1
|
Patni AP, Mout R, Moore R, Alghadeer A, Daley GQ, Baker D, Mathieu J, Ruohola-Baker H. Designed Soluble Notch Agonist Drives Human Ameloblast Maturation for Tooth Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646929. [PMID: 40236031 PMCID: PMC11996494 DOI: 10.1101/2025.04.03.646929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Enamel, the hardest material in the human body, is required to protect our living organ, tooth. However, over 90% of adults have lost or damaged enamel and cannot regenerate the protective structure due to lack of enamel producing cells, ameloblasts. iPSC derived mature Ameloblasts (iAM) have promise in future regenerative dentistry. Today it is not known why iAM maturation requires intimate contact with the dentin producing cell type, odontoblast. Here we reveal that one of the critical signaling ligands emanating from odontoblasts for ameloblast maturation is Delta, the ligand for Notch receptor. We showed that our designed, soluble Notch agonist can induce iAM organoid maturation in an unprecedented manner, without interactions with odontoblast layer. This novel maturation procedure enables us to analyze the specific requirements of DLX3 function in ameloblasts, independent of its known function in odontoblasts. We now show that DLX3, the gene associated with Amelogenesis Imperfecta, is required on a cell-autonomous manner in ameloblasts for the expression of Enamelin and MMP20.
Collapse
|
2
|
Zhao Z, Van Bruwaene A, Lievens E, De Laet M, Attanasio C, Pedano MS, Cadenas de Llano-Pérula M. Genetic Mutations Leading to Dento-Maxillofacial Abnormalities in Mice: A Systematic Review. Oral Dis 2024. [PMID: 39688103 DOI: 10.1111/odi.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION To systematically review the available literature reporting on genetic mutations leading to dento-maxillofacial malformations in mice. MATERIALS AND METHODS An electronic search was performed across Embase, PubMed, Web of Science, and Scopus databases up to May 2024, targeting all in vivo studies on gene mutations causing dento-maxillofacial deformities in mice. Studies reporting oral clefts were excluded. Data collected included genetic background, sex distribution, observation times, sample sizes, interventions, affected genes, zygosity, dento-maxillofacial anomalies, and associated human syndromes. Risk of bias was evaluated using the SYRCLE tool. RESULTS Of 12,968 articles, 215 were included. The most common genetic background was C57BL6/J (B6) (n = 83), and knock-out was the most common intervention (n = 142). A total of 172 studies included homozygous mice. The five most studied genes were Amelx, Bmp-2, Dspp, Enam, and Runx2. Dento-alveolar anomalies were more commonly reported (n = 175) than skeletal (n = 65). Skeletal anomalies were mostly related to micrognathia (n = 14), agnathia (n = 5), dysplasia (n = 1), or reduced jaw size (n = 14). Risk of bias was moderate. CONCLUSIONS Key genes such as Amelx, Bmp-2, Dspp, Enam, and Runx2 implicated in dento-maxillofacial abnormalities in mice, detailing the most prevalent skeletal and dento-alveolar anomalies. These findings offer insights for developing gene therapy and diagnosing congenital malformations.
Collapse
Affiliation(s)
- Zuodong Zhao
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Service of Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Achiel Van Bruwaene
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Service of Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Ella Lievens
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Service of Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Marie De Laet
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Service of Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Catia Attanasio
- Laboratory of Gene Regulation and Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mariano Simón Pedano
- Department of Oral Health Sciences-Endodontics and BIOMAT-Biomaterials Research Group, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - María Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Service of Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Duverger O, Lee JS. The intricacies of tooth enamel: Embryonic origin, development and human genetics. J Struct Biol 2024; 216:108135. [PMID: 39384002 PMCID: PMC11645192 DOI: 10.1016/j.jsb.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Tooth enamel is a fascinating tissue with exceptional biomechanical properties that allow it to last for a lifetime. In this mini review, we discuss the unique embryonic origin of this highly mineralized tissue, the complex differentiation process that leads to its "construction" (amelogenesis), and the various genetic conditions that lead to impaired enamel development in humans (amelogenesis imperfecta). Tremendous progress was made in the last 30 years in understanding the molecular and cellular mechanism that leads to normal and pathologic enamel development. However, several aspects of amelogenesis remain to be elucidated and the function of many genes associated with amelogenesis imperfecta still needs to be decoded.
Collapse
Affiliation(s)
- Olivier Duverger
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Lee DJ, Kim P, Kim HY, Park J, Lee SJ, An H, Heo JS, Lee MJ, Ohshima H, Mizuno S, Takahashi S, Jung HS, Kim SJ. MAST4 regulates stem cell maintenance with DLX3 for epithelial development and amelogenesis. Exp Mol Med 2024; 56:1606-1619. [PMID: 38945953 PMCID: PMC11297042 DOI: 10.1038/s12276-024-01264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/29/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The asymmetric division of stem cells permits the maintenance of the cell population and differentiation for harmonious progress. Developing mouse incisors allows inspection of the role of the stem cell niche to provide specific insights into essential developmental phases. Microtubule-associated serine/threonine kinase family member 4 (Mast4) knockout (KO) mice showed abnormal incisor development with low hardness, as the size of the apical bud was decreased and preameloblasts were shifted to the apical side, resulting in amelogenesis imperfecta. In addition, Mast4 KO incisors showed abnormal enamel maturation, and stem cell maintenance was inhibited as amelogenesis was accelerated with Wnt signal downregulation. Distal-Less Homeobox 3 (DLX3), a critical factor in tooth amelogenesis, is considered to be responsible for the development of amelogenesis imperfecta in humans. MAST4 directly binds to DLX3 and induces phosphorylation at three residues within the nuclear localization site (NLS) that promotes the nuclear translocation of DLX3. MAST4-mediated phosphorylation of DLX3 ultimately controls the transcription of DLX3 target genes, which are carbonic anhydrase and ion transporter genes involved in the pH regulation process during ameloblast maturation. Taken together, our data reveal a novel role for MAST4 as a critical regulator of the entire amelogenesis process through its control of Wnt signaling and DLX3 transcriptional activity.
Collapse
Affiliation(s)
- Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- Department of Oral Histology, Dankook University College of Dentistry, Cheonan, 31116, Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Korea
| | - Pyunggang Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Hyun-Yi Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
- NGeneS Inc., Ansan-si, Gyeonggi-do, 15495, Korea
| | - Jinah Park
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Seung-Jun Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Haein An
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Jin Sun Heo
- GILO Institute, GILO Foundation, Seoul, 06668, Korea
| | - Min-Jung Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Seong-Jin Kim
- GILO Institute, GILO Foundation, Seoul, 06668, Korea.
- Medpacto Inc., Seoul, 06668, Korea.
| |
Collapse
|
5
|
Gu T, Guo R, Fang Y, Xiao Y, Chen L, Li N, Ge XK, Shi Y, Wu J, Yan M, Yu J, Li Z. METTL3-mediated pre-miR-665/DLX3 m 6A methylation facilitates the committed differentiation of stem cells from apical papilla. Exp Mol Med 2024; 56:1426-1438. [PMID: 38825638 PMCID: PMC11263550 DOI: 10.1038/s12276-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/04/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.
Collapse
Affiliation(s)
- Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ya Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xingyun Kelesy Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Yijia Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ming Yan
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Zehan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China.
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Rathi N, Agrawal A, Thosar N, Hande A, Mathur A. Regeneration of Pulp and Radicular Tissues in a Nonvital Avulsed Tooth with Open Apex: A Case Report. Int J Clin Pediatr Dent 2024; 17:596-600. [PMID: 39355191 PMCID: PMC11440670 DOI: 10.5005/jp-journals-10005-2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Aim and background The management of avulsed immature teeth poses a significant challenge to clinicians, as prolonged dry time before reimplantation may lead to replacement resorption or ankylosis. Case description Recent studies have shown promising results with the use of an intracanal proprietary pharmaceutical preparation, followed by sealing of the orifice with mineral trioxide aggregate (MTA). Angiography suggested the presence of vascularized tissue after 1 year, indicating successful regeneration of pulpal tissue in the radicular area. Conclusion Despite an unfavorable crown-root fracture leading to tooth extraction after 9 months, histological examination revealed regular root dentin formation, indicating a favorable outcome. Clinical significance These findings offer hope for the management of avulsed immature teeth and underscore the importance of early intervention and appropriate treatment selection. How to cite this article Rathi N, Agrawal A, Thosar N, et al. Regeneration of Pulp and Radicular Tissues in a Nonvital Avulsed Tooth with Open Apex: A Case Report. Int J Clin Pediatr Dent 2024;17(5):596-600.
Collapse
Affiliation(s)
- Nilesh Rathi
- Department of Pediatric and Preventive Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| | - Akshat Agrawal
- Department of Pediatric Dentistry, Kids Dental Centre, Gondia, Maharashtra, India
| | - Nilima Thosar
- Department of Pediatric and Preventive Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research (DMIHER), Wardha, Maharashtra, India
| | - Alka Hande
- Department of Oral and Maxillofacial Pathology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education & Research (DMIHER), Wardha, Maharashtra, India
| | - Ankita Mathur
- Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, Maharashtra, India
| |
Collapse
|
7
|
Kammoun R, Ghoul S, Chaabani I, Ben Salem K, Ben Alaya T. Dental and jawbone abnormalities linked to amelogenesis imperfecta: A retrospective and analytic study comparing panoramic radiographs. SPECIAL CARE IN DENTISTRY 2024; 44:878-885. [PMID: 37885117 DOI: 10.1111/scd.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/14/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Amelogenesis Imperfecta (AI) is a disorder of tooth development characterized by abnormal enamel formation. In order to detect other dental and jawbone abnormalities that could be associated with AI, a retrospective and analytic study was conducted comparing panoramic radiographs of AI and non-AI patients. MATERIAL AND METHODS Digital panoramic radiographs of 60 AI and 60 non-AI patients were examined. Abnormalities in dental number, size, shape, eruption, and in the shape of the dental arches were checked and blindly recorded by two experimented observers. Descriptive statistics using percentages and chi-square test with .05 level of significance value was used. RESULTS Prevalence of supernumerary teeth, dental agenesis, microdontia, taurodontism, radicular dilacerations, dental inclusions, temporary teeth persistence, and pulp calcifications was significantly higher in AI patients compared to control patients. Prevalence of periapical images, cysts, and hypercementosis was lower in AI patients compared to control patients, with no statistically significant difference. A significant prevalence of mandibular hypoplasia was also noted in AI patients. CONCLUSION In addition to enamel defect, panoramic radiography was useful in detecting other dental abnormalities and mandibular hypoplasia associated with AI and should therefore be systematically indicated for AI patients' care.
Collapse
Affiliation(s)
- Rym Kammoun
- Laboratory of Histology and Embryology, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
- ABCDF Laboratory for Biological Clinical and Dento-Facial Approach, University of Monastir, Monastir, Tunisia
- Department of Radiology, University Dental Clinic, Monastir, Tunisia
| | - Sonia Ghoul
- Laboratory of Histology and Embryology, Faculty of Dental Medicine of Monastir, University of Monastir, Monastir, Tunisia
- ABCDF Laboratory for Biological Clinical and Dento-Facial Approach, University of Monastir, Monastir, Tunisia
- International Faculty of Dental Medicine, BioMed Unit, College of Health Sciences, International University of Rabat, Rabat, Morocco
| | - Imen Chaabani
- Department of Radiology, University Dental Clinic, Monastir, Tunisia
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - Kamel Ben Salem
- Department of Community Medicine, Faculty of Medicine, University of Monastir, Monastir, Tunisia
| | - Touhami Ben Alaya
- Department of Radiology, University Dental Clinic, Monastir, Tunisia
- Unity of Bioactive Natural Substances and Biotechnology, Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
8
|
Elkady DM, Helaly YR, El Fayoumy HW, AbuBakr HO, Yassin AM, AbdElkader NA, Farag DBE, El Aziz PMA, Scarano A, Khater AGA. An animal study on the effectiveness of platelet-rich plasma as a direct pulp capping agent. Sci Rep 2024; 14:3699. [PMID: 38355945 PMCID: PMC10867036 DOI: 10.1038/s41598-024-54162-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Direct pulp capping (DPC) is a conservative approach for preserving tooth vitality without requiring more invasive procedures by enhancing pulp healing and mineralized tissue barrier formation. We investigated the effectiveness of Platelet Rich Plasma (PRP) vs. Mineral Trioxide Aggregate (MTA) as a DPC agent. Forty-two teeth from three mongrel dogs were divided into two equal groups. After three months, the animals were sacrificed to evaluate teeth radiographically using cone-beam computerized tomography, histopathologically, and real-time PCR for dentin sialophosphoprotein (DSPP), matrix extracellular phosphoglycoprotein (MEPE), and nestin (NES) mRNA expression. Radiographically, hard tissue formation was evident in both groups without significant differences (p = 0.440). Histopathologic findings confirmed the dentin bridge formation in both groups; however, such mineralized tissues were homogenous without cellular inclusions in the PRP group, while was osteodentin type in the MTA group. There was no significant difference in dentin bridge thickness between the PRP-capped and MTA-capped teeth (p = 0.732). The PRP group had significantly higher DSPP, MEPE, and NES mRNA gene expression than the MTA group (p < 0.05). In conclusion, PRP enables mineralized tissue formation following DPC similar to MTA, and could generate better cellular dentinogenic responses and restore dentin with homogenous architecture than MTA, making PRP a promising alternative DPC agent.
Collapse
Affiliation(s)
- Dina M Elkady
- Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Yara R Helaly
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Hala W El Fayoumy
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Aya M Yassin
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Naglaa A AbdElkader
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina B E Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Giza, Egypt
| | - Possy M Abd El Aziz
- Conservative Dentistry Department, Faculty of Dentistry, Cairo University, Giza, Egypt
- Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Ahmad G A Khater
- Faculty of Oral and Dental Medicine, Egyptian Russian University, Badr City, Cairo, Egypt.
- Health Affairs Directorate, Egyptian Ministry of Health and Population, Banisuif, Egypt.
| |
Collapse
|
9
|
Alghadeer A, Hanson-Drury S, Patni AP, Ehnes DD, Zhao YT, Li Z, Phal A, Vincent T, Lim YC, O'Day D, Spurrell CH, Gogate AA, Zhang H, Devi A, Wang Y, Starita L, Doherty D, Glass IA, Shendure J, Freedman BS, Baker D, Regier MC, Mathieu J, Ruohola-Baker H. Single-cell census of human tooth development enables generation of human enamel. Dev Cell 2023; 58:2163-2180.e9. [PMID: 37582367 PMCID: PMC10629594 DOI: 10.1016/j.devcel.2023.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/05/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Tooth enamel secreted by ameloblasts (AMs) is the hardest material in the human body, acting as a shield to protect the teeth. However, the enamel is gradually damaged or partially lost in over 90% of adults and cannot be regenerated due to a lack of ameloblasts in erupted teeth. Here, we use single-cell combinatorial indexing RNA sequencing (sci-RNA-seq) to establish a spatiotemporal single-cell census for the developing human tooth and identify regulatory mechanisms controlling the differentiation process of human ameloblasts. We identify key signaling pathways involved between the support cells and ameloblasts during fetal development and recapitulate those findings in human ameloblast in vitro differentiation from induced pluripotent stem cells (iPSCs). We furthermore develop a disease model of amelogenesis imperfecta in a three-dimensional (3D) organoid system and show AM maturation to mineralized structure in vivo. These studies pave the way for future regenerative dentistry.
Collapse
Affiliation(s)
- Ammar Alghadeer
- Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia; Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Sesha Hanson-Drury
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Anjali P Patni
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai 603203, India
| | - Devon D Ehnes
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yan Ting Zhao
- Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Zicong Li
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ashish Phal
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas Vincent
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Yen C Lim
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Diana O'Day
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Cailyn H Spurrell
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Hai Zhang
- Department of Restorative Dentistry, University of Washington, School of Dentistry, Seattle, WA 98195, USA
| | - Arikketh Devi
- Cancer Biology and Stem Cell Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai 603203, India
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lea Starita
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dan Doherty
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Ian A Glass
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Jay Shendure
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin S Freedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle WA 98109
| | - David Baker
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Mary C Regier
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biomedical Dental Sciences, Imam Abdulrahman bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia; Department of Oral Health Sciences University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Chen S, Wang F, Yang G, Yuan G, Liu M, Goldman G, Harris S, Wang W, Chen Z, Mary M. Loss of Bmp2 impairs odontogenesis via dysregulating pAkt/pErk/GCN5/Dlx3/Sp7. RESEARCH SQUARE 2023:rs.3.rs-3299295. [PMID: 37790473 PMCID: PMC10543288 DOI: 10.21203/rs.3.rs-3299295/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
BMP2 signaling plays a pivotal role in odontoblast differentiation and maturation during odontogenesis. Teeth lacking Bmp2 exhibit a morphology reminiscent of dentinogenesis imperfecta (DGI), associated with mutations in dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) genes. Mechanisms by which BMP2 signaling influences expressions of DSPP and DMP1 and contributes to DGI remain elusive. To study the roles of BMP2 in dentin development, we generated Bmp2 conditional knockout (cKO) mice. Through a comprehensive approach involving RNA-seq, immunohistochemistry, promoter activity, ChIP, and Re-ChIP, we investigated downstream targets of Bmp2. Notably, the absence of Bmp2 in cKO mice led to dentin insufficiency akin to DGI. Disrupted Bmp2 signaling was linked to decreased expression of Dspp and Dmp1, as well as alterations in intracellular translocation of transcription factors Dlx3 and Sp7. Intriguingly, upregulation of Dlx3, Dmp1, Dspp, and Sp7, driven by BMP2, fostered differentiation of dental mesenchymal cells and biomineralization. Mechanistically, BMP2 induced phosphorylation of Dlx3, Sp7, and histone acetyltransferase GCN5 at Thr and Tyr residues, mediated by Akt and Erk42/44 kinases. This phosphorylation facilitated protein nuclear translocation, promoting interactions between Sp7 and Dlx3, as well as with GCN5 on Dspp and Dmp1 promoters. The synergy between Dlx3 and Sp7 bolstered transcription of Dspp and Dmp1. Notably, BMP2-driven GCN5 acetylated Sp7 and histone H3, while also recruiting RNA polymerase II to Dmp1 and Dspp chromatins, enhancing their transcriptions. Intriguingly, BMP2 suppressed the expression of histone deacetylases. we unveil hitherto uncharted involvement of BMP2 in dental cell differentiation and dentine development through pAkt/pErk42/44/Dlx3/Sp7/GCN5/Dspp/Dmp1.
Collapse
Affiliation(s)
- Shuo Chen
- UT Health Science Center at San Antonio
| | | | | | | | - Mengmeng Liu
- School of Dentistry, the University of Texas Health Science Center at San Antonio
| | - Graham Goldman
- School of Dentistry, the University of Texas Health Science Center at San Antonio
| | | | | | - Zhi Chen
- Wuhan University School and Hospital of Stomatology
| | | |
Collapse
|
12
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
13
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
14
|
Nassif A, Lignon G, Asselin A, Zadikian C, Petit S, Sun H, Klein C, Ferré F, Morasso M, Berdal A, Fournier B, Isaac J. Transcriptional Regulation of Jaw Osteoblasts: Development to Pathology. J Dent Res 2022; 101:859-869. [PMID: 35148649 PMCID: PMC9343864 DOI: 10.1177/00220345221074356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Craniofacial and jaw bones have unique physiological specificities when compared to axial and appendicular bones. However, the molecular profile of the jaw osteoblast (OB) remains incomplete. The present study aimed to decipher the bone site-specific profiles of transcription factors (TFs) expressed in OBs in vivo. Using RNA sequencing analysis, we mapped the transcriptome of confirmed OBs from 2 different skeletal sites: mandible (Md) and tibia (Tb). The OB transcriptome contains 709 TF genes: 608 are similarly expressed in Md-OB and Tb-OB, referred to as "OB-core"; 54 TF genes are upregulated in Md-OB, referred to as "Md-set"; and 18 TF genes are upregulated in Tb-OB, referred to as "Tb-set." Notably, the expression of 29 additional TF genes depends on their RNA transcript variants. TF genes with no previously known role in OBs and bone were identified. Bioinformatics analysis combined with review of genetic disease databases and a comprehensive literature search showed a significant contribution of anatomical origin to the OB signatures. Md-set and Tb-set are enriched with site-specific TF genes associated with development and morphogenesis (neural crest vs. mesoderm), and this developmental imprint persists during growth and homeostasis. Jaw and tibia site-specific OB signatures are associated with craniofacial and appendicular skeletal disorders as well as neurocristopathies, dental disorders, and digit malformations. The present study demonstrates the feasibility of a new method to isolate pure OB populations and map their gene expression signature in the context of OB physiological environment, avoiding in vitro culture and its associated biases. Our results provide insights into the site-specific developmental pathways governing OBs and identify new major OB regulators of bone physiology. We also established the importance of the OB transcriptome as a prognostic tool for human rare bone diseases to explore the hidden pathophysiology of craniofacial malformations, among the most prevalent congenital defects in humans.
Collapse
Affiliation(s)
- A. Nassif
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Reference Center for
Dental Rare Diseases, Rothschild Hospital (ORARES), Paris, France
- AP-HP, Pitié Salpêtrière, Service
d’Orthopédie Dento-faciale, Paris, France
| | - G. Lignon
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - A. Asselin
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - C.C. Zadikian
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - S. Petit
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| | - H.W. Sun
- Biodata Mining and Discovery
Section, Office of Science and Technology, Intramural Research Program,
National Institute of Arthritis and Musculoskeletal and Skin Diseases,
National Institutes of Health, Bethesda, MD, USA
| | - C. Klein
- Centre de Recherche des
Cordeliers, Sorbonne Université, Inserm, Université de Paris, Histology,
Cell Imaging and Flow Cytometry Platform (CHIC), Paris, France
| | - F.C. Ferré
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Charles Foix-Pitié
Salpêtrière Hospital, Dental Department, Ivry, France
| | - M.I. Morasso
- Laboratory of Skin Biology,
National Institute of Arthritis and Musculoskeletal and Skin Diseases,
National Institutes of Health, Bethesda, MD, USA
| | - A. Berdal
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Reference Center for
Dental Rare Diseases, Rothschild Hospital (ORARES), Paris, France
| | - B.P.J. Fournier
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
- AP-HP, Reference Center for
Dental Rare Diseases, Rothschild Hospital (ORARES), Paris, France
| | - J. Isaac
- Université de Paris, Dental
Faculty, Department of Oral Biology, Paris, France
- Centre de Recherche des
Cordeliers, Université de Paris, Sorbonne Université, Inserm, Laboratory of
Molecular Oral Pathophysiology, Paris, France
| |
Collapse
|
15
|
Zheng H, Fu J, Chen Z, Yang G, Yuan G. Dlx3 Ubiquitination by Nuclear Mdm2 Is Essential for Dentinogenesis in Mice. J Dent Res 2022; 101:1064-1074. [PMID: 35220830 DOI: 10.1177/00220345221077202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dentin is a major mineralized component of teeth. Odontoblasts are responsible for synthesis and secretion of dentin matrix. Previously, it has been demonstrated in a cell culture system that the E3 ubiquitin ligase, murine double minute 2 (Mdm2), promotes odontoblast-like differentiation of mouse dental papilla cells (mDPCs) by ubiquitinating p53 and the odontoblast-specific substrate Dlx3. However, whether Mdm2 plays an essential role in vivo in odontoblast differentiation and dentin formation remains unknown. In this study, we investigated the in vivo functions of Mdm2 using Dmp1-Cre;Mdm2 flox/flox mice combined with multiple histological and molecular biological methods. The results showed that Mdm2 deletion in the odontoblast layer led to defects in odontoblast differentiation and dentin formation. Unexpectedly, specific inhibition of the Mdm2-p53 axis in wild-type mice by injection of a small-molecule inhibitor Nutlin-3a indicated that the role of Mdm2 in dentinogenesis was p53 independent, which was inconsistent with the previous in vitro study. In situ proximity ligation assay (PLA) showed that Mdm2 interacted with and ubiquitinated Dlx3 in the odontoblast nucleus of mouse molars. Dlx3 promoted the translocation of Mdm2 to the nucleus, and in turn, the nuclear Mdm2 mediated ubiquitination of Dlx3 and promoted the odontoblast-like differentiation of mDPCs. Dlx3 interacted with Mdm2 through its C-terminal domain. Deletion of the C-terminal domain of Dlx3 reversed the enhanced odontoblast-like differentiation and the activation of Dspp promoter mediated by overexpression of wild-type or nuclear Mdm2. Our findings suggest that nuclear Mdm2 mediates ubiquitination of the transcription factor Dlx3, which is essential for Dlx3 transcriptional activity on Dspp as well as subsequent odontoblast differentiation and dentin formation.
Collapse
Affiliation(s)
- H. Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - J. Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Z. Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G. Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G. Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Abstract
The development and repair of dentin are strictly regulated by hundreds of genes. Abnormal dentin development is directly caused by gene mutations and dysregulation. Understanding and mastering this signal network is of great significance to the study of tooth development, tissue regeneration, aging, and repair and the treatment of dental diseases. It is necessary to understand the formation and repair mechanism of dentin in order to better treat the dentin lesions caused by various abnormal properties, whether it is to explore the reasons for the formation of dentin defects or to develop clinical drugs to strengthen the method of repairing dentin. Molecular biology of genes related to dentin development and repair are the most important basis for future research.
Collapse
Affiliation(s)
- Shuang Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Han Xie
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shuai Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoling Wei
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China.,Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
17
|
Alotaibi RN, Howe BJ, Chernus JM, Mukhopadhyay N, Sanchez C, Deleyiannis FWB, Neiswanger K, Padilla C, Poletta FA, Orioli IM, Buxó CJ, Hecht JT, Wehby GL, Long RE, Vieira AR, Weinberg SM, Shaffer JR, Moreno Uribe LM, Marazita ML. Genome-Wide Association Study (GWAS) of dental caries in diverse populations. BMC Oral Health 2021; 21:377. [PMID: 34311721 PMCID: PMC8311973 DOI: 10.1186/s12903-021-01670-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dental caries is one of the most common chronic diseases and is influenced by a complex interplay of genetic and environmental factors. Most previous genetic studies of caries have focused on identifying genes that contribute to dental caries in specific ethnic groups, usually of European descent. METHODS The aim of this study is to conduct a genome-wide association study (GWAS) to identify associations affecting susceptibility to caries in a large multiethnic population from Argentina, the Philippines, Guatemala, Hungary, and the USA, originally recruited for studies of orofacial clefts (POFC, N = 3686). Ages of the participants ranged from 2 to 12 years for analysis of the primary dentition, and 18-60 years for analysis of the permanent dentition. For each participant, dental caries was assessed by counts of decayed and filled teeth (dft/DFT) and genetic variants (single nucleotide polymorphisms, SNPs) were genotyped or imputed across the entire genome. Caries was analyzed separately for the primary and permanent dentitions, with age, gender, and presence/absence of any type of OFC treated as covariates. Efficient Mixed-Model Association eXpedited (EMMAX) was used to test genetic association, while simultaneously accounting for relatedness and stratification. RESULTS We identified several suggestive loci (5 × 10-8 < P < 5 × 10-6) within or near genes with plausible biological roles for dental caries, including a cluster of taste receptor genes (TAS2R38, TAS2R3, TAS2R4, TASR25) on chromosome 7 for the permanent dentition analysis, and DLX3 and DLX4 on chromosome 17 for the primary dentition analysis. Genome-wide significant results were seen with SNPs in the primary dentition only; however, none of the identified genes near these variants have known roles in cariogenesis. CONCLUSION The results of this study warrant further investigation and may lead to a better understanding of cariogenesis in diverse populations, and help to improve dental caries prediction, prevention, and/or treatment in future.
Collapse
Affiliation(s)
- Rasha N Alotaibi
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Brian J Howe
- Department of Family Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA
- The Iowa Center for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Jonathan M Chernus
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nandita Mukhopadhyay
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carla Sanchez
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Katherine Neiswanger
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carmencita Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines, Manila, Philippines
| | - Fernando A Poletta
- ECLAMC/INAGEMP At Center for Medical Education and Clinical Research (CEMIC-CONICET), Buenos Aires, Argentina
| | - Ieda M Orioli
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen J Buxó
- Dental and Craniofacial Genomics Core, School of Dental Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas Health Science Center At Houston, Houston, TX, USA
| | - George L Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Ross E Long
- Lancaster Cleft Palate Clinic, Lancaster, PA, USA
| | - Alexandre R Vieira
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M Weinberg
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John R Shaffer
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lina M Moreno Uribe
- Department of Family Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA
- Department of Orthodontics, School of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Mary L Marazita
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Shuhaibar N, Hand AR, Terasaki M. Odontoblast processes of the mouse incisor are plates oriented in the direction of growth. Anat Rec (Hoboken) 2020; 304:1820-1827. [PMID: 33190419 PMCID: PMC8359275 DOI: 10.1002/ar.24570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
Odontoblast processes are thin cytoplasmic projections that extend from the cell body at the periphery of the pulp toward the dentin-enamel junction. The odontoblast processes function in the secretion, assembly and mineralization of dentin during development, participate in mechanosensation, and aid in dentin repair in mature teeth. Because they are small and densely arranged, their three-dimensional organization is not well documented. To gain further insight into how odontoblast processes contribute to odontogenesis, we used serial section electron microscopy and three-dimensional reconstructions to examine these processes in the predentin region of mouse molars and incisors. In molars, the odontoblast processes are tubular with a diameter of ~1.8 μm. The odontoblast processes near the incisor tip are similarly shaped, but those midway between the tip and apex are shaped like plates. The plates are radially aligned and longitudinally oriented with respect to the growth axis of the incisor. The thickness of the plates is approximately the same as the diameter of molar odontoblast processes. The plates have an irregular edge; the average ratio of width (midway in the predentin) to thickness is 2.3 on the labial side and 3.6 on the lingual side. The plate geometry seems likely to be related to the continuous growth of the incisor and may provide a clue as to the mechanisms by which the odontoblast processes are involved in tooth development.
Collapse
Affiliation(s)
- Ninna Shuhaibar
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA
| | - Arthur R Hand
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA.,Division of Craniofacial Sciences, University of Connecticut Health, Farmington, Connecticut, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health, Farmington, Connecticut, USA
| |
Collapse
|
19
|
Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone 2020; 137:115409. [PMID: 32417535 DOI: 10.1016/j.bone.2020.115409] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Neural crest cells are a vertebrate-specific migratory, multipotent cell population that give rise to a diverse array of cells and tissues during development. Cranial neural crest cells, in particular, generate cartilage, bone, tendons and connective tissue in the head and face as well as neurons, glia and melanocytes. In this review, we focus on the chondrogenic and osteogenic potential of cranial neural crest cells and discuss the roles of Sox9, Runx2 and Msx1/2 transcription factors and WNT, FGF and TGFβ signaling pathways in regulating neural crest cell differentiation into cartilage and bone. We also describe cranioskeletal defects and disorders arising from gain or loss-of-function of genes that are required for patterning and differentiation of cranial neural crest cells. Finally, we discuss the evolution of skeletogenic potential in neural crest cells and their function as a conduit for intraspecies and interspecies variation, and the evolution of craniofacial novelties.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
20
|
Ihn HJ, Kim JA, Lim J, Nam SH, Hwang SH, Kim YK, Kim JY, Kim JE, Cho ES, Jiang R, Park EK. Bobby sox homolog regulates tooth root formation through modulation of dentin sialophosphoprotein. J Cell Physiol 2020; 236:480-488. [PMID: 32537777 DOI: 10.1002/jcp.29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022]
Abstract
Tooth root development occurs through the interaction of multiple growth factors and transcription factors expressed in Hertwig's epithelial root sheath (HERS) and dental mesenchyme. Previously, we demonstrated that bobby sox homolog (Bbx) regulates odontoblast differentiation of human dental pulp stem cells. Here, we generated Bbx knockout (Bbx-/- ) mice to address the functional role of Bbx in tooth formation. During tooth development, Bbx was expressed in both dental epithelium and mesenchyme. However, molar and incisor morphology in Bbx-/- mice at postnatal Day 0 (P0) exhibited no prominent abnormalities compared with their wild-type (Bbx+/+ ) littermates. Until P28, the crown morphology in Bbx-/- mice was not distinctively different from Bbx+/+ littermates. Meanwhile, the length of the mandibular base in Bbx-/- mice was notably less at P28. Compared with Bbx+/+ mice, the mesial and distal root lengths of the first molar were reduced by 21.33% and 16.28% at P14 and 16.28% and 16.24% at P28, respectively, in Bbx-/- mice. The second molar of Bbx-/- mice also showed 10.16% and 6.4% reductions at P28 in the mesial and distal lengths, compared with Bbx+/+ mice, respectively. The gene expression analysis during early tooth root formation (P13) showed that the expression of dentin sialophosphoprotein (Dspp) was significantly decreased in Bbx-/- mice. Collectively, our data suggest that Bbx participates in tooth root formation and might be associated with the regulation of Dspp expression.
Collapse
Affiliation(s)
- Hye Jung Ihn
- Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - So Hyeon Hwang
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kyung Kim
- Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
21
|
Zheng H, Yang G, Fu J, Chen Z, Yuan G. Mdm2 Promotes Odontoblast-like Differentiation by Ubiquitinating Dlx3 and p53. J Dent Res 2020; 99:320-328. [PMID: 31847675 DOI: 10.1177/0022034519893672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dentin is an important structural component of the tooth. Odontoblast differentiation is an essential biological process that guarantees normal dentin formation, which is precisely regulated by various proteins. Murine double minute 2 (Mdm2) is an E3 ubiquitin ligase, and it plays a pivotal role in the differentiation of different cell types, such as osteoblasts and myoblasts. However, whether Mdm2 plays a role in odontoblast differentiation remains unknown. Here, we investigated the spatiotemporal expression of Mdm2 by immunostaining and found that Mdm2 was highly expressed in the odontoblasts and slightly in the dental papilla cells of mouse incisors and molars. Gene knockdown and overexpression experiments verified that Mdm2 promoted the odontoblast-like differentiation of mouse dental papilla cells (mDPCs). Intranuclear colocalization and physical interaction between Mdm2 and distal-less 3 (Dlx3), a transcription factor important for odontoblast differentiation, was found during the odontoblast-like differentiation of mDPCs by double immunofluorescence and immunoprecipitation. Mdm2 was proved to monoubiquitinate Dlx3, which enhanced the expression of Dlx3 target gene Dspp. In addition, p53, the canonical substrate of Mdm2, was validated to be also ubiquitinated but degraded by Mdm2 during the odontoblast-like differentiation of mDPCs. Gene knockdown experiments confirmed that p53 inhibited the odontoblast-like differentiation of mDPCs. p53 and Mdm2 double knockdown partially rescued the reduced odontoblast-like differentiation by knockdown of Mdm2 alone. Taken together, our study revealed that Mdm2 promoted the odontoblast-like differentiation of mDPCs by ubiquitinating both Dlx3 and p53. On one hand, the monoubiquitination of Dlx3 by Mdm2 led to upregulation of Dspp, which is a marker of the odontoblast differentiation. On the other hand, ubiquitination of p53 by Mdm2 resulted in its degradation, which eliminated the inhibitory effect of p53 on the odontoblast-like differentiation of mDPCs.
Collapse
Affiliation(s)
- H Zheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Yang X, Yamazaki H, Yamakoshi Y, Duverger O, Morasso MI, Beniash E. Trafficking and secretion of keratin 75 by ameloblasts in vivo. J Biol Chem 2019; 294:18475-18487. [PMID: 31628189 PMCID: PMC6885611 DOI: 10.1074/jbc.ra119.010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
A highly specialized cytoskeletal protein, keratin 75 (K75), expressed primarily in hair follicles, nail beds, and lingual papillae, was recently discovered in dental enamel, the most highly mineralized hard tissue in the human body. Among many questions this discovery poses, the fundamental question regarding the trafficking and secretion of this protein, which lacks a signal peptide, is of an utmost importance. Here, we present evidence that K75 is expressed during the secretory stage of enamel formation and is present in the forming enamel matrix. We further show that K75 is secreted together with major enamel matrix proteins amelogenin and ameloblastin, and it was detected in Golgi and the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) but not in rough ER (rER). Inhibition of ER-Golgi transport by brefeldin A did not affect the association of K75 with Golgi, whereas ameloblastin accumulated in rER, and its transport from rER into Golgi was disrupted. Together, these results indicate that K75, a cytosolic protein lacking a signal sequence, is secreted into the forming enamel matrix utilizing portions of the conventional ER-Golgi secretory pathway. To the best of our knowledge, this is the first study providing insights into mechanisms of keratin secretion.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Hajime Yamazaki
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Olivier Duverger
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
23
|
Zeng L, Sun S, Dong L, Liu Y, Liu H, Han D, Ma Z, Wang Y, Feng H. DLX3 epigenetically regulates odontoblastic differentiation of hDPCs through H19/miR-675 axis. Arch Oral Biol 2019; 102:155-163. [PMID: 31029881 DOI: 10.1016/j.archoralbio.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/17/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A novel mutation (c.533 A > G; Q178R) in DLX3 gene is responsible for Tricho-Dento-Osseous (TDO) syndrome. As one of features of TDO syndrome is dentin hypoplasia, we explored the mechanism regarding dentin defects in TDO syndrome. DESIGN hDPCs were obtained from the healthy premolars, stably expressing hDPCs were generated using recombinant lentiviruses. Quantitative methylation analysis, DNMT3B activity, CHIP, and evaluation of odonto-differentiation ability of hDPCs assays were performed. RESULTS Novel mutant DLX3 (MU-DLX3) significantly inhibited the expression of long non-coding RNA H19 and resulted in hyper-methylation of H19 in MU group, rescue studies showed that up-regulation the expression of H19 and demethylation of H19 in MU group were able to rescue the effect of MU-DLX3. Subsequently, miR-675, encoded by H19, was also able to rescue the above effects of MU-DLX3. Thus, we proposed that MU-DLX3 regulated odontoblastic differentiation of hDPCs through H19/miR-675 axis. Through CHIP and DNMT3B activity assays disclosed the underlying mechanism by which MU-DLX3 altered H19 expression and methylation status in MU group by increasing H3K9me3 enrichment and DNMT3B activity. CONCLUSIONS Our new findings, for the first time, suggest that MU-DLX3 significantly inhibits hDPCs differentiation via H19/miR-675 axis and provides a new mechanism insight into how MU-DLX3 epigenetically alters H19 methylation status and expression contributes to dentin hypoplasia in TDO syndrome.
Collapse
Affiliation(s)
- Li Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Liying Dong
- Department of Oral & Maxillofacial Surgery, PR China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China.
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, PR China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Bejing, PR China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| |
Collapse
|
24
|
Zeng L, Sun S, Han D, Liu Y, Liu H, Feng H, Wang Y. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cell Signal 2018; 52:65-73. [PMID: 30165103 DOI: 10.1016/j.cellsig.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators in molecular processes and may play vital roles in odontogenic differentiation of human dental pulp stem cells (hDPSCs). However, their functions remain to be elucidated. As lncRNA H19 is one of the most classical lncRNA, which plays essential roles in cellular differentiation, thus we explored the effects and mechanisms of H19 in odontogenic differentiation of hDPSCs. Stable overexpression and knockdown of H19 in hDPSCs were constructed using recombinant lentiviruses containing H19 and short hairpin-H19 expression cassettes, respectively. Alkaline phosphatase (ALP) assay, Alizarin red staining assay, von kossa staining, quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescent staining results indicated that overexpression of H19 in hDPSCs positively regulates the odontogenic differentiation of hDPSCs, while knockdown of H19 in hDPSCs inhibits odontogenic differentiation of hDPSCs. Further, we found that H19 promotes the odontogenic differentiation of hDPSCs through S-adenosylhomocysteine hydrolase (SAHH) epigenetically regulates the methylation and expression of distal-less homeobox (DLX3) gene. Herein, for the first time, we determined that H19/SAHH axis epigentically regulates odontogenic differentiaiton of hDPSCs by inhibiting the DNA methyltransferase 3B (DNMT3B)-mediated methylation of DLX3. Our findings provide a new insight into how H19/SAHH axis play its role in odontogenic differentiation of hDPSCs, and would be helpful in developing therapeutic approaches for dentin regeneration based on stem cells.
Collapse
Affiliation(s)
- Li Zeng
- Department Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Shichen Sun
- Department Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Dong Han
- Department Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Yang Liu
- Department Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Haochen Liu
- Department Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China
| | - Hailan Feng
- Department Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, PR China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, PR China.
| |
Collapse
|
25
|
Zhan Y, Li X, Gou X, Yuan G, Fan M, Yang G. DLX3 Inhibits the Proliferation of Human Dental Pulp Cells Through Inactivation of Canonical Wnt/β-Catenin Signaling Pathway. Front Physiol 2018; 9:1637. [PMID: 30524303 PMCID: PMC6256238 DOI: 10.3389/fphys.2018.01637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/30/2018] [Indexed: 01/17/2023] Open
Abstract
Homeodomain gene Distal-less-3 (Dlx3) plays an important role during tooth development. Our previous studies indicate that DLX3 inhibits proliferation of human dental pulp cells (hDPCs). However, the mechanism of DLX3 regulating proliferation of hDPCs and maintaining the quiescence of the cells remain unknown. Given the importance of canonical Wnt signaling in the proliferation of dental pulp cell and tooth development, we hypothesized that DLX3 inhibited proliferation of hDPCs through inactivation of canonical Wnt signaling. With overexpression or knock-down of DLX3 in primary hDPCs, we found DLX3 down regulated canonical Wnt signaling and its downstream target genes. And when the DLX3 overexpressed-cells were treated with lithium chloride, the proliferation inhibition by DLX3 was reversed. We also found that DLX3 enhanced the expression of DKK1 and the reduced proliferation of hDPCs by DLX3 was reversed with knock-down of DKK1. Furthermore, luciferase reporter assay and chromatin immunoprecipitation assay showed DLX3 was able to bind to Dkk1 promoter region from nucleotides (nt) -1656 to -1245, and stimulated Dkk1 promoter activity. Mutagenesis studies further revealed two DLX3 responsive elements in Dkk1 promoter. Taken together, our data indicate that DLX3 inhibits proliferation of hDPCs via inactivation of Wnt/β-catenin signaling pathway by directly binding to Dkk1 promoter and increasing its expression.
Collapse
Affiliation(s)
- Yunyan Zhan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoyan Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Endodontics, School of Stomatology, Shandong University, Jinan, China
| | - Xiaohui Gou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Shandong Provincial Key Laboratory of Oral Biomedicine, Department of Endodontics, School of Stomatology, Shandong University, Jinan, China
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Haworth S, Shungin D, van der Tas JT, Vucic S, Medina-Gomez C, Yakimov V, Feenstra B, Shaffer JR, Lee MK, Standl M, Thiering E, Wang C, Bønnelykke K, Waage J, Jessen LE, Nørrisgaard PE, Joro R, Seppälä I, Raitakari O, Dudding T, Grgic O, Ongkosuwito E, Vierola A, Eloranta AM, West NX, Thomas SJ, McNeil DW, Levy SM, Slayton R, Nohr EA, Lehtimäki T, Lakka T, Bisgaard H, Pennell C, Kühnisch J, Marazita ML, Melbye M, Geller F, Rivadeneira F, Wolvius EB, Franks PW, Johansson I, Timpson NJ. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum Mol Genet 2018; 27:3113-3127. [PMID: 29931343 PMCID: PMC6097157 DOI: 10.1093/hmg/ddy237] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.
Collapse
Affiliation(s)
- Simon Haworth
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Dmitry Shungin
- Department of Odontology, Umeå University, Umeå 901 87, Sweden
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Justin T van der Tas
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Strahinja Vucic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Carolina Medina-Gomez
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Victor Yakimov
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg D-85764, Germany
- Division of Metabolic and Nutritional Medicine, Dr von Hauner Children's Hospital, University of Munich Medical Center, Munich 80337, Germany
| | - Carol Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Johannes Waage
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Leon Eyrich Jessen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Pia Elisabeth Nørrisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Raimo Joro
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Olli Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
| | - Tom Dudding
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Olja Grgic
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
- The Generation R Study Group
| | | | - Anu Vierola
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
| | - Nicola X West
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Steven J Thomas
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, UK
| | - Daniel W McNeil
- Department of Psychology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WA 26506-6286, USA
| | - Steven M Levy
- Department of Preventive and Community Dentistry, College of Dentistry, University of Iowa, Cedar Rapids, IA 52242-1010, USA
| | - Rebecca Slayton
- Department of Pediatric Dentistry (Retired), School of Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ellen A Nohr
- Research Unit for Gynaecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere - Faculty of Medicine and Life Sciences, University of Tampere, Tampere 33520, Finland
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland Kuopio Campus, 70211 Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio 70210, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio 70100, Finland
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofe Hospital, University of Copenhagen, Copenhagen 2730, Denmark
| | - Craig Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth WA 6009, Australia
| | - Jan Kühnisch
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen DK-2300, Denmark
| | - Fernando Rivadeneira
- The Generation R Study Group
- Department of Internal Medicine
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands
| | - Eppo B Wolvius
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics
| | - Paul W Franks
- Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Malmö 202 13, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå 901 85, Sweden
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit at Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| |
Collapse
|
27
|
Zeng L, Zhao N, Li F, Han D, Liu Y, Liu H, Sun S, Wang Y, Feng H. miR-675 promotes odontogenic differentiation of human dental pulp cells by epigenetic regulation of DLX3. Exp Cell Res 2018; 367:104-111. [PMID: 29604248 DOI: 10.1016/j.yexcr.2018.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 01/25/2023]
Abstract
In a previous study, we showed that microRNA-675 (miR-675) was significantly down-regulated in patients with tricho-dento-osseous (TDO) syndrome. One of the main features of TDO syndrome is dentin hypoplasia. Thus, we hypothesize that miR-675 plays a role in dentin development. In this study, we determined the role of miR-675 in the odontogenic differentiation of human dental pulp cells (hDPCs). Stable overexpression and knockdown of miR-675 in hDPCs were performed using recombinant lentiviruses containing U6 promoter-driven miR-675 and short hairpin-miR675 expression cassettes, respectively. Alkaline phosphatase (ALP) assay, Alizarin red staining assay, quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunofluorescent staining revealed the promotive effects of miR-675 on the odontogenic differentiation of hDPCs. Further, we found that miR-675 facilitates the odontogenic differentiation process of hDPCs by epigenetic regulation of distal-less homeobox (DLX3). Thus, for the first time, we determined that miR-675 regulates the odontogenic differentiation of hDPCs by inhibiting the DNA methyltransferase 3 beta (DNMT3B)-mediated methylation of DLX3. Our findings uncover an unanticipated regulatory role for miR-675 in the odontogenic differentiation of hDPCs by epigenetic changes in DLX3 and provide novel insight into dentin hypoplasia feature in TDO patients.
Collapse
Affiliation(s)
- Li Zeng
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Na Zhao
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Fang Li
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Dong Han
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Yang Liu
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Haochen Liu
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Shichen Sun
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Hailan Feng
- Department Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China.
| |
Collapse
|
28
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
29
|
Kastovsky J, Borilova Linhartova P, Musilova K, Zackova L, Kukletova M, Kukla L, Izakovicova Holla L. Lack of Association between BMP2/DLX3 Gene Polymorphisms and Dental Caries in Primary and Permanent Dentitions. Caries Res 2017; 51:590-595. [PMID: 29059672 DOI: 10.1159/000479828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/26/2017] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to analyze the association between BMP2 (rs1884302) and DLX3 (rs2278163) gene polymorphisms and dental caries in primary and permanent dentitions. A total of 914 subjects were genotyped by the TaqMan methods: 176 caries-free children (with Decayed/Missing/Filled Teeth, DMFT = 0), 542 patients with dental caries in permanent dentition (DMFT ≥1), 83 caries-free children with primary teeth (with decayed/missing/filled teeth, dmft = 0), and 113 children with early childhood caries (ECC, dmft ≥1). There were no significant differences in allele/genotype frequencies between patients with caries in permanent dentition/ECC and caries-free children or between patients with very low (DMFT = 0-2), low (DMFT = 3-5), moderate (DMFT = 6-8), or high (DMFT ≥9) caries experience. Variability in BMP2 and DLX3 was not associated with caries in the Czech population.
Collapse
|
30
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
31
|
Kammoun R, Behets C, Mansour L, Ghoul-Mazgar S. Mineral features of connective dental hard tissues in hypoplastic amelogenesis imperfecta. Oral Dis 2017; 24:384-392. [PMID: 28771955 DOI: 10.1111/odi.12724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To explore the mineral features of dentin and cementum in hypoplastic Amelogenesis imperfecta AI teeth. MATERIALS AND METHODS Forty-four (44) teeth cleaned and free of caries were used: 20 control and 24 affected by hypoplastic amelogenesis imperfecta. Thirty-two teeth were studied by pQCT, cut in sections, and analyzed under microradiography, polarized light microscopy, and confocal Raman spectroscopy. Eight teeth were observed under scanning electron microscope. Four teeth were used for an X-ray diffraction. The mineral density data were analyzed statistically with the Mann-Whitney U test, using GraphPad InStat software. RESULTS Both coronal dentin and radicular dentin were less mineralized in AI teeth when compared to control (respectively 6.2% and 6.8%; p < .001). Root dentinal walls were thin and irregular, while the cellular cementum layers were thick, reaching sometimes the cervical region of the tooth. Regular dentinal tubules and sclerotic dentin areas were noticed. Partially tubular or cellular dysplastic dentin and hyper-, normo-, or hypomineralized areas were noticed in the inter-radicular areas of hypoplastic AI teeth. The main mineral component was carbonate hydroxyapatite as explored by Raman spectroscopy and X-ray diffraction. CONCLUSIONS Dentin and cementum in hypoplastic AI teeth are (i) hypomineralized, (ii) constituted of carbonate hydroxyapatite, and (iii) of non-homogenous structure.
Collapse
Affiliation(s)
- R Kammoun
- Laboratory of Histology and Embryology, Laboratory of Dento-Facial, Clinical and Biological Approach (ABCDF), Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - C Behets
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - L Mansour
- Laboratory of Histology and Embryology, Laboratory of Dento-Facial, Clinical and Biological Approach (ABCDF), Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| | - S Ghoul-Mazgar
- Laboratory of Histology and Embryology, Laboratory of Dento-Facial, Clinical and Biological Approach (ABCDF), Faculty of Dental Medicine, University of Monastir, Monastir, Tunisia
| |
Collapse
|
32
|
BMP-2 induced Dspp transcription is mediated by Dlx3/Osx signaling pathway in odontoblasts. Sci Rep 2017; 7:10775. [PMID: 28883412 PMCID: PMC5589848 DOI: 10.1038/s41598-017-10908-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 01/18/2023] Open
Abstract
Dentin sialophosphoprotein (Dspp) as a differentiation marker of odontoblasts is regulated by BMP-2. However, the intimate mechanism is still unknown. Transcription factors Dlx3 and Osx are essential for odontoblasts differentiation. We hypothesized that BMP-2 regulation of Dspp transcription was mediated by Dlx3 and/or Osx in odontoblasts. In the present investigation, we found that BMP-2 stimulated expression and nuclear translocation of Dlx3 and Osx in odontoblasts both in vitro and in vivo. Osx was a downstream target of Dlx3 and both of them stimulated Dsp expression. Both Dlx3 and Osx were able to activate Dspp promoter from nucleotides (nt) -318 to +54 by transfections of luciferase reports containing different lengths of mouse Dspp promoters. The binding of Dlx3 and Osx with nt -318 to +54 of Dspp promoter was verified by chromatin immunoprecipitation in vivo. Two Dlx3 binding sites and one Osx binding site on Dspp promoter were found by EMSA. Furthermore, the exact biological function of these binding sites was confirmed by site-directed mutagenesis. At last, the protein-protein interaction between Dlx3 and Osx in odontoblasts was detected by co-immunoprecipitation. In conclusion, in this study we found a novel signaling pathway in which BMP-2 activates Dspp gene transcription via Dlx3/Osx pathway.
Collapse
|
33
|
Abstract
The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Carolina Parada
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8:435. [PMID: 28694781 PMCID: PMC5483479 DOI: 10.3389/fphys.2017.00435] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Agne Antanaviciute
- Section of Genetics, School of Medicine, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Oral Medicine, School of Dentistry, University of LeedsLeeds, United Kingdom
| |
Collapse
|
35
|
WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nat Commun 2017; 8:15397. [PMID: 28589954 PMCID: PMC5467248 DOI: 10.1038/ncomms15397] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Human WNT10A mutations are associated with developmental tooth abnormalities and adolescent onset of a broad range of ectodermal defects. Here we show that β-catenin pathway activity and adult epithelial progenitor proliferation are reduced in the absence of WNT10A, and identify Wnt-active self-renewing stem cells in affected tissues including hair follicles, sebaceous glands, taste buds, nails and sweat ducts. Human and mouse WNT10A mutant palmoplantar and tongue epithelia also display specific differentiation defects that are mimicked by loss of the transcription factor KLF4. We find that β-catenin interacts directly with region-specific LEF/TCF factors, and with KLF4 in differentiating, but not proliferating, cells to promote expression of specialized keratins required for normal tissue structure and integrity. Our data identify WNT10A as a critical ligand controlling adult epithelial proliferation and region-specific differentiation, and suggest downstream β-catenin pathway activation as a potential approach to ameliorate regenerative defects in WNT10A patients. Human WNT10A mutations are associated with dental defects and adult onset ectodermal dysplasia. Xu et al. show that WNT10A-activated ß-catenin plays dual roles in adult epithelial progenitor proliferation and differentiation by complexing with KLF4 in differentiating, but not proliferating, cells.
Collapse
|
36
|
Dai J, Si J, Ouyang N, Zhang J, Wu D, Wang X, Shen G. Dental and periodontal phenotypes of Dlx2 overexpression in mice. Mol Med Rep 2017; 15:2443-2450. [PMID: 28447749 PMCID: PMC5428916 DOI: 10.3892/mmr.2017.6315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
Distal-less homeobox 2 (Dlx2) is a member of the homeodomain family of transcription factors and is important for the development of cranial neural crest cells (CNCCs)-derived craniofacial tissues. Previous studies revealed that Dlx2 was expressed in the cementum and a targeted null mutation disrupted tooth development in mice. However, whether Dlx2 overexpression may impair in vivo tooth morphogenesis remains to be elucidated. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to identify the dental phenotypes in mice by observation, micro-computed tomography and histological examination. The Dlx2-overexpressed mice exhibited tooth abnormalities including incisor cross-bite, shortened tooth roots, increased cementum deposition, periodontal ligament disorganization and osteoporotic alveolar bone. Therefore, Dlx2 overexpression may alter the alveolar bone, cementum and periodontal ligament (PDL) phenotypes in mice.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jiawen Si
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Ningjuan Ouyang
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Jianfei Zhang
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Dandan Wu
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xudong Wang
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Guofang Shen
- Department of Oral and Cranio‑maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
37
|
Duverger O, Ohara T, Bible PW, Zah A, Morasso MI. DLX3-Dependent Regulation of Ion Transporters and Carbonic Anhydrases is Crucial for Enamel Mineralization. J Bone Miner Res 2017; 32:641-653. [PMID: 27760456 PMCID: PMC11025043 DOI: 10.1002/jbmr.3022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/11/2022]
Abstract
Patients with tricho-dento-osseous (TDO) syndrome, an ectodermal dysplasia caused by mutations in the homeodomain transcription factor DLX3, exhibit enamel hypoplasia and hypomineralization. Here we used a conditional knockout mouse model to investigate the developmental and molecular consequences of Dlx3 deletion in the dental epithelium in vivo. Dlx3 deletion in the dental epithelium resulted in the formation of chalky hypomineralized enamel in all teeth. Interestingly, transcriptomic analysis revealed that major enamel matrix proteins and proteases known to be involved in enamel secretion and maturation were not affected significantly by Dlx3 deletion in the enamel organ. In contrast, expression of several ion transporters and carbonic anhydrases known to play an important role in enamel pH regulation during maturation was significantly affected in enamel organs lacking DLX3. Most of these affected genes showed binding of DLX3 to their proximal promoter as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis on rat enamel organ. These molecular findings were consistent with altered pH staining evidenced by disruption of characteristic pH oscillations in the enamel. Taken together, these results show that DLX3 is indispensable for the regulation of ion transporters and carbonic anhydrases during the maturation stage of amelogenesis, exerting a crucial regulatory function on pH oscillations during enamel mineralization. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Olivier Duverger
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Takahiro Ohara
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Paul W Bible
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Angela Zah
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
38
|
Jin Y, Wang C, Cheng S, Zhao Z, Li J. MicroRNA control of tooth formation and eruption. Arch Oral Biol 2017; 73:302-310. [DOI: 10.1016/j.archoralbio.2016.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/20/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
|
39
|
Niibe K, Zhang M, Nakazawa K, Morikawa S, Nakagawa T, Matsuzaki Y, Egusa H. The potential of enriched mesenchymal stem cells with neural crest cell phenotypes as a cell source for regenerative dentistry. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:25-33. [PMID: 28479933 PMCID: PMC5405184 DOI: 10.1016/j.jdsr.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023] Open
Abstract
Effective regenerative treatments for periodontal tissue defects have recently been demonstrated using mesenchymal stromal/stem cells (MSCs). Furthermore, current bioengineering techniques have enabled de novo fabrication of tooth-perio dental units in mice. These cutting-edge technologies are expected to address unmet needs within regenerative dentistry. However, to achieve efficient and stable treatment outcomes, preparation of an appropriate stem cell source is essential. Many researchers are investigating the use of adult stem cells for regenerative dentistry; bone marrow-derived MSCs (BM-MSCs) are particularly promising and presently used clinically. However, current BM-MSC isolation techniques result in a heterogeneous, non-reproducible cell population because of a lack of identified distinct BM-MSC surface markers. Recently, specific subsets of cell surface markers for BM-MSCs have been reported in mice (PDGFRα+ and Sca-1+) and humans (LNGFR+, THY-1+ and VCAM-1+), facilitating the isolation of unique enriched BM-MSCs (so-called “purified MSCs”). Notably, the enriched BM-MSC population contains neural crest-derived cells, which can differentiate into cells of neural crest- and mesenchymal lineages. In this review, characteristics of the enriched BM-MSCs are outlined with a focus on their potential application within future regenerative dentistry.
Collapse
Affiliation(s)
- Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kosuke Nakazawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yumi Matsuzaki
- Department of Cancer Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho Izumo, Shimane 693-8501, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
40
|
Tao L, Li C, Hui Y, Huning W, Hongzhi F, Tao H. [Strategy and practice of the healthy cosmetic management for patients with high dental caries susceptibility]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:511-515. [PMID: 28326712 PMCID: PMC7030120 DOI: 10.7518/hxkq.2016.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/20/2016] [Indexed: 06/06/2023]
Abstract
A new clinic conception, healthy cosmetic management (HCM), was innovated introduced into diagnose and treatment of patients with high caries risk. The priority of HCM should be given to aesthetic restoration of teeth, taking consideration of the conserving of tissue and pulp of teeth and the balance between health and aesthetics, which may reach to the goal of the individual clinic treatment. HCM includes five steps: 1) caries risk assessment; 2) detection of initial caries; 3) digital aesthetic design; 4) minimally invasive therapy; 5) behavior management of caries and doctor-patient communication pattern. In this article, HCM is introduced into two aspects: process management and clinical protocols, followed by the combination of the clinical practice.
Collapse
Affiliation(s)
- Liu Tao
- State Key Laboratory of Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;Dept. of Conservative Dentistry and Endodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650031, China
| | - Cheng Li
- State Key Laboratory of Oral Diseases, Dept. of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Hui
- State Key Laboratory of Oral Diseases, General Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wang Huning
- State Key Laboratory of Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fang Hongzhi
- Dept. of Stomatology, The Third People's Hospital of Chengdu, Chengdu 610041, China
| | - Hu Tao
- State Key Laboratory of Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;State Key Laboratory of Oral Diseases, Dept. of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
41
|
Kim YJ, Seymen F, Koruyucu M, Kasimoglu Y, Gencay K, Shin TJ, Hyun HK, Lee ZH, Kim JW. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta. Oral Dis 2016; 22:297-302. [PMID: 26762616 DOI: 10.1111/odi.12439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). SUBJECTS AND METHODS DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. RESULTS Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. CONCLUSIONS In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes.
Collapse
Affiliation(s)
- Y-J Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - F Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - M Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Y Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - K Gencay
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - T J Shin
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Hyun
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Z H Lee
- Department of Cell and Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - J-W Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.,Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Kadkhoda Z, Safarpour A, Azmoodeh F, Adibi S, Khoshzaban A, Bahrami N. Histopathological Comparison between Bone Marrow- and Periodontium-derived Stem Cells for Bone Regeneration in Rabbit Calvaria. Int J Organ Transplant Med 2016; 7:9-18. [PMID: 26889369 PMCID: PMC4756260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Periodontitis is an important oral disease. Stem cell therapy has found its way in treatment of many diseases. OBJECTIVE To evaluate the regenerative potential of periodontal ligament-derived stem cells (PDLSCs) and osteoblast differentiated from PDLSC in comparison with bone marrow-derived mesenchymal stem cells (BM-MSCs) and pre-osteoblasts in calvarial defects. METHODS After proving the existence of surface markers by flow cytometry, BM-MSCs were differentiated into osteoblasts. 5 defects were made on rabbit calvaria. 3 of them were first covered with collagen membrane and then with BM-MSCs, PDLSCs, and pre-osteoblasts. The 4(th) defect was filled with collagen membrane and the 5(th) one was served as control. After 4 weeks, histological (quantitative) and histomorphological (qualitative) surveys were performed. RESULTS Both cell lineages were positive for CD-90 cell marker, which was specifically related to stem cells. Alizarin red staining was done for showing mineral material. RT-PCR set up for the expression of Cbfa1 gene, BMP4 gene, and PGLAP gene, confirmed osteoblast differentiation. The findings indicated that although PDLSCs and pre-osteoblasts could be used for bone regeneration, the rate of regeneration in BM-MSCs-treated cavities was more significant (p<0.0001). CONCLUSION The obtained results are probably attributable to the effective micro-environmental signals caused by different bone types and the rate of cell maturation.
Collapse
Affiliation(s)
- Z. Kadkhoda
- Periodontology Department, Dental Faculty of Tehran University of Medical Sciences, Tehran, Iran
| | - A. Safarpour
- Periodontology Department, Dental Faculty of Tehran University of Medical Sciences, Tehran, Iran
| | - F. Azmoodeh
- Pathology Department, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - S. Adibi
- Dental Research of Torabinejad Research Centre, Isfahan, Iran
| | - A. Khoshzaban
- Stem Cells Preparation Unit, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - N. Bahrami
- Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran,Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran,Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran,CORRESPONDENCE: NAGHMEH BAHRAMI, ORAL AND MAXILLOFACIAL SURGERY DEPARTMENT, SCHOOL OF DENTISTRY, TEHRAN UNIVERSITY OF MEDICAL SCIENCES, NORTH AMIRABAD ST, TEHRAN, IRAN,E-mail:
| |
Collapse
|
43
|
Abstract
The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation.
Collapse
Affiliation(s)
- Hans U Luder
- Center of Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| |
Collapse
|
44
|
Ohta M, Nishimura H, Asada Y. Association of DLX3 gene polymorphism and dental caries susceptibility in Japanese children. Arch Oral Biol 2015; 60:55-61. [PMID: 25247779 DOI: 10.1016/j.archoralbio.2014.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 08/19/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE In this study, we investigated whether single nucleotide polymorphisms (SNPs) in DLX3 are associated with dental caries susceptibility in Japanese children. DESIGN Genomic DNA of 201 Japanese children was extracted from buccal epithelial cells. The subjects were divided into two groups: 'low level' group with <10,000 colony forming units (CFU) of Streptococcus mutans/mL saliva (level 0) and 'high level' group with ≥ 10,000 CFU/mL (more than level 1). Each group was further divided according to decayed, missing, filled teeth (dmft) into low caries experience (dmft ≤2) and high caries experience (dmft ≥ 3). Seven SNPs in DLX3 were genotyped using TaqMan1® SNP Genotyping Assay. RESULTS Statistical significant association was observed between DLX3 (rs2278163) and caries experience in 'high level Mutans streptococci' group. CONCLUSION These findings suggest that rs2278163 SNP of DLX3 might be associated with dental caries susceptibility in Japanese children. T and C alleles of rs2278163 SNP may potentially be involved in caries susceptibility and caries protection respectively.
Collapse
|
45
|
MicroRNA 665 Regulates Dentinogenesis through MicroRNA-Mediated Silencing and Epigenetic Mechanisms. Mol Cell Biol 2015; 35:3116-30. [PMID: 26124283 DOI: 10.1128/mcb.00093-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022] Open
Abstract
Studies of proteins involved in microRNA (miRNA) processing, maturation, and silencing have indicated the importance of miRNAs in skeletogenesis, but the specific miRNAs involved in this process are incompletely defined. Here, we identified miRNA 665 (miR-665) as a potential repressor of odontoblast maturation. Studies with cultured cell lines and primary embryonic cells showed that miR-665 represses the expression of early and late odontoblast marker genes and stage-specific proteases involved in dentin maturation. Notably, miR-665 directly targeted Dlx3 mRNA and decreased Dlx3 expression. Furthermore, RNA-induced silencing complex (RISC) immunoprecipitation and biotin-labeled miR-665 pulldown studies identified Kat6a as another potential target of miR-665. KAT6A interacted physically and functionally with RUNX2, activating tissue-specific promoter activity and prompting odontoblast differentiation. Overexpression of miR-665 reduced the recruitment of KAT6A to Dspp and Dmp1 promoters and prevented KAT6A-induced chromatin remodeling, repressing gene transcription. Taken together, our results provide novel molecular evidence that miR-665 functions in an miRNA-epigenetic regulatory network to control dentinogenesis.
Collapse
|
46
|
Zhang J, Lin H, Liu H, Zhang L, Yuan G, Chen Z. SP1 promotes the odontoblastic differentiation of dental papilla cells. Dev Growth Differ 2015; 57:400-407. [DOI: 10.1111/dgd.12221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Heng Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Lu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Guohua Yuan
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM); School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
47
|
Zhang Z, Tian H, Lv P, Wang W, Jia Z, Wang S, Zhou C, Gao X. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis. PLoS One 2015; 10:e0121288. [PMID: 25815730 PMCID: PMC4376716 DOI: 10.1371/journal.pone.0121288] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/29/2015] [Indexed: 11/25/2022] Open
Abstract
Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.
Collapse
Affiliation(s)
- Zhichun Zhang
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Hua Tian
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
- * E-mail: (HT); (CZ)
| | - Ping Lv
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Sainan Wang
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
- * E-mail: (HT); (CZ)
| | - Xuejun Gao
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| |
Collapse
|
48
|
Yang J, Wang SK, Choi M, Reid BM, Hu Y, Lee YL, Herzog CR, Kim-Berman H, Lee M, Benke PJ, Kent Lloyd KC, Simmer JP, Hu JCC. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med 2015; 3:40-58. [PMID: 25629078 PMCID: PMC4299714 DOI: 10.1002/mgg3.111] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/22/2023] Open
Abstract
WNT10A is a signaling molecule involved in tooth development, and WNT10A defects are associated with tooth agenesis. We characterized Wnt10a null mice generated by the knockout mouse project (KOMP) and six families with WNT10A mutations, including a novel p.Arg104Cys defect, in the absence of EDA,EDAR, or EDARADD variations. Wnt10a null mice exhibited supernumerary mandibular fourth molars, and smaller molars with abnormal cusp patterning and root taurodontism. Wnt10a (-/-) incisors showed distinctive apical-lingual wedge-shaped defects. These findings spurred us to closely examine the dental phenotypes of our WNT10A families. WNT10A heterozygotes exhibited molar root taurodontism and mild tooth agenesis (with incomplete penetrance) in their permanent dentitions. Individuals with two defective WNT10A alleles showed severe tooth agenesis and had fewer cusps on their molars. The misshapened molar crowns and roots were consistent with the Wnt10a null phenotype and were not previously associated with WNT10A defects. The missing teeth contrasted with the presence of supplemental teeth in the Wnt10a null mice and demonstrated mammalian species differences in the roles of Wnt signaling in early tooth development. We conclude that molar crown and root dysmorphologies are caused by WNT10A defects and that the severity of the tooth agenesis correlates with the number of defective WNT10A alleles.
Collapse
Affiliation(s)
- Jie Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University22 South Avenue Zhongguancun Haidian District, Beijing, 100081, China
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry1210 Eisenhower Place, Ann Arbor, Michigan, 48108
| | - Shih-Kai Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry1210 Eisenhower Place, Ann Arbor, Michigan, 48108
| | - Murim Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University275-1 Yongon-dong, Chongno-gu, Seoul, 110-768, Korea
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine333 Cedar Street, New Haven, Connecticut, 06520
| | - Bryan M Reid
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry1210 Eisenhower Place, Ann Arbor, Michigan, 48108
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry1210 Eisenhower Place, Ann Arbor, Michigan, 48108
| | - Yuan-Ling Lee
- Graduate Institute of Clinical Dentistry, National Taiwan UniversityNo. 1 Chang-Te Street, Taipei, 10048, Taiwan, China
| | - Curtis R Herzog
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry1210 Eisenhower Place, Ann Arbor, Michigan, 48108
| | - Hera Kim-Berman
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, 1011 N. UniversityAnn Arbor, Michigan, 48109-1078
| | - Moses Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University275-1 Yongon-dong, Chongno-gu, Seoul, 110-768, Korea
| | - Paul J Benke
- Department of Medical Genetics, Joe DiMaggio Children's Hospital1150 N. 35th Avenue, Suite 490, Hollywood, Florida, 33021
| | - K C Kent Lloyd
- Mouse Biology Program (MBP), University of California2795 Second Street, Suite 400, Davis, California, 95618
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry1210 Eisenhower Place, Ann Arbor, Michigan, 48108
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry1210 Eisenhower Place, Ann Arbor, Michigan, 48108
| |
Collapse
|
49
|
The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Sci Rep 2014; 4:7283. [PMID: 25471527 PMCID: PMC4255186 DOI: 10.1038/srep07283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 12/26/2022] Open
Abstract
The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by defined transcription factors has been a well-established technique and will provide an invaluable resource for regenerative medicine. However, the low reprogramming efficiency of human iPSC is still a limitation for clinical application. Here we showed that the reprogramming potential of human dental pulp cells (DPCs) obtained from immature teeth is much higher than those of mature teeth DPCs. Furthermore, immature teeth DPCs can be reprogrammed by OCT3/4 and SOX2, conversely these two factors are insufficient to convert mature teeth DPCs to pluripotent states. Using a gene expression profiles between these two DPC groups, we identified a new transcript factor, distal-less homeobox 4 (DLX4), which was highly expressed in immature teeth DPCs and significantly promoted human iPSC generation in combination with OCT3/4, SOX2, and KLF4. We further show that activation of TGF-β signaling suppresses the expression of DLX4 in DPCs and impairs the iPSC generation of DPCs. Our findings indicate that DLX4 can functionally replace c-MYC and supports efficient reprogramming of immature teeth DPCs.
Collapse
|
50
|
Guo S, Lim D, Dong Z, Saunders TL, Ma PX, Marcelo CL, Ritchie HH. Dentin sialophosphoprotein: a regulatory protein for dental pulp stem cell identity and fate. Stem Cells Dev 2014; 23:2883-94. [PMID: 25027178 DOI: 10.1089/scd.2014.0066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The dentin sialophosphoprotein (dspp) transcript is expressed during tooth development as a DSPP precursor protein, which then undergoes cleavage to form mature dentin sialoprotein (DSP) and phosphophoryn (PP) proteins. Previous studies using DSPP-knockout (KO) mice have reported that these animals have hypomineralized teeth, thin dentin, and a large dental pulp chamber, similar to those from patients with dentinogenesis imperfecta III. However, there is no information about factors that regulate dental pulp stem cell lineage fate, a critical early event in the odontoblast-dentin mineralization scheme. To reveal the role of DSPP in odontoblast lineage differentiation during tooth development, we systematically examined teeth from wild-type (wt) and DSPP-KO C57BL/6 mice between the ages of postnatal day 1 and 3 months. We found developmental abnormalities not previously reported, such as circular dentin formation within dental pulp cells and altered odontoblast differentiation in DSPP-KO mice, even as early as 1 day after birth. Surprisingly, we also identified chondrocyte-like cells in the dental pulp from KO-mice teeth. Thus, these studies that compare wt and DSPP-KO mice suggest that the expression of DSPP precursor protein is required for normal odontoblast lineage differentiation and that the absence of DSPP allows dental pulp cells to differentiate into chondrocyte-like cells, which could negatively impact pulpal wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Shiliang Guo
- 1 Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan , Ann Arbor, Michigan
| | | | | | | | | | | | | |
Collapse
|