as an example to illustrate the arms race between plants and herbivorous insects. They are distributed in a limited number of phylogenetically distant plant lineages, but synthesized through a similar pathway, which raised the question of a unique or multiple emergence in higher plants. The furanocoumarin pathway was investigated in the fig tree (Ficus carica, Moraceae). Transcriptomic and metabolomic approaches led to the identification of CYP76F112, a cytochrome P450 catalyzing an original reaction. CYP76F112 emergence was inquired using phylogenetics combined with in silico modeling and site-directed mutagenesis. CYP76F112 was found to convert demethylsuberosin into marmesin with a very high affinity. This atypical cyclization reaction represents a key step within the polyphenol biosynthesis pathway. CYP76F112 evolutionary patterns suggests that the marmesin synthase activity appeared recently in the Moraceae family, through a lineage-specific expansion and diversification. The characterization of CYP76F112 as the first known marmesin synthase opens new prospects for the use of the furanocoumarin pathway. It also supports the multiple acquisition of furanocoumarin in angiosperms by convergent evolution, and opens new perspectives regarding the ability of cytochromes P450 to evolve new functions related to plant adaptation to their environment.
Collapse
Affiliation(s)
- Cloé Villard
- LAE, Université de Lorraine-INRAE, Nancy, 54000, France
| | - Ryosuke Munakata
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sakihito Kitajima
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
- The Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, Japan
| | - Robin van Velzen
- Biosystematics Group, Wageningen University and Research Center, Wageningen, 6708 PB, the Netherlands
| | - Michael Eric Schranz
- Biosystematics Group, Wageningen University and Research Center, Wageningen, 6708 PB, the Netherlands
| | - Romain Larbat
- LAE, Université de Lorraine-INRAE, Nancy, 54000, France
| | - Alain Hehn
- LAE, Université de Lorraine-INRAE, Nancy, 54000, France
| |
Collapse
|
35
|
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R. Plant Metabolic Gene Clusters: Evolution, Organization, and Their Applications in Synthetic Biology. FRONTIERS IN PLANT SCIENCE 2021; 12:697318. [PMID: 34490002 PMCID: PMC8418127 DOI: 10.3389/fpls.2021.697318] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/21/2023]
Abstract
Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.
Collapse
Affiliation(s)
- Revuru Bharadwaj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Sarma R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Querétaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
36
|
Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. MOLECULAR PLANT 2021; 14:1244-1265. [PMID: 34216829 DOI: 10.1016/j.molp.2021.06.028] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/30/2021] [Indexed: 05/27/2023]
Abstract
The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark; VILLUM Research Center for Plant Plasticity, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Werck-Reichhart
- Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
37
|
Serra Serra N, Shanmuganathan R, Becker C. Allelopathy in rice: a story of momilactones, kin recognition, and weed management. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4022-4037. [PMID: 33647935 DOI: 10.1093/jxb/erab084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
In the struggle to secure nutrient access and to outperform competitors, some plant species have evolved a biochemical arsenal with which they inhibit the growth or development of neighbouring plants. This process, known as allelopathy, exists in many of today's major crops, including rice. Rice synthesizes momilactones, diterpenoids that are released into the rhizosphere and inhibit the growth of numerous plant species. While the allelopathic potential of rice was recognized decades ago, many questions remain unresolved regarding the biosynthesis, exudation, and biological activity of momilactones. Here, we review current knowledge on momilactones, their role in allelopathy, and their potential to serve as a basis for sustainable weed management. We emphasize the gaps in our current understanding of when and how momilactones are produced and of how they act in plant cells, and outline what we consider the next steps in momilactone and rice allelopathy research.
Collapse
Affiliation(s)
- Núria Serra Serra
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Reshi Shanmuganathan
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Genetics, LMU Biocenter, Ludwig-Maximilians University, D-82152 Martinsried, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Genetics, LMU Biocenter, Ludwig-Maximilians University, D-82152 Martinsried, Germany
| |
Collapse
|
38
|
Liu N, Lin F, Chen J, Shao Z, Zhang X, Zhu L. Multistage Defense System Activated by Tetrachlorobiphenyl and its Hydroxylated and Methoxylated Derivatives in Oryza sativa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4889-4898. [PMID: 33750107 DOI: 10.1021/acs.est.0c08265] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Crops can initiate various defense responses to environmental stresses. The process is often accompanied by extensive transcriptional and metabolic changes to reallocate metabolites. However, it remains unclear how organic pollutants activate the defense systems to reallocate metabolites in crops. The current study demonstrates that three defense systems, including the cytochrome P450s (CYP450s), glutathione S-transferases (GSTs), and phenylpropanoid biosynthesis, were sequentially activated after Oryza sativa was exposed to 2,3,4,5-tetrachlorobipheny l (PCB 61) and its derivatives 4'-hydroxy-2,3,4,5-tetrachlorobiphenyl (OH-PCB 61) and 4'-methoxy-2,3,4,5-tetrachlorobiphenyl (MeO-PCB 61), respectively. Genes encoding CYP76Ms and CYP72As were significantly upregulated after 0.5 h of exposure, followed by the GST-coding gene GSTU48, suggesting that the biotransformation and detoxification of PCB 61, OH-PCB 61, and MeO-PCB 61 occurred. Subsequently, CCR1 and CCR10 involved in phenylpropanoid biosynthesis were activated after 12 h, potentially reducing the oxidative stress induced by PCB 61 and its derivatives. Furthermore, β-d-glucan exohydrolase involved in both phenylpropanoid biosynthesis and starch and sucrose metabolism was significantly downregulated by 7.04-fold in the OH-PCB 61-treated group, potentially contributing to the inhibition of sugar hydrolysis. These findings provide insights into increasing rice adaptability to organic pollutants by reinforcing the enzyme-mediated defense systems, characterizing a novel and critical strategy that enables augmented crop outputs and quality in environments stressed by organic contaminants.
Collapse
Affiliation(s)
- Na Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Fangjing Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Zexi Shao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xinru Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
39
|
Kitaoka N, Zhang J, Oyagbenro RK, Brown B, Wu Y, Yang B, Li Z, Peters RJ. Interdependent evolution of biosynthetic gene clusters for momilactone production in rice. THE PLANT CELL 2021; 33:290-305. [PMID: 33793769 PMCID: PMC8136919 DOI: 10.1093/plcell/koaa023] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 05/20/2023]
Abstract
Plants can contain biosynthetic gene clusters (BGCs) that nominally resemble those found in microbes. However, while horizontal gene transmission is often observed in microbes, plants are limited to vertical gene transmission, implying that their BGCs may exhibit distinct inheritance patterns. Rice (Oryza sativa) contains two unlinked BGCs involved in diterpenoid phytoalexin metabolism, with one clearly required for momilactone biosynthesis, while the other is associated with production of phytocassanes. Here, in the process of elucidating momilactone biosynthesis, genetic evidence was found demonstrating a role for a cytochrome P450 (CYP) from the other "phytocassane" BGC. This CYP76M8 acts after the CYP99A2/3 from the "momilactone" BGC, producing a hemiacetal intermediate that is oxidized to the eponymous lactone by a short-chain alcohol dehydrogenase also from this BGC. Thus, the "momilactone" BGC is not only incomplete, but also fractured by the need for CYP76M8 to act in between steps catalyzed by enzymes from this BGC. Moreover, as supported by similar activity observed with orthologs from the momilactone-producing wild-rice species Oryza punctata, the presence of CYP76M8 in the other "phytocassane" BGC indicates interdependent evolution of these two BGCs, highlighting the distinct nature of BGC assembly in plants.
Collapse
Affiliation(s)
- Naoki Kitaoka
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Juan Zhang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Richard K Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Benjamin Brown
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Yisheng Wu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
| | - Bing Yang
- Division of Plant Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Zhaohu Li
- State Key Laboratory of Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Authors for correspondence: ,
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011
- Authors for correspondence: ,
| |
Collapse
|
40
|
Affiliation(s)
- Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, British Columbia, Canada.
| |
Collapse
|
41
|
De La Peña R, Sattely ES. Rerouting plant terpene biosynthesis enables momilactone pathway elucidation. Nat Chem Biol 2021; 17:205-212. [PMID: 33106662 PMCID: PMC7990393 DOI: 10.1038/s41589-020-00669-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Momilactones from rice have allelopathic activity, the ability to inhibit growth of competing plants. Transferring momilactone production to other crops is a potential approach to combat weeds, yet a complete momilactone biosynthetic pathway remains elusive. Here, we address this challenge through rapid gene screening in Nicotiana benthamiana, a heterologous plant host. This required us to solve a central problem: diminishing intermediate and product yields remain a bottleneck for multistep diterpene pathways. We increased intermediate and product titers by rerouting diterpene biosynthesis from the chloroplast to the cytosolic, high-flux mevalonate pathway. This enabled the discovery and reconstitution of a complete route to momilactones (>10-fold yield improvement in production versus rice). Pure momilactone B isolated from N. benthamiana inhibited germination and root growth in Arabidopsis thaliana, validating allelopathic activity. We demonstrated the broad utility of this approach by applying it to forskolin, a Hedgehog inhibitor, and taxadiene, an intermediate in taxol biosynthesis (~10-fold improvement in production versus chloroplast expression).
Collapse
Affiliation(s)
- Ricardo De La Peña
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
42
|
Xu MM, Zhou J, Zeng L, Xu J, Onakpa MM, Duan JA, Che CT, Bi H, Zhao M. Pimarane-derived diterpenoids with anti- Helicobacter pylori activity from the tuber of Icacina trichantha. Org Chem Front 2021. [DOI: 10.1039/d1qo00374g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two novel diterpenoids and ten known analogs were obtained from the tuber of Icacina trichantha. All compounds exhibited antibacterial activity against Helicobacter pylori strains with MIC values ranging from 8 to 64 μg mL−1.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Liping Zeng
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Jingchen Xu
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Monday M. Onakpa
- Department of Veterinary Pharmacology and Toxicology
- University of Abuja
- Abuja 920001
- Nigeria
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences
- College of Pharmacy
- University of Illinois at Chicago
- Chicago
- USA
| | - Hongkai Bi
- Department of Pathogen Biology
- Jiangsu Key Laboratory of Pathogen Biology
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- P. R. China
| |
Collapse
|
43
|
Zhan C, Lei L, Liu Z, Zhou S, Yang C, Zhu X, Guo H, Zhang F, Peng M, Zhang M, Li Y, Yang Z, Sun Y, Shi Y, Li K, Liu L, Shen S, Wang X, Shao J, Jing X, Wang Z, Li Y, Czechowski T, Hasegawa M, Graham I, Tohge T, Qu L, Liu X, Fernie AR, Chen LL, Yuan M, Luo J. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. NATURE PLANTS 2020; 6:1447-1454. [PMID: 33299150 DOI: 10.1038/s41477-020-00816-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/04/2020] [Indexed: 05/24/2023]
Abstract
Diterpenoids are the major group of antimicrobial phytoalexins in rice1,2. Here, we report the discovery of a rice diterpenoid gene cluster on chromosome 7 (DGC7) encoding the entire biosynthetic pathway to 5,10-diketo-casbene, a member of the monocyclic casbene-derived diterpenoids. We revealed that DGC7 is regulated directly by JMJ705 through methyl jasmonate-mediated epigenetic control3. Functional characterization of pathway genes revealed OsCYP71Z21 to encode a casbene C10 oxidase, sought after for the biosynthesis of an array of medicinally important diterpenoids. We further show that DGC7 arose relatively recently in the Oryza genus, and that it was partly formed in Oryza rufipogon and positively selected for in japonica during domestication. Casbene-synthesizing enzymes that are functionally equivalent to OsTPS28 are present in several species of Euphorbiaceae but gene tree analysis shows that these and other casbene-modifying enzymes have evolved independently. As such, combining casbene-modifying enzymes from these different families of plants may prove effective in producing a diverse array of bioactive diterpenoid natural products.
Collapse
Affiliation(s)
- Chuansong Zhan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Long Lei
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zixin Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shen Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xitong Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Hao Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Feng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zixin Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yangyang Sun
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yuheng Shi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Kang Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xuyang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jiawen Shao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Tomasz Czechowski
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | | | - Ian Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Takayuki Tohge
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianqing Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ling-Ling Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China.
| |
Collapse
|
44
|
Zhou X, Liu L, Li Y, Li K, Liu X, Zhou J, Yang C, Liu X, Fang C, Luo J. Integrative Metabolomic and Transcriptomic Analyses Reveal Metabolic Changes and Its Molecular Basis in Rice Mutants of the Strigolactone Pathway. Metabolites 2020; 10:metabo10110425. [PMID: 33114491 PMCID: PMC7693813 DOI: 10.3390/metabo10110425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/24/2022] Open
Abstract
Plants have evolved many metabolites to meet the demands of growth and adaptation. Although strigolactones (SLs) play vital roles in controlling plant architecture, their function in regulating plant metabolism remains elusive. Here we report the integrative metabolomic and transcriptomic analyses of two rice SL mutants, d10 (a biosynthesis mutant) and d14 (a perception mutant). Both mutants displayed a series of metabolic and transcriptional alterations, especially in the lipid, flavonoid, and terpenoid pathways. Levels of several diterpenoid phytoalexins were substantially increased in d10 and d14, together with the induction of terpenoid gene cluster and the corresponding upstream transcription factor WRKY45, an established determinant of plant immunity. The fact that WRKY45 is a target of IPA1, which acted as a downstream transcription factor of SL signaling, suggests that SLs contribute to plant defense through WRKY45 and phytoalexins. Moreover, our data indicated that SLs may modulate rice metabolism through a vast number of clustered or tandemly duplicated genes. Our work revealed a central role of SLs in rice metabolism. Meanwhile, integrative analysis of the metabolome and transcriptome also suggested that SLs may contribute to metabolite-associated growth and defense.
Collapse
Affiliation(s)
- Xiujuan Zhou
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Ling Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
| | - Kang Li
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Xiaoli Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Junjie Zhou
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
- Correspondence: (C.F.); (J.L.)
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, Hainan 570288, China; (X.Z.); (L.L.); (K.L.); (X.L.); (J.Z.); (X.L.)
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (C.Y.)
- Correspondence: (C.F.); (J.L.)
| |
Collapse
|
45
|
Peters RJ. Doing the gene shuffle to close synteny: dynamic assembly of biosynthetic gene clusters. THE NEW PHYTOLOGIST 2020; 227:992-994. [PMID: 32433781 PMCID: PMC7856633 DOI: 10.1111/nph.16631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
46
|
Liu X, Zhu X, Wang H, Liu T, Cheng J, Jiang H. Discovery and modification of cytochrome P450 for plant natural products biosynthesis. Synth Syst Biotechnol 2020; 5:187-199. [PMID: 32637672 PMCID: PMC7332504 DOI: 10.1016/j.synbio.2020.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022] Open
Abstract
Cytochrome P450s are widespread in nature and play key roles in the diversification and functional modification of plant natural products. Over the last few years, there has been remarkable progress in plant P450s identification with the rapid development of sequencing technology, "omics" analysis and synthetic biology. However, challenges still persist in respect of crystal structure, heterologous expression and enzyme engineering. Here, we reviewed several research hotspots of P450 enzymes involved in the biosynthesis of plant natural products, including P450 databases, gene mining, heterologous expression and protein engineering.
Collapse
Affiliation(s)
- Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxi Zhu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
47
|
Karunanithi PS, Berrios DI, Wang S, Davis J, Shen T, Fiehn O, Maloof JN, Zerbe P. The foxtail millet (Setaria italica) terpene synthase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:781-800. [PMID: 32282967 PMCID: PMC7497057 DOI: 10.1111/tpj.14771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 05/18/2023]
Abstract
Terpenoid metabolism plays vital roles in stress defense and the environmental adaptation of monocot crops. Here, we describe the identification of the terpene synthase (TPS) gene family of the panicoid food and bioenergy model crop foxtail millet (Setaria italica). The diploid S. italica genome contains 32 TPS genes, 17 of which were biochemically characterized in this study. Unlike other thus far investigated grasses, S. italica contains TPSs producing all three ent-, (+)- and syn-copalyl pyrophosphate stereoisomers that naturally occur as central building blocks in the biosynthesis of distinct monocot diterpenoids. Conversion of these intermediates by the promiscuous TPS SiTPS8 yielded different diterpenoid scaffolds. Additionally, a cytochrome P450 monooxygenase (CYP99A17), which genomically clustered with SiTPS8, catalyzes the C19 hydroxylation of SiTPS8 products to generate the corresponding diterpene alcohols. The presence of syntenic orthologs to about 19% of the S. italica TPSs in related grasses supports a common ancestry of selected pathway branches. Among the identified enzyme products, abietadien-19-ol, syn-pimara-7,15-dien-19-ol and germacrene-d-4-ol were detectable in planta, and gene expression analysis of the biosynthetic TPSs showed distinct and, albeit moderately, inducible expression patterns in response to biotic and abiotic stress. In vitro growth-inhibiting activity of abietadien-19-ol and syn-pimara-7,15-dien-19-ol against Fusarium verticillioides and Fusarium subglutinans may indicate pathogen defensive functions, whereas the low antifungal efficacy of tested sesquiterpenoids supports other bioactivities. Together, these findings expand the known chemical space of monocot terpenoid metabolism to enable further investigations of terpenoid-mediated stress resilience in these agriculturally important species.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - David I. Berrios
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Sadira Wang
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - John Davis
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Tong Shen
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Oliver Fiehn
- West Coast Metabolomics CenterUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Julin N. Maloof
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California–DavisOne Shields AvenueDavis95616CAUSA
| |
Collapse
|
48
|
Why are momilactones always associated with biosynthetic gene clusters in plants? Proc Natl Acad Sci U S A 2020; 117:13867-13869. [PMID: 32487731 DOI: 10.1073/pnas.2007934117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
49
|
Guo B, Zhao M, Wu Z, Onakpa MM, Burdette JE, Che CT. 19-nor-pimaranes from Icacina trichantha. Fitoterapia 2020; 144:104612. [PMID: 32437735 DOI: 10.1016/j.fitote.2020.104612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
Four new unusual 19-nor-pimarane-type diterpenes were isolated from the tuber of Icacina trichantha (Icacinaceae, Oliv.). The structures were elucidated based on spectroscopic and HRMS analysis. The absolute configurations were determined by electronic circular dichroism. All four compounds are structural analogues of icacinol and humirianthol, but do not demonstrate the same cytotoxic activity. A plausible biogenetic pathway is proposed.
Collapse
Affiliation(s)
- Brian Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America.
| | - Ming Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Zhenlong Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Monday M Onakpa
- Department of Veterinary Pharmacology and Toxicology, University of Abuja, Abuja 920001, Nigeria
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States of America
| |
Collapse
|
50
|
Murphy KM, Zerbe P. Specialized diterpenoid metabolism in monocot crops: Biosynthesis and chemical diversity. PHYTOCHEMISTRY 2020; 172:112289. [PMID: 32036187 DOI: 10.1016/j.phytochem.2020.112289] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 05/27/2023]
Abstract
Among the myriad specialized metabolites that plants employ to mediate interactions with their environment, diterpenoids form a chemically diverse group with vital biological functions. A few broadly abundant diterpenoids serve as core pathway intermediates in plant general metabolism. The majority of plant diterpenoids, however, function in specialized metabolism as often species-specific chemical defenses against herbivores and microbial diseases, in below-ground allelopathic interactions, as well as abiotic stress responses. Dynamic networks of anti-microbial diterpenoids were first demonstrated in rice (Oryza sativa) over four decades ago, and more recently, unique diterpenoid blends with demonstrated antibiotic bioactivities were also discovered in maize (Zea mays). Enabled by advances in -omics and biochemical approaches, species-specific diterpenoid-diversifying enzymes have been identified in these and other Poaceous species, including wheat (Triticum aestivum) and switchgrass (Panicum virgatum), and are discussed in this article with an emphasis on the critical diterpene synthase and cytochrome P450 monooxygenase families and their products. The continued investigation of the biosynthesis, diversity, and function of terpenoid-mediated crop defenses provides foundational knowledge to enable the development of strategies for improving crop resistance traits in the face of impeding pest, pathogen, and climate pressures impacting global agricultural production.
Collapse
Affiliation(s)
- Katherine M Murphy
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|