1
|
Zheng J, Wei H, Shi J, Yu L, Luo M, Li Y, Li-Beisson Y, Liu J. A histone demethylase is involved in regulating the transcription factor PSR1 for carbon storage in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70230. [PMID: 40384610 DOI: 10.1111/tpj.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/24/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Histone modifications are widespread in microalgae, a group of photoautotrophs capable of transforming CO2 to diverse bio-products. However, the functional roles of histone modifying enzymes for carbon metabolism remain largely unexplored. Here, we unveiled the involvement of a JmjC domain-containing histone demethylase (CrHDM1), a previously uncharacterized epigenetic regulator, in carbon metabolism by modulating a transcription factor in the model alga Chlamydomonas reinhardtii (thereafter Chlamydomonas). CrHDM1 disruption resulted in increased carbohydrate levels including starch yet attenuated protein and lipid levels in Chlamydomonas, which were restored by genetic complementation with the CrHDM1 gene. Phosphorus Responsive Regulator1 (PSR1), a transcription factor involved in starch storage regulation, was transcriptionally upregulated by CrHDM1 disruption, along with the upregulation of starch synthesis genes. PSR1 knockout in the crhdm1 mutant impaired the CrHDM1 disruption-associated starch increase. CrHDM1, localized in the nucleus, was demonstrated to specifically demethylate H3K4me2 in vitro. Besides, chromatin immunoprecipitation-quantitative PCR experiments showed that the H3K4me2 level at the PSR1 promoter, which positively correlated with PSR1 transcript level, was negatively regulated by CrHDM1. Collectively, our findings uncover a newly discovered epigenetic regulator-transcription factor module involved in starch storage and provide valuable insights into the epigenetic regulation of carbon metabolism in Chlamydomonas.
Collapse
Affiliation(s)
- Jie Zheng
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| | - Hehong Wei
- College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, China
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianan Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yantao Li
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science and University of Maryland Baltimore County, Baltimore, Maryland, 21202, USA
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies, CEA Cadarache, Aix-Marseille Universite, Saint Paul-Lez-Durance, Marseille, 13108, France
| | - Jin Liu
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
2
|
Cui H, Zhu X, Yu X, Li S, Wang K, Wei L, Li R, Qin S. Advancements of astaxanthin production in Haematococcus pluvialis: Update insight and way forward. Biotechnol Adv 2025; 79:108519. [PMID: 39800086 DOI: 10.1016/j.biotechadv.2025.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The global market demand for natural astaxanthin (AXT) is growing rapidly owing to its potential human health benefits and diverse industry applications, driven by its safety, unique structure, and special function. Currently, the alga Haematococcus pluvialis (alternative name H. lacustris) has been considered as one of the best large-scale producers of natural AXT. However, the industry's further development faces two main challenges: the limited cultivation areas due to light-dependent AXT accumulation and the low AXT yield coupled with high production costs resulting from complex, time-consuming upstream biomass culture and downstream AXT extraction processes. Therefore, it is urgently to develop novel strategies to improve the AXT production in H. pluvialis to meet industrial demands, which makes its commercialization cost-effective. Although several strategies related to screening excellent target strains, optimizing culture condition for high biomass yield, elucidating the AXT biosynthetic pathway, and exploiting effective inducers for high AXT content have been applied to enhance the AXT production in H. pluvialis, there are still some unsolved and easily ignored perspectives. In this review, firstly, we summarize the structure and function of natural AXT focus on those from the algal H. pluvialis. Secondly, the latest findings regarding the AXT biosynthetic pathway including spatiotemporal specificity, transport, esterification, and storage are updated. Thirdly, we systematically assess enhancement strategies on AXT yield. Fourthly, the regulation mechanisms of AXT accumulation under various stresses are discussed. Finally, the integrated and systematic solutions for improving AXT production are proposed. This review not only fills the existing gap about the AXT accumulation, but also points the way forward for AXT production in H. pluvialis.
Collapse
Affiliation(s)
- Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Xiaoli Zhu
- College of Food and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Xiao Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Siming Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| | - Le Wei
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China.
| |
Collapse
|
3
|
Suzuki H, Cuiné S, Légeret B, Wijffels RH, Hulatt CJ, Li‐Beisson Y, Kiron V. Phosphorus starvation induces the synthesis of novel lipid class diacylglyceryl glucuronide and diacylglyceryl-N,N,N-trimethylhomoserine in two species of cold-adapted microalgae Raphidonema (Chlorophyta). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17227. [PMID: 39868466 PMCID: PMC11771548 DOI: 10.1111/tpj.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation. Additionally, we found two putative sulfoquinovosyldiacylglycerol (SQDG) synthases, known to be involved in DGGA synthesis in higher plants, in the draft genome of R. monicae, and compared it with SQDG synthases found in other organisms such as higher plants, Streptophyta, and Chlorophyta. DGGA has not been previously recognized in Chlorophyta, and our findings suggest that the lipid class may be present in other closely related green algae too. Thus, this study expands our knowledge on diverse lipid remodeling responses of Chlorophycean algae to adapt to low P environments.
Collapse
Affiliation(s)
- Hirono Suzuki
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Stéphan Cuiné
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Bertrand Légeret
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - René H. Wijffels
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
- Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenthe Netherlands
| | - Chris J. Hulatt
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Yonghua Li‐Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Viswanath Kiron
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| |
Collapse
|
4
|
Liu HW, Urzica EI, Gallaher SD, Schmollinger S, Blaby-Haas CE, Iwai M, Merchant SS. Chlamydomonas cells transition through distinct Fe nutrition stages within 48 h of transfer to Fe-free medium. PHOTOSYNTHESIS RESEARCH 2024; 161:213-232. [PMID: 39017982 DOI: 10.1007/s11120-024-01103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 07/18/2024]
Abstract
Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short and long-term adjustments. While slower growth, chlorosis and lower photosynthetic parameters are evident only after one or more days in Fe-free medium, the abundance of some transcripts, such as those for genes encoding transporters and enzymes involved in Fe assimilation, change within minutes, before changes in intracellular Fe content are noticeable, suggestive of a sensitive mechanism for sensing Fe. Promoter reporter constructs indicate a transcriptional component to this immediate primary response. With acetate provided as a source of reduced carbon, transcripts encoding respiratory components are maintained relative to transcripts encoding components of photosynthesis and tetrapyrrole biosynthesis, indicating metabolic prioritization of respiration over photosynthesis. In contrast to the loss of chlorophyll, carotenoid content is maintained under Fe limitation despite a decrease in the transcripts for carotenoid biosynthesis genes, indicating carotenoid stability. These changes occur more slowly, only after the intracellular Fe quota responds, indicating a phased response in Chlamydomonas, involving both primary and secondary responses during acclimation to poor Fe nutrition.
Collapse
Affiliation(s)
- Helen W Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA
| | - Eugen I Urzica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Competence Network IBD, Hopfenstrasse 60, 24103, Kiel, Germany
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Crysten E Blaby-Haas
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Abreu S, Lejeune C, David M, Chaminade P, Virolle MJ. Impact of the Deletion of Genes of the Nitrogen Metabolism on Triacylglycerol, Cardiolipin and Actinorhodin Biosynthesis in Streptomyces coelicolor. Microorganisms 2024; 12:1560. [PMID: 39203402 PMCID: PMC11356632 DOI: 10.3390/microorganisms12081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Since nitrogen limitation is known to be an important trigger of triacylglycerol (TAG) accumulation in most microorganisms, we first assessed the global lipid content of 21 strains derived from Streptomyces coelicolor M145 deleted for genes involved in nitrogen metabolism. Seven of these strains deleted for genes encoding proteins involved in polyamine (GlnA2/SCO2241, GlnA3/SCO6962, GlnA4/SCO1613), or protein (Pup/SCO1646) degradation, in the regulation of nitrogen metabolism (GlnE/SCO2234 and GlnK/SCO5584), or the global regulator DasR/SCO5231 that controls negatively the degradation of N-acetylglucosamine, a constituent of peptidoglycan, had a higher TAG content than the original strain, whereas five of these strains (except the glnA2 and pup mutants) had a lower cardiolipin (CL) content. The production of the blue polyketide actinorhodin (ACT) was totally abolished in the dasR mutant in both Pi conditions, whereas the deletion of pup, glnA2, glnA3, and glnA4 was correlated with a significant increase in total ACT production, but mainly in Pi limitation. Unexpectedly, ACT production was strongly reduced in the glnA3 mutant in Pi proficiency. Altogether, our data suggest that high TAG and ACT biosynthesis and low CL biosynthesis might all contribute to the lowering of oxidative stress resulting from nitrogen limitation or from other causes.
Collapse
Affiliation(s)
- Sonia Abreu
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Clara Lejeune
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Michelle David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| | - Pierre Chaminade
- Lip (Sys)2 (Lipides Systèmes Analytiques et Biologiques), UFR Pharmacie-Bâtiment Henri Moissan, CNRS, CEA, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France; (S.A.); (P.C.)
| | - Marie-Joelle Virolle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CNRS, CEA, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France (M.D.)
| |
Collapse
|
6
|
Vijayan J, Wase N, Liu K, Morse W, Zhang C, Riekhof WR. ROS-mediated thylakoid membrane remodeling and triacylglycerol biosynthesis under nitrogen starvation in the alga Chlorella sorokiniana. FRONTIERS IN PLANT SCIENCE 2024; 15:1418049. [PMID: 39040507 PMCID: PMC11261311 DOI: 10.3389/fpls.2024.1418049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Many microbes accumulate energy storage molecules such as triglycerides (TAG) and starch during nutrient limitation. In eukaryotic green algae grown under nitrogen-limiting conditions, triglyceride accumulation is coupled with chlorosis and growth arrest. In this study, we show that reactive oxygen species (ROS) actively accumulate during nitrogen limitation in the microalga Chlorella sorokiniana. Accumulation of ROS is mediated by the downregulation of genes encoding ROS-quenching enzymes, such as superoxide dismutases, catalase, peroxiredoxin, and glutathione peroxidase-like, and by the upregulation of enzymes involved in generating ROS, such as NADPH oxidase, xanthine oxidase, and amine oxidases. The expression of genes involved in ascorbate and glutathione metabolism is also affected under this condition. ROS accumulation contributes to the degradation of monogalactosyl diacylglycerol (MGDG) and thylakoid membrane remodeling, leading to chlorosis. Quenching ROS under nitrogen limitation reduces the degradation of MGDG and the accumulation of TAG. This work shows that ROS accumulation, membrane remodeling, and TAG accumulation under nitrogen limitation are intricately linked in the microalga C. sorokiniana.
Collapse
Affiliation(s)
- Jithesh Vijayan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Nishikant Wase
- PPD, part of ThermoFisher Scientific, Henrico, VA, United States
| | - Kan Liu
- Mayo Clinic, Rochester, MN, United States
| | - Wyatt Morse
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Wayne R. Riekhof
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
7
|
Stanić M, Jevtović M, Kovačević S, Dimitrijević M, Danilović Luković J, McIntosh OA, Zechmann B, Lizzul AM, Spasojević I, Pittman JK. Low-dose ionizing radiation generates a hormetic response to modify lipid metabolism in Chlorella sorokiniana. Commun Biol 2024; 7:821. [PMID: 38969726 PMCID: PMC11226653 DOI: 10.1038/s42003-024-06526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.
Collapse
Affiliation(s)
- Marina Stanić
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
| | - Mima Jevtović
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
- Innovative Centre of the Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Snežana Kovačević
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
| | - Milena Dimitrijević
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
| | - Jelena Danilović Luković
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia
- Institute for Application of Nuclear Energy-INEP, University of Belgrade, Belgrade, Serbia
| | - Owen A McIntosh
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | | | - Ivan Spasojević
- University of Belgrade-Institute for Multidisciplinary Research, Life Sciences Department, Belgrade, Serbia.
| | - Jon K Pittman
- Department of Earth and Environmental Sciences, School of Natural Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
8
|
Sah SK, Fan J, Blanford J, Shanklin J, Xu C. Physiological Functions of Phospholipid:Diacylglycerol Acyltransferases. PLANT & CELL PHYSIOLOGY 2024; 65:863-871. [PMID: 37702708 DOI: 10.1093/pcp/pcad106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Triacylglycerol (TAG) is among the most energy dense storage forms of reduced carbon in living systems. TAG metabolism plays critical roles in cellular energy balance, lipid homeostasis, cell growth and stress responses. In higher plants, microalgae and fungi, TAG is assembled by acyl-CoA-dependent and acyl-CoA-independent pathways catalyzed by diacylglycerol (DAG) acyltransferase and phospholipid:DAG acyltransferase (PDAT), respectively. This review contains a summary of the current understanding of the physiological functions of PDATs. Emphasis is placed on their role in lipid remodeling and lipid homeostasis in response to abiotic stress or perturbations in lipid metabolism.
Collapse
Affiliation(s)
- Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
9
|
Foresi N, De Marco MA, Del Castello F, Ramirez L, Nejamkin A, Calo G, Grimsley N, Correa-Aragunde N, Martínez-Noël GMA. The tiny giant of the sea, Ostreococcus's unique adaptations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108661. [PMID: 38735153 DOI: 10.1016/j.plaphy.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Ostreococcus spp. are unicellular organisms with one of the simplest cellular organizations. The sequencing of the genomes of different Ostreococcus species has reinforced this status since Ostreococcus tauri has one most compact nuclear genomes among eukaryotic organisms. Despite this, it has retained a number of genes, setting it apart from other organisms with similar small genomes. Ostreococcus spp. feature a substantial number of selenocysteine-containing proteins, which, due to their higher catalytic activity compared to their selenium-lacking counterparts, may require a reduced quantity of proteins. Notably, O. tauri encodes several ammonium transporter genes, that may provide it with a competitive edge for acquiring nitrogen (N). This characteristic makes it an intriguing model for studying the efficient use of N in eukaryotes. Under conditions of low N availability, O. tauri utilizes N from abundant proteins or amino acids, such as L-arginine, similar to higher plants. However, the presence of a nitric oxide synthase (L-arg substrate) sheds light on a new metabolic pathway for L-arg in algae. The metabolic adaptations of O. tauri to day and night cycles offer valuable insights into carbon and iron metabolic configuration. O. tauri has evolved novel strategies to optimize iron uptake, lacking the classic components of the iron absorption mechanism. Overall, the cellular and genetic characteristics of Ostreococcus contribute to its evolutionary success, making it an excellent model for studying the physiological and genetic aspects of how green algae have adapted to the marine environment. Furthermore, given its potential for lipid accumulation and its marine habitat, it may represent a promising avenue for third-generation biofuels.
Collapse
Affiliation(s)
- Noelia Foresi
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina.
| | - María Agustina De Marco
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | | | - Leonor Ramirez
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Andres Nejamkin
- Instituto de Investigaciones Biológicas-UNMdP-CONICET, Mar del Plata, Argentina
| | - Gonzalo Calo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina
| | - Nigel Grimsley
- CNRS, LBBM, Sorbonne Université OOB, 1 Avenue de Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | | | - Giselle M A Martínez-Noël
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC)-CONICET-FIBA, Mar del Plata, Argentina.
| |
Collapse
|
10
|
Song Y, Wang F, Chen L, Zhang W. Engineering Fatty Acid Biosynthesis in Microalgae: Recent Progress and Perspectives. Mar Drugs 2024; 22:216. [PMID: 38786607 PMCID: PMC11122798 DOI: 10.3390/md22050216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Microalgal lipids hold significant potential for the production of biodiesel and dietary supplements. To enhance their cost-effectiveness and commercial competitiveness, it is imperative to improve microalgal lipid productivity. Metabolic engineering that targets the key enzymes of the fatty acid synthesis pathway, along with transcription factor engineering, are effective strategies for improving lipid productivity in microalgae. This review provides a summary of the advancements made in the past 5 years in engineering the fatty acid biosynthetic pathway in eukaryotic microalgae. Furthermore, this review offers insights into transcriptional regulatory mechanisms and transcription factor engineering aimed at enhancing lipid production in eukaryotic microalgae. Finally, the review discusses the challenges and future perspectives associated with utilizing microalgae for the efficient production of lipids.
Collapse
Affiliation(s)
- Yanhui Song
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Y.S.); (L.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Liu F, Gaul L, Giometto A, Wu M. A high throughput array microhabitat platform reveals how light and nitrogen colimit the growth of algal cells. Sci Rep 2024; 14:9860. [PMID: 38684720 PMCID: PMC11058252 DOI: 10.1038/s41598-024-59041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
A mechanistic understanding of algal growth is essential for maintaining a sustainable environment in an era of climate change and population expansion. It is known that algal growth is tightly controlled by complex interactive physical and chemical conditions. Many mathematical models have been proposed to describe the relation of algal growth and environmental parameters, but experimental verification has been difficult due to the lack of tools to measure cell growth under precise physical and chemical conditions. As such, current models depend on the specific testing systems, and the fitted growth kinetic constants vary widely for the same organisms in the existing literature. Here, we present a microfluidic platform where both light intensity and nutrient gradients can be well controlled for algal cell growth studies. In particular, light shading is avoided, a common problem in macroscale assays. Our results revealed that light and nitrogen colimit the growth of algal cells, with each contributing a Monod growth kinetic term in a multiplicative model. We argue that the microfluidic platform can lead towards a general culture system independent algal growth model with systematic screening of many environmental parameters. Our work advances technology for algal cell growth studies and provides essential information for future bioreactor designs and ecological predictions.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Larissa Gaul
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Zhang N, Venn B, Bailey CE, Xia M, Mattoon EM, Mühlhaus T, Zhang R. Moderate high temperature is beneficial or detrimental depending on carbon availability in the green alga Chlamydomonas reinhardtii. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:979-1003. [PMID: 37877811 DOI: 10.1093/jxb/erad405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
High temperatures impair plant growth and reduce agricultural yields, but the underlying mechanisms remain elusive. The unicellular green alga Chlamydomonas reinhardtii is an excellent model to study heat responses in photosynthetic cells due to its fast growth rate, many similarities in cellular processes to land plants, simple and sequenced genome, and ample genetic and genomics resources. Chlamydomonas grows in light by photosynthesis and with externally supplied acetate as an organic carbon source. Understanding how organic carbon sources affect heat responses is important for the algal industry but remains understudied. We cultivated wild-type Chlamydomonas under highly controlled conditions in photobioreactors at 25 °C (control), 35 °C (moderate high temperature), or 40 °C (acute high temperature) with or without constant acetate supply for 1 or 4 day. Treatment at 35 °C increased algal growth with constant acetate supply but reduced algal growth without sufficient acetate. The overlooked and dynamic effects of 35 °C could be explained by induced acetate uptake and metabolism. Heat treatment at 40 °C for more than 2 day was lethal to algal cultures with or without constant acetate supply. Our findings provide insights to understand algal heat responses and help improve thermotolerance in photosynthetic cells.
Collapse
Affiliation(s)
- Ningning Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Benedikt Venn
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Ming Xia
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Erin M Mattoon
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Plant and Microbial Biosciences Program, Division of Biology and Biomedical Sciences, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Timo Mühlhaus
- Computational Systems Biology, RPTU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Ru Zhang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| |
Collapse
|
13
|
Gupta A, Kang K, Pathania R, Saxton L, Saucedo B, Malik A, Torres-Tiji Y, Diaz CJ, Dutra Molino JV, Mayfield SP. Harnessing genetic engineering to drive economic bioproduct production in algae. Front Bioeng Biotechnol 2024; 12:1350722. [PMID: 38347913 PMCID: PMC10859422 DOI: 10.3389/fbioe.2024.1350722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Our reliance on agriculture for sustenance, healthcare, and resources has been essential since the dawn of civilization. However, traditional agricultural practices are no longer adequate to meet the demands of a burgeoning population amidst climate-driven agricultural challenges. Microalgae emerge as a beacon of hope, offering a sustainable and renewable source of food, animal feed, and energy. Their rapid growth rates, adaptability to non-arable land and non-potable water, and diverse bioproduct range, encompassing biofuels and nutraceuticals, position them as a cornerstone of future resource management. Furthermore, microalgae's ability to capture carbon aligns with environmental conservation goals. While microalgae offers significant benefits, obstacles in cost-effective biomass production persist, which curtails broader application. This review examines microalgae compared to other host platforms, highlighting current innovative approaches aimed at overcoming existing barriers. These approaches include a range of techniques, from gene editing, synthetic promoters, and mutagenesis to selective breeding and metabolic engineering through transcription factors.
Collapse
Affiliation(s)
- Abhishek Gupta
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ruchi Pathania
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Lisa Saxton
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Barbara Saucedo
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ashleyn Malik
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Crisandra J. Diaz
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - João Vitor Dutra Molino
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
- California Center for Algae Biotechnology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Ye Y, Liu M, Yu L, Sun H, Liu J. Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar Drugs 2024; 22:54. [PMID: 38393025 PMCID: PMC10890015 DOI: 10.3390/md22020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the escalating global energy crisis, microalgae have emerged as highly promising producers of biofuel and high-value products. Among these microalgae, Nannochloropsis has received significant attention due to its capacity to generate not only triacylglycerol (TAG) but also eicosapentaenoic acid (EPA) and valuable carotenoids. Recent advancements in genetic tools and the field of synthetic biology have revolutionized Nannochloropsis into a powerful biofactory. This comprehensive review provides an initial overview of the current state of cultivation and utilization of the Nannochloropsis genus. Subsequently, our review examines the metabolic pathways governing lipids and carotenoids, emphasizing strategies to enhance oil production and optimize carbon flux redirection toward target products. Additionally, we summarize the utilization of advanced genetic manipulation techniques in Nannochloropsis. Together, the insights presented in this review highlight the immense potential of Nannochloropsis as a valuable model for biofuels and synthetic biology. By effectively integrating genetic tools and metabolic engineering, the realization of this potential becomes increasingly feasible.
Collapse
Affiliation(s)
- Ying Ye
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
15
|
Kafri M, Patena W, Martin L, Wang L, Gomer G, Ergun SL, Sirkejyan AK, Goh A, Wilson AT, Gavrilenko SE, Breker M, Roichman A, McWhite CD, Rabinowitz JD, Cross FR, Wühr M, Jonikas MC. Systematic identification and characterization of genes in the regulation and biogenesis of photosynthetic machinery. Cell 2023; 186:5638-5655.e25. [PMID: 38065083 PMCID: PMC10760936 DOI: 10.1016/j.cell.2023.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
Photosynthesis is central to food production and the Earth's biogeochemistry, yet the molecular basis for its regulation remains poorly understood. Here, using high-throughput genetics in the model eukaryotic alga Chlamydomonas reinhardtii, we identify with high confidence (false discovery rate [FDR] < 0.11) 70 poorly characterized genes required for photosynthesis. We then enable the functional characterization of these genes by providing a resource of proteomes of mutant strains, each lacking one of these genes. The data allow assignment of 34 genes to the biogenesis or regulation of one or more specific photosynthetic complexes. Further analysis uncovers biogenesis/regulatory roles for at least seven proteins, including five photosystem I mRNA maturation factors, the chloroplast translation factor MTF1, and the master regulator PMR1, which regulates chloroplast genes via nuclear-expressed factors. Our work provides a rich resource identifying regulatory and functional genes and placing them into pathways, thereby opening the door to a system-level understanding of photosynthesis.
Collapse
Affiliation(s)
- Moshe Kafri
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Weronika Patena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lance Martin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lianyong Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gillian Gomer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sabrina L Ergun
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA
| | - Arthur K Sirkejyan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey Goh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexandra T Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia E Gavrilenko
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Michal Breker
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Asael Roichman
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Frederick R Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10021, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Martin C Jonikas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
16
|
Pessoa JDS, de Oliveira CFM, Mena-Chalco JP, de Carvalho JCM, Ferreira-Camargo LS. Trends on Chlamydomonas reinhardtii growth regimes and bioproducts. Biotechnol Appl Biochem 2023; 70:1830-1842. [PMID: 37337370 DOI: 10.1002/bab.2486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
The green microalga Chlamydomonas reinhardtii is a model microorganism for several areas of study. Among the different microalgae species, it presents advantageous characteristics, such as genomes completely sequenced and well-established techniques for genetic transformation. Despite that, C. reinhardtii production is still not easily commercially viable, especially due to the low biomass yield. So far there are no reports of scientometric study focusing only on C. reinhardtii biomass production process. Considering the need for culture optimization, a scientometric research was conducted to analyze the papers that investigated the growth regimes effects in C. reinhardtii cultivation. The search resulted in 130 papers indexed on Web of Science and Scopus platforms from 1969 to December 2022. The quantitative analysis indicated that the photoautotrophic regime was the most employed in the papers. However, when comparing the three growth regimes, the mixotrophic one led to the highest production of biomass, lipids, and heterologous protein. The production of bioproducts was considered the main objective of most of the papers and, among them, biomass was the most frequently investigated. The highest biomass production reported among the papers was 40 g L-1 in the heterotrophic growth of a transgenic strain. Other culture conditions were also crucial for C. reinhardtii growth, for instance, temperature and cultivation process.
Collapse
|
17
|
Zhao J, Ge Y, Liu K, Yamaoka Y, Zhang D, Chi Z, Akkaya M, Kong F. Overexpression of a MYB1 Transcription Factor Enhances Triacylglycerol and Starch Accumulation and Biomass Production in the Green Microalga Chlamydomonas reinhardtii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17833-17841. [PMID: 37934701 DOI: 10.1021/acs.jafc.3c05290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Microalgae are promising platforms for biofuel production. Transcription factors (TFs) are emerging as key regulators of lipid metabolism for biofuel production in microalgae. We previously identified a novel TF MYB1, which mediates lipid accumulation in the green microalga Chlamydomonas under nitrogen depletion. However, the function of MYB1 on lipid metabolism in microalgae under standard growth conditions remains poorly understood. Here, we examined the effects of MYB1 overexpression (MYB1-OE) on lipid metabolism and physiological changes in Chlamydomonas. Under standard growth conditions, MYB1-OE transformants accumulated 1.9 to 3.2-fold more triacylglycerols (TAGs) than that in the parental line (PL), and total fatty acids (FAs) also significantly increased. Moreover, saturated FA (C16:0) was enriched in TAGs and total FAs in MYB1-OE transformants. Notably, starch and protein content and biomass production also significantly increased in MYB1-OE transformants compared with that in PL. Furthermore, RT-qPCR results showed that the expressions of key genes involved in TAG, FA, and starch biosynthesis were upregulated. In addition, MYB1-OE transformants showed higher biomass production without a compromised cell growth rate and photosynthetic activity. Overall, our results indicate that MYB1 overexpression not only enhanced lipid content but also improved starch and protein content and biomass production under standard growth conditions. TF MYB1 engineering is a promising genetic engineering tool for biofuel production in microalgae.
Collapse
Affiliation(s)
- Jilong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yunlong Ge
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Keqing Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea
| | - Di Zhang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Mahinur Akkaya
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fantao Kong
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Sreedasyam A, Plott C, Hossain MS, Lovell J, Grimwood J, Jenkins J, Daum C, Barry K, Carlson J, Shu S, Phillips J, Amirebrahimi M, Zane M, Wang M, Goodstein D, Haas F, Hiss M, Perroud PF, Jawdy S, Yang Y, Hu R, Johnson J, Kropat J, Gallaher S, Lipzen A, Shakirov E, Weng X, Torres-Jerez I, Weers B, Conde D, Pappas M, Liu L, Muchlinski A, Jiang H, Shyu C, Huang P, Sebastian J, Laiben C, Medlin A, Carey S, Carrell A, Chen JG, Perales M, Swaminathan K, Allona I, Grattapaglia D, Cooper E, Tholl D, Vogel J, Weston DJ, Yang X, Brutnell T, Kellogg E, Baxter I, Udvardi M, Tang Y, Mockler T, Juenger T, Mullet J, Rensing S, Tuskan G, Merchant S, Stacey G, Schmutz J. JGI Plant Gene Atlas: an updateable transcriptome resource to improve functional gene descriptions across the plant kingdom. Nucleic Acids Res 2023; 51:8383-8401. [PMID: 37526283 PMCID: PMC10484672 DOI: 10.1093/nar/gkad616] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023] Open
Abstract
Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.
Collapse
Affiliation(s)
| | | | - Md Shakhawat Hossain
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Christopher Daum
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joseph Carlson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shengqiang Shu
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeremy Phillips
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mojgan Amirebrahimi
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew Zane
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mei Wang
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Goodstein
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Pierre-François Perroud
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Sara S Jawdy
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yongil Yang
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Rongbin Hu
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jenifer Johnson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Anna Lipzen
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eugene V Shakirov
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Xiaoyu Weng
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Brock Weers
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Marilia R Pappas
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, EPQB Final W5 Norte, Brasília, Brazil
| | - Lifeng Liu
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muchlinski
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Hui Jiang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Christine Shyu
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Pu Huang
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Jose Sebastian
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Carol Laiben
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Alyssa Medlin
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Sankalpi Carey
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Mariano Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Isabel Allona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Dario Grattapaglia
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, EPQB Final W5 Norte, Brasília, Brazil
| | | | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - John P Vogel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Xiaohan Yang
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | | | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str, Marburg, Germany
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California, Los Angeles, CA, USA
| | - Gary Stacey
- Division of Plant Science and Technology, C.S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
19
|
López-Pacheco IY, Ayala-Moreno VG, Mejia-Melara CA, Rodríguez-Rodríguez J, Cuellar-Bermudez SP, González-González RB, Coronado-Apodaca KG, Farfan-Cabrera LI, González-Meza GM, Iqbal HMN, Parra-Saldívar R. Growth Behavior, Biomass Composition and Fatty Acid Methyl Esters (FAMEs) Production Potential of Chlamydomonas reinhardtii, and Chlorella vulgaris Cultures. Mar Drugs 2023; 21:450. [PMID: 37623731 PMCID: PMC10455958 DOI: 10.3390/md21080450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.
Collapse
Affiliation(s)
- Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Victoria Guadalupe Ayala-Moreno
- Francisco Morazán Department, Escuela Agrícola Panamericana, Zamorano, Km 30 Carretera de Tegucigalpa a Danlí, Valle del Yeguare, Municipio de San Antonio de Oriente, Tegucigalpa 11101, Honduras; (V.G.A.-M.); (C.A.M.-M.)
| | - Catherinne Arlette Mejia-Melara
- Francisco Morazán Department, Escuela Agrícola Panamericana, Zamorano, Km 30 Carretera de Tegucigalpa a Danlí, Valle del Yeguare, Municipio de San Antonio de Oriente, Tegucigalpa 11101, Honduras; (V.G.A.-M.); (C.A.M.-M.)
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
| | - Sara P. Cuellar-Bermudez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Karina G. Coronado-Apodaca
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Leonardo I. Farfan-Cabrera
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
| | - Georgia María González-Meza
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (I.Y.L.-P.); (J.R.-R.); (S.P.C.-B.); (R.B.G.-G.); (K.G.C.-A.); (L.I.F.-C.); (G.M.G.-M.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
20
|
Senousy HH, El-Sheekh MM, Khairy HM, El-Sayed HS, Mahmoud GAE, Hamed AA. Biodiesel Production from the Marine Alga Nannochloropsis oceanica Grown on Yeast Wastewater and the Effect on Its Biochemical Composition and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:2898. [PMID: 37631110 PMCID: PMC10459201 DOI: 10.3390/plants12162898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
Microalgae-based biodiesel synthesis is currently not commercially viable due to the high costs of culture realizations and low lipid yields. The main objective of the current study was to determine the possibility of growing Nannochloropsis oceanica on Saccharomyces cerevisiae yeast wastewater for biodiesel generation at an economical rate. N. oceanica was grown in Guillard F/2 synthetic medium and three dilutions of yeast wastewater (1, 1.25, and 1.5%). Biodiesel properties, in addition to carbohydrate, protein, lipid, dry weight, biomass, lipid productivity, amino acids, and fatty acid methyl ester (FAMEs) content, were analyzed and the quality of the produced biodiesel is assessed. The data revealed the response of N. oceanica to nitrogen-deficiency in the three dilutions of yeast wastewater. N. oceanica in Y2 (1.25%) yeast wastewater dilution exhibited the highest total carbohydrate and lipid percentages (21.19% and 41.97%, respectively), and the highest lipid productivity (52.46 mg L-1 day -1) under nitrogen deficiency in yeast wastewater. The fatty acids profile shows that N. oceanica cultivated in Y2 (1.25%) wastewater dilution provides a significant level of TSFA (47.42%) and can be used as a feedstock for biodiesel synthesis. In addition, N. oceanica responded to nitrogen shortage in wastewater dilutions by upregulating the gene encoding delta-9 fatty acid desaturase (Δ9FAD). As a result, the oleic and palmitoleic acid levels increased in the fatty acid profile of Y2 yeast wastewater dilution, highlighting the increased activity of Δ9FAD enzyme in transforming stearic acid and palmitic acid into oleic acid and palmitoleic acid. This study proved that the Y2 (1.25%) yeast wastewater dilution can be utilized as a growth medium for improving the quantity of specific fatty acids and lipid productivity in N. oceanica that affect biodiesel quality to satisfy global biodiesel requirements.
Collapse
Affiliation(s)
- Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Hanan M. Khairy
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (H.M.K.); (H.S.E.-S.)
| | - Heba S. El-Sayed
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (H.M.K.); (H.S.E.-S.)
| | | | - Amal A. Hamed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| |
Collapse
|
21
|
Findinier J, Grossman AR. Chlamydomonas: Fast tracking from genomics. JOURNAL OF PHYCOLOGY 2023; 59:644-652. [PMID: 37417760 DOI: 10.1111/jpy.13356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Elucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C. reinhardtii and how they have further fostered its development as a "flagship" algal system. We also explore the future promise of this alga in leveraging advances in the fields of genomics, proteomics, imaging, and synthetic biology for addressing critical future biological issues.
Collapse
Affiliation(s)
- Justin Findinier
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| | - Arthur R Grossman
- The Carnegie Institution for Science, Biosphere Science and Engineering, Stanford, California, USA
| |
Collapse
|
22
|
Liu F, Gaul L, Giometto A, Wu M. Colimitation of light and nitrogen on algal growth revealed by an array microhabitat platform. ARXIV 2023:arXiv:2307.02646v1. [PMID: 37461420 PMCID: PMC10350088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Microalgae are key players in the global carbon cycle and emerging producers of biofuels. Algal growth is critically regulated by its complex microenvironment, including nitrogen and phosphorous levels, light intensity, and temperature. Mechanistic understanding of algal growth is important for maintaining a balanced ecosystem at a time of climate change and population expansion, as well as providing essential formulations for optimizing biofuel production. Current mathematical models for algal growth in complex environmental conditions are still in their infancy, due in part to the lack of experimental tools necessary to generate data amenable to theoretical modeling. Here, we present a high throughput microfluidic platform that allows for algal growth with precise control over light intensity and nutrient gradients, while also performing real-time microscopic imaging. We propose a general mathematical model that describes algal growth under multiple physical and chemical environments, which we have validated experimentally. We showed that light and nitrogen colimited the growth of the model alga Chlamydomonas reinhardtii following a multiplicative Monod kinetic model. The microfluidic platform presented here can be easily adapted to studies of other photosynthetic micro-organisms, and the algal growth model will be essential for future bioreactor designs and ecological predictions.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Larissa Gaul
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Andrea Giometto
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Monteiro LDFR, Giraldi LA, Winck FV. From Feasting to Fasting: The Arginine Pathway as a Metabolic Switch in Nitrogen-Deprived Chlamydomonas reinhardtii. Cells 2023; 12:1379. [PMID: 37408213 PMCID: PMC10216424 DOI: 10.3390/cells12101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
The metabolism of the model microalgae Chlamydomonas reinhardtii under nitrogen deprivation is of special interest due to its resulting increment of triacylglycerols (TAGs), that can be applied in biotechnological applications. However, this same condition impairs cell growth, which may limit the microalgae's large applications. Several studies have identified significant physiological and molecular changes that occur during the transition from an abundant to a low or absent nitrogen supply, explaining in detail the differences in the proteome, metabolome and transcriptome of the cells that may be responsible for and responsive to this condition. However, there are still some intriguing questions that reside in the core of the regulation of these cellular responses that make this process even more interesting and complex. In this scenario, we reviewed the main metabolic pathways that are involved in the response, mining and exploring, through a reanalysis of omics data from previously published datasets, the commonalities among the responses and unraveling unexplained or non-explored mechanisms of the possible regulatory aspects of the response. Proteomics, metabolomics and transcriptomics data were reanalysed using a common strategy, and an in silico gene promoter motif analysis was performed. Together, these results identified and suggested a strong association between the metabolism of amino acids, especially arginine, glutamate and ornithine pathways to the production of TAGs, via the de novo synthesis of lipids. Furthermore, our analysis and data mining indicate that signalling cascades orchestrated with the indirect participation of phosphorylation, nitrosylation and peroxidation events may be essential to the process. The amino acid pathways and the amount of arginine and ornithine available in the cells, at least transiently during nitrogen deprivation, may be in the core of the post-transcriptional, metabolic regulation of this complex phenomenon. Their further exploration is important to the discovery of novel advances in the understanding of microalgae lipids' production.
Collapse
Affiliation(s)
- Lucca de Filipe Rebocho Monteiro
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Laís Albuquerque Giraldi
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Flavia Vischi Winck
- Laboratory of Regulatory Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba 13416-000, Brazil
| |
Collapse
|
24
|
Hoffmann DY, Shachar-Hill Y. Do betaine lipids replace phosphatidylcholine as fatty acid editing hubs in microalgae? FRONTIERS IN PLANT SCIENCE 2023; 14:1077347. [PMID: 36743481 PMCID: PMC9892843 DOI: 10.3389/fpls.2023.1077347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Acyl editing refers to a deacylation and reacylation cycle on a lipid, which allows for fatty acid desaturation and modification prior to being removed and incorporated into other pools. Acyl editing is an important determinant of glycerolipid synthesis and has been well-characterized in land plants, thus this review begins with an overview of acyl editing in plants. Much less is known about acyl editing in algae, including the extent to which acyl editing impacts lipid synthesis and on which lipid substrate(s) it occurs. This review compares what is known about acyl editing on its major hub phosphatidylcholine (PC) in land plants with the evidence for acyl editing of betaine lipids such as diacylglyceryltrimethylhomoserine (DGTS), the structural analog that replaces PC in several species of microalgae. In land plants, PC is also known to be a major source of fatty acids and diacylglycerol (DAG) for synthesis of the neutral lipid triacylglycerol (TAG). We review the evidence that DGTS contributes substantially to TAG accumulation in algae as a source of fatty acids, but not as a precursor to DAG. We conclude with evidence of acyl editing on other membrane lipid substrates in plants and algae apart from PC or DGTS, and discuss future analyses to elucidate the role of DGTS and other betaine lipids in acyl editing in microalgae.
Collapse
|
25
|
Expression profile of genes associated with the accumulation of triacylglycerol (TAG) in Auxenochlorella protothecoides KP7 under alkaline pH and nitrogen starvation conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:54. [PMID: 35596223 PMCID: PMC9123788 DOI: 10.1186/s13068-022-02154-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/07/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Chloroplast and endoplasmic reticulum (ER)-localized fatty acid (FA) transporters have been reported to play important roles in oil (mainly triacylglycerols, TAG) biosynthesis. However, whether these FA transporters synergistically contribute to lipid accumulation, and their effect on lipid metabolism in microalgae are unknown.
Results
Here, we co-overexpressed two chloroplast-localized FA exporters (FAX1 and FAX2) and one ER-localized FA transporter (ABCA2) in Chlamydomonas. Under standard growth conditions, FAX1/FAX2/ABCA2 over-expression lines (OE) accumulated up to twofold more TAG than the parental strain UVM4, and the total amounts of major polyunsaturated FAs (PUFA) in TAG increased by 4.7-fold. In parallel, the total FA contents and major membrane lipids in FAX1/FAX2/ABCA2-OE also significantly increased compared with those in the control lines. Additionally, the total accumulation contribution ratio of PUFA, to total FA and TAG synthesis in FAX1/FAX2/ABCA2-OE, was 54% and 40% higher than that in UVM4, respectively. Consistently, the expression levels of genes directly involved in TAG synthesis, such as type-II diacylglycerol acyltransferases (DGTT1, DGTT3 and DGTT5), and phospholipid:diacylglycerol acyltransferase 1 (PDAT1), significantly increased, and the expression of PGD1 (MGDG-specific lipase) was upregulated in FAX1/FAX2/ABCA2-OE compared to UVM4.
Conclusion
These results indicate that the increased expression of FAX1/FAX2/ABCA2 has an additive effect on enhancing TAG, total FA and membrane lipid accumulation and accelerates the PUFA remobilization from membrane lipids to TAG by fine-tuning the key genes involved in lipid metabolism under standard growth conditions. Overall, FAX1/FAX2/ABCA2-OE shows better traits for lipid accumulation than the parental line and previously reported individual FA transporter-OE. Our study provides a potential useful strategy to increase the production of FA-derived energy-rich and value-added compounds in microalgae.
Collapse
|
27
|
Chronological transcriptome changes induced by exposure to cyanoacrylate resin nanoparticles in Chlamydomonas reinhardtii with a focus on ROS development and cell wall lysis-related genes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Wang R, Miao X. Lipid turnover and SQUAMOSA promoter-binding proteins mediate variation in fatty acid desaturation under early nitrogen deprivation revealed by lipidomic and transcriptomic analyses in Chlorella pyrenoidosa. FRONTIERS IN PLANT SCIENCE 2022; 13:987354. [PMID: 36247620 PMCID: PMC9558234 DOI: 10.3389/fpls.2022.987354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen deprivation induces variations in fatty acid desaturation in microalgae, which determines the performance of biodiesel and the nutritional value of bioproducts. However, the detailed scenario and the underlying regulatory mechanism remain unclear. In this study, we attempt to outline these scenario and mechanisms by performing biochemical, lipidomic, and transcriptomic analyses in Chlorella pyrenoidosa and functional characterization of transcription factors in Yarrowia lipolytica. We found that early nitrogen deprivation dramatically reduced fatty acid desaturation without increasing lipid content. The contents of palmitic acid (16:0) and oleic acid (18:1) dramatically increased to 2.14 and 2.87 times that of nitrogen repletion on the second day, respectively. Lipidomic analysis showed the transfer of polyunsaturated fatty acids from phospholipids and glycolipids to triacylglycerols, and an increase in lipid species with 16:0 or 18:1 under nitrogen deprivation conditions. Upregulated stearoyl-ACP desaturase and oleyl-ACP thioesterase promoted the synthesis of 18:1, but restricted acetyl-CoA supply revealed that it was the intensive lipid turnover instead of an attenuated Kennedy pathway that played an important role in the variation in fatty acid composition under early nitrogen deprivation. Finally, two differentially expressed SQUAMOSA promoter-binding proteins (SBPs) were heterologously expressed in Y. lipolytica, demonstrating their role in promoting the accumulation of total fatty acid and the reduction in fatty acid desaturation. These results revealed the crucial role of lipid turnover and SBPs in determining fatty acid desaturation under early nitrogen deprivation, opening new avenues for the metabolic engineering of fatty acid desaturation in microalgae.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Miao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
- Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Oyama T, Kato Y, Hidese R, Matsuda M, Matsutani M, Watanabe S, Kondo A, Hasunuma T. Development of a stable semi-continuous lipid production system of an oleaginous Chlamydomonas sp. mutant using multi-omics profiling. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:95. [PMID: 36114515 PMCID: PMC9482161 DOI: 10.1186/s13068-022-02196-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
Background Microalgal lipid production has attracted global attention in next-generation biofuel research. Nitrogen starvation, which drastically suppresses cell growth, is a common and strong trigger for lipid accumulation in microalgae. We previously developed a mutant Chlamydomonas sp. KAC1801, which can accumulate lipids irrespective of the presence or absence of nitrates. This study aimed to develop a feasible strategy for stable and continuous lipid production through semi-continuous culture of KAC1801. Results KAC1801 continuously accumulated > 20% lipid throughout the subculture (five generations) when inoculated with a dry cell weight of 0.8–0.9 g L−1 and cultured in a medium containing 18.7 mM nitrate, whereas the parent strain KOR1 accumulated only 9% lipid. Under these conditions, KAC1801 continuously produced biomass and consumed nitrates. Lipid productivity of 116.9 mg L−1 day−1 was achieved by semi-continuous cultivation of KAC1801, which was 2.3-fold higher than that of KOR1 (50.5 mg L−1 day−1). Metabolome and transcriptome analyses revealed a depression in photosynthesis and activation of nitrogen assimilation in KAC1801, which are the typical phenotypes of microalgae under nitrogen starvation. Conclusions By optimizing nitrate supply and cell density, a one-step cultivation system for Chlamydomonas sp. KAC1801 under nitrate-replete conditions was successfully developed. KAC1801 achieved a lipid productivity comparable to previously reported levels under nitrogen-limiting conditions. In the culture system of this study, metabolome and transcriptome analyses revealed a nitrogen starvation-like response in KAC1801. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02196-w.
Collapse
|
30
|
Jia B, Yin J, Li X, Li Y, Yang X, Lan C, Huang Y. Increased Lipids in Chlamydomonas reinhardtii by Multiple Regulations of DOF, LACS2, and CIS1. Int J Mol Sci 2022; 23:ijms231710176. [PMID: 36077572 PMCID: PMC9456367 DOI: 10.3390/ijms231710176] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022] Open
Abstract
Microalgal lipids are essential for biofuel and dietary supplement production. Lipid engineering for higher production has been studied for years. However, due to the complexity of lipid metabolism, single-gene engineering gradually encounters bottlenecks. Multiple gene regulation is more beneficial to boosting lipid accumulation and further clarifying the complex regulatory mechanism of lipid biosynthesis in the homeostasis of lipids, carbohydrates, and protein metabolism. Here, three lipid-related genes, DOF, LACS2, and CIS, were co-regulated in Chlamydomonas reinhartii by two circles of transformation to overexpress DOF and knock down LACS2 and CIS simultaneously. With the multiple regulations of these genes, the intracellular lipids and FA content increased by 142% and 52%, respectively, compared with CC849, whereas the starch and protein contents decreased by 45% and 24%. Transcriptomic analysis showed that genes in TAG and FA biosynthesis were up-regulated, and genes in starch and protein metabolism were down-regulated. This revealed that more carbon precursor fluxes from starch and protein metabolism were redirected towards lipid synthesis pathways. These results showed that regulating genes in various metabolisms contributed to carbon flux redirection and significantly improved intracellular lipids, demonstrating the potential of multiple gene regulation strategies and providing possible candidates for lipid overproduction in microalgae.
Collapse
|
31
|
Kona R, Katakojwala R, Pallerla P, Sripadi P, Mohan SV. High oleic acid biosynthesis and its absolute quantification by GC/MS in oleaginous Scenedesmus sp. SVMIICT1 cultivated in dual stress phase. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
An increase in the membrane lipids recycling by PDAT overexpression stimulates the accumulation of triacylglycerol in Nannochloropsis gaditana. J Biotechnol 2022; 357:28-37. [PMID: 35931238 DOI: 10.1016/j.jbiotec.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022]
Abstract
Oleaginous microalgae represent potential feedstocks for the sustainable production of lipids thanks to their ability to accumulate triacylglycerols (TAGs). TAG accumulation in several algal species is strongly induced under specific conditions such as nutrient deprivation and high light which, however, also negatively impact growth. Genetic modification of lipogenic pathways can potentially enhance TAG accumulation without negatively affecting growth, avoiding the trade-off between biomass and lipids productivity. In this study, the phospholipid: diacylglycerol acyltransferase (PDAT), an enzyme involved in membrane lipid recycling, was overexpressed in the seawater alga Nannochloropsis gaditana. PDAT overexpression induced increased TAG content in actively growing algae cultures while no effects were observed in conditions naturally stimulating strong lipid accumulation such as high light and nitrogen starvation. The increase of TAG content was confirmed also in a strain cultivated in industrially relevant conditions even though PDAT overexpression, if too strong, the gene overexpression becomes detrimental for growth in the longer term. Results overall suggest that genetic modulation of the PDAT gene represents a promising strategy to increase microalgae lipids content by minimizing negative effects on biomass productivity.
Collapse
|
33
|
Lee Y, Park R, Miller SM, Li Y. Genetic compensation of triacylglycerol biosynthesis in the green microalga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1069-1080. [PMID: 35727866 PMCID: PMC9545326 DOI: 10.1111/tpj.15874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 06/14/2023]
Abstract
Genetic compensation has been proposed to explain phenotypic differences between gene knockouts and knockdowns in several metazoan and plant model systems. With the rapid development of reverse genetic tools such as CRISPR/Cas9 and RNAi in microalgae, it is increasingly important to assess whether genetic compensation affects the phenotype of engineered algal mutants. While exploring triacylglycerol (TAG) biosynthesis pathways in the model alga Chlamydomonas reinhardtii, it was discovered that knockout of certain genes catalyzing rate-limiting steps of TAG biosynthesis, type-2 diacylglycerol acyltransferase genes (DGTTs), triggered genetic compensation under abiotic stress conditions. Genetic compensation of a DGTT1 null mutation by a related PDAT gene was observed regardless of the strain background or mutagenesis approach, for example, CRISPR/Cas 9 or insertional mutagenesis. However, no compensation was found in the PDAT knockout mutant. The effect of PDAT knockout was evaluated in a Δvtc1 mutant, in which PDAT was upregulated under stress, resulting in a 90% increase in TAG content. Knockout of PDAT in the Δvtc1 background induced a 12.8-fold upregulation of DGTT1 and a 272.3% increase in TAG content in Δvtc1/pdat1 cells, while remaining viable. These data suggest that genetic compensation contributes to the genetic robustness of microalgal TAG biosynthetic pathways, maintaining lipid and redox homeostasis in the knockout mutants under abiotic stress. This work demonstrates examples of genetic compensation in microalgae, implies the physiological relevance of genetic compensation in TAG biosynthesis under stress, and provides guidance for future genetic engineering and mutant characterization efforts.
Collapse
Affiliation(s)
- Yi‐Ying Lee
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMD21202USA
| | - Rudolph Park
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMD21250USA
| | - Stephen M. Miller
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMD21250USA
| | - Yantao Li
- Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreMD21202USA
- Department of Marine BiotechnologyUniversity of Maryland, Baltimore CountyBaltimoreMD21202USA
| |
Collapse
|
34
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
35
|
Shi M, Yu L, Shi J, Liu J. A conserved MYB transcription factor is involved in regulating lipid metabolic pathways for oil biosynthesis in green algae. THE NEW PHYTOLOGIST 2022; 235:576-594. [PMID: 35342951 DOI: 10.1111/nph.18119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Green algae can accumulate high levels of triacylglycerol (TAG), yet knowledge remains fragmented on the regulation of lipid metabolic pathways by transcription factors (TFs). Here, via bioinformatics and in vitro and in vivo analyses, we revealed the roles of a myeloblastosis (MYB) TF in regulating TAG accumulation in green algae. CzMYB1, an R2R3-MYB from Chromochloris zofingiensis, was transcriptionally upregulated upon TAG-inducing conditions and correlated well with many genes involved in the de novo fatty acid synthesis, fatty acid activation and desaturation, membrane lipid turnover, and TAG assembly. Most promoters of these genes were transactivated by CzMYB1 in the yeast one-hybrid assay and contained the binding elements CNGTTA that were recognized by CzMYB1 through the electrophoretic mobility shift assay. CrMYB1, a close homologue of CzMYB1 from Chlamydomonas reinhardtii that recognized similar elements for binding, also transcriptionally correlated with many lipid metabolic genes. Insertional disruption of CrMYB1 severely suppressed the transcriptional expression of CrMYB1, as well as of key lipogenic genes, and impaired TAG level considerably under stress conditions. Our results reveal that this MYB, conserved in green algae, is involved in regulating global lipid metabolic pathways for TAG biosynthesis and accumulation.
Collapse
Affiliation(s)
- Meicheng Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianan Shi
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
36
|
Choi BY, Shim D, Kong F, Auroy P, Lee Y, Li-Beisson Y, Lee Y, Yamaoka Y. The Chlamydomonas transcription factor MYB1 mediates lipid accumulation under nitrogen depletion. THE NEW PHYTOLOGIST 2022; 235:595-610. [PMID: 35383411 DOI: 10.1111/nph.18141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Microalgae accumulate high levels of oil under stress, but the underlying biosynthetic pathways are not fully understood. We sought to identify key regulators of lipid metabolism under stress conditions. We found that the Chlamydomonas reinhardtii gene encoding the MYB-type transcription factor MYB1 is highly induced under stress conditions. Two myb1 mutants accumulated less total fatty acids and storage lipids than their parental strain upon nitrogen (N) depletion. Transcriptome analysis revealed that genes involved in lipid metabolism are highly enriched in the wild-type but not in the myb1-1 mutant after 4 h of N depletion. Among these genes were several involved in the transport of fatty acids from the chloroplast to the endoplasmic reticulum (ER): acyl-ACP thioesterase (FAT1), Fatty Acid EXporters (FAX1, FAX2), and long-chain acyl-CoA synthetase1 (LACS1). Furthermore, overexpression of FAT1 in the chloroplast increased lipid production. These results suggest that, upon N depletion, MYB1 promotes lipid accumulation by facilitating fatty acid transport from the chloroplast to the ER. This study identifies MYB1 as an important positive regulator of lipid accumulation in C. reinhardtii upon N depletion, adding another player to the established regulators of this process, including NITROGEN RESPONSE REGULATOR 1 (NRR1) and TRIACYLGLYCEROL ACCUMULATION REGULATOR 1 (TAR1).
Collapse
Affiliation(s)
- Bae Young Choi
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, 34134, Korea
| | - Fantao Kong
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Pascaline Auroy
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Université, CEA Cadarache, Saint Paul-Lez-Durance, 13108, France
| | - Youngsook Lee
- Department of Life Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon, 420-743, Korea
| |
Collapse
|
37
|
Young DY, Pang N, Shachar-Hill Y. 13C-labeling reveals how membrane lipid components contribute to triacylglycerol accumulation in Chlamydomonas. PLANT PHYSIOLOGY 2022; 189:1326-1344. [PMID: 35377446 PMCID: PMC9237737 DOI: 10.1093/plphys/kiac154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Lipid metabolism in microalgae has attracted much interest due to potential utilization of lipids as feedstocks for biofuels, nutraceuticals, and other high-value compounds. Chlamydomonas reinhardtii is a model organism for characterizing the synthesis of the neutral lipid triacylglycerol (TAG), from which biodiesel is made. While much of TAG accumulation under N-deprivation is the result of de novo fatty acid (FA) synthesis, recent work has revealed that approximately one-third of FAs, especially polyunsaturated FAs (PUFAs), come from preexisting membrane lipids. Here, we used 13C-isotopic labeling and mass spectrometry to analyze the turnover of glycerol backbones, headgroups, FAs, whole molecules, and molecular fragments of individual lipids. About one-third of the glyceryl backbones in TAG are derived from preexisting membrane lipids, as are approximately one-third of FAs. The different moieties of the major galactolipids turn over synchronously, while the FAs of diacylglyceryltrimethylhomoserine (DGTS), the most abundant extraplastidial lipid, turn over independently of the rest of the molecule. The major plastidic lipid monogalactosyldiacylglycerol (MGDG), whose predominant species is 18:3α/16:4, was previously shown to be a major source of PUFAs for TAG synthesis. This study reveals that MGDG turns over as whole molecules, the 18:3α/16:4 species is present in both DAG and TAG, and the positional distribution of these PUFAs is identical in MGDG, DAG, and TAG. We conclude that headgroup removal with subsequent acylation is the mechanism by which the major MGDG species is converted to TAG during N-deprivation. This has noteworthy implications for engineering the composition of microalgal TAG for food, fuel, and other applications.
Collapse
Affiliation(s)
- Danielle Yvonne Young
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Na Pang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
38
|
Xu C, Fan J. Links between autophagy and lipid droplet dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2848-2858. [PMID: 35560198 DOI: 10.1093/jxb/erac003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a catabolic process in which cytoplasmic components are delivered to vacuoles or lysosomes for degradation and nutrient recycling. Autophagy-mediated degradation of membrane lipids provides a source of fatty acids for the synthesis of energy-rich, storage lipid esters such as triacylglycerol (TAG). In eukaryotes, storage lipids are packaged into dynamic subcellular organelles, lipid droplets. In times of energy scarcity, lipid droplets can be degraded via autophagy in a process termed lipophagy to release fatty acids for energy production via fatty acid β-oxidation. On the other hand, emerging evidence suggests that lipid droplets are required for the efficient execution of autophagic processes. Here, we review recent advances in our understanding of metabolic interactions between autophagy and TAG storage, and discuss mechanisms of lipophagy. Free fatty acids are cytotoxic due to their detergent-like properties and their incorporation into lipid intermediates that are toxic at high levels. Thus, we also discuss how cells manage lipotoxic stresses during autophagy-mediated mobilization of fatty acids from lipid droplets and organellar membranes for energy generation.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
39
|
Nam JW, Lee HG, Do H, Kim HU, Seo PJ. Transcriptional regulation of triacylglycerol accumulation in plants under environmental stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2905-2917. [PMID: 35560201 DOI: 10.1093/jxb/erab554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 06/15/2023]
Abstract
Triacylglycerol (TAG), a major energy reserve in lipid form, accumulates mainly in seeds. Although TAG concentrations are usually low in vegetative tissues because of the repression of seed maturation programs, these programs are derepressed upon the exposure of vegetative tissues to environmental stresses. Metabolic reprogramming of TAG accumulation is driven primarily by transcriptional regulation. A substantial proportion of transcription factors regulating seed TAG biosynthesis also participates in stress-induced TAG accumulation in vegetative tissues. TAG accumulation leads to the formation of lipid droplets and plastoglobules, which play important roles in plant tolerance to environmental stresses. Toxic lipid intermediates generated from environmental-stress-induced lipid membrane degradation are captured by TAG-containing lipid droplets and plastoglobules. This review summarizes recent advances in the transcriptional control of metabolic reprogramming underlying stress-induced TAG accumulation, and provides biological insight into the plant adaptive strategy, linking TAG biosynthesis with plant survival.
Collapse
Affiliation(s)
- Jeong-Won Nam
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hong Gil Lee
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Hyungju Do
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
40
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
41
|
Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8050427. [PMID: 35628683 PMCID: PMC9144191 DOI: 10.3390/jof8050427] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
Collapse
|
42
|
Carro MDLM, Gonorazky G, Soto D, Mamone L, Bagnato C, Pagnussat LA, Beligni MV. Expression of Chlamydomonas reinhardtii chloroplast diacylglycerol acyltransferase 3 is induced by light in concert with triacylglycerol accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:262-276. [PMID: 35043497 DOI: 10.1111/tpj.15671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Considerable progress has been made towards the understanding of triacylglycerol (TAG) accumulation in algae. One key aspect is finding conditions that trigger TAG production without reducing cell division. Previously, we identified a soluble diacylglycerol acyltransferase (DGAT), related to plant DGAT3, with heterologous DGAT activity. In this work, we demonstrate that Chlamydomonas reinhardtii DGAT3 localizes to the chloroplast and that its expression is induced by light, in correspondence with TAG accumulation. Dgat3 mRNAs and TAGs increase in both wild-type and starch-deficient cells grown with acetate upon transferring them from dark or low light to higher light levels, albeit affected by the particularities of each strain. The response of dgat3 mRNAs and TAGs to light depends on the pre-existing levels of TAGs, suggesting the existence of a negative regulatory loop in the synthesis pathway, although an effect of TAG turnover cannot be ruled out. Altogether, these results hint towards a possible role of DGAT3 in light-dependent TAG accumulation in C. reinhardtii.
Collapse
Affiliation(s)
- María de Las Mercedes Carro
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Gabriela Gonorazky
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Débora Soto
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Leandro Mamone
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| | - Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable (IEDS), Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, 8400, San Carlos de Bariloche, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, B7620EMA, Balcarce, Argentina
| | - María Verónica Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, B7608FBY, Mar del Plata, Argentina
| |
Collapse
|
43
|
Jia M, Munz J, Lee J, Shelley N, Xiong Y, Joo S, Jin E, Lee JH. The bHLH family NITROGEN-REPLETION INSENSITIVE1 represses nitrogen starvation-induced responses in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:337-357. [PMID: 35043510 DOI: 10.1111/tpj.15673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Moyan Jia
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jacob Munz
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Nolan Shelley
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yuan Xiong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - EonSeon Jin
- Department of Life Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
44
|
Pham KLJ, Schmollinger S, Merchant SS, Strenkert D. Chlamydomonas ATX1 is essential for Cu distribution to multiple cupro-enzymes and maintenance of biomass in conditions demanding cupro-enzyme-dependent metabolic pathways. PLANT DIRECT 2022; 6:e383. [PMID: 35141461 PMCID: PMC8814560 DOI: 10.1002/pld3.383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
Copper (Cu) chaperones, of which yeast ATX1 is a prototype, are small proteins with a Cu(I) binding MxCxxC motif and are responsible for directing intracellular Cu toward specific client protein targets that use Cu as a cofactor. The Chlamydomonas reinhardtii ATX1 (CrATX1) was identified by its high sequence similarity with yeast ATX1. Like the yeast homologue, CrATX1 accumulates in iron-deficient cells (but is not impacted by other metal-deficiencies). N- and C-terminally YFP-ATX1 fusion proteins are distributed in the cytoplasm. Reverse genetic analysis using artificial microRNA (amiRNA) to generate lines with reduced CrATX1 abundance and CRISPR/Cpf1 to generate atx1 knockout lines validated a function for ATX1 in iron-poor cells, again reminiscent of yeast ATX1, most likely because of an impact on metalation of the multicopper oxidase FOX1, which is an important component in high-affinity iron uptake. We further identify other candidate ATX1 targets owing to reduced growth of atx1 mutant lines on guanine as a sole nitrogen source, which we attribute to loss of function of UOX1, encoding a urate oxidase, a cupro-enzyme involved in guanine assimilation. An impact of ATX1 on Cu distribution in atx1 mutants is strikingly evident by a reduced amount of intracellular Cu in all conditions probed in this work.
Collapse
Affiliation(s)
- Keegan L. J. Pham
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Stefan Schmollinger
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Molecular & Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Daniela Strenkert
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
45
|
Ma H, Zheng J, Li Y, Zhao L, Zou S, Hu Q, Han D. A Novel Bifunctional Wax Ester Synthase Involved in Early Triacylglycerol Accumulation in Unicellular Green Microalga Haematococcus pluvialis Under High Light Stress. Front Bioeng Biotechnol 2022; 9:794714. [PMID: 35111735 PMCID: PMC8802113 DOI: 10.3389/fbioe.2021.794714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
The bulk of neutral lipids, including astaxanthin esters and triacylglycerols (TAGs), are accumulated in the green microalga Haematococcus pluvialis under high light (HL) stress. In this study, a novel bifunctional wax ester synthase (WS) gene was cloned from H. pluvialis upon HL stress. The overexpression of HpWS restored the biosynthesis of wax esters and TAGs in neutral lipid-deficient yeast mutant Saccharomyces cerevisiae H1246 fed with C18 alcohol and C18:1/C18:3 fatty acids, respectively. Under HL stress, HpWS was substantially upregulated at the transcript level, prior to that of the type I diacylglycerol:acyl-CoA acyltransferase encoding gene (HpDGAT1). HpDGAT1 is the major TAG synthase in H. pluvialis. In addition, the application of xanthohumol (a DGAT1/2 inhibitor) in the H. pluvialis cells did not completely eliminate the TAG biosynthesis under HL stress at 24 h. These results indicated that HpWS may contribute to the accumulation of TAGs in H. pluvialis at the early stage under HL stress. In addition, the overexpression of HpWS in Chlamydomonas reinhardtii bkt5, which is engineered to produce free astaxanthin, enhanced the production of TAGs and astaxanthin. Our findings broaden the understanding of TAG biosynthesis in microalgae and provide a new molecular target for genetic manipulation in biotechnological applications.
Collapse
Affiliation(s)
- Haiyan Ma
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Haiyan Ma,
| | - Jie Zheng
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Li
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhao
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Song Zou
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Hu
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Danxiang Han
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory for Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
46
|
Bai F, Yu L, Shi J, Li-Beisson Y, Liu J. Long-chain acyl-CoA synthetases activate fatty acids for lipid synthesis, remodeling and energy production in Chlamydomonas. THE NEW PHYTOLOGIST 2022; 233:823-837. [PMID: 34665469 DOI: 10.1111/nph.17813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Long-chain acyl-CoA synthetases (LACSs) play many roles in mammals, yeasts and plants, but knowledge on their functions in microalgae remains fragmented. Here via genetic, biochemical and physiological analyses, we unraveled the function and roles of LACSs in the model microalga Chlamydomonas reinhardtii. In vitro assays on purified recombinant proteins revealed that CrLACS1, CrLACS2 and CrLACS3 all exhibited bona fide LACS activities toward a broad range of free fatty acids. The Chlamydomonas mutants compromised in CrLACS1, CrLACS2 or CrLACS3 did not show any obvious phenotypes in lipid content or growth under nitrogen (N)-replete condition. But under N-deprivation, CrLACS1 or CrLACS2 suppression resulted in c. 50% less oil, yet with a higher amount of chloroplast lipids. By contrast, CrLACS3 suppression impaired oil remobilization and cell growth severely during N-recovery, supporting its role in fatty acid β-oxidation to provide energy and carbon sources for regrowth. Transcriptomics analysis suggested that the observed lipid phenotypes are likely not due to transcriptional reprogramming but rather a shift in metabolic adjustment. Taken together, this study provided solid experimental evidence for essential roles of the three Chlamydomonas LACS enzymes in lipid synthesis, remodeling and catabolism, and highlighted the importance of lipid homeostasis in cell growth under nutrient fluctuations.
Collapse
Affiliation(s)
- Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianan Shi
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Aix Marseille Université, Saint Paul-Lez-Durance, 13108, France
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
47
|
Msanne J, Vu HS, Cahoon EB. Acyl‐acyl carrier protein pool dynamics with oil accumulation in nitrogen‐deprived
Chlamydomonas reinhardtii
microalgal cells. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joseph Msanne
- USDA, Agricultural Research Service Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Hieu Sy Vu
- Center for Plant Science Innovation and Department of Biochemistry, E310 Beadle Center University of Nebraska‐Lincoln Lincoln Nebraska USA
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, E310 Beadle Center University of Nebraska‐Lincoln Lincoln Nebraska USA
| |
Collapse
|
48
|
De Tommasi E, Rea I, Ferrara MA, De Stefano L, De Stefano M, Al-Handal AY, Stamenković M, Wulff A. Underwater Light Manipulation by the Benthic Diatom Ctenophora pulchella: From PAR Efficient Collection to UVR Screening. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2855. [PMID: 34835620 PMCID: PMC8621762 DOI: 10.3390/nano11112855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022]
Abstract
Several species of diatoms, unicellular microalgae which constitute the main component of phytoplankton, are characterized by an impressive photosynthetic efficiency while presenting a noticeable tolerance versus exposure to detrimental UV radiation (UVR). In particular, the growth rate of the araphid diatom Ctenophora pulchella is not significantly affected by harsh treatments with UVR, even in absence of detectable, specific UV-absorbing pigments and even if it is not able to avoid high UV exposure by motility. In this work we applied a multi-disciplinary approach involving numerical computation, photonics, and biological parameters in order to investigate the possible role of the frustule, micro- and nano-patterned silica shell which encloses the cell, in the ability of C. pulchella to efficiently collect photosynthetic active radiation (PAR) and to simultaneously screen the protoplasm from UVR. The characterization of the photonic properties of the frustule has been accompanied by in vivo experiments conducted in water in order to investigate its function as optical coupler between light and plastids.
Collapse
Affiliation(s)
- Edoardo De Tommasi
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Ilaria Rea
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Maria Antonietta Ferrara
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Luca De Stefano
- National Research Council, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via P. Castellino 111, 80131 Naples, Italy; (I.R.); (M.A.F.); (L.D.S.)
| | - Mario De Stefano
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Adil Y. Al-Handal
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| | - Marija Stamenković
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
- Department of Ecology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Angela Wulff
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden; (A.Y.A.-H.); (M.S.); (A.W.)
| |
Collapse
|
49
|
Choi HI, Hwang SW, Kim J, Park B, Jin E, Choi IG, Sim SJ. Augmented CO 2 tolerance by expressing a single H +-pump enables microalgal valorization of industrial flue gas. Nat Commun 2021; 12:6049. [PMID: 34663809 PMCID: PMC8523702 DOI: 10.1038/s41467-021-26325-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/01/2021] [Indexed: 12/02/2022] Open
Abstract
Microalgae can accumulate various carbon-neutral products, but their real-world applications are hindered by their CO2 susceptibility. Herein, the transcriptomic changes in a model microalga, Chlamydomonas reinhardtii, in a high-CO2 milieu (20%) are evaluated. The primary toxicity mechanism consists of aberrantly low expression of plasma membrane H+-ATPases (PMAs) accompanied by intracellular acidification. Our results demonstrate that the expression of a universally expressible PMA in wild-type strains makes them capable of not only thriving in acidity levels that they usually cannot survive but also exhibiting 3.2-fold increased photoautotrophic production against high CO2 via maintenance of a higher cytoplasmic pH. A proof-of-concept experiment involving cultivation with toxic flue gas (13 vol% CO2, 20 ppm NOX, and 32 ppm SOX) shows that the production of CO2-based bioproducts by the strain is doubled compared with that by the wild-type, implying that this strategy potentially enables the microalgal valorization of CO2 in industrial exhaust.
Collapse
Affiliation(s)
- Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung-Won Hwang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jongrae Kim
- Department of Life Science, Hanyang University, 206, Wangsimni-ro, Seongbuk-gu, Seoul, 04763, Republic of Korea
| | - Byeonghyeok Park
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, 206, Wangsimni-ro, Seongbuk-gu, Seoul, 04763, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
50
|
Fatty Acid Production and Direct Acyl Transfer through Polar Lipids Control TAG Biosynthesis during Nitrogen Deprivation in the Halotolerant Alga Dunaliella tertiolecta. Mar Drugs 2021; 19:md19070368. [PMID: 34202376 PMCID: PMC8304655 DOI: 10.3390/md19070368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
The aims of this work were to evaluate the contribution of the free fatty acid (FA) pool to triacylglyceride (TAG) biosynthesis and to try to characterize the mechanism by which FA are assimilated into TAG in the green alga Dunaliella tertiolecta. A time-resolved lipidomic analysis showed that nitrogen (N) deprivation induces a redistribution of total lipidome, particularly of free FA and major polar lipid (PL), in parallel to enhanced accumulation of polyunsaturated TAG. The steady-state concentration of the FA pool, measured by prolonged 14C-bicarbonate pre-labeling, showed that N deprivation induced a 50% decrease in total FA level within the first 24 h and up to 85% after 96 h. The abundance of oleic acid increased from 50 to 70% of total free FA while polyunsaturated FA (PUFA) disappeared under N deprivation. The FA flux, measured by the rate of incorporation of 14C-palmitic acid (PlA), suggests partial suppression of phosphatidylcholine (PC) acyl editing and an enhanced turnover of the FA pool and of total digalactosyl-diacylglycerol (DGDG) during N deprivation. Taken together, these results imply that FA biosynthesis is a major rate-controlling stage in TAG biosynthesis in D. tertiolecta and that acyl transfer through PL such as PC and DGDG is the major FA assimilation pathway into TAG in that alga and possibly in other green microalgae. Increasing the availability of FA could lead to enhanced TAG biosynthesis and to improved production of high-value products from microalgae.
Collapse
|