1
|
Baudet S, Bécret J, Nicol X. Approaches to Manipulate Ephrin-A:EphA Forward Signaling Pathway. Pharmaceuticals (Basel) 2020; 13:ph13070140. [PMID: 32629797 PMCID: PMC7407804 DOI: 10.3390/ph13070140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023] Open
Abstract
Erythropoietin-producing hepatocellular carcinoma A (EphA) receptors and their ephrin-A ligands are key players of developmental events shaping the mature organism. Their expression is mostly restricted to stem cell niches in adults but is reactivated in pathological conditions including lesions in the heart, lung, or nervous system. They are also often misregulated in tumors. A wide range of molecular tools enabling the manipulation of the ephrin-A:EphA system are available, ranging from small molecules to peptides and genetically-encoded strategies. Their mechanism is either direct, targeting EphA receptors, or indirect through the modification of intracellular downstream pathways. Approaches enabling manipulation of ephrin-A:EphA forward signaling for the dissection of its signaling cascade, the investigation of its physiological roles or the development of therapeutic strategies are summarized here.
Collapse
|
2
|
Czikora A, Pany S, You Y, Saini AS, Lewin NE, Mitchell GA, Abramovitz A, Kedei N, Blumberg PM, Das J. Structural determinants of phorbol ester binding activity of the C1a and C1b domains of protein kinase C theta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1046-1056. [PMID: 29317197 DOI: 10.1016/j.bbamem.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Amandeep S Saini
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Adelle Abramovitz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
3
|
Kelsey JS, Géczy T, Kaler CJ, Blumberg PM. The C1 domain of Vav3, a novel potential therapeutic target. Cell Signal 2017; 40:133-142. [PMID: 28927664 PMCID: PMC5651187 DOI: 10.1016/j.cellsig.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/22/2017] [Accepted: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Vav1/2/3 comprise a protein family with guanyl nucleotide exchange activity for Rho and Rac as well as with motifs conferring adapter activity. Biologically, Vav1 plays a critical role in hematologic cell signaling, whereas Vav2/3 have a wider tissue distribution, but all 3 Vav proteins are implicated in cancer development. A structural feature of Vav1/2/3 is the presence of an atypical C1 domain, which possesses close structural homology to the typical C1 domains of protein kinase C but which fails to bind the second messenger diacylglycerol or the potent analogs, the phorbol esters. Previously, we have shown that five residues in the Vav1 C1 domain are responsible for its lack of phorbol ester binding. Here, we show that the lack of phorbol ester binding of Vav3 has a similar basis. We then explore the consequences of phorbol ester binding to a modified Vav3 in which the C1 domain has been altered to allow phorbol ester binding. We find both disruption of the guanyl nucleotide exchange activity of the modified Vav 3 as well as a shift in localization to the membrane upon phorbol ester treatment. This change in localization is associated with altered interactions with other signaling proteins. The studies provide a first step in assessing the potential for the design of custom C1 domain targeted molecules selective for the atypical C1 domains of Vav family proteins.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Tamás Géczy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christopher J Kaler
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Pany S, You Y, Das J. Curcumin Inhibits Protein Kinase Cα Activity by Binding to Its C1 Domain. Biochemistry 2016; 55:6327-6336. [PMID: 27776404 DOI: 10.1021/acs.biochem.6b00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Curcumin is a polyphenolic nutraceutical that acts on multiple biological targets, including protein kinase C (PKC). PKC is a family of serine/threonine kinases central to intracellular signal transduction. We have recently shown that curcumin selectively inhibits PKCα, but not PKCε, in CHO-K1 cells [Pany, S. (2016) Biochemistry 55, 2135-2143]. To understand which domain(s) of PKCα is responsible for curcumin binding and inhibitory activity, we made several domain-swapped mutants in which the C1 (combination of C1A and C1B) and C2 domains are swapped between PKCα and PKCε. Phorbol ester-induced membrane translocation studies using confocal microscopy and immunoblotting revealed that curcumin inhibited phorbol ester-induced membrane translocation of PKCε mutants, in which the εC1 domain was replaced with αC1, but not the PKCα mutant in which αC1 was replaced with the εC1 domain, suggesting that αC1 is a determinant for curcumin's inhibitory effect. In addition, curcumin inhibited membrane translocation of PKCε mutants, in which the εC1A and εC1B domains were replaced with the αC1A and αC1B domains, respectively, indicating the role of both αC1A and αC1B domains in curcumin's inhibitory effects. Phorbol 13-acetate inhibited the binding of curcumin to αC1A and αC1B with IC50 values of 6.27 and 4.47 μM, respectively. Molecular docking and molecular dynamics studies also supported the higher affinity of curcumin for αC1B than for αC1A. The C2 domain-swapped mutants were inactive in phorbol ester-induced membrane translocation. These results indicate that curcumin binds to the C1 domain of PKCα and highlight the importance of this domain in achieving PKC isoform selectivity.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| |
Collapse
|
5
|
Czikora A, Lundberg DJ, Abramovitz A, Lewin NE, Kedei N, Peach ML, Zhou X, Merritt RC, Craft EA, Braun DC, Blumberg PM. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity. J Biol Chem 2016; 291:11133-47. [PMID: 27022025 PMCID: PMC4900263 DOI: 10.1074/jbc.m116.725333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/28/2016] [Indexed: 11/06/2022] Open
Abstract
The C1 domain represents the recognition module for diacylglycerol and phorbol esters in protein kinase C, Ras guanine nucleotide releasing protein (RasGRP), and related proteins. RasGRP2 is exceptional in that its C1 domain has very weak binding affinity (Kd = 2890 ± 240 nm for [(3)H]phorbol 12,13-dibutyrate. We have identified four amino acid residues responsible for this lack of sensitivity. Replacing Asn(7), Ser(8), Ala(19), and Ile(21) with the corresponding residues from RasGRP1/3 (Thr(7), Tyr(8), Gly(19), and Leu(21), respectively) conferred potent binding affinity (Kd = 1.47 ± 0.03 nm) in vitro and membrane translocation in response to phorbol 12-myristate 13-acetate in LNCaP cells. Mutant C1 domains incorporating one to three of the four residues showed intermediate behavior with S8Y making the greatest contribution. Binding activity for diacylglycerol was restored in parallel. The requirement for anionic phospholipid for [(3)H]phorbol 12,13-dibutyrate binding was determined; it decreased in going from the single S8Y mutant to the quadruple mutant. The full-length RasGRP2 protein with the mutated C1 domains also showed strong phorbol ester binding, albeit modestly weaker than that of the C1 domain alone (Kd = 8.2 ± 1.1 nm for the full-length protein containing all four mutations), and displayed translocation in response to phorbol ester. RasGRP2 is a guanyl exchange factor for Rap1. Consistent with the ability of phorbol ester to induce translocation of the full-length RasGRP2 with the mutated C1 domain, phorbol ester enhanced the ability of the mutated RasGRP2 to activate Rap1. Modeling confirmed that the four mutations helped the binding cleft maintain a stable conformation.
Collapse
Affiliation(s)
- Agnes Czikora
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel J Lundberg
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Adelle Abramovitz
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nancy E Lewin
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Noemi Kedei
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Megan L Peach
- Basic Science Program, Leidos Biomedical Research, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Xiaoling Zhou
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Raymond C Merritt
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Elizabeth A Craft
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Derek C Braun
- Department of Science, Technology, and Mathematics, Gallaudet University, Washington, D. C. 20002, and
| | - Peter M Blumberg
- From the Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
6
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
7
|
Affiliation(s)
- Joydip Das
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| | - Ghazi M. Rahman
- Department of Pharmacological
and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 521 Science and Research Building 2, Houston, Texas 77204, United States
| |
Collapse
|
8
|
Garcia LC, Donadío LG, Mann E, Kolusheva S, Kedei N, Lewin NE, Hill CS, Kelsey JS, Yang J, Esch TE, Santos M, Peach ML, Kelley JA, Blumberg PM, Jelinek R, Marquez VE, Comin MJ. Synthesis, biological, and biophysical studies of DAG-indololactones designed as selective activators of RasGRP. Bioorg Med Chem 2014; 22:3123-40. [PMID: 24794745 PMCID: PMC4104769 DOI: 10.1016/j.bmc.2014.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/05/2014] [Accepted: 04/14/2014] [Indexed: 01/21/2023]
Abstract
The development of selective agents capable of discriminating between protein kinase C (PKC) isoforms and other diacylglycerol (DAG)-responsive C1 domain-containing proteins represents an important challenge. Recent studies have highlighted the role that Ras guanine nucleotide-releasing protein (RasGRP) isoforms play both in immune responses as well as in the development of prostate cancer and melanoma, suggesting that the discovery of selective ligands could have potential therapeutic value. Thus far, the N-methyl-substituted indololactone 1 is the agonist with the highest reported potency and selectivity for RasGRP relative to PKC. Here we present the synthesis, binding studies, cellular assays and biophysical analysis of interactions with model membranes of a family of regioisomers of 1 (compounds 2-5) that differ in the position of the linkage between the indole ring and the lactone moiety. These structural variations were studied to explore the interaction of the active complex (C1 domain-ligand) with cellular membranes, which is believed to be an important factor for selectivity in the activation of DAG-responsive C1 domain containing signaling proteins. All compounds were potent and selective activators of RasGRP when compared to PKCα with selectivities ranging from 6 to 65 fold. However, the parent compound 1 was appreciably more selective than any of the other isomers. In intact cells, modest differences in the patterns of translocation of the C1 domain targets were observed. Biophysical studies using giant vesicles as model membranes did show substantial differences in terms of molecular interactions impacting lipid organization, dynamics and membrane insertion. However, these differences did not yield correspondingly large changes in patterns of biological response, at least for the parameters examined.
Collapse
Affiliation(s)
- Lia C Garcia
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Lucia Gandolfi Donadío
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Ella Mann
- Department of Chemistry, Ben Gurion University, Beer Sheva 84105, Israel
| | - Sofiya Kolusheva
- Department of Chemistry, Ben Gurion University, Beer Sheva 84105, Israel
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Colin S Hill
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Jing Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Timothy E Esch
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marina Santos
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Megan L Peach
- Basic Science Program, Leidos Biomedical, Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - James A Kelley
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University, Beer Sheva 84105, Israel
| | - Victor E Marquez
- Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Maria J Comin
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Pu Y, Kang JH, Sigano DM, Peach M, Lewin NE, Marquez VE, Blumberg PM. Diacylglycerol lactones targeting the structural features that distinguish the atypical C1 domains of protein kinase C ζ and ι from typical C1 domains. J Med Chem 2014; 57:3835-44. [PMID: 24684293 PMCID: PMC4310642 DOI: 10.1021/jm500165n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 01/25/2023]
Abstract
To explore the feasibility of developing ligands targeted to the atypical C1 domains of protein kinase C ζ and ι, we have prepared diacylglycerol lactones substituted with hydrophilic groups on their side chains, which potentially could interact with the arginine residues that distinguish the atypical C1 domains of PKCζ and PKCι from typical C1 domains, and we have measured their binding to mutated versions of the C1b domain of PKCδ that incorporate one or more of these arginine residues. The most selective of the diacylglycerol lactones showed only a 10-fold reduction in binding affinity with the triple arginine mutant (N7R/S10R/L20R) compared to the wild-type, whereas phorbol 12,13-dibutyrate showed a 6000-fold loss of affinity. Molecular modeling confirms that these ligands are indeed able to interact with the arginine residues. Our results show that dramatic changes in selectivity can be obtained through appropriate substitution of diacylglycerol lactones.
Collapse
Affiliation(s)
- Yongmei Pu
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| | - Ji-Hye Kang
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Dina M. Sigano
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Megan
L. Peach
- Chemical
Biology Laboratory, Basic Science Program, Frederick National Laboratory
for Cancer Research, Leidos Biomedical,
Inc., Frederick, Maryland 21702, United
States
| | - Nancy E. Lewin
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| | - Victor E. Marquez
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Peter M. Blumberg
- Laboratory
of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of
Health, Bethesda, Maryland 20892, United
States
| |
Collapse
|
10
|
Kelsey JS, Geczy T, Lewin NE, Kedei N, Hill CS, Selezneva JS, Valle CJ, Woo W, Gorshkova I, Blumberg PM. Charge density influences C1 domain ligand affinity and membrane interactions. Chembiochem 2014; 15:1131-1144. [PMID: 24777910 DOI: 10.1002/cbic.201400041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Indexed: 12/25/2022]
Abstract
The C1 domain, which represents the recognition motif on protein kinase C for the lipophilic second messenger diacylglycerol and its ultrapotent analogues, the phorbol esters, has emerged as a promising therapeutic target for cancer and other indications. Potential target selectivity is markedly enhanced both because binding reflects ternary complex formation between the ligand, C1 domain, and phospholipid, and because binding drives membrane insertion of the C1 domain, permitting aspects of the C1 domain surface outside the binding site, per se, to influence binding energetics. Here, focusing on charged residues identified in atypical C1 domains which contribute to their loss of ligand binding activity, we showed that increasing charge along the rim of the binding cleft of the protein kinase C δ C1 b domain raises the requirement for anionic phospholipids. Correspondingly, it shifts the selectivity of C1 domain translocation to the plasma membrane, which is more negatively charged than internal membranes. This change in localization is most pronounced in the case of more hydrophilic ligands, which provide weaker membrane stabilization than do the more hydrophobic ligands and thus contributes an element to the structure-activity relations for C1 domain ligands. Coexpressing pairs of C1-containing constructs with differing charges each expressing a distinct fluorescent tag provided a powerful tool to demonstrate the effect of increasing charge in the C1 domain.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Tamas Geczy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Colin S Hill
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Julia S Selezneva
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Christopher J Valle
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Wonhee Woo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| | - Inna Gorshkova
- Biomedical Engineering and Physical Science Share Resource Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute Building 37, Room 4048, 37 Convent Drive MSC 4255, Bethesda, MD 20892-4255, U.S.A
| |
Collapse
|
11
|
Rahman GM, Das J. Modeling studies on the structural determinants for the DAG/phorbol ester binding to C1 domain. J Biomol Struct Dyn 2014; 33:219-32. [DOI: 10.1080/07391102.2014.895679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Irie K, Yanagita RC. Synthesis and Biological Activities of Simplified Analogs of the Natural PKC Ligands, Bryostatin-1 and Aplysiatoxin. CHEM REC 2014; 14:251-67. [DOI: 10.1002/tcr.201300036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto 606-8502 Japan
| | - Ryo C. Yanagita
- Department of Applied Biological Science; Faculty of Agriculture, Kagawa University; Kagawa 761-0795 Japan
| |
Collapse
|
13
|
Strijbis K, Tafesse FG, Fairn GD, Witte MD, Dougan SK, Watson N, Spooner E, Esteban A, Vyas VK, Fink GR, Grinstein S, Ploegh HL. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog 2013; 9:e1003446. [PMID: 23825946 PMCID: PMC3694848 DOI: 10.1371/journal.ppat.1003446] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/07/2013] [Indexed: 12/28/2022] Open
Abstract
Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.
Collapse
Affiliation(s)
- Karin Strijbis
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Fikadu G. Tafesse
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gregory D. Fairn
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Martin D. Witte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Stephanie K. Dougan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nicki Watson
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Alexandre Esteban
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gerald R. Fink
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sergio Grinstein
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Identification of the activator-binding residues in the second cysteine-rich regulatory domain of protein kinase Cθ (PKCθ). Biochem J 2013; 451:33-44. [PMID: 23289588 DOI: 10.1042/bj20121307] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PKC (protein kinase C) θ is predominantly expressed in T-cells and is critically involved in immunity. Design of PKCθ-selective molecules to manage autoimmune disorders by targeting its activator-binding C1 domain requires the knowledge of its structure and the activator-binding residues. The C1 domain consists of twin C1 domains, C1A and C1B, of which C1B plays a critical role in the membrane translocation and activation of PKCθ. In the present study we determined the crystal structure of PKCθC1B to 1.63 Å (1 Å=0.1 nm) resolution, which showed that Trp(253) at the rim of the activator-binding pocket was orientated towards the membrane, whereas in PKCδC1B the homologous tryptophan residue was orientated away from the membrane. This particular orientation of Trp(253) affects the size of the activator-binding pocket and the membrane affinity. To further probe the structural constraints on activator-binding, five residues lining the activator-binding site were mutated (Y239A, T243A, W253G, L255G and Q258G) and the binding affinities of the PKCθC1B mutants were measured. These mutants showed reduced binding affinities for phorbol ester [PDBu (phorbol 12,13-dibutyrate)] and diacylglycerol [DOG (sn-1,2-dioctanoylglycerol), SAG (sn-1-stearoyl 2-arachidonyl glycerol)]. All five full-length PKCθ mutants exhibited reduced phorbol-ester-induced membrane translocation compared with the wild-type. These results provide insights into the PKCθ activator-binding domain, which will aid in future design of PKCθ-selective molecules.
Collapse
|
15
|
PKC activation by resveratrol derivatives with unsaturated aliphatic chain. PLoS One 2012; 7:e52888. [PMID: 23285216 PMCID: PMC3528653 DOI: 10.1371/journal.pone.0052888] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/22/2012] [Indexed: 01/04/2023] Open
Abstract
Resveratrol (1) is a naturally occurring phytoalexin that affects a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. One of the possible mechanisms by which resveratrol affects these disease states is by affecting the cellular signaling network involving protein kinase C (PKC). PKC is the family of serine/threonine kinases, whose activity is inhibited by resveratrol. To develop PKC isotype selective molecules on the resveratrol scaffold, several analogs (2–5) of resveratrol with a long aliphatic chain varying with number of unsaturated doubled bonds have been synthesized, their cytotoxic effects on CHO-K1 cells are measured and their effects on the membrane translocation properties of PKCα and PKCε have been determined. The analogs showed less cytotoxic effects on CHO-K1 cells. Analog 4 with three unsaturated double bonds in its aliphatic chain activated PKCα, but not PKCε. Analog 4 also activated ERK1/2, the downstream proteins in the PKC signaling pathway. Resveratrol analogs 2–5, however, did not show any inhibition of the phorbol ester-induced membrane translocation for either PKCα or PKCε. Molecular docking of 4 into the activator binding site of PKCα revealed that the resveratrol moiety formed hydrogen bonds with the activator binding residues and the aliphatic chain capped the activator binding loops making its surface hydrophobic to facilitate its interaction with the plasma membrane. The present study shows that subtle changes in the resveratrol structure can have profound impact on the translocation properties of PKCs. Therefore, resveratrol scaffold can be used to develop PKC selective modulators for regulating associated disease states.
Collapse
|