1
|
Li X, Zhang X, Yin S, Nie J. Challenges and prospects in HER2-positive breast cancer-targeted therapy. Crit Rev Oncol Hematol 2025; 207:104624. [PMID: 39826885 DOI: 10.1016/j.critrevonc.2025.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
Breast cancer remains the most prevalent malignancy among women globally and ranks as the leading cause of cancer-related mortality in this demographic. Approximately 13 %-15 % of all breast cancer cases are classified as HER2-positive, a subtype associated with a particularly unfavorable prognosis. A large number of patients with HER2-positive breast cancer continue to face disease progression after receiving standardized treatment. Given these challenges, a thorough exploration into the mechanisms underlying drug resistance in HER2-targeted therapy is imperative. This review focuses on the factors related to drug resistance in HER2-targeted therapy, including tumor heterogeneity, antibody-binding efficacy, variations in the tumor microenvironment, and abnormalities in signal activation and transmission. Additionally, corresponding strategies to counteract these resistance mechanisms are discussed, to advance therapeutic efficacy and clinical benefits in the management of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Xiyin Li
- Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| | - Xueying Zhang
- Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650118, China.
| | - Jianyun Nie
- Department of Breast Cancer, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, the Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan 650118, China.
| |
Collapse
|
2
|
Negrón-Vega L, Cora EM, Pérez-Torres M, Tang SC, Maihle NJ, Ryu JS. Expression of EGFR isoform D is regulated by HER receptor activators in breast cancer cells. Biochem Biophys Rep 2022; 31:101326. [PMID: 36039113 PMCID: PMC9418195 DOI: 10.1016/j.bbrep.2022.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Human epidermal growth factor receptor isoform D (EGFR; isoform D) is a soluble protein from a 3 kb alternate mRNA transcript that arises from the human EGFR gene. Several studies have identified this circulating isoform of EGFR as a potential diagnostic biomarker for the detection of early stage of cancers. While the expression of the full-length EGFR (isoform A) is regulated by its cognate ligand, EGF, as well as by phorbol myristate acetate (PMA), no studies have examined the factors regulating the expression of EGFR isoform D. In this study, using breast cancer cell lines, we show that the HER receptor ligands, EGF and neuregulin (NRG-1β), as well as the phorbol ester, PMA, can increase the expression of EGFR isoform D, as well as isoform A. Our results, based on measurement of mRNA levels, suggest that EGF induced expression of both isoform A and isoform D occur through a mitogen activated protein kinase (MAPK)-dependent mechanism, and also suggest that protein kinase C is involved in PMA-induced regulation of both isoforms. We also demonstrate that NRG-1β increases isoform A and isoform D expression via the MAPK-dependent pathway, but this regulation occurs independently of phosphatidylinositol 3-kinase/Akt activation. These results suggest that regulation of EGFR isoform A and isoform D expression occur using similar mechanisms. Despite commonalities in the transcriptional regulation of these two EGFR isoforms, the half-lives of these two transcripts is quite different. Moreover, EGFR isoform D, unlike isoform A, is not post-transcriptionally modulated by EGFR activators in the breast cancer cell line MDA-MB-468.
Collapse
Affiliation(s)
- Lisandra Negrón-Vega
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Elsa M. Cora
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Marianela Pérez-Torres
- School of Pharmacy, University of Puerto Rico-Medical Sciences Campus, PO Box 365067, San Juan, PR, 00936-5067, Puerto Rico
| | - Shou-Ching Tang
- Department of Medicine, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Nita J. Maihle
- Department of Medicine, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jung Su Ryu
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
3
|
Tashiro D, Suetaka S, Sato N, Ooka K, Kunihara T, Kudo H, Inatomi J, Hayashi Y, Arai M. Intron-Encoded Domain of Herstatin, An Autoinhibitor of Human Epidermal Growth Factor Receptors, Is Intrinsically Disordered. Front Mol Biosci 2022; 9:862910. [PMID: 35573740 PMCID: PMC9100580 DOI: 10.3389/fmolb.2022.862910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
Human epidermal growth factor receptors (HER/ERBB) form dimers that promote cell proliferation, migration, and differentiation, but overexpression of HER proteins results in cancer. Consequently, inhibitors of HER dimerization may function as effective antitumor drugs. An alternatively spliced variant of HER2, called herstatin, is an autoinhibitor of HER proteins, and the intron 8-encoded 79-residue domain of herstatin, called Int8, binds HER family receptors even in isolation. However, the structure of Int8 remains poorly understood. Here, we revealed by circular dichroism, NMR, small-angle X-ray scattering, and structure prediction that isolated Int8 is largely disordered but has a residual helical structure. The radius of gyration of Int8 was almost the same as that of fully unfolded states, although the conformational ensemble of Int8 was less flexible than random coils. These results demonstrate that Int8 is intrinsically disordered. Thus, Int8 is an interesting example of an intrinsically disordered region with tumor-suppressive activity encoded by an intron. Furthermore, we show that the R371I mutant of Int8, which is defective in binding to HER2, is prone to aggregation, providing a rationale for the loss of function.
Collapse
Affiliation(s)
- Daisuke Tashiro
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Nao Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Kunihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Kudo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Junichi Inatomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Munehito Arai,
| |
Collapse
|
4
|
HER2-PI9 and HER2-I12: two novel and functionally active splice variants of the oncogene HER2 in breast cancer. J Cancer Res Clin Oncol 2021; 147:2893-2912. [PMID: 34136934 PMCID: PMC8397700 DOI: 10.1007/s00432-021-03689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 11/03/2022]
Abstract
In this study, two novel alternative splice variants of HER2, named HER2-PI9 and HER2-I12, were identified in breast cancer cell lines and breast tumour tissues. Whilst HER2-P19 arises from the inclusion of an 117 bp cassette-exon of intron 9 of HER2, HER2-I12 results from intron 12 inclusion. In silico analyses were performed to predict the amino acid sequences of these two HER2 novel variants. To confirm their protein expression, plasmid vectors were generated and transfected into the HER2 negative breast cancer cell line, MCF-7. Additionally, their functional properties in oncogenic signalling were confirmed. Expression of HER2-PI9 and HER2-I12 was successful and matched the in silico predictions. Importantly, these splice variants can modulate the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2) and Akt/protein kinase B (Akt) signalling in MCF-7 breast cancer cells. Enhanced cellular proliferation, migration and invasion were observed in the case of the HER2-I12 expressing model. In human tissues and breast carcinoma tumours both variants were present. This study reveals two novel splice variants of HER2. Additionally, the potential biological activity for HER2-PI9 and HER2-I12 in breast cancer cells is also reported..
Collapse
|
5
|
Hart V, Gautrey H, Kirby J, Tyson-Capper A. HER2 splice variants in breast cancer: investigating their impact on diagnosis and treatment outcomes. Oncotarget 2020; 11:4338-4357. [PMID: 33245725 PMCID: PMC7679030 DOI: 10.18632/oncotarget.27789] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the HER2 receptor occurs in approximately 20% of breast cancer patients. HER2 positivity is associated with poor prognosis and aggressive tumour phenotypes, which led to rapid progress in HER2 targeted therapeutics and diagnostic testing. Whilst these advances have greatly increased patients' chances of survival, resistance to HER2 targeted therapies, be that intrinsic or acquired, remains a problem. Different forms of the HER2 protein exist within tumours in tandem and can display altered biological activities. Interest in HER2 variants in breast cancer increased when links between resistance to anti-HER2 therapies and a particular variant, Δ16-HER2, were identified. Moreover, the P100 variant potentially reduces the efficacy of the anti-HER2 therapy trastuzumab. Another variant, Herstatin, exhibits 'auto-inhibitory' behaviour. More recently, new HER2 variants have been identified and are currently being assessed for their pro- and anti-cancer properties. It is important when directing the care of patients to consider HER2 variants collectively. This review considers HER2 variants in the context of the tumour environment where multiple variants are co-expressed at altered ratios. This study also provides an up to date account of the landscape of HER2 variants and links this to patterns of resistance against HER2 therapies and treatment plans.
Collapse
Affiliation(s)
- Vic Hart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Hannah Gautrey
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John Kirby
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alison Tyson-Capper
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Khoshtinat Nikkhoi S, Rahbarizadeh F, Ahmadvand D, Moghimi SM. Multivalent targeting and killing of HER2 overexpressing breast carcinoma cells with methotrexate-encapsulated tetra-specific non-overlapping variable domain heavy chain anti-HER2 antibody-PEG-liposomes: In vitro proof-of-concept. Eur J Pharm Sci 2018; 122:42-50. [DOI: 10.1016/j.ejps.2018.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
|
7
|
Chen MS, Kim H, Jagot-Lacoussiere L, Maurel P. Cadm3 (Necl-1) interferes with the activation of the PI3 kinase/Akt signaling cascade and inhibits Schwann cell myelination in vitro. Glia 2016; 64:2247-2262. [PMID: 27658374 DOI: 10.1002/glia.23072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 08/10/2016] [Accepted: 09/08/2016] [Indexed: 11/06/2022]
Abstract
Axo-glial interactions are critical for myelination and the domain organization of myelinated fibers. Cell adhesion molecules belonging to the Cadm family, and in particular Cadm3 (axonal) and its heterophilic binding partner Cadm4 (Schwann cell), mediate these interactions along the internode. Using targeted shRNA-mediated knockdown, we show that the removal of axonal Cadm3 promotes Schwann cell myelination in the in vitro DRG neuron/Schwann cell myelinating system. Conversely, over-expressing Cadm3 on the surface of DRG neuron axons results in an almost complete inability by Schwann cells to form myelin segments. Axons of superior cervical ganglion (SCG) neurons, which do not normally support the formation of myelin segments by Schwann cells, express higher levels of Cadm3 compared to DRG neurons. Knocking down Cadm3 in SCG neurons promotes myelination. Finally, the extracellular domain of Cadm3 interferes in a dose-dependent manner with the activation of ErbB3 and of the pro-myelinating PI3K/Akt pathway, but does not interfere with the activation of the Mek/Erk1/2 pathway. While not in direct contradiction, these in vitro results shed lights on the apparent lack of phenotype that was reported from in vivo studies of Cadm3-/- mice. Our results suggest that Cadm3 may act as a negative regulator of PNS myelination, potentially through the selective regulation of the signaling cascades activated in Schwann cells by axonal contact, and in particular by type III Nrg-1. Further analyses of peripheral nerves in the Cadm-/- mice will be needed to determine the exact role of axonal Cadm3 in PNS myelination. GLIA 2016;64:2247-2262.
Collapse
Affiliation(s)
- Ming-Shuo Chen
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Hyosung Kim
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey
| | | | - Patrice Maurel
- Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey.
| |
Collapse
|
8
|
Clinical Significance of HER-2 Splice Variants in Breast Cancer Progression and Drug Resistance. Int J Cell Biol 2013; 2013:973584. [PMID: 23935627 PMCID: PMC3713377 DOI: 10.1155/2013/973584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 01/07/2023] Open
Abstract
Overexpression of human epidermal growth factor receptor (HER-2) occurs in 20-30% of breast cancers and confers survival and proliferative advantages on the tumour cells making HER-2 an ideal therapeutic target for drugs like Herceptin. Continued delineation of tumour biology has identified splice variants of HER-2, with contrasting roles in tumour cell biology. For example, the splice variant Δ16HER-2 (results from exon 16 skipping) increases transformation of cancer cells and is associated with treatment resistance; conversely, Herstatin (results from intron 8 retention) and p100 (results from intron 15 retention) inhibit tumour cell proliferation. This review focuses on the potential clinical implications of the expression and coexistence of HER-2 splice variants in cancer cells in relation to breast cancer progression and drug resistance. "Individualised" strategies currently guide breast cancer management; in accordance, HER-2 splice variants may prove valuable as future prognostic and predictive factors, as well as potential therapeutic targets.
Collapse
|
9
|
Mamon LA, Kliver SF, Golubkova EV. Evolutionarily conserved features of the retained intron in alternative transcripts of the <i>nxf1</i> (nuclear export factor) genes in different organisms. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojgen.2013.33018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Lv M, Qiao C, Jiang N, Li X, Yu M, Hou C, Li Y, Feng J, Shen B. The peptide derived from erbB2 auto-inhibitor herstatin shared in the same epitope and function with functional antibody 2C4. Mol Biotechnol 2011; 51:174-82. [PMID: 22139885 DOI: 10.1007/s12033-011-9454-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Previous studies have shown that different epitopes of HER2 exhibit distinct functions and that the epitope bound by the antibody 2C4 plays a role in formation of hetereodimers between HER2 and other receptors of the HER family. In this study, we used computer modeling to determine that the epitope of HER2 which the C-terminal 79 amino acids of herstatin (named HSTC79) binds is similar to that bound by 2C4. Based on these theoretical results, recombinant HSTC79 fused with GST was expressed in Escherichia coli and purified by affinity chromatography. Experimental analysis showed that HSTC79 did specifically bind to HER2 and that the epitope of HER2 identified by HSTC79 was near that identified by 2C4. Furthermore, HSTC79 inhibited the growth of HER2-overexpressing cells. These results highlight the fact that the binding site architecture and certain key residues of HER2 may be very helpful for understanding the protein's biological role and providing insights for designing novel inhibitors of HER2.
Collapse
Affiliation(s)
- Ming Lv
- Institute of Basic Medical Sciences, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fry WH, Kotelawala L, Sweeney C, Carraway KL. Mechanisms of ErbB receptor negative regulation and relevance in cancer. Exp Cell Res 2009; 315:697-706. [PMID: 18706412 PMCID: PMC2667444 DOI: 10.1016/j.yexcr.2008.07.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 01/18/2023]
Abstract
The ErbB family of receptor tyrosine kinases engages a wide variety of signaling pathways that collectively direct transcriptional programs controlling organogenesis during development and tissue maintenance in the adult. These receptors are also frequently found overexpressed or aberrantly activated in various cancers, suggesting that ErbB receptor signaling activity must be very tightly regulated. Sufficient levels of ErbB signaling are necessary to mediate tissue homeostasis, for example, but over-signaling can trigger cellular processes that contribute to cancer initiation or progression. Efforts over the last quarter century have led to a thorough understanding of the signaling pathways that are activated by these receptors and the mechanisms by which ErbB receptors engage these pathways. However, the compensatory negative regulatory mechanisms responsible for attenuating receptor activation have only more recently begun to be explored. Here we review the different known mechanisms of ErbB negative regulation, with particular emphasis on those proteins that exhibit some specificity for the ErbB family. We also describe how loss or suppression of ErbB negative regulators may contribute to tumor development, and discuss how restoration or augmentation of these pathways may represent a novel avenue for the development of ErbB-targeted therapies.
Collapse
|
12
|
Structure-Based Engineering of an Icosahedral Virus for Nanomedicine and Nanotechnology. Curr Top Microbiol Immunol 2009; 327:23-58. [DOI: 10.1007/978-3-540-69379-6_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
13
|
Koletsa T, Kostopoulos I, Charalambous E, Christoforidou B, Nenopoulou E, Kotoula V. A splice variant of HER2 corresponding to Herstatin is expressed in the noncancerous breast and in breast carcinomas. Neoplasia 2008; 10:687-96. [PMID: 18592003 PMCID: PMC2434206 DOI: 10.1593/neo.08314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/26/2008] [Accepted: 04/28/2008] [Indexed: 12/21/2022]
Abstract
Herstatin (HST) is an alternatively spliced HER2 product with growth-inhibitory properties in experimental cancer systems. The role of HST in adult human tissues and disease remains unexplored. Here, we investigated HST expression at the mRNA and protein (immunohistochemistry [IHC]) level in parallel with parameters reflecting HER activation in 187 breast carcinomas and matched noncancerous breast tissues (NCBT). Noncancerous breast tissues demonstrated the highest HST/HER2 transcript ratios corresponding to a few positive epithelial and stromal cells by IHC. Although HST/HER2 transcript ratios in tumors were inversely associated with HER2 IHC grading (P = .0048 for HER2 IHC-1+ and P = .0006 for HER2 IHC-2+ vs HER2-negative tumors), relative HST expression within the same tumor/NCBT system remained constant. HST/HER2 ratios did not predict the presence of HST protein, which was found in 46 (25%) of 187 tumors. A subgroup of HER2 IHC-3+ tumors exhibited high HST/HER2 transcript ratios, strong HST protein positivity, and cytoplasmic phospho-Akt/PKB and p21(CIP1/WAF1) localization. In conclusion, HST may act as a paracrine factor in the adult breast. Because HST is described as an endogenous pan-HER inhibitor, the presence of this protein in breast carcinomas may portent the inefficiency of exogenous efforts to block HER2 dimerization, whereas its absence may justify such interventions.
Collapse
Affiliation(s)
| | - Ioannis Kostopoulos
- Department of Pathology, Aristotle University Medical School, Thessaloniki, Greece
| | - Elpida Charalambous
- Department of Pathology, Aristotle University Medical School, Thessaloniki, Greece
| | | | - Eleni Nenopoulou
- Department of Pathology, Aristotle University Medical School, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
14
|
Abstract
Targeted therapies are rationally designed to interfere with specific molecular events that are important in tumour growth, progression or survival. Several targeted therapies with anti-tumour activity in human cancer cell lines and xenograft models have now been shown to produce objective responses, delay disease progression and, in some cases, improve survival of patients with advanced malignancies. These targeted therapies include cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody; gefitinib and erlotinib, EGFR-specific tyrosine kinase inhibitors; trastuzumab, an anti-human EGFR type 2 (HER2)-related monoclonal antibody; lapatinib, a dual inhibitor of both EGFR- and HER2-associated tyrosine kinases; and bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody. On the basis of preclinical and clinical evidence, EGFR, HER2 and VEGF represent validated targets for cancer therapy and remain the subject of intensive investigation. Both EGFR and HER2 are targets found on cancer cells, whereas VEGF is a target that acts in the tumour microenvironment. Clinical studies are focusing on how to best incorporate targeted therapy into current treatment regimens and other studies are exploring whether different strategies for inhibiting these targets will offer greater benefit. It is clear that optimal use of targeted therapy will depend on understanding how these drugs work mechanistically, and recognising that their activities may differ across patient populations, tumour types and disease stages, as well as when and how they are used in cancer treatment. The results achieved with targeted therapies to date are promising, although they illustrate the need for additional preclinical and clinical study.
Collapse
Affiliation(s)
- Michael F Press
- Department of Pathology, Keck School of Medicine, Oncology, University of Southern California/Norris Comprehensive Cancer Center, 14412 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | |
Collapse
|
15
|
|
16
|
Wang J, Feng J, Shi M, Qian L, Chen L, Yu M, Xu R, Shen B, Guo N. De novo design of ErbB2 epitope targeting fusion protein stabilized by coiled coil structure. Mol Immunol 2008; 45:106-16. [PMID: 17572496 DOI: 10.1016/j.molimm.2007.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/30/2007] [Accepted: 05/08/2007] [Indexed: 01/07/2023]
Abstract
The extracellular cysteine-rich domains of ErbB2 receptors play important roles in ligand binding and receptor dimerization. The aim of the present study was to design a novel peptide exerting cytostatic effect toward ErbB2-overexpressing tumors based on one of the cysteine-rich domain (S1) of ErbB2. In order to create a stable molecule with unique structural and binding property, a chimeric molecule PL45 composed of ErbB2 S1 domain targeting peptide and the five stranded coiled coil domain from cartilage oligomeric matrix protein (COMP) was generated. PL45 was efficiently expressed in Escherichia coli and exhibited remarkable thermal and pH stability. It was capable of interfering with dimerization of ErbB2 and inhibiting the growth of ErbB2-overexpressing tumor cells in vitro and in vivo. The results provide evidence that the coiled coil structure can be used as a new scaffold to stabilize short peptides with potential application for anti-cancer immunotherapy and S1 domain of ErbB2 is a promising target for drug design.
Collapse
Affiliation(s)
- Jianing Wang
- Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fisher MC, Clinton GM, Maihle NJ, Dealy CN. Requirement for ErbB2/ErbB signaling in developing cartilage and bone. Dev Growth Differ 2007; 49:503-13. [PMID: 17555517 DOI: 10.1111/j.1440-169x.2007.00941.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
During endochondral ossification, the skeletal elements of vertebrate limbs form and elongate via coordinated control of chondrocyte and osteoblast differentiation and proliferation. The role of signaling by the ErbB family of receptor tyrosine kinases, which consists of ErbB1 (epidermal growth factor receptor or EGFR), ErbB2, ErbB3 and ErbB4, has been little studied during cartilage and bone development. Signaling by the ErbB network generates a diverse array of cellular responses via formation of ErbB dimers activated by distinct ligands that produce distinct signal outputs. Herstatin is a soluble ErbB2 receptor that acts in a dominant negative fashion to inhibit ErbB signaling by binding to endogenous ErbB receptors, preventing functional dimer formation. Here, we examine the effects of Herstatin on limb skeletal element development in transgenic mice, achieved via Prx1 promoter-driven expression in limb cartilage and bone. The limb skeletal elements of Prx1-Herstatin embryos are shortened, and chondrocyte maturation and osteoblast differentiation are delayed. In addition, proliferation by chondrocytes and periosteal cells of Prx1-Herstatin limb skeletal elements is markedly reduced. Our study identifies requirements for ErbB signaling in the maintenance of chondrocyte and osteoblast proliferation involved in the timely progression of chondrocyte maturation and periosteal osteoblast differentiation.
Collapse
Affiliation(s)
- Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|
18
|
Sharif A, Prévot V, Renault-Mihara F, Allet C, Studler JM, Canton B, Chneiweiss H, Junier MP. Transforming growth factor alpha acts as a gliatrophin for mouse and human astrocytes. Oncogene 2006; 25:4076-85. [PMID: 16532035 DOI: 10.1038/sj.onc.1209443] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Astrocyte death has been implicated in several neuropathological diseases, but the identification of molecules susceptible of promoting astrocyte survival has been elusive. We investigated whether transforming growth factor alpha (TGFalpha), an erbB1/EGFR ligand, which promotes glioma progression and affects astrocyte metabolism at embryonic and adult stages, regulates astrocyte survival. Primary serum-free astrocyte cultures from post-natal mouse and fetal human cortices were used. Transforming growth factor alpha protected both species of astrocytes from staurosporine-induced apoptosis. In serum-free medium, mouse astrocytes did not survive beyond 2 months while TGFalpha-treated astrocytes survived up to 12 months. Transforming growth factor alpha also promoted long-term survival of human astrocytes. We additionally extended TGFalpha proliferative effects to human astrocytes. After 3 days of permanent application, TGFalpha induced a major downregulation of both erbB1 and erbB2. This downregulation did not impair the functional activation of the receptors, as ascertained by their tyrosine phosphorylation and the continuous stimulation of both ERK/MAPK and PI3K/Akt pathways up to 7 days, the longest time examined. The full cellular effects of TGFalpha required activation of both transduction pathways. Enhanced proliferation and survival thus define TGFalpha as a gliatrophin for mammalian astrocytes. These results demonstrate that in normal, non-transformed astrocytes, sustained and functional erbBs activation is achieved without bypassing ligand-induced receptors downregulation.
Collapse
Affiliation(s)
- A Sharif
- Inserm U752, Paris F-75013, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hu P, Zhou T, Qian L, Wang J, Shi M, Yu M, Yang Y, Zhang X, Shen B, Guo N. Sequestering ErbB2 in endoplasmic reticulum by its autoinhibitor from translocation to cell surface: An autoinhibition mechanism of ErbB2 expression. Biochem Biophys Res Commun 2006; 342:19-27. [PMID: 16469294 DOI: 10.1016/j.bbrc.2006.01.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Accepted: 01/24/2006] [Indexed: 11/30/2022]
Abstract
ErbB2 is differentially overexpressed in tumor versus host tissues, suggesting that an autoregulation mechanism may modulate the expression of ErbB2 and control cell growth. A truncated ErbB2 extracellular domain, herstatin has been shown to bind to ErbB2 and inhibit the growth of tumor cells expressing ErbB2. In the present study, the interaction of herstatin and ErbB2 in vivo was observed by confocal microscopy. The aggregation of ErbB2 and herstatin was found in endoplasmic reticulum (ER). The decrease of ErbB2 on the cell surface was accompanied with the increased colocalization of ErbB2 and herstatin in the cytoplasm, suggesting that the formation of ErbB2/herstatin complex may prevent transit from ER to cell surface of ErbB2. The formation of ErbB2 and herstatin complex was further confirmed by immunoprecipitation. The results demonstrate that sequestering ErbB2 molecules intracellularly by herstatin may be a possible mechanism of the cell growth inhibition.
Collapse
Affiliation(s)
- Pinliang Hu
- Institute of Basic Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hu P, Feng J, Zhou T, Wang J, Jing B, Yu M, Hu M, Zhang X, Shen B, Guo N. In vivo identification of the interaction site of ErbB2 extracellular domain with its autoinhibitor. J Cell Physiol 2006; 205:335-43. [PMID: 15920761 DOI: 10.1002/jcp.20409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Direct interference with the transforming potential of ErbB2 has become a subject of great interest. Disruption of critical ErbB2 ectodomain interactions may lead to novel therapeutic approaches for the treatment of various tumors. The ErbB receptor signaling can be inhibited by rationally designed peptide mimetics based on the subdomains of ErbB ectodomain. The mimetics can bind to the ErbB receptor specifically and block inter-receptor interactions, resulting in the growth inhibition of ErbB2-overexpressing cells in vitro. In this study, three-dimensional structure of herstatin, an autoinhibitor of ErbB2 and ErbB2 ectodomain complex was constructed by computer-aided molecular modeling. The binding site on ErbB2 ectodomain for herstatin was determined at S1 domain. The mutants of ErbB2 ectodomain were constructed. The interactions of ErbB2 ectodomain and its mutants with herstatin were analyzed for the first time in living cells that coexpressed herstatin and ErbB2 ectodomain or the mutants. The S1 domain in ErbB2 ectodomain was verified as the interaction site with herstatin by immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer (FRET). The binding region of herstatin on ErbB2 ectodomain might be a potential target region for the drug design.
Collapse
Affiliation(s)
- Pinliang Hu
- Institute of Basic Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin T. Structural genesis of the chemical addressability in a viral nano-block. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b604582k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Sweeney C, Miller JK, Shattuck DL, Carraway KL. ErbB receptor negative regulatory mechanisms: implications in cancer. J Mammary Gland Biol Neoplasia 2006; 11:89-99. [PMID: 16865534 DOI: 10.1007/s10911-006-9015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activation of ErbB receptor tyrosine kinases (RTKs) must be precisely regulated to ensure the fidelity of developmental and homeostatic processes mediated by growth factors. Insufficient receptor stimulation will lead to defects in tissue development, while excessive stimulation can lead to hyperplastic events associated with cancer and other diseases. A coordinated balance of the intensity and timing of receptor signaling, achieved through both receptor activation and negative regulatory mechanisms, is required for signaling fidelity. While considerable effort has gone into understanding mechanisms by which ErbB receptors are activated, our understanding of the suppression of growth factor receptor activity remains limited. While ligand-stimulated receptor degradation is the most thoroughly examined mechanism for preventing hyper-signaling by ErbBs, recent studies indicate that several other mechanisms act directly on receptors to suppress receptor levels, or the magnitude or duration of receptor signaling. ErbB receptor overexpression or aberrant activation contributes to the progression of numerous solid tumor types. Hence, tumor cells must overcome these endogenous receptor negative regulatory mechanisms before they can exploit ErbB receptors to achieve uncontrolled growth. Here we will discuss several proteins that directly interact with ErbB receptors to suppress signaling, highlighting the potential impact of their loss on tumor progression.
Collapse
Affiliation(s)
- Colleen Sweeney
- UC Davis Cancer Center, Research Bldg. III, rm 1400, 4645 2nd Avenue, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
23
|
Cheng K, Raufman JP. Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochem Pharmacol 2005; 70:1035-47. [PMID: 16139803 DOI: 10.1016/j.bcp.2005.07.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 12/20/2022]
Abstract
Although epidemiological studies indicate an association between elevations in fecal bile acids and the development of colorectal cancer, the cellular mechanism for the proliferative actions of bile acids is not clear. Studies from other laboratories indicate a paradoxical pro-apoptotic action of bile acids on cell culture lines. Our previous studies indicate that cholinergic agonist-induced proliferation of colon cancer cells that express M3 muscarinic receptors (M3R) is mediated by transactivation of the epidermal growth factor receptor (EGFR) and that bile acids stimulate proliferation of colon cancer cells that express M3R. In the present study, we investigated the effects of bile acids on cell signaling and proliferation of a human colon cancer cell line (H508 cells) that abundantly expresses M3R and EGFR. Treatment with taurine and glycine conjugates of lithocholic and deoxycholic acids stimulated reversible activation of the p44/42 MAP kinase signaling cascade and proliferation of H508 cells. Bile acids did not stimulate proliferation of SNU-C4 colon cancer cells that express EGFR but not muscarinic receptors. Atropine, a muscarinic receptor inverse agonist, blocked bile acid-induced H508 cell proliferation. At concentrations that stimulate cell proliferation, conjugated bile acids did not activate caspase-3, a key mediator of apoptosis. Conjugated bile acids stimulated phosphorylation of EGFR Tyr992, thereby implicating EGFR transactivation in the cellular mechanism underlying their proliferative actions. This was confirmed by observing that inhibitors of EGFR activation and antibodies to the ligand-binding domain of EGFR blocked both the signaling and proliferative actions of bile acids. Collectively, these results suggest that in this colon cancer cell line, bile acid-induced colon cancer cell proliferation is M3R-dependent and is mediated by transactivation of EGFR.
Collapse
Affiliation(s)
- Kunrong Cheng
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, 22 S. Green Street, N3W62 Baltimore, MD 21201, USA
| | | |
Collapse
|
24
|
Albright CD, da Costa KA, Craciunescu CN, Klem E, Mar MH, Zeisel SH. Regulation of choline deficiency apoptosis by epidermal growth factor in CWSV-1 rat hepatocytes. Cell Physiol Biochem 2005; 15:59-68. [PMID: 15665516 PMCID: PMC2424026 DOI: 10.1159/000083653] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 11/19/2022] Open
Abstract
Previous studies show that acute choline deficiency (CD) triggers apoptosis in cultured rat hepatocytes (CWSV-1 cells). We demonstrate that prolonged EGF stimulation (10 ng/mL x 48 hrs) restores cell proliferation, as assessed by BrdU labeling, and protects cells from CD-induced apoptosis, as assessed by TUNEL labeling and cleavage of poly(ADP-ribose) polymerase. However, EGF rescue was not accompanied by restoration of depleted intracellular concentrations of choline, glycerphosphocholine, phosphocholine, or phosphatidylcholine. In contrast, we show that EGF stimulation blocks apoptosis by restoring mitochondrial membrane potential (Delta Psi(m)), as determined using the potential-sensitive dye chloromethyl-X-rosamine, and by preventing the release and nuclear localization of cytochrome c. We investigated whether EGF rescue involves EGF receptor phosphorylation and activation of the down-stream cell survival factor Akt. Compared to cells in control medium (CT, 70 micromol choline x 48 hrs), cells in CD medium (5 micromol choline) were less sensitive to EGF-induced (0-300 ng/mL x 5 min) receptor tyrosine phosphorylation. Compared to cells in CT medium, cells in CD medium treated with EGF (10 ng/mL x 5 min) exhibited higher levels of phosphatidylinositol 3-kinase (PI3K)-dependent phosphorylation of AktSer473. Inactivation of PI3K was sufficient to block EGF-stimulated activation of Akt, restoration of mitochondrial Delta Psi(m), and prevention of cytochrome c release. These studies indicate that stimulation with EGF activates a cell survival response against CD-apoptosis by restoring mitochondrial membrane potential and preventing cytochrome c release and nuclear translocation which are mediated by activation of Akt in hepatocytes.
Collapse
Affiliation(s)
- Craig D Albright
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7461, USA
| | | | | | | | | | | |
Collapse
|
25
|
Doolittle ND, Abrey LE, Bleyer WA, Brem S, Davis TP, Dore-Duffy P, Drewes LR, Hall WA, Hoffman JM, Korfel A, Martuza R, Muldoon LL, Peereboom D, Peterson DR, Rabkin SD, Smith Q, Stevens GH, Neuwelt EA. New Frontiers in Translational Research in Neuro-oncology and the Blood-Brain Barrier: Report of the Tenth Annual Blood-Brain Barrier Disruption Consortium Meeting. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.421.11.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The blood-brain barrier (BBB) presents a major obstacle to the treatment of malignant brain tumors and other central nervous system (CNS) diseases. For this reason, a meeting partially funded by an NIH R13 grant was convened to discuss recent advances and future directions in translational research in neuro-oncology and the BBB. Cell biology and transport across the BBB, delivery of agents to the CNS, neuroimaging, angiogenesis, immunotherapy, and gene therapy, as well as glioma, primary CNS lymphoma, and metastases to the CNS were discussed. Transport across the BBB relates to the neurovascular unit, which consists not only of endothelial cells but also of pericyte, glia, and neuronal elements.
Collapse
Affiliation(s)
- Nancy D. Doolittle
- 1Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | - Lauren E. Abrey
- 2Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - W. Archie Bleyer
- 3Divisions of Pediatrics and Community Oncology, M.D. Anderson Cancer Center, Houston, Texas
| | - Steven Brem
- 4Department of Neuro-oncology and Neurosurgery, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Thomas P. Davis
- 5Department of Pharmacology, Program in Neurosciences and Physiological Sciences, University of Arizona Medical School, Tucson, Arizona
| | - Paula Dore-Duffy
- 6Department of Neurology, Wayne State University, Detroit, Michigan
| | - Lester R. Drewes
- 7Department of Biochemistry and Molecular Biology, University of Minnesota School of Medicine, Duluth, Minnesota
| | - Walter A. Hall
- 8Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - John M. Hoffman
- 9National Cancer Institute, Cancer Imaging Program, Bethesda, Maryland
| | - Agnieszka Korfel
- 10Department of Hematology, Oncology, and Transfusion Medicine, Charite Campus Benjamin Franklin, Berlin, Germany
| | - Robert Martuza
- 11Department of Neurosurgery, Massachusetts General Hospital Neurosurgical Service, Harvard Medical School, Boston, Massachusetts
| | - Leslie L. Muldoon
- 1Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | | | - Darryl R. Peterson
- 14Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois
| | - Samuel D. Rabkin
- 15Department of Neurosurgery, Massachusetts General Hospital-East Molecular Neurosurgery Laboratory, Harvard Medical School, Charlestown, Massachusetts; and
| | - Quentin Smith
- 16Department of Pharmaceutical Sciences, Texas Tech, Amarillo, Texas
| | - Glen H.J. Stevens
- 13Adult Neuro-oncology Brain Tumor Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Edward A. Neuwelt
- 1Department of Neurology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
26
|
Staverosky JA, Muldoon LL, Guo S, Evans AJ, Neuwelt EA, Clinton GM. Herstatin, an Autoinhibitor of the Epidermal Growth Factor (EGF) Receptor Family, Blocks the Intracranial Growth of Glioblastoma. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.335.11.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: Herstatin, an autoinhibitor of the epidermal growth factor (EGF) receptor family, was evaluated for efficacy against human glioblastoma in vitro and in vivo in a rat intracranial model.
Experimental Design: Glioblastoma controlled by EGF receptor (EGFR; U87MG) or by the truncated mutant, ΔEGFR (U87MG/Δ), were transfected with Herstatin and evaluated for in vitro and in vivo growth in nude rat brain. Cells treated with purified Herstatin in vitro were evaluated for growth and signal transduction.
Results: Herstatin expression prevented tumor formation by U87MG and purified Herstatin inhibited their growth in vitro in a dose-responsive fashion, whereas in vivo and in vitro growth of U87MG/Δ was resistant to Herstatin. Inhibition of U87MG growth correlated with suppressed EGF activation of EGFR and of Akt but not mitogen-activated protein kinase signaling pathways, whereas ΔEGFR activity and intracellular signaling in U87MG/Δ were unaffected by Herstatin treatment.
Conclusions: Herstatin may have utility against glioblastoma driven by the EGFR but not the mutant ΔEGFR. Blockade of Akt but not the mitogen-activated protein kinase signaling cascade appears to be critical for suppression of intracranial tumor growth.
Collapse
Affiliation(s)
| | | | - Shuhua Guo
- 1Biochemistry and Molecular Biology, Departments of
| | | | - Edward A. Neuwelt
- 2Neurology,
- 4Neurosurgery, Oregon Health &Science University and
- 5Veterans Administration Medical Center, Portland, Oregon
| | | |
Collapse
|
27
|
Yokoi K, Fidler IJ. Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res 2004; 10:2299-306. [PMID: 15073105 DOI: 10.1158/1078-0432.ccr-03-0488] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Hypoxia, frequently found in the center of solid tumor, is associated with resistance to chemotherapy by activation of signaling pathways that regulate cell pro-liferation, angiogenesis, and apoptosis. We determined whether hypoxia can increase the resistance of human pancreatic carcinoma cells to gemcitabine-induced apoptosis by activation of phosphatidylinositol 3'-kinase (PI3K)/Akt, MEK/mitogen-activated protein kinase (extracellular signal-regulated kinase) [MAPK(Erk) kinase (MEK)], and nuclear factor kappa B (NF-kappa B) signaling pathways. EXPERIMENTAL DESIGN We evaluated the phosphorylation of Akt and MAPK(Erk), DNA binding activity of NF-kappa B, and apoptosis induced by gemcitabine in L3.6pl human pancreatic cancer cells under normoxic and hypoxic conditions. We then examined the effects of the PI3K inhibitor LY294002, MEK inhibitor U0126, and the epidermal growth factor receptor tyrosine kinase inhibitor PKI 166 on these signaling pathways and induction of apoptosis. RESULTS Hypoxic conditions increased phosphorylation of Akt and MAPK(Erk) and NF-kappa B DNA binding activity in L3.6pl cells. The activation of Akt and NF-kappa B was prevented by LY294002, whereas the activity of MAPK(Erk), but not NF-kappa B, was inhibited by U0126. The increased activation of Akt, NF-kappa B, and MAPK(Erk) was inhibited by PKI 166. Under hypoxic conditions, L3.6pl cells were resistant to apoptosis induced by gemcitabine. The addition of LY294002 or PKI 166 abrogated cell resistance to gemcitabine, whereas U0126 only partially decreased this resistance. CONCLUSIONS These data demonstrate that hypoxia can induce resistance of pancreatic cancer cells to gemcitabine mainly through the PI3K/Akt/NF-kappa B pathways and partially through the MAPK(Erk) signaling pathway. Because PKI 166 prevented the activation of PI3K/Akt/NF-kappa B and MAPK(Erk) pathways, the combination of this tyrosine kinase inhibitor with gemcitabine should be an effective therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Kenji Yokoi
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
28
|
Shamieh LS, Evans AJ, Denton MC, Clinton GM. Receptor binding specificities of Herstatin and its intron 8-encoded domain. FEBS Lett 2004; 568:163-6. [PMID: 15196940 DOI: 10.1016/j.febslet.2004.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 05/05/2004] [Indexed: 10/26/2022]
Abstract
Retention of intron 8 in alternative HER-2 mRNA generates an inhibitory secreted ligand, Herstatin, with a novel receptor-binding domain (RBD) encoded by the intron. This study examines binding interactions with several receptors and investigates sequence variations in intron 8. The RBD, expressed as a peptide, binds at nM concentrations to HER-2, the EGFR, DeltaEGFR, HER-4 and to the IGF-1 receptor, but not to HER-3 nor to the FGF-3 receptor, whereas a rare mutation in the RBD (Arg to Ile) eliminates receptor binding. The full-length Herstatin binds with 3-4-fold higher affinity than its RBD, but with approximately 10-fold lower affinity to the IGF-IR. Sequence conservation in rhesus monkey but not in rat suggests that intron 8 recently diverged as a receptor-binding module critical for the function of Herstatin.
Collapse
Affiliation(s)
- Lara S Shamieh
- Oregon Health & Science University, Department of Biochemistry and Molecular Biology, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
29
|
Forrest ST, Barringhaus KG, Perlegas D, Hammarskjold ML, McNamara CA. Intron retention generates a novel Id3 isoform that inhibits vascular lesion formation. J Biol Chem 2004; 279:32897-903. [PMID: 15159391 DOI: 10.1074/jbc.m404882200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of intron-containing messages has been shown to occur in a variety of diseases including lactic acidosis, Cowden Syndrome, and several cancers. However, it is unknown whether these intron-containing messages result in protein production in vivo. Indeed, intron-containing RNAs are typically retained in the nucleus, targeted for degradation, or are repressed translationally. Here, we show that during vascular lesion formation in rats, an alternative isoform of the helix-loop-helix transcription factor Id3 (Id3a) generated by intron retention is abundantly expressed. We demonstrate that Id3 is expressed early in lesion formation when the proliferative index of the neointima is highest and that Id3 promotes smooth muscle cell (SMC) proliferation and S-phase entry and inhibits transcription of the cell-cycle inhibitor p21(Cip1). Using an Id3a-specific antibody developed by our laboratory, we show that Id3a protein is induced during vascular lesion formation and that Id3a expression peaks late when the proliferative index is low or declining and extensive apoptosis is observed. Furthermore, Id3a fails to promote SMC growth and S-phase entry or to inhibit p21(Cip1) promoter transactivation. In contrast, Id3a stimulates SMC apoptosis and inhibits endogenous Id3 production. Adenoviral delivery of Id3a inhibited lesion formation in balloon-injured rat carotid arteries in vivo. These data describe a novel feedback loop whereby intron retention generates an Id3 isoform that acts to limit SMC growth during vascular lesion formation, providing the first evidence that regulated intron retention can modulate a pathologic process in vivo.
Collapse
Affiliation(s)
- Scott T Forrest
- Cardiovascular Division, Department of Internal Medicine, and Cardiovascular Research Center, University of Virginia Health Sciences Center, Charlottesville, 22908, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Receptors of the EGF receptor or ErbB family of growth factor receptor tyrosine kinases are frequently overexpressed in a variety of solid tumours, and the aberrant activation of their tyrosine kinase activities is thought to contribute to tumour growth and progression. Much effort has been put into developing inhibitors of ErbB receptors, and both antibody and small-molecule approaches have exhibited clinical success. Recently, a number of endogenous negative regulatory proteins have been identified that suppress the signalling activity of ErbB receptors in cells. These include intracellular RING finger E3 ubiquitin ligases such as cbl and Nrdp1 that mediate ErbB receptor degradation, and may include a wide variety of secreted and transmembrane proteins that suppress receptor activation by growth factor ligands. It will be of interest to determine the extent to which tumour cells suppress these pathways to promote their progression, and whether restoration of endogenous receptor-negative regulatory pathways may be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- C Sweeney
- UC Davis Cancer Center, University of California, Research Building III, Room 1400, 4645 2nd Avenue, Davis, Sacramento CA 95817, USA.
| | | |
Collapse
|
31
|
Stove C, Stove V, Derycke L, Van Marck V, Mareel M, Bracke M. The heregulin/human epidermal growth factor receptor as a new growth factor system in melanoma with multiple ways of deregulation. J Invest Dermatol 2003; 121:802-12. [PMID: 14632199 DOI: 10.1046/j.1523-1747.2003.12522.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In a screening for new growth factors released by melanoma cells, we found that the p185-phosphorylating capacity of a medium conditioned by a melanoma cell line was due to the secretion of heregulin, a ligand for the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Expression of heregulin, including a new isoform, and secretion of functionally active protein was found in several cell lines. Receptor activation by heregulin, either autocrine or paracrine, resulted in a potent growth stimulation of both melanocytes and melanoma cells. Heregulin receptor HER3 and coreceptor HER2 were the main receptors expressed by these cells. Nevertheless, none of the cell lines in our panel overexpressed HER2 or HER3. In contrast, loss of HER3 was found in two cell lines, whereas one cell line showed loss of functional HER2, both types of deregulations resulting in unresponsiveness to heregulin. This implies the heregulin/HER system as a possible important physiologic growth regulatory system in melanocytes in which multiple deregulations may occur during progression toward melanoma, all resulting in, or indicating, growth factor independence.
Collapse
Affiliation(s)
- Christophe Stove
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Jhabvala-Romero F, Evans A, Guo S, Denton M, Clinton GM. Herstatin inhibits heregulin-mediated breast cancer cell growth and overcomes tamoxifen resistance in breast cancer cells that overexpress HER-2. Oncogene 2003; 22:8178-86. [PMID: 14603258 DOI: 10.1038/sj.onc.1206912] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ligands of the ErbB family of receptors and estrogens control the proliferation of breast cancer cells. Overexpression of human EGF receptor HER-2 (erbB2) leads to amplified heregulin (HRG) signaling, promoting more aggressive breast cancer that is nonresponsive to estrogen and the antiestrogenic drug tamoxifen. Herstatin (Hst), a secreted HER-2 gene product, binds to the HER-2 receptor ectodomain blocking receptor activation. The aim of this study was to investigate the impact of this HER-2 inhibitor on HRG-induced signaling, proliferation, and sensitivity to tamoxifen in breast cancer cells with and without HER-2 overexpression. The expression of Hst in MCF7 cells eliminated HRG signaling through both mitogen-activated protein kinase and Akt pathways and prevented HRG-mediated proliferation. The loss in signaling corresponded to downregulation of the HRG receptors, HER-3 and HER-4, whereas HER-2 overexpression strongly stimulated the levels of both HRG receptors. Although Hst blocked HRG signaling in both parental and HER-2 transfected cells, it enhanced sensitivity to tamoxifen only in the MCF7 cells that overexpressed HER-2. To evaluate further the efficacy of Hst as an anticancer agent, His-tagged Hst was expressed in transfected insect cells, purified, and added to the breast cancer cells. As in the transfected cells, purified Hst inhibited HER-3 levels and suppressed HRG-induced proliferation of MCF7 and BT474 breast cancer cells. In contrast, the HER-2 monoclonal antibody, herceptin, downregulated HER-2, but not HER-3. These results suggest the potential use of Hst against HRG-mediated growth of breast cancers with high and low levels of HER-2 and against tamoxifen resistance in HER-2 overexpressing breast cancer.
Collapse
Affiliation(s)
- Farida Jhabvala-Romero
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
33
|
McDonald JA, Camenisch TD. Hyaluronan: genetic insights into the complex biology of a simple polysaccharide. Glycoconj J 2002; 19:331-9. [PMID: 12975613 DOI: 10.1023/a:1025369004783] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is appropriate that this review should appear in a volume dedicated to Mert Bernfield. Much of my interest in the cell biology of the extracellular matrix, particularly during development, echoes Mert's pioneering studies. His kind but provocative questioning during meetings is especially missed. The glycosaminoglycan hyaluronan is ubiquitous, and is especially abundant during embryogenesis. Hydrated matrices rich in hyaluronan expand the extracellular space, facilitating cell migration. The viscoelastic properties of hyaluronan are also essential for proper function of cartilage and joints. Recent understanding of hyaluronan biology has benefited from the identification of genes encoding hyaluronan synthases and hyaluronidases, genetic analysis of the roles of hyaluronan during development, elucidation of the biochemical mechanisms of hyaluronan synthesis, and by studies of human genetics and tumors. This review focuses on recent studies utilizing hyaluronan-deficient, gene targeted mice with null alleles for the principal source of hyaluronan during mid-gestation, hyaluronan synthase-2 (has-2).
Collapse
Affiliation(s)
- John A McDonald
- Department of Internal Medicine, Salt Lake City Veterans Administration Health Care System and University of Utah, 500 Foothill Drive, Salt Lake City, UT 84148, USA.
| | | |
Collapse
|