1
|
Preliminary Structure-Activity Relationship Study of the MMV Pathogen Box Compound MMV675968 (2,4-Diaminoquinazoline) Unveils Novel Inhibitors of Trypanosoma brucei brucei. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196574. [PMID: 36235118 PMCID: PMC9571290 DOI: 10.3390/molecules27196574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4–72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.
Collapse
|
2
|
Sankar TV, Saharay M, Santhosh D, Vishwakarma A, Padmasree K. Structural and Biophysical Characterization of Purified Recombinant Arabidopsis thaliana's Alternative Oxidase 1A (rAtAOX1A): Interaction With Inhibitor(s) and Activator. FRONTIERS IN PLANT SCIENCE 2022; 13:871208. [PMID: 35783971 PMCID: PMC9243770 DOI: 10.3389/fpls.2022.871208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/27/2022] [Indexed: 05/14/2023]
Abstract
In higher plants, alternative oxidase (AOX) participates in a cyanide resistant and non-proton motive electron transport pathway of mitochondria, diverging from the ubiquinone pool. The physiological significance of AOX in biotic/abiotic stress tolerance is well-documented. However, its structural and biophysical properties are poorly understood as its crystal structure is not yet revealed in plants. Also, most of the AOX purification processes resulted in a low yield/inactive/unstable form of native AOX protein. The present study aims to characterize the purified rAtAOX1A protein and its interaction with inhibitors, such as salicylhydroxamic acid (SHAM) and n-propyl gallate (n-PG), as well as pyruvate (activator), using biophysical/in silico studies. The rAtAOX1A expressed in E. coli BL21(DE3) cells was functionally characterized by monitoring the respiratory and growth sensitivity of E. coli/pAtAOX1A and E. coli/pET28a to classical mitochondrial electron transport chain (mETC) inhibitors. The rAtAOX1A, which is purified through affinity chromatography and confirmed by western blotting and MALDI-TOF-TOF studies, showed an oxygen uptake activity of 3.86 μmol min-1 mg-1 protein, which is acceptable in non-thermogenic plants. Circular dichroism (CD) studies of purified rAtAOX1A revealed that >50% of the protein content was α-helical and retained its helical absorbance signal (ellipticity) at a wide range of temperature and pH conditions. Further, interaction with SHAM, n-PG, or pyruvate caused significant changes in its secondary structural elements while retaining its ellipticity. Surface plasmon resonance (SPR) studies revealed that both SHAM and n-PG bind reversibly to rAtAOX1A, while docking studies revealed that they bind to the same hydrophobic groove (Met191, Val192, Met195, Leu196, Phe251, and Phe255), to which Duroquinone (DQ) bind in the AtAOX1A. In contrast, pyruvate binds to a pocket consisting of Cys II (Arg174, Tyr175, Gly176, Cys177, Val232, Ala233, Asn294, and Leu313). Further, the mutational docking studies suggest that (i) the Met195 and Phe255 of AtAOX1A are the potential candidates to bind the inhibitor. Hence, this binding pocket could be a 'potential gateway' for the oxidation-reduction process in AtAOX1A, and (ii) Arg174, Gly176, and Cys177 play an important role in binding to the organic acids like pyruvate.
Collapse
Affiliation(s)
- Tadiboina Veera Sankar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dharawath Santhosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Abhaypratap Vishwakarma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Botany, Deshbandhu College, University of Delhi, New Delhi, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
- *Correspondence: Kollipara Padmasree
| |
Collapse
|
3
|
Ebiloma GU, Balogun EO, Cueto-Díaz EJ, de Koning HP, Dardonville C. Alternative oxidase inhibitors: Mitochondrion-targeting as a strategy for new drugs against pathogenic parasites and fungi. Med Res Rev 2019; 39:1553-1602. [PMID: 30693533 DOI: 10.1002/med.21560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
The alternative oxidase (AOX) is a ubiquitous terminal oxidase of plants and many fungi, catalyzing the four-electron reduction of oxygen to water alongside the cytochrome-based electron transfer chain. Unlike the classical electron transfer chain, however, the activity of AOX does not generate adenosine triphosphate but has functions such as thermogenesis and stress response. As it lacks a mammalian counterpart, it has been investigated intensely in pathogenic fungi. However, it is in African trypanosomes, which lack cytochrome-based respiration in their infective stages, that trypanosome alternative oxidase (TAO) plays the central and essential role in their energy metabolism. TAO was validated as a drug target decades ago and among the first inhibitors to be identified was salicylhydroxamic acid (SHAM), which produced the expected trypanocidal effects, especially when potentiated by coadministration with glycerol to inhibit anaerobic energy metabolism as well. However, the efficacy of this combination was too low to be of practical clinical use. The antibiotic ascofuranone (AF) proved a much stronger TAO inhibitor and was able to cure Trypanosoma vivax infections in mice without glycerol and at much lower doses, providing an important proof of concept milestone. Systematic efforts to improve the SHAM and AF scaffolds, aided with the elucidation of the TAO crystal structure, provided detailed structure-activity relationship information and reinvigorated the drug discovery effort. Recently, the coupling of mitochondrion-targeting lipophilic cations to TAO inhibitors has dramatically improved drug targeting and trypanocidal activity while retaining target protein potency. These developments appear to have finally signposted the way to preclinical development of TAO inhibitors.
Collapse
Affiliation(s)
- Godwin U Ebiloma
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emmanuel O Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
4
|
Abstract
SUMMARYNew drugs against Trypanosoma brucei, the causative agent of Human African Trypanosomiasis, are urgently needed to replace the highly toxic and largely ineffective therapies currently used. The trypanosome alternative oxidase (TAO) is an essential and unique mitochondrial protein in these parasites and is absent from mammalian mitochondria, making it an attractive drug target. The structure and function of the protein are now well characterized, with several inhibitors reported in the literature, which show potential as clinical drug candidates. In this review, we provide an update on the functional activity and structural aspects of TAO. We then discuss TAO inhibitors reported to date, problems encountered with in vivo testing of these compounds, and discuss the future of TAO as a therapeutic target.
Collapse
|
5
|
Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr 2016; 48:509-520. [PMID: 27816999 DOI: 10.1007/s10863-016-9685-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.
Collapse
|
6
|
Wang D, Fu A. The Plastid Terminal Oxidase is a Key Factor Balancing the Redox State of Thylakoid Membrane. Enzymes 2016; 40:143-171. [PMID: 27776780 DOI: 10.1016/bs.enz.2016.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Mitochondria possess oxygen-consuming respiratory electron transfer chains (RETCs), and the oxygen-evolving photosynthetic electron transfer chain (PETC) resides in chloroplasts. Evolutionarily mitochondria and chloroplasts are derived from ancient α-proteobacteria and cyanobacteria, respectively. However, cyanobacteria harbor both RETC and PETC on their thylakoid membranes. It is proposed that chloroplasts could possess a RETC on the thylakoid membrane, in addition to PETC. Identification of a plastid terminal oxidase (PTOX) in the chloroplast from the Arabidopsis variegation mutant immutans (im) demonstrated the presence of a RETC in chloroplasts, and the PTOX is the committed oxidase. PTOX is distantly related to the mitochondrial alternative oxidase (AOX), which is responsible for the CN-insensitive alternative RETC. Similar to AOX, an ubiquinol (UQH2) oxidase, PTOX is a plastoquinol (PQH2) oxidase on the chloroplast thylakoid membrane. Lack of PTOX, Arabidopsis im showed a light-dependent variegation phenotype; and mutant plants will not survive the mediocre light intensity during its early development stage. PTOX is very important for carotenoid biosynthesis, since the phytoene desaturation, a key step in the carotenoid biosynthesis, is blocked in the white sectors of Arabidopsis im mutant. PTOX is found to be a stress-related protein in numerous research instances. It is generally believed that PTOX can protect plants from various environmental stresses, especially high light stress. PTOX also plays significant roles in chloroplast development and plant morphogenesis. Global physiological roles played by PTOX could be a direct or indirect consequence of its PQH2 oxidase activity to maintain the PQ pool redox state on the thylakoid membrane. The PTOX-dependent chloroplast RETC (so-called chlororespiration) does not contribute significantly when chloroplast PETC is normally developed and functions well. However, PTOX-mediated RETC could be the major force to regulate the PQ pool redox balance in the darkness, under conditions of stress, in nonphotosynthetic plastids, especially in the early development from proplastids to chloroplasts.
Collapse
Affiliation(s)
- D Wang
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - A Fu
- The Key Laboratory of Western Resources Biology and Biological Technology, College of Life Sciences, Northwest University, Xian, China; Shaanxi Province Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China.
| |
Collapse
|
7
|
|
8
|
Pennisi R, Salvi D, Brandi V, Angelini R, Ascenzi P, Polticelli F. Molecular Evolution of Alternative Oxidase Proteins: A Phylogenetic and Structure Modeling Approach. J Mol Evol 2016; 82:207-18. [PMID: 27090422 DOI: 10.1007/s00239-016-9738-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/06/2016] [Indexed: 11/30/2022]
Abstract
Alternative oxidases (AOXs) are mitochondrial cyanide-resistant membrane-bound metallo-proteins catalyzing the oxidation of ubiquinol and the reduction of oxygen to water bypassing two sites of proton pumping, thus dissipating a major part of redox energy into heat. Here, the structure of Arabidopsis thaliana AOX 1A has been modeled using the crystal structure of Trypanosoma brucei AOX as a template. Analysis of this model and multiple sequence alignment of members of the AOX family from all kingdoms of Life indicate that AOXs display a high degree of conservation of the catalytic core, which is formed by a four-α-helix bundle, hosting the di-iron catalytic site, and is flanked by two additional α-helices anchoring the protein to the membrane. Plant AOXs display a peculiar covalent dimerization mode due to the conservation in the N-terminal region of a Cys residue forming the inter-monomer disulfide bond. The multiple sequence alignment has also been used to infer a phylogenetic tree of AOXs whose analysis shows a polyphyletic origin for the AOXs found in Fungi and a monophyletic origin of the AOXs of Eubacteria, Mycetozoa, Euglenozoa, Metazoa, and Land Plants. This suggests that AOXs evolved from a common ancestral protein in each of these kingdoms. Within the Plant AOX clade, the AOXs of monocotyledon plants form two distinct clades which have unresolved relationships relative to the monophyletic clade of the AOXs of dicotyledonous plants. This reflects the sequence divergence of the N-terminal region, probably due to a low selective pressure for sequence conservation linked to the covalent homo-dimerization mode.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Daniele Salvi
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Riccardo Angelini
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy. .,National Institute of Nuclear Physics, Roma Tre Section, 00146, Rome, Italy.
| |
Collapse
|
9
|
Campos MD, Nogales A, Cardoso HG, Kumar SR, Nobre T, Sathishkumar R, Arnholdt-Schmitt B. Stress-Induced Accumulation of DcAOX1 and DcAOX2a Transcripts Coincides with Critical Time Point for Structural Biomass Prediction in Carrot Primary Cultures (Daucus carota L.). Front Genet 2016; 7:1. [PMID: 26858746 PMCID: PMC4731517 DOI: 10.3389/fgene.2016.00001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/07/2016] [Indexed: 11/18/2022] Open
Abstract
Stress-adaptive cell plasticity in target tissues and cells for plant biomass growth is important for yield stability. In vitro systems with reproducible cell plasticity can help to identify relevant metabolic and molecular events during early cell reprogramming. In carrot, regulation of the central root meristem is a critical target for yield-determining secondary growth. Calorespirometry, a tool previously identified as promising for predictive growth phenotyping has been applied to measure the respiration rate in carrot meristem. In a carrot primary culture system (PCS), this tool allowed identifying an early peak related with structural biomass formation during lag phase of growth, around the 4th day of culture. In the present study, we report a dynamic and correlated expression of carrot AOX genes (DcAOX1 and DcAOX2a) during PCS lag phase and during exponential growth. Both genes showed an increase in transcript levels until 36 h after explant inoculation, and a subsequent down-regulation, before the initiation of exponential growth. In PCS growing at two different temperatures (21°C and 28°C), DcAOX1 was also found to be more expressed in the highest temperature. DcAOX genes' were further explored in a plant pot experiment in response to chilling, which confirmed the early AOX transcript increase prior to the induction of a specific anti-freezing gene. Our findings point to DcAOX1 and DcAOX2a as being reasonable candidates for functional marker development related to early cell reprogramming. While the genomic sequence of DcAOX2a was previously described, we characterize here the complete genomic sequence of DcAOX1.
Collapse
Affiliation(s)
- M. Doroteia Campos
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Amaia Nogales
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Hélia G. Cardoso
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Sarma R. Kumar
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
- Molecular Plant Biology and Biotechnology Division, Council of Scientific and Industrial Research–Central Institute of Medicinal and Aromatic Plants Research CentreBangalore, India
| | - Tânia Nobre
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar UniversityCoimbatore, India
| | - Birgit Arnholdt-Schmitt
- EU Marie Curie Chair, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, IIFA-Instituto de Formação e Investigação Avançada, Universidade de ÉvoraÉvora, Portugal
| |
Collapse
|
10
|
Diiron centre mutations in Ciona intestinalis alternative oxidase abolish enzymatic activity and prevent rescue of cytochrome oxidase deficiency in flies. Sci Rep 2015; 5:18295. [PMID: 26672986 PMCID: PMC4682143 DOI: 10.1038/srep18295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial alternative oxidase, AOX, carries out the non proton-motive re-oxidation of ubiquinol by oxygen in lower eukaryotes, plants and some animals. Here we created a modified version of AOX from Ciona instestinalis, carrying mutations at conserved residues predicted to be required for chelation of the diiron prosthetic group. The modified protein was stably expressed in mammalian cells or flies, but lacked enzymatic activity and was unable to rescue the phenotypes of flies knocked down for a subunit of cytochrome oxidase. The mutated AOX transgene is thus a potentially useful tool in studies of the physiological effects of AOX expression.
Collapse
|
11
|
Basu S, Horáková E, Lukeš J. Iron-associated biology of Trypanosoma brucei. Biochim Biophys Acta Gen Subj 2015; 1860:363-70. [PMID: 26523873 DOI: 10.1016/j.bbagen.2015.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Every eukaryote requires iron, which is also true for the parasitic protist Trypanosoma brucei, the causative agent of sleeping sickness in humans and nagana in cattle. T. brucei undergoes a complex life cycle during which its single mitochondrion is subject to major metabolic and morphological changes. SCOPE OF REVIEW This review covers what is known about processes associated with iron-sulfur clusters and heme metabolism in T. brucei. We discuss strategies by which iron and heme are acquired and utilized by this model parasite, emphasizing the differences between its two life cycle stages residing in the bloodstream of the mammalian host and gut of the insect vector. Finally, the role of iron in the host-parasite interactions is discussed along with their possible exploitation in fighting these deadly parasites. MAJOR CONCLUSIONS The processes associated with acquisition and utilization of iron, distinct in the two life stages of T. brucei, are fine tuned for the dramatically different host environment occupied by them. Although the composition and compartmentalization of the iron-sulfur cluster assembly seem to be conserved, some unique features of the iron acquisition strategies may be exploited for medical interventions against these parasites. GENERAL SIGNIFICANCE As early-branching protists, trypanosomes and related flagellates are known to harbor an array of unique features, with the acquisition of iron being another peculiarity. Thanks to intense research within the last decade, understanding of iron-sulfur cluster assembly and iron metabolism in T. brucei is among the most advanced of all eukaryotes.
Collapse
Affiliation(s)
- Somsuvro Basu
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Institut für Zytobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
12
|
The alternative oxidases: simple oxidoreductase proteins with complex functions. Biochem Soc Trans 2014; 41:1305-11. [PMID: 24059524 DOI: 10.1042/bst20130073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The alternative oxidases are membrane-bound monotopic terminal electron transport proteins found in all plants and in some agrochemically important fungi and parasites including Trypansoma brucei, which is the causative agent of trypanosomiasis. They are integral membrane proteins and reduce oxygen to water in a four electron process. The recent elucidation of the crystal structure of the trypanosomal alternative oxidase at 2.85 Å (1 Å=0.1 nm) has revealed salient structural features necessary for its function. In the present review we compare the primary and secondary ligation spheres of the alternative oxidases with other di-iron carboxylate proteins and propose a mechanism for the reduction of oxygen to water.
Collapse
|
13
|
Purification and characterisation of recombinant DNA encoding the alternative oxidase from Sauromatum guttatum. Mitochondrion 2014; 19 Pt B:261-8. [PMID: 24632469 DOI: 10.1016/j.mito.2014.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 11/21/2022]
Abstract
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. Structural and functional characterisation of this important but enigmatic plant diiron protein has been hampered by an inability to obtain sufficient native protein from plant sources. In the present study recombinant SgAOX (rSgAOX), overexpressed in a ΔhemA-deficient Escherichia coli strain (FN102), was solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. The kinetics of ubiquinol-1 oxidation by purified rSgAOX showed typical Michaelis-Menten kinetics (K(m) of 332 μM and Vmax of 30 μmol(-1) min(-1) mg(-1)), a turnover number 20 μmol s(-1) and a remarkable stability. The enzyme was potently inhibited not only by conventional inhibitors such as SHAM and n-propyl gallate but also by the potent TAO inhibitors ascofuranone, an ascofuranone-derivative colletochlorin B and the cytochrome bc1 inhibitor ascochlorin. Circular dichroism studies revealed that AOX was approximately 50% α-helical and furthermore such studies revealed that rSgAOX and rTAO partially retained the helical absorbance signal even at 90 °C (58% and 64% respectively) indicating a high conformational stability. It is anticipated that highly purified and active AOX and its mutants will facilitate investigations into the structure and reaction mechanisms of AOXs through the provision of large amounts of purified protein for crystallography and contribute to further progress of the study on this important plant terminal oxidase.
Collapse
|
14
|
Young L, May B, Pendlebury-Watt A, Shearman J, Elliott C, Albury MS, Shiba T, Inaoka DK, Harada S, Kita K, Moore AL. Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1219-25. [PMID: 24530866 DOI: 10.1016/j.bbabio.2014.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 11/16/2022]
Abstract
In the present paper we have investigated the effect of mutagenesis of a number of highly conserved residues (R159, D163, L177 and L267) which we have recently shown to line the hydrophobic inhibitor/substrate cavity in the alternative oxidases (AOXs). Measurements of respiratory activity in rSgAOX expressed in Escherichia coli FN102 membranes indicate that all mutants result in a decrease in maximum activity of AOX and in some cases (D163 and L177) a decrease in the apparent Km (O2). Of particular importance was the finding that when the L177 and L267 residues, which appear to cause a bottleneck in the hydrophobic cavity, are mutated to alanine the sensitivity to AOX antagonists is reduced. When non-AOX anti-malarial inhibitors were also tested against these mutants widening the bottleneck through removal of isobutyl side chain allowed access of these bulkier inhibitors to the active-site and resulted in inhibition. Results are discussed in terms of how these mutations have altered the way in which the AOX's catalytic cycle is controlled and since maximum activity is decreased we predict that such mutations result in an increase in the steady state level of at least one O2-derived AOX intermediate. Such mutations should therefore prove to be useful in future stopped-flow and electron paramagnetic resonance experiments in attempts to understand the catalytic cycle of the alternative oxidase which may prove to be important in future rational drug design to treat diseases such as trypanosomiasis. Furthermore since single amino acid mutations in inhibitor/substrate pockets have been found to be the cause of multi-drug resistant strains of malaria, the decrease in sensitivity to main AOX antagonists observed in the L-mutants studied in this report suggests that an emergence of drug resistance to trypanosomiasis may also be possible. Therefore we suggest that the design of future AOX inhibitors should have structures that are less reliant on the orientation by the two-leucine residues. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Luke Young
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Benjamin May
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Alice Pendlebury-Watt
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Julia Shearman
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Catherine Elliott
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mary S Albury
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Anthony L Moore
- Biochemistry and Molecular Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
15
|
Okamoto Y, Onoda A, Sugimoto H, Takano Y, Hirota S, Kurtz DM, Shiro Y, Hayashi T. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin. Inorg Chem 2013; 52:13014-20. [PMID: 24187962 DOI: 10.1021/ic401632x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A nonheme diiron active site in a 13 kDa hemerythrin-like domain of the bacterial chemotaxis protein DcrH-Hr contains an oxo bridge, two bridging carboxylate groups from Glu and Asp residues, and five terminally ligated His residues. We created a unique diiron coordination sphere containing five His and three Glu/Asp residues by replacing an Ile residue with Glu in DcrH-Hr. Direct coordination of the carboxylate group of E119 to Fe2 of the diiron site in the I119E variant was confirmed by X-ray crystallography. The substituted Glu is adjacent to an exogenous ligand-accessible tunnel. UV-vis absorption spectra indicate that the additional coordination of E119 inhibits the binding of the exogenous ligands azide and phenol to the diiron site. The extent of azide binding to the diiron site increases at pH ≤ 6, which is ascribed to protonation of the carboxylate ligand of E119. The diferrous state (deoxy form) of the engineered diiron site with the extra Glu residue is found to react more slowly than wild type with O2 to yield the diferric state (met form). The additional coordination of E119 to the diiron site also slows the rate of reduction from the met form. All these processes were found to be pH-dependent, which can be attributed to protonation state and coordination status of the E119 carboxylate. These results demonstrate that modifications of the endogenous coordination sphere can produce significant changes in the ligand binding and redox properties in a prototypical nonheme diiron-carboxylate protein active site.
Collapse
Affiliation(s)
- Yasunori Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Balogun EO, Inaoka DK, Shiba T, Kido Y, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Michels PA, Harada S, Kita K. Biochemical characterization of highly active Trypanosoma brucei gambiense glycerol kinase, a promising drug target. J Biochem 2013; 154:77-84. [DOI: 10.1093/jb/mvt037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Shiba T, Kido Y, Sakamoto K, Inaoka DK, Tsuge C, Tatsumi R, Takahashi G, Balogun EO, Nara T, Aoki T, Honma T, Tanaka A, Inoue M, Matsuoka S, Saimoto H, Moore AL, Harada S, Kita K. Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc Natl Acad Sci U S A 2013; 110:4580-5. [PMID: 23487766 PMCID: PMC3607012 DOI: 10.1073/pnas.1218386110] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to haem copper oxidases, all higher plants, some algae, yeasts, molds, metazoans, and pathogenic microorganisms such as Trypanosoma brucei contain an additional terminal oxidase, the cyanide-insensitive alternative oxidase (AOX). AOX is a diiron carboxylate protein that catalyzes the four-electron reduction of dioxygen to water by ubiquinol. In T. brucei, a parasite that causes human African sleeping sickness, AOX plays a critical role in the survival of the parasite in its bloodstream form. Because AOX is absent from mammals, this protein represents a unique and promising therapeutic target. Despite its bioenergetic and medical importance, however, structural features of any AOX are yet to be elucidated. Here we report crystal structures of the trypanosomal alternative oxidase in the absence and presence of ascofuranone derivatives. All structures reveal that the oxidase is a homodimer with the nonhaem diiron carboxylate active site buried within a four-helix bundle. Unusually, the active site is ligated solely by four glutamate residues in its oxidized inhibitor-free state; however, inhibitor binding induces the ligation of a histidine residue. A highly conserved Tyr220 is within 4 Å of the active site and is critical for catalytic activity. All structures also reveal that there are two hydrophobic cavities per monomer. Both inhibitors bind to one cavity within 4 Å and 5 Å of the active site and Tyr220, respectively. A second cavity interacts with the inhibitor-binding cavity at the diiron center. We suggest that both cavities bind ubiquinol and along with Tyr220 are required for the catalytic cycle for O2 reduction.
Collapse
Affiliation(s)
- Tomoo Shiba
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Yasutoshi Kido
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | | | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Ryoko Tatsumi
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| | - Gen Takahashi
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, and
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Aoki
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Yokohama 230-0045, Japan;
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeru Matsuoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; and
| | - Anthony L. Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, and
| |
Collapse
|
18
|
Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Unraveling the heater: new insights into the structure of the alternative oxidase. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:637-63. [PMID: 23638828 DOI: 10.1146/annurev-arplant-042811-105432] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The alternative oxidase is a membrane-bound ubiquinol oxidase found in the majority of plants as well as many fungi and protists, including pathogenic organisms such as Trypanosoma brucei. It catalyzes a cyanide- and antimycin-A-resistant oxidation of ubiquinol and the reduction of oxygen to water, short-circuiting the mitochondrial electron-transport chain prior to proton translocation by complexes III and IV, thereby dramatically reducing ATP formation. In plants, it plays a key role in cellular metabolism, thermogenesis, and energy homeostasis and is generally considered to be a major stress-induced protein. We describe recent advances in our understanding of this protein's structure following the recent successful crystallization of the alternative oxidase from T. brucei. We focus on the nature of the active site and ubiquinol-binding channels and propose a mechanism for the reduction of oxygen to water based on these structural insights. We also consider the regulation of activity at the posttranslational and retrograde levels and highlight challenges for future research.
Collapse
Affiliation(s)
- Anthony L Moore
- Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
19
|
cDNA cloning and expression analysis of a putative alternative oxidase HsAOX1 from wild barley (Hordeum spontaneum). Genes Genomics 2012. [DOI: 10.1007/s13258-011-0164-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Albury MS, Elliott C, Moore AL. Ubiquinol-binding site in the alternative oxidase: Mutagenesis reveals features important for substrate binding and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1933-9. [DOI: 10.1016/j.bbabio.2010.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 11/16/2022]
|
21
|
Crichton PG, Albury MS, Affourtit C, Moore AL. Mutagenesis of the Sauromatum guttatum alternative oxidase reveals features important for oxygen binding and catalysis. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:732-7. [PMID: 20026041 DOI: 10.1016/j.bbabio.2009.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/10/2009] [Accepted: 12/14/2009] [Indexed: 11/19/2022]
Abstract
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. To investigate the role of highly conserved amino acid residues in catalysis we have expressed site-directed mutants of Cys-172, Thr-179, Trp-206, Tyr-253, and Tyr-299 in AOX in the yeast Schizosaccharomyces pombe. Assessment of AOX activity in isolated yeast mitochondria reveals that mutagenesis of Trp-206 to phenylalanine or tyrosine abolishes activity, in contrast to that observed with either Tyr-253 or 299 both mutants of which retained activity. None of the mutants exhibited sensitivity to Q-like inhibitors that differed significantly from the wild type AOX. Interestingly, however, mutagenesis of Thr-179 or Cys-172 (a residue implicated in AOX regulation by alpha-keto acids) to alanine not only resulted in a decrease of maximum AOX activity but also caused a significant increase in the enzyme's affinity for oxygen (4- and 2-fold, respectively). These results provide important new insights in the mechanism of AOX catalysis and regulation by pyruvate.
Collapse
Affiliation(s)
- Paul G Crichton
- Department of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
22
|
Kido Y, Sakamoto K, Nakamura K, Harada M, Suzuki T, Yabu Y, Saimoto H, Yamakura F, Ohmori D, Moore A, Harada S, Kita K. Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:443-50. [DOI: 10.1016/j.bbabio.2009.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/23/2009] [Accepted: 12/25/2009] [Indexed: 10/20/2022]
|
23
|
Abstract
Iron is almost ubiquitous in living organisms due to the utility of its redox chemistry. It is also dangerous as it can catalyse the formation of reactive free radicals - a classical double-edged sword. In this review, we examine the uptake and usage of iron by trypanosomatids and discuss how modulation of host iron metabolism plays an important role in the protective response. Trypanosomatids require iron for crucial processes including DNA replication, antioxidant defence, mitochondrial respiration, synthesis of the modified base J and, in African trypanosomes, the alternative oxidase. The source of iron varies between species. Bloodstream-form African trypanosomes acquire iron from their host by uptake of transferrin, and Leishmania amazonensis expresses a ZIP family cation transporter in the plasma membrane. In other trypanosomatids, iron uptake has been poorly characterized. Iron-withholding responses by the host can be a major determinant of disease outcome. Their role in trypanosomatid infections is becoming apparent. For example, the cytosolic sequestration properties of NRAMP1, confer resistance against leishmaniasis. Conversely, cytoplasmic sequestration of iron may be favourable rather than detrimental to Trypanosoma cruzi. The central role of iron in both parasite metabolism and the host response is attracting interest as a possible point of therapeutic intervention.
Collapse
|
24
|
Albury MS, Elliott C, Moore AL. Towards a structural elucidation of the alternative oxidase in plants. PHYSIOLOGIA PLANTARUM 2009; 137:316-27. [PMID: 19719482 DOI: 10.1111/j.1399-3054.2009.01270.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In addition to the conventional cytochrome c oxidase, mitochondria of all plants studied to date contain a second cyanide-resistant terminal oxidase or alternative oxidase (AOX). The AOX is located in the inner mitochondrial membrane and branches from the cytochrome pathway at the level of the quinone pool. It is non-protonmotive and couples the oxidation of ubiquinone to the reduction of oxygen to water. For many years, the AOX was considered to be confined to plants, fungi and a small number of protists. Recently, it has become apparent that the AOX occurs in wide range of organisms including prokaryotes and a moderate number of animal species. In this paper, we provide an overview of general features and current knowledge available about the AOX with emphasis on structure, the active site and quinone-binding site. Characterisation of the AOX has advanced considerably over recent years with information emerging about the role of the protein, regulatory regions and functional sites. The large number of sequences available is now enabling us to obtain a clearer picture of evolutionary origins and diversity.
Collapse
Affiliation(s)
- Mary S Albury
- Division of Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN19QG, UK
| | | | | |
Collapse
|
25
|
McDonald AE. Alternative oxidase: what information can protein sequence comparisons give us? PHYSIOLOGIA PLANTARUM 2009; 137:328-341. [PMID: 19493309 DOI: 10.1111/j.1399-3054.2009.01242.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The finding that alternative oxidase (AOX) is present in most kingdoms of life has resulted in a large number of AOX sequences that are available for analyses. Multiple sequence alignments of AOX proteins from evolutionarily divergent organisms represent a valuable tool and can be used to identify amino acids and domains that may play a role in catalysis, membrane association and post-translational regulation, especially when these data are coupled with the structural model for the enzyme. I validate the use of this approach by demonstrating that it detects the conserved glutamate and histidine residues in AOX that initially led to its identification as a di-iron carboxylate protein and the generation of a structural model for the protein. A comparative analysis using a larger dataset identified 35 additional amino acids that are conserved in all AOXs examined, 30 of which have not been investigated to date. I hypothesize that these residues will be involved in the quinol terminal oxidase activity or membrane association of AOX. Major differences in AOX protein sequences between kingdoms are revealed, and it is hypothesized that two angiosperm-specific domains may be responsible for the non-covalent dimerization of AOX, whereas two indels in the aplastidic AOXs may play a role in their post-translational regulation. A scheme for predicting whether a particular AOX protein will be recognized by the alternative oxidase monoclonal antibody generated against the AOX of Sauromatum guttatum (Voodoo lily) is presented. The number of functional sites in AOX is greater than expected, and determining the structure of AOX will prove extremely valuable to future research.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N., London, Ontario N6A5B7, Canada.
| |
Collapse
|
26
|
Maréchal A, Kido Y, Kita K, Moore AL, Rich PR. Three redox states of Trypanosoma brucei alternative oxidase identified by infrared spectroscopy and electrochemistry. J Biol Chem 2009; 284:31827-33. [PMID: 19767647 DOI: 10.1074/jbc.m109.059980] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm(-1) that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water.
Collapse
Affiliation(s)
- Amandine Maréchal
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Fu A, Aluru M, Rodermel SR. Conserved active site sequences in Arabidopsis plastid terminal oxidase (PTOX): in vitro and in planta mutagenesis studies. J Biol Chem 2009; 284:22625-32. [PMID: 19542226 PMCID: PMC2755669 DOI: 10.1074/jbc.m109.017905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/16/2009] [Indexed: 11/06/2022] Open
Abstract
The plastid terminal oxidase (PTOX) is distantly related to the mitochondrial alternative oxidase (AOX). Both are members of the diiron carboxylate quinol oxidase (DOX) class of proteins. PTOX and AOX contain 20 highly conserved amino acids, six of which are Fe-binding ligands. We have previously used in vitro and in planta activity assays to examine the functional importance of the Fe-binding sites. In this report, we conduct alanine-scanning mutagenesis on the 14 other conserved sites using our in vitro and in planta assay procedures. We found that the 14 sites fall into three classes: (i) Ala-139, Pro-142, Glu-171, Asn-174, Leu-179, Pro-216, Ala-230, Asp-287, and Arg-293 are dispensable for activity; (ii) Tyr-234 and Asp-295 are essential for activity; and (iii) Leu-135, His-151, and Tyr-212 are important but not essential for activity. Our data are consistent with the proposed role of some of these residues in active site conformation, substrate binding, and/or catalysis. Titration experiments showed that down-regulation of PTOX to approximately 3% of wild-type levels did not compromise plant growth, at least under ambient growth conditions. This suggests that PTOX is normally in excess, especially early in thylakoid membrane biogenesis.
Collapse
Affiliation(s)
- Aigen Fu
- From the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Maneesha Aluru
- From the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Steven R. Rodermel
- From the Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
28
|
Moore AL, Albury MS. Further insights into the structure of the alternative oxidase: from plants to parasites. Biochem Soc Trans 2008; 36:1022-6. [PMID: 18793182 DOI: 10.1042/bst0361022] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The AOX (alternative oxidase) is a non-protonmotive ubiquinol-oxygen oxidoreductase that couples the oxidation of ubiquinol with the complete reduction of water. Although it has long been recognized that it is ubiquitous among the plant kingdom, it has only recently become apparent that it is also widely found in other organisms including some human parasites. In this paper, we review experimental studies that have contributed to our current understanding of its structure, with particular reference to the catalytic site. Furthermore, we propose a model for the ubiquinol-binding site which identifies a hydrophobic pocket, between helices II and III, leading from a proposed membrane-binding domain to the catalytic domain.
Collapse
Affiliation(s)
- Anthony L Moore
- Biochemistry and Biomedical Sciences, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | |
Collapse
|
29
|
McDonald AE. Alternative oxidase: an inter-kingdom perspective on the function and regulation of this broadly distributed 'cyanide-resistant' terminal oxidase. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:535-552. [PMID: 32688810 DOI: 10.1071/fp08025] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 07/11/2008] [Indexed: 06/11/2023]
Abstract
Alternative oxidase (AOX) is a terminal quinol oxidase located in the respiratory electron transport chain that catalyses the oxidation of quinol and the reduction of oxygen to water. However, unlike the cytochrome c oxidase respiratory pathway, the AOX pathway moves fewer protons across the inner mitochondrial membrane to generate a proton motive force that can be used to synthesise ATP. The energy passed to AOX is dissipated as heat. This appears to be very wasteful from an energetic perspective and it is likely that AOX fulfils some physiological function(s) that makes up for its apparent energetic shortcomings. An examination of the known taxonomic distribution of AOX and the specific organisms in which AOX has been studied has been used to explore themes pertaining to AOX function and regulation. A comparative approach was used to examine AOX function as it relates to the biochemical function of the enzyme as a quinol oxidase and associated topics, such as enzyme structure, catalysis and transcriptional expression and post-translational regulation. Hypotheses that have been put forward about the physiological function(s) of AOX were explored in light of some recent discoveries made with regard to species that contain AOX. Fruitful areas of research for the AOX community in the future have been highlighted.
Collapse
Affiliation(s)
- Allison E McDonald
- Department of Biology, The University of Western Ontario, Biological and Geological Sciences Building, London, Ontario N6A 5B7, Canada. Email
| |
Collapse
|
30
|
Wagner AM, Krab K, Wagner MJ, Moore AL. Regulation of thermogenesis in flowering Araceae: the role of the alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:993-1000. [PMID: 18440298 DOI: 10.1016/j.bbabio.2008.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 11/24/2022]
Abstract
The inflorescences of several members of the Arum lily family warm up during flowering and are able to maintain their temperature at a constant level, relatively independent of the ambient temperature. The heat is generated via a mitochondrial respiratory pathway that is distinct from the cytochrome chain and involves a cyanide-resistant alternative oxidase (AOX). In this paper we have used flux control analysis to investigate the influence of temperature on the rate of respiration through both cytochrome and alternative oxidases in mitochondria isolated from the appendices of intact thermogenic Arum maculatum inflorescences. Results are presented which indicate that at low temperatures, the dehydrogenases are almost in full control of respiration but as the temperature increases flux control shifts to the AOX. On the basis of these results a simple model of thermoregulation is presented that is applicable to all species of thermogenic plants. The model takes into account the temperature characteristics of the separate components of the plant mitochondrial respiratory chain and the control of each process. We propose that 1) in all aroid flowers AOX assumes almost complete control over respiration, 2) the temperature profile of AOX explains the reversed relationship between ambient temperature and respiration in thermoregulating Arum flowers, 3) the thermoregulation process is the same in all species and 4) variations in inflorescence temperatures can easily be explained by variations in AOX protein concentrations.
Collapse
Affiliation(s)
- Anneke M Wagner
- Institute of Molecular Cell Biology, VU Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
31
|
Compelling EPR evidence that the alternative oxidase is a diiron carboxylate protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:327-30. [DOI: 10.1016/j.bbabio.2008.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/10/2008] [Accepted: 01/11/2008] [Indexed: 11/18/2022]
|
32
|
Chaudhuri M, Ott RD, Hill GC. Trypanosome alternative oxidase: from molecule to function. Trends Parasitol 2006; 22:484-91. [PMID: 16920028 DOI: 10.1016/j.pt.2006.08.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 07/06/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
Trypanosome alternative oxidase (TAO) is the cytochrome-independent terminal oxidase of the mitochondrial electron transport chain. TAO is a diiron protein that transfers electrons from ubiquinol to oxygen, reducing the oxygen to water. The mammalian bloodstream forms of Trypanosoma brucei depend solely on TAO for respiration. The inhibition of TAO by salicylhydroxamic acid (SHAM) or ascofuranone is trypanocidal. TAO is present at a reduced level in the procyclic form of T. brucei, where it is engaged in respiration and is also needed for developmental processes. Alternative oxidases similar to TAO have been found in a wide variety of organisms but not in mammals, thus rendering TAO an important chemotherapeutic target for African trypanosomiasis.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Division of Microbial Pathogenesis and Immune Response, Department of Biomedical Sciences, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | |
Collapse
|
33
|
Guerra DG, Decottignies A, Bakker BM, Michels PAM. The mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp. Mol Biochem Parasitol 2006; 149:155-69. [PMID: 16806528 DOI: 10.1016/j.molbiopara.2006.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/08/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The genes for the mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase were identified in Trypanosoma brucei and Leishmania major genomes. We have expressed the L. major gene in Saccharomyces cerevisiae and confirmed the subcellular localization and activity of the produced enzyme. Using cultured T. brucei procyclic and Leishmania mexicana promastigote cells with a permeabilized plasma membrane and containing intact glycosomes, it was shown that dihydroxyacetone phosphate is converted into pyruvate, and stimulates oxygen consumption, indicating that all components of the glycerol 3-phosphate/dihydoxyacetone phosphate shuttle between glycosomes and mitochondrion are present in these insect stages of both organisms. A computer model has been prepared for the energy and carbohydrate metabolism of these cells. It was used in an elementary mode analysis to get insight into the metabolic role of the shuttle in these insect-stage parasites. Our analysis suggests that the shuttle fulfils important roles for these organisms, albeit different from its well-known function in the T. brucei bloodstream form. It allows (1) a high yield of further metabolizable glycolytic products by decreasing the need to produce a secreted end product of glycosomal metabolism, succinate; (2) the consumption of glycerol and glycerol 3-phosphate derived from lipids; and (3) to keep the redox balance of the glycosome finely tuned due to a highly flexible and redundant system.
Collapse
Affiliation(s)
- Daniel G Guerra
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, ICP-TROP 74.39, Avenue Hippocrate 74, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
34
|
Fu A, Park S, Rodermel S. Sequences required for the activity of PTOX (IMMUTANS), a plastid terminal oxidase: in vitro and in planta mutagenesis of iron-binding sites and a conserved sequence that corresponds to Exon 8. J Biol Chem 2005; 280:42489-96. [PMID: 16249174 DOI: 10.1074/jbc.m508940200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thylakoid membranes of most photosynthetic organisms contain a terminal oxidase (PTOX, the product of the Arabidopsis IMMUTANS gene) that functions in the oxidation of the plastoquinone pool. PTOX and AOX are diiron carboxylate proteins, and based on crystal structures of other members of this protein class, a structural model of PTOX has been proposed in which the ligation sphere of the diiron center is composed of six conserved histidine and glutamate residues. We tested the functional significance of these residues by site-directed mutagenesis of PTOX in vitro and in planta, taking advantage null immutans alleles for the latter studies. These experiments showed that the six iron-binding sites do not tolerate change, even conservative ones. We also examined the significance of a conserved sequence in (or near) the PTOX active site that corresponds precisely to Exon 8 of the IM gene. In vitro and in planta mutagenesis revealed that conserved amino acids within this domain can be altered but that deletion of all or part of the domain abolishes activity. Because protein accumulates normally in the deletion mutants, the data suggest that the conformation of the Exon 8 sequence is important for PTOX activity. An allele of immutans (designated 3639) was identified that lacks the Exon 8 sequence; it does not accumulate PTOX protein. Chloroplast import assays revealed that mutant enzymes lacking Exon 8 have enhanced turnover. We conclude that the Exon 8 domain is required not only for PTOX activity but also for its stability.
Collapse
Affiliation(s)
- Aigen Fu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
35
|
Nakamura K, Sakamoto K, Kido Y, Fujimoto Y, Suzuki T, Suzuki M, Yabu Y, Ohta N, Tsuda A, Onuma M, Kita K. Mutational analysis of the Trypanosoma vivax alternative oxidase: The E(X)6Y motif is conserved in both mitochondrial alternative oxidase and plastid terminal oxidase and is indispensable for enzyme activity. Biochem Biophys Res Commun 2005; 334:593-600. [PMID: 16009344 DOI: 10.1016/j.bbrc.2005.06.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/23/2005] [Indexed: 11/16/2022]
Abstract
Based on amino acid sequence similarity and the ability to catalyze the four-electron reduction of oxygen to water using a quinol substrate, mitochondrial alternative oxidase (AOX) and plastid terminal oxidase (PTOX) appear to be two closely related members of the membrane-bound diiron carboxylate group of proteins. In the current studies, we took advantage of the high activity of Trypanosoma vivax AOX (TvAOX) to examine the importance of the conserved Glu and the Tyr residues around the predicted third helix region of AOXs and PTOXs. We first compared the amino acid sequences of TvAOX with AOXs and PTOXs from various taxa and then performed alanine-scanning mutagenesis of TvAOX between amino acids Y(199) and Y(247). We found that the ubiquinol oxidase activity of TvAOX is completely lost in the E214A mutant, whereas mutants E215A and E216A retained more than 30% of the wild-type activity. Among the Tyr mutants, a complete loss of activity was also observed for the Y221A mutant, whereas the activities were equivalent to wild-type for the Y199A, Y212A, and Y247A mutants. Finally, residues Glu(214) and Tyr(221) were found to be strictly conserved among AOXs and PTOXs. Based on these findings, it appears that AOXs and PTOXs are a novel subclass of diiron carboxylate proteins that require the conserved motif E(X)(6)Y for enzyme activity.
Collapse
Affiliation(s)
- Kosuke Nakamura
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affourtit C, Moore AL. Purification of the plant alternative oxidase from Arum maculatum: measurement, stability and metal requirement. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1608:181-9. [PMID: 14871496 DOI: 10.1016/j.bbabio.2003.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 12/03/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
We have purified plant alternative oxidase (AOX) protein from the spadices of thermogenic Arum maculatum (cuckoo pint) to virtual homogeneity. The obtained enzyme fraction exhibits a high specific activity, consuming on average 32 micromol oxygen min(-1) mg(-1), which is completely stable for at least 6 months when the sample is stored at -70 degrees C. This exceptionally stable AOX activity is inhibited approximately 90% (I(50) approximately 10 microM) by 8-hydroxyquinoline (8-OHQ) and also, although to a lesser extent, by other metal chelators such as o-phenanthroline, alpha,alpha'-dipyridyl and EDTA. When inhibited by 8-OHQ, AOX activity is fully restored upon addition of 1.2 mM ferric iron, but neither ferrous iron nor manganese has any effect, whilst zinc decreases activity even further. Furthermore, we have developed a spectrophotometric assay to measure AOX activity in an accurate manner, which will facilitate future steady state and transient kinetic studies. The reliability of this assay is evidenced by retained stability of AOX protein during the course of the reaction, reproducibility of the measured initial rates, an observed 2:1 duroquinol-oxygen stoichiometry and by the fact that, in absolute terms, the measured rates of duroquinone formation and duroquinol disappearance are identical.
Collapse
Affiliation(s)
- Charles Affourtit
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom.
| | | |
Collapse
|
37
|
Suzuki T, Hashimoto T, Yabu Y, Kido Y, Sakamoto K, Nihei CI, Hato M, Suzuki SI, Amano Y, Nagai K, Hosokawa T, Minagawa N, Ohta N, Kita K. Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in apicomplexan parasite Cryptosporidium parvum: phylogenetic and therapeutic implications. Biochem Biophys Res Commun 2004; 313:1044-52. [PMID: 14706648 DOI: 10.1016/j.bbrc.2003.12.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptosporidium parvum is a parasitic protozoan that causes the diarrheal disease cryptosporidiosis, for which no satisfactory chemotherapy is currently available. Although the presence of mitochondria in this parasite has been suggested, its respiratory system is poorly understood due to difficulties in performing biochemical analyses. In order to better understand the respiratory chain of C. parvum, we surveyed its genomic DNA database in GenBank and identified a partial sequence encoding cyanide-insensitive alternative oxidase (AOX). Based on this sequence, we cloned C. parvum AOX (CpAOX) cDNA from the phylum apicomplexa for the first time. The deduced amino acid sequence (335 a.a.) of CpAOX contains diiron coordination motifs (-E-, -EXXH-) that are conserved among AOXs. Phylogenetic analysis suggested that CpAOX is a mitochondrial-type AOX, possibly derived from mitochondrial endosymbiont gene transfer. The recombinant enzyme expressed in Escherichia coli showed quinol oxidase activity. This activity was insensitive to cyanide and highly sensitive to ascofuranone, a specific inhibitor of trypanosome AOX.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Molecular Parasitology, Nagoya City University, Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Finnegan PM, Soole KL, Umbach AL. Alternative Mitochondrial Electron Transport Proteins in Higher Plants. PLANT MITOCHONDRIA: FROM GENOME TO FUNCTION 2004. [DOI: 10.1007/978-1-4020-2400-9_9] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Finnegan PM, Umbach AL, Wilce JA. Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes. FEBS Lett 2003; 555:425-30. [PMID: 14675750 DOI: 10.1016/s0014-5793(03)01309-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mitochondrial alternative oxidase is a diiron carboxylate quinol oxidase (Dox) found in plants and some fungi and protists, but not animals. The plastid terminal oxidase is distantly related to alternative oxidase and is most likely also a Dox protein. Database searches revealed that the alpha-proteobacterium Novosphingobium aromaticivorans and the cyanobacteria Nostoc sp. PCC7120, Synechococcus sp. WH8102 and Prochlorococcus marinus subsp. pastoris CCMP1378 each possess a Dox homolog. Each prokaryotic protein conforms to the current structural models of the Dox active site and phylogenetic analyses suggest that the eukaryotic Dox genes arose from an ancestral prokaryotic gene.
Collapse
Affiliation(s)
- Patrick M Finnegan
- Plant Molecular Biology Group and School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
40
|
Hihi AK, Kebir H, Hekimi S. Sensitivity of Caenorhabditis elegans clk-1 mutants to ubiquinone side-chain length reveals multiple ubiquinone-dependent processes. J Biol Chem 2003; 278:41013-8. [PMID: 12893826 DOI: 10.1074/jbc.m305034200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquinone (coenzyme Q, or Q) is a membrane constituent, whose head group is capable of accepting and donating electrons and whose lipidic side chain is composed of a variable number of isoprene subunits. A possible role for Q as a dietary antioxidant for treating conditions that involve altered cellular redox states is being intensely studied. Mutations in the clk-1 gene of the nematode Caenorhabditis elegans affect numerous physiological rates including behavioral rates, developmental rates, reproduction, and life span. clk-1 encodes a protein associated with the inner mitochondrial membrane that is necessary for Q biosynthesis in C. elegans. clk-1 mutants do not synthesize Q but accumulate demethoxyubiquinone, a Q synthesis intermediate that is able to partially sustain mitochondrial respiration in worms as well as in mammals. Recently, we and others have found that exogenous Q is necessary for the fertility and development of clk-1 mutants. Here, we take advantage of the clk-1 genetic model to identify structural features of Q that are functionally important in vivo. We show that clk-1 mutants are exquisitely sensitive to the length of the side chain of the Q they consume. We also identified differential sensitivity to Q side-chain length between null alleles of clk-1 (qm30 and qm51) and the weaker allele e2519. This allows us to propose a model where we distinguish several types of Q-dependent processes in vivo: processes that are very sensitive to Q side-chain length and processes that are permissive to Q with shorter chains.
Collapse
Affiliation(s)
- Abdelmadjid K Hihi
- Department of Biology, McGill University, Montreal, Québec H3A 1B1, Canada
| | | | | |
Collapse
|
41
|
Fukai Y, Nihei C, Kawai K, Yabu Y, Suzuki T, Ohta N, Minagawa N, Nagai K, Kita K. Overproduction of highly active trypanosome alternative oxidase in Escherichia coli heme-deficient mutant. Parasitol Int 2003; 52:237-41. [PMID: 14550479 DOI: 10.1016/s1383-5769(03)00007-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyanide-insensitive trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain of long slender bloodstream forms of the African trypanosome, which causes sleeping sickness in humans and nagana in cattle. TAO has been targeted for the development of anti-trypanosomal drugs, because it does not exist in the host. In this study, we established a system for overproduction of highly active TAO in Eschericia coli heme-deficient mutant. Kinetic analysis of recombinant enzyme and TAO in Trypanosoma brucei brucei mitochondria revealed that recombinant TAO retains the properties of native enzyme, indicating that recombinant TAO is quite valuable for further biochemical study of TAO.
Collapse
Affiliation(s)
- Yoshihisa Fukai
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Josse EM, Alcaraz JP, Labouré AM, Kuntz M. In vitro characterization of a plastid terminal oxidase (PTOX). EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3787-94. [PMID: 12950262 DOI: 10.1046/j.1432-1033.2003.03766.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plastid terminal oxidase (PTOX) encoded by the Arabidopsis IMMUTANS gene was expressed in Escherichia coli cells and its quinone/oxygen oxidoreductase activity monitored in isolated bacterial membranes using NADH as an electron donor. Specificity for plastoquinone was observed. Neither ubiquinone, duroquinone, phylloquinone nor benzoquinone could substitute for plastoquinone in this assay. However, duroquinol (fully reduced chemically) was an accepted substrate. Iron is also required and cannot be substituted by Cu(2+), Zn(2+) or Mn(2+). This plastoquinol oxidase activity is independent of temperature over the 15-40 degrees C range but increases with pH (from 5.5 to 9.0). Unlike higher plant mitochondrial alternative oxidases, to which PTOX shows sequence similarity (but also differences, especially in a putative quinone binding site and in cysteine conservation), PTOX activity does not appear to be regulated by pyruvate or any other tested sugar, nor by AMP. Its activity decreases, however, with increasing salt (NaCl or KCl) concentration. Various quinone analogues were tested for their inhibitory activity on PTOX. Pyrogallol analogues were found to be inhibitors, especially octyl gallate (I50 = 0.4 microM ) that appears far more potent than propyl gallate or gallic acid. Thus, octyl gallate is a useful inhibitor for future in vivo or in organello studies aimed at studying the roles of PTOX in chlororespiration and as a cofactor for carotenoid biosynthesis.
Collapse
|
43
|
Stenmark P, Nordlund P. A prokaryotic alternative oxidase present in the bacteriumNovosphingobium aromaticivorans. FEBS Lett 2003; 552:189-92. [PMID: 14527685 DOI: 10.1016/s0014-5793(03)00920-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The alternative oxidase (AOX) is a terminal oxidase present in the respiratory chain of all plants as well as some yeasts and trypanosomes, but has not previously been found in a prokaryote. We have identified an AOX homologue in Novosphingobium aromaticivorans, the first AOX found in a prokaryote. We have cloned the gene for the N. aromaticivorans AOX and showed it to have a terminal oxidase activity when heterologously expressed in Escherichia coli. We have also shown that this novel AOX is expressed in N. aromaticivorans cells, and that its expression level is greatly influenced by the oxygen level and carbon source of the growth media.
Collapse
Affiliation(s)
- Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Roslagstullsbacken 15, Albanova University Center, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
44
|
Alternative oxidase present in procyclic Trypanosoma brucei may act to lower the mitochondrial production of superoxide. Arch Biochem Biophys 2003; 414:294-302. [PMID: 12781782 DOI: 10.1016/s0003-9861(03)00196-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mitochondrial electron transfer chain present in the procyclic form of the African trypanosome Trypanosoma brucei contains both cytochrome c oxidase and an alternative oxidase (TAO) as terminal oxidases that reduce oxygen to water. By contrast, the electron transfer chain of the primitive mitochondrion present in the bloodstream form of T. brucei contains only TAO as the terminal oxidase. TAO functions in the bloodstream forms to oxidize the ubiquinol produced by the glycerol-3-phosphate shuttle that results in the oxidation of the reduced nicotinamide adenine dinucleotide phosphate produced by glycolysis. The function, however, of TAO in the procyclic forms is unknown. In this study, we found that inhibition of TAO by the specific inhibitor salicylhydroxamic acid stimulates the formation of reactive oxygen species (ROS) in trypanosome mitochondria, resulting in mitochondrial alteration and increased oxidation of cellular proteins. Moreover, the activity and protein content of TAO in procyclic trypanosomes were increased when cells were incubated in the presence of hydrogen peroxide or antimycin A, the cytochrome bc1 complex inhibitor, which also results in increased ROS production. We suggest that one function of TAO in procyclic cells may be to prevent ROS production by removing excess reducing equivalents and transferring them to oxygen.
Collapse
|
45
|
Nihei C, Fukai Y, Kawai K, Osanai A, Yabu Y, Suzuki T, Ohta N, Minagawa N, Nagai K, Kita K. Purification of active recombinant trypanosome alternative oxidase. FEBS Lett 2003; 538:35-40. [PMID: 12633849 DOI: 10.1016/s0014-5793(03)00120-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosome alternative oxidase (TAO) is the terminal oxidase of the respiratory chain in long slender bloodstream forms of African trypanosomes. TAO is a cytochrome-independent, cyanide-insensitive quinol oxidase. These characteristics are distinct from those of the bacterial quinol oxidases, proteins that belong to the heme-copper terminal oxidase superfamily. The inability to purify stable TAO has severely hampered biochemical studies of the alternative oxidase family. In the present study, we were able to purify recombinant TAO to homogeneity from Escherichia coli membranes using the detergent digitonin. Kinetic analysis of the purified TAO revealed that the specific inhibitor ascofuranone is a competitive inhibitor of ubiquinol oxidase activity.
Collapse
Affiliation(s)
- Coichi Nihei
- Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Four proteins have been identified recently as diiron carboxylate proteins on the basis of conservation of six amino acids (four carboxylate residues and two histidines) constituting an iron-binding motif. Unlike previously identified proteins with this motif, biochemical studies indicate that each of these proteins is membrane bound, although homology modeling rules out a transmembrane mode of binding. Therefore, the predicted structure of each protein [the alternative oxidase (AOX), the plastid terminal oxidase (PTOX), the diiron 5-demethoxyquinone hydroxylase (DMQ hydroxylase), and the aerobic Mg-protoporphyrin IX monomethylester hydroxylase (MME hydroxylase)] is that of a protein bound monotopically to one leaflet of the membrane bilayer. Three of these enzymes utilize a quinol substrate, with two oxidizing the quinol (AOX and PTOX) and one hydroxylating it (DMQ hydroxylase). MME hydroxylase is involved in synthesis of the isocyclic ring of chlorophyll. Two enzymes are involved in respiration (AOX and, indirectly, the diiron DMQ hydroxylase through ubiquinone biosynthesis) and two in photosynthesis, through their roles in carotenoid and chlorophyll biosynthesis (PTOX and MME hydroxylase, respectively). We discuss what is known about each enzyme as well as our expectations based on their identification as interfacially bound proteins with a diiron carboxylate active site.
Collapse
Affiliation(s)
- Deborah A Berthold
- Department of Biochemistry and Biophysics, Arrhenius Laboratory for Natural Sciences, Stockholm University, Svante Arrhenius väg 12, SE-106 91 Stockholm, Sweden.
| | | |
Collapse
|
47
|
Berthold DA, Voevodskaya N, Stenmark P, Gräslund A, Nordlund P. EPR studies of the mitochondrial alternative oxidase. Evidence for a diiron carboxylate center. J Biol Chem 2002; 277:43608-14. [PMID: 12215444 DOI: 10.1074/jbc.m206724200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alternative oxidase (AOX) is a ubiquinol oxidase found in the mitochondrial respiratory chain of plants as well as some fungi and protists. It has been predicted to contain a coupled diiron center on the basis of a conserved sequence motif consisting of the proposed iron ligands, four glutamate and two histidine residues. However, this prediction has not been experimentally verified. Here we report the high level expression of the Arabidopsis thaliana alternative oxidase AOX1a as a maltose-binding protein fusion in Escherichia coli. Reduction and reoxidation of a sample of isolated E. coli membranes containing the alternative oxidase generated an EPR signal characteristic of a mixed-valent Fe(II)/Fe(III) binuclear iron center. The high anisotropy of the signal, the low value of the g-average tensor, and a small exchange coupling (-J) suggest that the iron center is hydroxo-bridged. A reduced membrane preparation yielded a parallel mode EPR signal with a g-value of about 15. In AOX containing a mutation of a putative glutamate ligand of the diiron center (E222A or E273A) the EPR signals are absent. These data provide evidence for an antiferromagnetic-coupled binuclear iron center, and together with the conserved sequence motif, identify the alternative oxidase as belonging to the growing family of diiron carboxylate proteins. The alternative oxidase is the first integral membrane protein in this family, and adds a new catalytic activity (ubiquinol oxidation) to this group of enzymatically diverse proteins.
Collapse
Affiliation(s)
- Deborah A Berthold
- Department of Biochemistry and Biophysics, Stockholm University Svante Arrhenius väg 16, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Moore AL, Albury MS, Crichton PG, Affourtit C. Function of the alternative oxidase: is it still a scavenger? TRENDS IN PLANT SCIENCE 2002; 7:478-81. [PMID: 12417142 DOI: 10.1016/s1360-1385(02)02366-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The alternative oxidase is a respiratory chain protein found in all higher plants, fungi, non-fermentative yeasts and trypanosomes. Its primary structure suggests that it is a new member of the di-iron carboxylate protein family. Recent sequence analysis indicates an evolutionary relationship between primitive members of this protein family and the alternative oxidase, suggesting that its early function was to scavenge di-oxygen. However, modelling of plant growth kinetics suggests a different function.
Collapse
Affiliation(s)
- Anthony L Moore
- School of Biological Sciences, University of Sussex, Falmer, Brighton, UK BN1 9QG.
| | | | | | | |
Collapse
|
49
|
Kerscher S, Dröse S, Zwicker K, Zickermann V, Brandt U. Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:83-91. [PMID: 12206896 DOI: 10.1016/s0005-2728(02)00259-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The obligate aerobic yeast Yarrowia lipolytica is introduced as a powerful new model for the structural and functional analysis of mitochondrial complex I. A brief introduction into the biology and the genetics of this nonconventional yeast is given and the relevant genetic tools that have been developed in recent years are summarized. The respiratory chain of Y. lipolytica contains complexes I-IV, one "alternative" NADH-dehydrogenase (NDH2) and a non-heme alternative oxidase (AOX). Because the NADH binding site of NDH2 faces the mitochondrial intermembrane space rather than the matrix, complex I is an essential enzyme in Y. lipolytica. Nevertheless, complex I deletion strains could be generated by attaching the targeting sequence of a matrix protein, thereby redirecting NDH2 to the matrix side. Deletion strains for several complex I subunits have been constructed that can be complemented by shuttle plasmids carrying the deleted gene. Attachment of a hexa-histidine tag to the NUGM (30 kDa) subunit allows fast and efficient purification of complex I from Y. lipolytica by affinity-chromatography. The purified complex has lost most of its NADH:ubiquinone oxidoreductase activity, but is almost fully reactivated by adding 400-500 molecules of phosphatidylcholine per complex I. The established set of genetic tools has proven useful for the site-directed mutagenesis of individual subunits of Y. lipolytica complex I. Characterization of a number of mutations already allowed for the identification of several functionally important amino acids, demonstrating the usefulness of this approach.
Collapse
Affiliation(s)
- Stefan Kerscher
- Universitätsklinikum Frankfurt, Institut für Biochemie I, Zentrum der Biologischen Chemie, Theodor-Stern-Kai 7, Haus 25 B, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
50
|
Chaudhuri M, Sharan R, Hill GC. Trypanosome alternative oxidase is regulated post-transcriptionally at the level of RNA stability. J Eukaryot Microbiol 2002; 49:263-9. [PMID: 12188215 DOI: 10.1111/j.1550-7408.2002.tb00367.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the bloodstream form of African trypanosomes, trypanosome alternative oxidase (TAO), the non-cytochrome ubiquinol:oxidoreductase, is the only terminal oxidase of the mitochondrial electron transport system. TAO is developmentally regulated during mitochondrial biogenesis in this parasite. During in vitro differentiation of Trypanosoma brucei from the bloodstream to the procyclic form, the overall rate of oxygen consumption decreased about 80%. The mode of respiration changed over a 2- to 3-wk period from a cyanide-insensitive, SHAM-sensitive pathway to a predominantly cyanide-sensitive pathway. The TAO protein level gradually decreased to the level present in the procyclic forms during this 3-wk period. However, within the first week of differentiation, the TAO transcript level decreased about 90% and then in the following weeks it reached the level present in the established procyclic form, that is about 20% of that in bloodstream forms. Like other trypanosomatid genes TAO transcript synthesis remains unaltered in fully differentiated bloodstream and procyclic trypanosomes. The half-life of the TAO mRNA was about 3.2 h in the procyclic trypanosomes, whereas the TAO transcript level remained unaltered even after 4 h of incubation with actinomycin D in bloodstream forms. Inhibition of protein synthesis resulted in about a four-fold accumulation of the TAO transcript in the procyclic trypanosomes, comparable to the level present in the bloodstream forms. Thus, TAO is regulated at the level of mRNA stability and de novo protein synthesis is required for the reduction of the TAO mRNA pool in the procyclic form.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Meharry Medical College, Nashville, Tennessee 37208-3599, USA
| | | | | |
Collapse
|