1
|
Xu X, Jian Y, Huang L, Luo W, Wu B, Feng S, Zhou C, Zhang L. Characterization of avian β-defensin genes in Galliformes reveals widespread evolutionary diversification and distinct evolutionary relationships with infection risk. BMC Genomics 2025; 26:211. [PMID: 40033205 DOI: 10.1186/s12864-025-11390-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Avian β-defensins (AvBDs) represent a key family of antimicrobial host defense peptides in birds. Accumulating evidence suggests that the evolutionary trajectory of β-defensin genes is specific to the gene, timescale, and species involved, implying that species-specific ecological and life-history differences drive divergent selective pressures on these genes. However, their evolutionary dynamics, particularly the interactions with ecological factors and life-history traits, remain insufficiently explored. RESULTS Through a comprehensive survey of 25 species spanning all major clades of Galliformes, 354 AvBD genes were identified. Comparative sequence analysis, genomic organization, and phylogenetic studies collectively reveal significant evolutionary diversification characterized by gene duplication, pseudogenization, and gene loss across these species. Notably, chicken AvBD3 exhibits significant differences in its coding regions, while AvBD6 and AvBD7 appear to have copy number variations, with species-specific paralogs of AvBD6 being especially prominent. Moreover, positive selection was more frequently observed in recently diverged gene lineages compared to ancestral ones. Using 70 samples from eight galliform species, the study further identified the prevalence of species-specific amino acid alleles. Phylogenetic comparative analysis demonstrated that the evolution of nine AvBD genes (AvBD2, -4, -5, -8, -9, -10, -11, -12, and -14) is significantly associated with specific ecological factors and life-history characteristics. Additionally, the evolutionary rates of these genes showed distinct relationship with inferred infection risk, likely reflecting the multifunctionality of β-defensins and potential trade-offs between immune defense and other biological functions. CONCLUSIONS This cross-species identification and systematic evolutionary analysis of AvBDs in Galliformes deepen our understanding of the co-evolution of host defense peptides, offering valuable insights into their natural biology and evolution, and paving the way for future applications as alternatives to traditional antibiotics.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China
| | - Yi Jian
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Lijing Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Wei Luo
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Bangyuan Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Shaohua Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- College of Life Science, China West Normal University, Nanchong, 637000, P. R. China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China
| | - Long Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, China West Normal University, Nanchong, 637000, P. R. China.
- Sichuan Wildlife Rehabilitation and Breeding Research Center, China West Normal University, Nanchong, 637009, P. R. China.
- Institute of Ecology, China West Normal University, Nanchong, 637009, P. R. China.
| |
Collapse
|
2
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
3
|
Loth K, Parisot N, Paquet F, Terrasson H, Sivignon C, Rahioui I, Ribeiro Lopes M, Gaget K, Duport G, Delmas AF, Aucagne V, Heddi A, Calevro F, da Silva P. Aphid BCR4 Structure and Activity Uncover a New Defensin Peptide Superfamily. Int J Mol Sci 2022; 23:ijms232012480. [PMID: 36293341 PMCID: PMC9604261 DOI: 10.3390/ijms232012480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
- UFR Sciences et Techniques, Université d’Orléans, 45071 Orléans, France
| | - Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Hugo Terrasson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Isabelle Rahioui
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | | | - Karen Gaget
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Gabrielle Duport
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Agnès F. Delmas
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, 45071 Orléans, France
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INRAE, INSA Lyon, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Pedro da Silva
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Correspondence:
| |
Collapse
|
4
|
Landon C, Zhu Y, Mustafi M, Madinier JB, Lelièvre D, Aucagne V, Delmas AF, Weisshaar JC. Real-Time Fluorescence Microscopy on Living E. coli Sheds New Light on the Antibacterial Effects of the King Penguin β-Defensin AvBD103b. Int J Mol Sci 2022; 23:ijms23042057. [PMID: 35216173 PMCID: PMC8880245 DOI: 10.3390/ijms23042057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
(1) Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. Among AMPs, the disulfide-rich β-defensin AvBD103b, whose antibacterial activities are not inhibited by salts contrary to most other β-defensins, is particularly appealing. Information about the mechanisms of action is mandatory for the development and approval of new drugs. However, data for non-membrane-disruptive AMPs such as β-defensins are scarce, thus they still remain poorly understood. (2) We used single-cell fluorescence imaging to monitor the effects of a β-defensin (namely AvBD103b) in real time, on living E. coli, and at the physiological concentration of salts. (3) We obtained key parameters to dissect the mechanism of action. The cascade of events, inferred from our precise timing of membrane permeabilization effects, associated with the timing of bacterial growth arrest, differs significantly from the other antimicrobial compounds that we previously studied in the same physiological conditions. Moreover, the AvBD103b mechanism does not involve significant stereo-selective interaction with any chiral partner, at any step of the process. (4) The results are consistent with the suggestion that after penetrating the outer membrane and the cytoplasmic membrane, AvBD103b interacts non-specifically with a variety of polyanionic targets, leading indirectly to cell death.
Collapse
Affiliation(s)
- Céline Landon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
- Correspondence:
| | - Yanyu Zhu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Dominique Lelièvre
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Vincent Aucagne
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - Agnes F. Delmas
- Center for Molecular Biophysics, CNRS, 45071 Orléans, France; (J.-B.M.); (D.L.); (V.A.); (A.F.D.)
| | - James C. Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (M.M.); (J.C.W.)
| |
Collapse
|
5
|
Santana FL, Estrada K, Ortiz E, Corzo G. Reptilian β-defensins: Expanding the repertoire of known crocodylian peptides. Peptides 2021; 136:170473. [PMID: 33309943 DOI: 10.1016/j.peptides.2020.170473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/31/2023]
Abstract
One of the major families of host defense peptides (HDPs) in vertebrates are β-defensins. They constitute important components of innate immunity and have remained an interesting topic of research for more than two decades. While many β-defensin sequences in mammals and birds have been identified and their properties and functions characterized, β-defensin peptides from other groups of vertebrates, particularly reptiles, are still largely unexplored. In this review, we focus on reptilian β-defensins and summarize different aspects of their biology, such as their genomic organization, evolution, structure, and biological activities. Reptilian β-defensin genes exhibit similar genomic organization to birds and their number and gene structure are variable among different species. During the evolution of reptiles, several gene duplication and deletion events have occurred and the functional diversification of β-defensins has been mainly driven by positive selection. These peptides display broad antimicrobial activity in vitro, but a deeper understanding of their mechanisms of action in vivo, including their role as immunomodulators, is still lacking. Reptilian β-defensins constitute unique polypeptide sequences to expand our current understanding of innate immunity in these animals and elucidate core biological functions of this family of HDPs across amniotes.
Collapse
Affiliation(s)
- Felix L Santana
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca Mor., 62250, Mexico.
| | - Karel Estrada
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca Mor., 62250, Mexico
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca Mor., 62250, Mexico.
| |
Collapse
|
6
|
Wang Y, Wang M, Shan A, Feng X. Avian host defense cathelicidins: structure, expression, biological functions, and potential therapeutic applications. Poult Sci 2020; 99:6434-6445. [PMID: 33248558 PMCID: PMC7704953 DOI: 10.1016/j.psj.2020.09.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDP) are multifunctional effectors of the innate immune system, which has antimicrobial and pleiotropic immunomodulatory functions. Although there is a very sophisticated superposition of adaptive immune systems in vertebrates, this system is still essential. As an important family of HDP, cathelicidins are also known for their broad-spectrum antibacterial activity against bacteria, fungi, and enveloped viruses. It has been found in humans and other species, including cattle, pigs, sheep, goats, chickens, rabbits, and some kind of fish. Among them, cathelicidins in birds were described for the first time in 2005. This review focuses on the structure, biological activities, expression, and regulation of avian cathelicidin, especially main effects of host defense cathelicidin on potential therapeutic applications. According to the results obtained both in vitro and in vivo, good perspectives have been opened for cathelicidin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of cathelicidin as novel therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Min Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
7
|
The Ancestral N-Terminal Domain of Big Defensins Drives Bacterially Triggered Assembly into Antimicrobial Nanonets. mBio 2019; 10:mBio.01821-19. [PMID: 31641083 PMCID: PMC6805989 DOI: 10.1128/mbio.01821-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
β-Defensins are host defense peptides controlling infections in species ranging from humans to invertebrates. However, the antimicrobial activity of most human β-defensins is impaired at physiological salt concentrations. We explored the properties of big defensins, the β-defensin ancestors, which have been conserved in a number of marine organisms, mainly mollusks. By focusing on a big defensin from oyster (Cg-BigDef1), we showed that the N-terminal domain lost during evolution toward β-defensins confers bactericidal activity to Cg-BigDef1, even at high salt concentrations. Cg-BigDef1 killed multidrug-resistant human clinical isolates of Staphylococcus aureus. Moreover, the ancestral N-terminal domain drove the assembly of the big defensin into nanonets in which bacteria are entrapped and killed. This discovery may explain why the ancestral N-terminal domain has been maintained in diverse marine phyla and creates a new path of discovery to design β-defensin derivatives active at physiological and high salt concentrations. Big defensins, ancestors of β-defensins, are composed of a β-defensin-like C-terminal domain and a globular hydrophobic ancestral N-terminal domain. This unique structure is found in a limited number of phylogenetically distant species, including mollusks, ancestral chelicerates, and early-branching cephalochordates, mostly living in marine environments. One puzzling evolutionary issue concerns the advantage for these species of having maintained a hydrophobic domain lost during evolution toward β-defensins. Using native ligation chemistry, we produced the oyster Crassostrea gigas BigDef1 (Cg-BigDef1) and its separate domains. Cg-BigDef1 showed salt-stable and broad-range bactericidal activity, including against multidrug-resistant human clinical isolates of Staphylococcus aureus. We found that the ancestral N-terminal domain confers salt-stable antimicrobial activity to the β-defensin-like domain, which is otherwise inactive. Moreover, upon contact with bacteria, the N-terminal domain drives Cg-BigDef1 assembly into nanonets that entrap and kill bacteria. We speculate that the hydrophobic N-terminal domain of big defensins has been retained in marine phyla to confer salt-stable interactions with bacterial membranes in environments where electrostatic interactions are impaired. Those remarkable properties open the way to future drug developments when physiological salt concentrations inhibit the antimicrobial activity of vertebrate β-defensins.
Collapse
|
8
|
Bailleul G, Guabiraba R, Virlogeux-Payant I, Lantier I, Trotereau J, Gilbert FB, Wiedemann A, Trotereau A, Velge P, Schouler C, Lalmanach AC. Systemic Administration of Avian Defensin 7: Distribution, Cellular Target, and Antibacterial Potential in Mice. Front Microbiol 2019; 10:541. [PMID: 30972041 PMCID: PMC6444188 DOI: 10.3389/fmicb.2019.00541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Defensins are natural antimicrobial peptides. The avian beta-defensin AvBD7 isolated from the chicken bone marrow possess broad antibacterial spectrum and strong resistance to proteolysis. However, its ability to fight systemic infections of major concern for public health, such as salmonellosis, is unknown. As a first approach, fluorescence labeling of AvBD7 allowed to track its systemic distribution after intraperitoneal injection in mice using whole body live imaging. It was associated to peritoneal cells and to deeper organs such as the liver. In the next step, the use of labeled AvBD7 allowed to observe its interaction with murine macrophages in culture. After incubation, it was able to penetrate inside the cells through an endocytosis-like mechanism. Furthermore, natural AvBD7 contributed to the control of intracellular multiplication of a multidrug resistant Salmonella strain, after incubation with infected macrophages. Finally, administration in a model of systemic lethal Salmonella infection in mice led to significant improvement of mouse survival, consistently with significant reduction of the liver bacterial load. In conclusion, the results reveal a hitherto unknown intracellular antibacterial effect of AvBD7 in Salmonella target cells and support AvBD7 as a candidate of interest for the treatment of infectious diseases caused by multidrug-resistant pathogenic Enterobacteriaceae.
Collapse
Affiliation(s)
- Geoffrey Bailleul
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Rodrigo Guabiraba
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | | | - Isabelle Lantier
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Jérôme Trotereau
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Florence B Gilbert
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Agnès Wiedemann
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Angélina Trotereau
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Philippe Velge
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | - Catherine Schouler
- ISP, INRA, Université de Tours, UMR 1282 Centre INRA Val de Loire, Nouzilly, France
| | | |
Collapse
|
9
|
Wu Q, Patočka J, Kuča K. Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel) 2018; 10:toxins10110461. [PMID: 30413046 PMCID: PMC6267271 DOI: 10.3390/toxins10110461] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are crucial effectors of the innate immune system. They provide the first line of defense against a variety of pathogens. AMPs display synergistic effects with conventional antibiotics, and thus present the potential for combined therapies. Insects are extremely resistant to bacterial infections. Insect AMPs are cationic and comprise less than 100 amino acids. These insect peptides exhibit an antimicrobial effect by disrupting the microbial membrane and do not easily allow microbes to develop drug resistance. Currently, membrane mechanisms underlying the antimicrobial effects of AMPs are proposed by different modes: the barrel-stave mode, toroidal-pore, carpet, and disordered toroidal-pore are the typical modes. Positive charge quantity, hydrophobic property and the secondary structure of the peptide are important for the antibacterial activity of AMPs. At present, several structural families of AMPs from insects are known (defensins, cecropins, drosocins, attacins, diptericins, ponericins, metchnikowins, and melittin), but new AMPs are frequently discovered. We reviewed the biological effects of the major insect AMPs. This review will provide further information that facilitates the study of insect AMPs and shed some light on novel microbicides.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic.
| | - Jiří Patočka
- Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic.
- Biomedical Research Centre, University Hospital, 500 03 Hradec Kralove, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
10
|
Mowbray CA, Niranji SS, Cadwell K, Bailey R, Watson KA, Hall J. Gene expression of AvBD6-10 in broiler chickens is independent of AvBD6, 9, and 10 peptide potency. Vet Immunol Immunopathol 2018; 202:31-40. [PMID: 30078596 DOI: 10.1016/j.vetimm.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
The Avian β-defensin (AvBD) gene cluster contains fourteen genes; within this, two groups (AvBD6/7 and AvBD8 -10) encode charged peptides of >+5 (AvBD6/7), indicative of potent microbial killing activities, and ≤+4 (AvBD8-10), suggestive of reduced antimicrobial activities. Chicken broiler gut tissues are constantly exposed to microbes in the form of commensal bacteria. This study examined whether tissue expression patterns of AvBD6-10 reflected microbial exposure and the encoded peptides a functional antimicrobial hierarchy. Gut AvBD6-10 gene expression was observed in hatch to day 21 birds, although the AvBD8-10 profiles were eclipsed by those detected in the liver and kidney tissues. In vitro challenges of chicken CHCC-OU2 cells using the gut commensal Lactobacillus johnsonii (104 CFU) did not significantly affect AvBD8-10 gene expression patterns, although upregulation (P < 0.05) of IL-Iβ gene expression was observed. Similarly, in response to Bacteriodes doreii, IL-Iβ and IL-6 gene upregulation were detected (P < 0.05), but AvBD10 gene expression remained unaffected. These data suggested that AvBD8-10 gene expression was not induced by commensal gut bacteria. Bacterial time-kill assays employing recombinant (r)AvBD6, 9 and 10 peptides (0.5μM - 12μM), indicated an antimicrobial hierarchy, linked to charge, of AvBD6 > AvBD9 > AvBD10 against Escherichia coli, but AvBD10 > AvBD9 > AvBD6 using Enterococcus faecalis. rAvBD10, selected due to its reduced cationic charge was, using CHCC-OU2 cells, investigated for cell proliferation and wound healing properties, but none were observed. These data suggest that in healthy broiler chicken tissues AvBD6/7 and AvBD8-10 gene expression profiles are independent of the in vitro antimicrobial hierarchies of the encoded AvBD6, 9 and 10 peptides.
Collapse
Affiliation(s)
- Catherine A Mowbray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Sherko S Niranji
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Kevin Cadwell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | | | | | - Judith Hall
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
11
|
Liu C, Jiang L, Liu L, Sun L, Zhao W, Chen Y, Qi T, Han Z, Shao Y, Liu S, Ma D. Induction of Avian β-Defensin 2 Is Possibly Mediated by the p38 MAPK Signal Pathway in Chicken Embryo Fibroblasts After Newcastle Disease Virus Infection. Front Microbiol 2018; 9:751. [PMID: 29725321 PMCID: PMC5916956 DOI: 10.3389/fmicb.2018.00751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
The study was conducted to evaluate whether avian β-defensins (AvBDs) could be induced by Newcastle disease virus (NDV) infection, and to investigate the potential signaling pathway of AvBD2 induction in response to NDV infection as well. First, mRNA expression of AvBDs (1–14) was evaluated in the chicken embryo fibroblasts (CEFs) infected with NDV strain F48E9 at 6, 12, 24, 36, and 48 h post-inoculation (hpi), respectively. The results demonstrated a significant induction of AvBD2 in CEFs elicited by the NDV strain. Then, we expressed and purified the AvBD2 proteins in both eukaryotic cells and prokaryotic cells. Of the two recombinant AvBD2 proteins, only the protein expressed in eukaryotic cells showed directly antiviral activity against NDV strain F48E9 in vitro. Ligands of toll-like receptors (TLRs) were chosen as alternatives to NDV to further study signaling pathway of AvBD2 induction here, due to insufficient upregulation of AvBD2 expression elicited by NDV. We found that the mRNA expression of AvBD2 was highly upregulated by Pam3CSK4, FLA-ST, and ODN-M362. Then, four inhibitors of signaling pathway, including inhibitors of JNK, ERK1/2, p38 MAPK, and NF-κB, were used in this study. Of the four inhibitors, only inhibition of the p38 MAPK signaling pathway significantly reduced AvBD2 expression after stimulation with Pam3CSK4, FLA-ST and ODN-M362, respectively. Taken together, these results revealed that AvBD2 play a pivotal role in host innate immunity response to NDV infection. The mRNA expression of AvBD2 might be regulated in a p38 MAPK-dependent manner.
Collapse
Affiliation(s)
- Chenggang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangliang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenjun Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuqiu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tianming Qi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Martinez G, Hograindleur JP, Voisin S, Abi Nahed R, Abd El Aziz TM, Escoffier J, Bessonnat J, Fovet CM, De Waard M, Hennebicq S, Aucagne V, Ray PF, Schmitt E, Bulet P, Arnoult C. Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Mol Hum Reprod 2018; 23:116-131. [PMID: 27932550 DOI: 10.1093/molehr/gaw075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/18/2016] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Is it possible to identify original compounds that are able to enhance sperm motility from the venom of the scorpion Scorpio maurus palmatus? SUMMARY ANSWER We identified a potent disulfide-rich peptide (DRP) of 73 amino acids that significantly improved the motility of fresh and frozen-thawed sperm in different mammalian species, including human, and improved fertilization outcome in mouse IVF experiments. WHAT IS KNOWN ALREADY Any disturbance of sperm motility has a strong impact on fertilization and can lead to subfertility or infertility. Significant efforts have, therefore, been made to identify pharmacological drugs that might improve sperm motility. Such compounds are particularly useful in azoospermia to improve testicular sperm extraction and in the domain of cryopreservation because the motility of frozen-thawed sperm is reduced. STUDY DESIGN, SIZE, DURATION This was a basic science/medical research study aimed at identifying original compounds from a library of venoms able to enhance mammalian sperm motility, including human. We first identified in the venom of a scorpion S. m. palmatus a fraction able to potently activate sperm motility. We next purified and characterized the compound by liquid chromatography, mass spectrometry and peptide synthesis. Finally, the potency and toxicity of both purified and synthetic versions of the identified compound on sperm motility were assessed using different in vitro tests in different mammalian species. PARTICIPANTS/MATERIALS, SETTING, METHODS For human sperm, biological samples were collected from normozoospermic donors and subfertile patients attending a reproduction department for diagnostic semen analysis. Testicular sperm was collected from cynomolgus monkeys (Macaca fascicularis) euthanized for the needs of specific authorized research projects. The peptide was also tested on bovine and mouse epidydimal sperm. We measured different sperm motility parameters with a computer-assisted sperm analysis system in the presence or absence of the peptide. MAIN RESULTS AND THE ROLE OF CHANCE Size exclusion chromatography enabled us to isolate a fraction of the venom of S. m. palmatus able to increase sperm motility. By liquid chromatography and mass spectrometry, a peptide comprising 73 amino acids with 4 disulfide bridges was identified as responsible for the biological activity and called 'spermaurin'. The identity of spermaurin was confirmed by chemical synthesis. We showed that the peptide increased the motility of fresh and frozen-thawed human sperm. We observed that the potency of the peptide was higher on fresh ejaculated spermatozoa with a low motility, achieving a 100% increase of curvilinear velocity in poorly performing sperm. We also demonstrated that peptide is effective on bovine and mouse fresh epididymal, bovine frozen-thawed ejaculated and fresh non-human primate testicular sperm. Finally, in mouse IVF, the production of 2-cell embryos was increased by 24% when sperm were treated with the peptide. LIMITATIONS, REASONS FOR CAUTION This work is an in vitro evaluation of the ability of spermaurin to improve sperm motility parameters. Another limitation of this study is the small number of human sperm samples tested with the natural (n = 36) and synthetic (n = 12) peptides. Moreover, the effect of the peptide on IVF outcome was only tested in mouse and further tests with human and bovine gametes are required to confirm and extend this result in other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS This work confirms our initial study showing that venoms represent an interesting source of molecules that are able to modify sperm physiology. Moreover, this work presents the first demonstrated biological action of a venom peptide from the scorpion S. m. palmatus with sequence similarities to La1 peptide from Liocheles australasiae (Wood scorpion), a widespread family of DRPs. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work is part of the project 'LAB COM-14 LAB7 0004 01-LIPAV', funded by the program LabCom 2014 from the French Research Agency (ANR). Dr Arnoult reports grants from IMV Technologies during the conduct of the study. In addition, Drs Arnoult, Martinez, Ray and Schmitt have a patent EP16305642.7 pending containing some of the information presented in this manuscript.
Collapse
Affiliation(s)
- Guillaume Martinez
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France.,Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Jean-Pascal Hograindleur
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Sébastien Voisin
- Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Roland Abi Nahed
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Tarek M Abd El Aziz
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Jessica Escoffier
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| | - Julien Bessonnat
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Claire-Maëlle Fovet
- Molecular Imaging Research Center, MIRCen CEA/INSERM UMR1169, Fontenay-aux-Roses F-92265, France
| | - Michel De Waard
- L'institut du thorax, Inserm UMR 1087/CNRS UMR 6291, Université de Nantes, NantesF44007, France
| | - Sylviane Hennebicq
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biologie de la procréation, Grenoble F-38000, France
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans F-45071, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,CHU Grenoble Alpes, UF de Biochimie Génétique et Moléculaire, Grenoble F-38000, France
| | - Eric Schmitt
- IMV Technologies, ZI N° 1 Est, F-61300 L'Aigle, France
| | - Philippe Bulet
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France.,Plateforme BioPark d'Archamps, Archamps Technopole, Saint Julien en Genevois F-74160, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble F-38000, France.,Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble F-38000, France
| |
Collapse
|
13
|
Cadwell K, Niranji SS, Armstrong VL, Mowbray CA, Bailey R, Watson KA, Hall J. AvBD1 nucleotide polymorphisms, peptide antimicrobial activities and microbial colonisation of the broiler chicken gut. BMC Genomics 2017; 18:637. [PMID: 28821240 PMCID: PMC5563022 DOI: 10.1186/s12864-017-4034-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The importance of poultry as a global source of protein underpins the chicken genome and associated SNP data as key tools in selecting and breeding healthy robust birds with improved disease resistance. SNPs affecting host peptides involved in the innate defences tend to be rare, but three non-synonymous SNPs in the avian β-defensin (AvBD1) gene encoding the variant peptides NYH, SSY and NYY were identified that segregated specifically to three lines of commercial broiler chickens Line X (LX), Line Y(LY) and Line Z. The impacts of such amino acid changes on peptide antimicrobial properties were analysed in vitro and described in relation to the caecal microbiota and gut health of LX and LY birds. RESULTS Time-kill and radial immune diffusion assays indicated all three peptides to have antimicrobial properties against gram negative and positive bacteria with a hierarchy of NYH > SSY > NYY. Calcein leakage assays supported AvBD1 NYH as the most potent membrane permeabilising agent although no significant differences in secondary structure were identified to explain this. However, distinct claw regions, identified by 3D modelling and proposed to play a key role in microbial membrane attachment, and permeation, were more distinct in the NYH model. In vivo AvBD1 synthesis was detected in the bird gut epithelia. Analyses of the caecal gut microbiota of young day 4 birds suggested trends in Lactobacilli sp. colonisation at days 4 (9% LX vs × 30% LY) and 28 (20% LX vs 12% LY) respectively, but these were not statistically significant (P > 0.05). CONCLUSION Amino acid changes altering the killing capacity of the AvBD1 peptide were associated with two different bird lines, but such changes did not impact significantly on caecal gut microbiota.
Collapse
Affiliation(s)
- Kevin Cadwell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Sherko S Niranji
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | - Vanessa L Armstrong
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.,Present address: School of Biomedical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Catherine A Mowbray
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | - Judith Hall
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
14
|
Yang M, Zhang C, Zhang X, Zhang MZ, Rottinghaus GE, Zhang S. Structure-function analysis of Avian β-defensin-6 and β-defensin-12: role of charge and disulfide bridges. BMC Microbiol 2016; 16:210. [PMID: 27613063 PMCID: PMC5016922 DOI: 10.1186/s12866-016-0828-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Avian beta-defensins (AvBD) are small, cationic, antimicrobial peptides. The potential application of AvBDs as alternatives to antibiotics has been the subject of interest. However, the mechanisms of action remain to be fully understood. The present study characterized the structure-function relationship of AvBD-6 and AvBD-12, two peptides with different net positive charges, similar hydrophobicity and distinct tissue expression profiles. RESULTS AvBD-6 was more potent than AvBD-12 against E. coli, S. Typhimurium, and S. aureus as well as clinical isolates of extended spectrum beta lactamase (ESBL)-positive E. coli and K. pneumoniae. AvBD-6 was more effective than AvBD-12 in neutralizing LPS and interacting with bacterial genomic DNA. Increasing bacterial concentration from 10(5) CFU/ml to 10(9) CFU/ml abolished AvBDs' antimicrobial activity. Increasing NaCl concentration significantly inhibited AvBDs' antimicrobial activity, but not the LPS-neutralizing function. Both AvBDs were mildly chemotactic for chicken macrophages and strongly chemotactic for CHO-K1 cells expressing chicken chemokine receptor 2 (CCR2). AvBD-12 at higher concentrations also induced chemotactic migration of murine immature dendritic cells (DCs). Disruption of disulfide bridges abolished AvBDs' chemotactic activity. Neither AvBDs was toxic to CHO-K1, macrophages, or DCs. CONCLUSIONS AvBDs are potent antimicrobial peptides under low-salt conditions, effective LPS-neutralizing agents, and broad-spectrum chemoattractant peptides. Their antimicrobial activity is positively correlated with the peptides' net positive charges, inversely correlated with NaCl concentration and bacterial concentration, and minimally dependent on intramolecular disulfide bridges. In contrast, their chemotactic property requires the presence of intramolecular disulfide bridges. Data from the present study provide a theoretical basis for the design of AvBD-based therapeutic and immunomodulatory agents.
Collapse
Affiliation(s)
- Ming Yang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Michael Z. Zhang
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - George E. Rottinghaus
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
15
|
The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity. PLoS One 2016; 11:e0161573. [PMID: 27561012 PMCID: PMC4999073 DOI: 10.1371/journal.pone.0161573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/08/2016] [Indexed: 12/29/2022] Open
Abstract
Defensins are frontline peptides of mucosal immunity in the animal kingdom, including birds. Their resistance to proteolysis and their ensuing ability to maintain antimicrobial potential remains questionable and was therefore investigated. We have shown by bottom-up mass spectrometry analysis of protein extracts that both avian beta-defensins AvBD2 and AvBD7 were ubiquitously distributed along the chicken gut. Cathepsin B was found by immunoblotting in jejunum, ileum, caecum, and caecal tonsils, while cathepsins K, L, and S were merely identified in caecal tonsils. Hydrolysis product of AvBD2 and AvBD7 incubated with a panel of proteases was analysed by RP-HPLC, mass spectrometry and antimicrobial assays. AvBD2 and AvBD7 were resistant to serine proteases and to cathepsins D and H. Conversely cysteine cathepsins B, K, L, and S degraded AvBD2 and abolished its antibacterial activity. Only cathepsin K cleaved AvBD7 and released Ile4-AvBD7, a N-terminal truncated natural peptidoform of AvBD7 that displayed antibacterial activity. Besides the 3-stranded antiparallel beta-sheet typical of beta-defensins, structural analysis of AvBD7 by two-dimensional NMR spectroscopy highlighted the restricted accessibility of the C-terminus embedded by the N-terminal region and gave a formal evidence of a salt bridge (Asp9-Arg12) that could account for proteolysis resistance. The differential susceptibility of avian defensins to proteolysis opens intriguing questions about a distinctive role in the mucosal immunity against pathogen invasion.
Collapse
|
16
|
In vitro and in vivo characterization of a new recombinant antimicrobial peptide, MP1102, against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 2015; 99:6255-66. [PMID: 25620367 DOI: 10.1007/s00253-015-6394-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/03/2015] [Accepted: 01/07/2015] [Indexed: 12/17/2022]
Abstract
Currently, more antimicrobial drug candidates are urgently needed to combat the rise in drug-resistance among pathogenic microbes. A new antimicrobial peptide, MP1102, a variant of NZ2114, was designed, evaluated, and overexpressed in Pichia pastoris. The total secreted protein in cultures reached 695 mg/l, and the concentration of the recombinant MP1102 (rMP1102) was 292 mg/l. rMP1102 was purified from the fermentation supernatant by one-step cation exchange chromatography to obtain a yield of 197.1 mg/l with 96.4 % purity. rMP1102 exhibited potent activity against Gram-positive bacteria, and its minimum inhibitory concentrations (MICs) for four Staphyloccocus aureus (S. aureus) strains ranged from 0.028 to 0.11 μM, and it had stronger activity (MIC = 0.04 to 0.23 μM) to 20 clinical isolates of MRSA (cMRSA) than rNZ2114 (MIC = 0.11 to 0.90 μM). rMP1102 was shown to kill over 99.9 % of tested S. aureus cells within 6 h when treated at one, two, and four times its MIC and over 90 % of S. aureus cells within 12 h at concentrations of 5, 10, and 20 mg/kg in a mouse thigh infection model. The higher sensitivity of MRSA to MP1102 than to its parental peptide, NZ2114, indicated by this initial pharmacodynamic analysis suggests a possible difference in the killing mechanism of these two molecules. rMP1102 caused less than 0.05 % hemolytic activity at 128 μg/ml and exhibited good thermostability from 20 to 80 °C, with its highest activity being observed at pH 8.0. These results suggest that this yeast expression system is feasible for large-scale production, and rMP1102 exerted stronger activity against S. aureus than NZ2114 via a different mechanism and exhibited potential as a new antimicrobial agent for S. aureus, especially MRSA infections.
Collapse
|
17
|
Abstract
Antimicrobial proteins and peptides are ubiquitous in nature with diverse structural and biological properties. Among them, the human beta-defensins are known to contribute to the innate immune response. Besides the defensins, a number of defensin-like proteins and peptides are expressed in many organ systems including the male reproductive system. Some of the protein isoforms encoded by the sperm associated antigen 11B (SPAG11) gene in humans are beta-defensin-like and exhibit structure dependent and salt tolerant antimicrobial activity, besides contributing to sperm maturation. Though some of the functional roles of these proteins are reported, the structural and molecular features that contribute to their antimicrobial activity is not yet reported. In this study, using in silico tools, we report the three dimensional structure of the human SPAG11B proteins and their C-terminal peptides. web-based hydropathy, amphipathicity, and topology (WHAT) analyses and grand average of hydropathy (GRAVY) indices show that these proteins and peptides are amphipathic and highly hydrophilic. Self-optimized prediction method with alignment (SOPMA) analyses and circular dichroism data suggest that the secondary structure of these proteins and peptides primarily contain beta-sheet and random coil structure and alpha-helix to a lesser extent. Ramachandran plots show that majority of the amino acids in these proteins and peptides fall in the permissible regions, thus indicating stable structures. The secondary structure of SPAG11B isoforms and their peptides were not perturbed with increasing NaCl concentration (0-300 mM) and at different pH (3, 7, and 10), thus reinforcing our previously reported observation that their antimicrobial activity is salt tolerant. To the best of our knowledge, for the first time, results of our study provide vital information on the structural features of SPAG11B protein isoforms and their contribution to antimicrobial activity.
Collapse
Affiliation(s)
- Ganapathy Narmadha
- Department of Animal Biology, University of Hyderabad , Andhra Pradesh , India
| | | |
Collapse
|
18
|
Meindre F, Lelièvre D, Loth K, Mith O, Aucagne V, Berthomieu P, Marquès L, Delmas AF, Landon C, Paquet F. The Nuclear Magnetic Resonance Solution Structure of the Synthetic AhPDF1.1b Plant Defensin Evidences the Structural Feature within the γ-Motif. Biochemistry 2014; 53:7745-54. [DOI: 10.1021/bi501285k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fanny Meindre
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles
Sadron, 45071 Orléans Cedex 2, France
| | - Dominique Lelièvre
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles
Sadron, 45071 Orléans Cedex 2, France
| | - Karine Loth
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles
Sadron, 45071 Orléans Cedex 2, France
| | - Oriane Mith
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, INRA/SupAgro, 2 Place P. Viala, 34060 Montpellier Cedex 2, France
| | - Vincent Aucagne
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles
Sadron, 45071 Orléans Cedex 2, France
| | - Pierre Berthomieu
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, INRA/SupAgro, 2 Place P. Viala, 34060 Montpellier Cedex 2, France
| | - Laurence Marquès
- Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, INRA/SupAgro, 2 Place P. Viala, 34060 Montpellier Cedex 2, France
| | - Agnès F. Delmas
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles
Sadron, 45071 Orléans Cedex 2, France
| | - Céline Landon
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles
Sadron, 45071 Orléans Cedex 2, France
| | - Françoise Paquet
- Centre
de Biophysique Moléculaire, CNRS UPR4301, Rue Charles
Sadron, 45071 Orléans Cedex 2, France
| |
Collapse
|
19
|
Lu S, Peng K, Gao Q, Xiang M, Liu H, Song H, Yang K, Huang H, Xiao K. Molecular cloning, characterization and tissue distribution of two ostrich β-defensins: AvBD2 and AvBD7. Gene 2014; 552:1-7. [PMID: 25127671 DOI: 10.1016/j.gene.2014.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/20/2014] [Accepted: 08/06/2014] [Indexed: 01/31/2023]
Abstract
Avian β-defensins (AvBDs) are a family of small antimicrobial peptides that play important roles in the innate immunity of birds. Herein, we report on two new ostrich AvBD genes, AvBD2 and AvBD7, which were isolated from the bone marrow of ostriches (Struthio camelus). The coding regions of ostrich AvBD2 and AvBD7 comprised 195 bp and 201bp, which encoded 64 and 66 amino acids, respectively. Homology analysis showed that ostrich AvBD2 had the highest similarity (up to 86%) with the swan goose (Anser cygnoides) AvBD2, while ostrich AvBD7 shared the highest similarity (up to 81%) with chicken AvBD7. Analysis of the codon-usage bias showed that the two ostrich AvBDs had different codon-usage patterns from other AvBDs. The two synthetic AvBD peptides exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria, and these activities decreased significantly in the presence of 100mM NaCl (P<0.01). Real-time reverse transcription-polymerase chain reaction analysis showed that AvBD2 and AvBD7 were widely expressed at different levels in 17 different tissues. This is the first report of the nucleotide sequences of ostrich AvBDs. Further investigations of these two AvBDs may help us to gain new insights into the immune defense system of the ostrich and to make subsequent therapeutic use of ostrich defensins.
Collapse
Affiliation(s)
- Shun Lu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China; Wuhan institute of Animal and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, PR China.
| | - Kemei Peng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.
| | - Qishuang Gao
- Wuhan institute of Animal and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, PR China
| | - Min Xiang
- Wuhan institute of Animal and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, PR China
| | - Huazhen Liu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Keli Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Haibo Huang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Ke Xiao
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
20
|
A dual mechanism involved in membrane and nucleic acid disruption of AvBD103b, a new avian defensin from the king penguin, against Salmonella enteritidis CVCC3377. Appl Microbiol Biotechnol 2014; 98:8313-25. [PMID: 24981062 DOI: 10.1007/s00253-014-5898-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
The food-borne bacterial gastrointestinal infection is a serious public health threat. Defensins are evolutionarily conserved innate immune components with broad-spectrum antibacterial activity that do not easily induce resistance. AvBD103b, an avian defensin with potent activity against Salmonella enteritidis, was isolated from the stomach contents of the king penguin (Aptenodytes patagonicus). To elucidate further the antibacterial mechanism of AvBD103b, its effect on the S. enteritidis CVCC3377 cell membrane and intracellular DNA was researched. The cell surface hydrophobicity and a N-phenyl-1-naphthylamine uptake assay demonstrated that AvBD103b treatment increased the cell surface hydrophobicity and outer membrane permeability. Atomic absorption spectrometry, ultraviolet spectrophotometry, flow cytometry, and transmission electron microscopy (TEM) indicated that AvBD103b treatment can lead to the release of the cellular contents and cell death through damage of the membrane. DNA gel retardation and circular dichroism analysis demonstrated that AvBD103b interacted with DNA and intercalated into the DNA base pairs. A cell cycle assay demonstrated that AvBD103b affected cellular functions, such as DNA synthesis. Our results confirmed that AvBD103b exerts its antibacterial activity by damaging the cell membrane and interfering with intracellular DNA, ultimately causing cell death, and suggested that AvBD103b may be a promising candidate as an alternative to antibiotics against S. enteritidis.
Collapse
|
21
|
Avian antimicrobial host defense peptides: from biology to therapeutic applications. Pharmaceuticals (Basel) 2014; 7:220-47. [PMID: 24583933 PMCID: PMC3978490 DOI: 10.3390/ph7030220] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022] Open
Abstract
Host defense peptides (HDPs) are an important first line of defense with antimicrobial and immunomoduatory properties. Because they act on the microbial membranes or host immune cells, HDPs pose a low risk of triggering microbial resistance and therefore, are being actively investigated as a novel class of antimicrobials and vaccine adjuvants. Cathelicidins and β-defensins are two major families of HDPs in avian species. More than a dozen HDPs exist in birds, with the genes in each HDP family clustered in a single chromosomal segment, apparently as a result of gene duplication and diversification. In contrast to their mammalian counterparts that adopt various spatial conformations, mature avian cathelicidins are mostly α-helical. Avian β-defensins, on the other hand, adopt triple-stranded β-sheet structures similar to their mammalian relatives. Besides classical β-defensins, a group of avian-specific β-defensin-related peptides, namely ovodefensins, exist with a different six-cysteine motif. Like their mammalian counterparts, avian cathelicidins and defensins are derived from either myeloid or epithelial origin expressed in a majority of tissues with broad-spectrum antibacterial and immune regulatory activities. Structure-function relationship studies with several avian HDPs have led to identification of the peptide analogs with potential for use as antimicrobials and vaccine adjuvants. Dietary modulation of endogenous HDP synthesis has also emerged as a promising alternative approach to disease control and prevention in chickens.
Collapse
|
22
|
Hervé V, Meudal H, Labas V, Réhault-Godbert S, Gautron J, Berges M, Guyot N, Delmas AF, Nys Y, Landon C. Three-dimensional NMR structure of Hen Egg Gallin (Chicken Ovodefensin) reveals a new variation of the β-defensin fold. J Biol Chem 2014; 289:7211-7220. [PMID: 24443564 DOI: 10.1074/jbc.m113.507046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gallin is a 41-residue protein, first identified as a minor component of hen egg white and found to be antimicrobial against Escherichia coli. Gallin may participate in the protection of the embryo during its development in the egg. Its sequence is related to antimicrobial β-defensin peptides. In the present study, gallin was chemically synthesized 1) to further investigate its antimicrobial spectrum and 2) to solve its three-dimensional NMR structure and thus gain insight into structure-function relationships, a prerequisite to understanding its mode(s) of action. Antibacterial assays confirmed that gallin was active against Escherichia coli, but no additional antibacterial activity was observed against the other Gram-positive or Gram-negative bacteria tested. The three-dimensional structure of gallin, which is the first ovodefensin structure to have been solved to date, displays a new five-stranded arrangement. The gallin three-dimensional fold contains the three-stranded antiparallel β-sheet and the disulfide bridge array typical of vertebrate β-defensins. Gallin can therefore be unambiguously classified as a β-defensin. However, an additional short two-stranded β-sheet reveals that gallin and presumably the other ovodefensins form a new structural subfamily of β-defensins. Moreover, gallin and the other ovodefensins calculated by homology modeling exhibit atypical hydrophobic surface properties, compared with the already known vertebrate β-defensins. These specific structural features of gallin might be related to its restricted activity against E. coli and/or to other yet unknown functions. This work provides initial understanding of a critical sequence-structure-function relationship for the ovodefensin family.
Collapse
Affiliation(s)
- Virginie Hervé
- From Institut National de la Recherche Agronomique (INRA), UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France; Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100/EA6305, F-37032 Tours, France
| | - Hervé Meudal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Valérie Labas
- Plate-forme d'Analyse Intégrative des Biomolécules UMR INRA 85-CNRS 7247, Université François Rabelais, Institut Français du Cheval et de l'Équitation (IFCE), F-37380 Nouzilly, France
| | - Sophie Réhault-Godbert
- From Institut National de la Recherche Agronomique (INRA), UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France
| | - Joël Gautron
- From Institut National de la Recherche Agronomique (INRA), UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France
| | - Magali Berges
- From Institut National de la Recherche Agronomique (INRA), UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France
| | - Nicolas Guyot
- From Institut National de la Recherche Agronomique (INRA), UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Yves Nys
- From Institut National de la Recherche Agronomique (INRA), UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l'œuf, F-37380 Nouzilly, France.
| | - Céline Landon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France.
| |
Collapse
|
23
|
Cuperus T, Coorens M, van Dijk A, Haagsman HP. Avian host defense peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:352-369. [PMID: 23644014 DOI: 10.1016/j.dci.2013.04.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
24
|
Sunkara LT, Zeng X, Curtis AR, Zhang G. Cyclic AMP synergizes with butyrate in promoting β-defensin 9 expression in chickens. Mol Immunol 2013; 57:171-80. [PMID: 24141182 DOI: 10.1016/j.molimm.2013.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/19/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
Abstract
Host defense peptides (HDP) have both microbicidal and immunomodulatory properties. Specific induction of endogenous HDP synthesis has emerged as a novel approach to antimicrobial therapy. Cyclic adenosine monophosphate (cAMP) and butyrate have been implicated in HDP induction in humans. However, the role of cAMP signaling and the possible interactions between cAMP and butyrate in regulating HDP expression in other species remain unknown. Here we report that activation of cAMP signaling induces HDP gene expression in chickens as exemplified by β-defensin 9 (AvBD9). We further showed that, albeit being weak inducers, cAMP agonists synergize strongly with butyrate or butyrate analogs in AvBD9 induction in macrophages and primary jejunal explants. Additionally, oral supplementation of forskolin, an adenylyl cyclase agonist in the form of a Coleus forskohlii extract, was found to induce AvBD9 expression in the crop of chickens. Furthermore, feeding with both forskolin and butyrate showed an obvious synergy in triggering AvBD9 expression in the crop and jejunum of chickens. Surprisingly, inhibition of the MEK-ERK mitogen-activated protein kinase (MAPK) pathway augmented the butyrate-FSK synergy, whereas blocking JNK or p38 MAPK pathway significantly diminished AvBD9 induction in chicken macrophages and jejunal explants in response to butyrate and FSK individually or in combination. Collectively, these results suggest the potential for concomitant use of butyrate and cAMP signaling activators in enhancing HDP expression, innate immunity, and disease resistance in both animals and humans.
Collapse
Affiliation(s)
- Lakshmi T Sunkara
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
25
|
Aucagne V, Valverde IE, Marceau P, Galibert M, Dendane N, Delmas AF. Towards the Simplification of Protein Synthesis: Iterative Solid-Supported Ligations with Concomitant Purifications. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Aucagne V, Valverde IE, Marceau P, Galibert M, Dendane N, Delmas AF. Towards the Simplification of Protein Synthesis: Iterative Solid-Supported Ligations with Concomitant Purifications. Angew Chem Int Ed Engl 2012; 51:11320-4. [DOI: 10.1002/anie.201206428] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Indexed: 12/25/2022]
|