1
|
Shi Y, Liu J, Cheng Q, Wu S, Song W, Wang K, Chen Z, Li X, Wei Q, Tayier D, Liao B, Yang Z. METTL3/IGF2BP3 mediates ORC6 via N6-methyladenosine modification to promote the progression of pancreatic ductal adenocarcinoma. Gene 2025; 955:149468. [PMID: 40185346 DOI: 10.1016/j.gene.2025.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is recognized globally as one of the most lethal tumours, and effective biomarkers to diagnose PDAC early are needed. ORC6, a subunit of the origin recognition complex (ORC), initiates DNA replication and ensures genomic stability. Previous studies have indicated that ORC6 is procarcinogenic in various cancers, yet its role in PDAC remains uninvestigated. METHODS We evaluated the relationships between ORC6 expression and the clinical features of patients with PDAC with the TCGA, GTEx, and GEO databases. The role of ORC6 in PDAC cells was explored by RNA interference in vitro and in vivo. Next, we verified the effect of the METTL3/IGF2BP3/ORC6 axis on PDAC progression by western blotting, RT-qPCR, RNA immunoprecipitation, and methylated RNA immunoprecipitation. Finally, transcriptome analysis was performed to explore the influence of ORC6 on p53 in PDAC cells. RESULTS Elevated ORC6 levels were observed in PDAC cells, which correlated with poorer clinical outcomes. Both in vivo and in vitro experiments demonstrated that ORC6 knockdown suppressed proliferation and promoted apoptosis. Additionally, we demonstrated that METTL3/IGF2BP3 interacted with ORC6 mRNA via N6-methyladenosine modification to improve ORC6 mRNA stability. Transcriptomic analysis and experiments indicated that ORC6 promoted PDAC progression by inhibiting serine-15 phosphorylation in p53. CONCLUSION Our findings validate the role of ORC6 in PDAC and support the hypothesis that the METTL3/IGF2BP3/ORC6/p53 axis may be a novel therapeutic target for PDAC, and inhibiting this axis may be an advantageous therapeutic strategy for curing PDAC.
Collapse
Affiliation(s)
- Yang Shi
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Junwei Liu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China
| | - Qian Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Shuaihui Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Kunlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Zhinan Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Xinyin Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Qifeng Wei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Dilinigeer Tayier
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China
| | - Bo Liao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China.
| | - Zhiyong Yang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Pancreatic Surgery Center, Zhongnan Hospital of Wuhan University, Wuhan 430061 Hubei Province, China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan 430061 Hubei Province, China.
| |
Collapse
|
2
|
Ni Q, Miao Y, Li X, Yin Z, Huang H, Shi G, Shi W. Up-Regulation of MELK Promotes Cell Growth and Invasion by Accelerating G1/S Transition and Indicates Poor Prognosis in Lung Adenocarcinoma. Mol Biotechnol 2025; 67:1584-1596. [PMID: 38676754 DOI: 10.1007/s12033-024-01143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
Maternal embryonic leucine zipper kinase (MELK) is an oncogene in many tumors, although its contribution to lung adenocarcinoma (LUAD) is unclear. We examined MELK expression in patient LUAD tissue and matched healthy lung tissues. We investigated the connection between MELK expression and tumor differentiation, lymph node metastasis, and patient survival. We downregulated MELK expression using small-hairpin RNA to assess its impact on LUAD cell proliferation, clonogenicity, and invasion. We also investigated the molecular mechanism underlying these effects. MELK expression was significantly heightened in LUAD tissue as opposed to the matching healthy lung tissues. LUAD patients who had MELK overexpression had a worse prognosis. Suppression of MELK hinders proliferation, clonogenicity, and invasion of LUAD cells. The MELK suppression led to the arrest of the cell cycle's G1/S phase by reducing the cyclin E1 and cyclin D expression. Our outcomes manifest that MELK can function as a beneficial prognostic indication and a new therapy target for LUAD. MELK has an essential function in progressing LUAD, manifesting potential as a viable target for therapeutic intervention in this disease management.
Collapse
Affiliation(s)
- Qinggan Ni
- Department of Burns and Plastic Surgery, Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224000, People's Republic of China
| | - Yuqing Miao
- Department of Respiratory Diseases, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Zhongbo Yin
- Department of Pathology, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226011, People's Republic of China
| | - Guanglin Shi
- Department of Respiratory Diseases, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China.
| | - Weirong Shi
- Department of Thoracic Surgery, The Sixth People's Hospital of Nantong (Affiliated Nantong Hospital of Shanghai University), Nantong, Jiangsu, 226011, People's Republic of China.
| |
Collapse
|
3
|
Su P, Lu Q, Wang Y, Mou Y, Jin W. Targeting MELK in tumor cells and tumor microenvironment: from function and mechanism to therapeutic application. Clin Transl Oncol 2025; 27:887-900. [PMID: 39187643 DOI: 10.1007/s12094-024-03664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Maternal embryonic leucine zipper kinase (MELK), a member of the adenosine monophosphate-activated protein kinase (AMPK) protein family, has been reported to be involved in the regulation of many cellular events. The aberrant expression of MELK is associated with tumorigenesis and malignant progression of various tumors. Moreover, MELK plays an essential role in the regulation of tumor microenvironment (TME), which affects the function of immune cells and the responsiveness to immunotherapy. Currently, small molecule inhibitors targeting MELK have been developed and evaluated in clinical trials. A comprehensive understanding of MELK may provide clues and confidence for subsequent basic research and scientific transformation. In this review, we provide a comprehensive overview of the structural features, molecular biological functions, and critical roles of MELK in tumors and TME, as well as the targeted agents under development for the treatment of tumors and discuss the perspective for MELK-targeted therapies for tumors.
Collapse
Affiliation(s)
- Pengfei Su
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Qiliang Lu
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yuanyu Wang
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Yiping Mou
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China
| | - Weiwei Jin
- Department of General Surgery, Cancer Center, Division of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310000, People's Republic of China.
| |
Collapse
|
4
|
Qu N, Meng Y, Zhai J, Griffin N, Shan Y, Gao Y, Shan F. Methionine enkephalin inhibited cervical cancer migration as well as invasion and activated CD11b + NCR1 + NKs of tumor microenvironment. Int Immunopharmacol 2023; 124:110967. [PMID: 37741126 DOI: 10.1016/j.intimp.2023.110967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
This study was to study the role of methionine enkephalin (menk) in cell invasion and migration as well as NK cells activation of tumor microenvironment in cervical cancer. The results showed that menk inhibited cervical cancer migration and invasion. In addition, we found menk affected epithelial to mesenchymal transition (EMT) related indicators, with increasing E-cadherin level, decreasing N-cadherin and vimentin level. Through in vivo mouse model, we found that menk IFNγ and NKP46 expression was upregulated in tumor tissues by menk compared with controls, while LAG3 expression was inhibited by menk, besides, there was an upregulation of CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer. Therefore, we concluded that menk inhibited cancer migration and invasion via affecting EMT related indicators and activated CD11b+ NCR1+ NKs of tumor microenvironment in cervical cancer, laying a theoretical foundation for the further clinical treatment of menk.
Collapse
Affiliation(s)
- Na Qu
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Noreen Griffin
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuanye Shan
- Biostax Inc. 1317 Edgewater Dr., Ste 4882, Orlando, FL 32804, USA
| | - Yuhua Gao
- Department of Gynecological Radiotherapy Ward, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Institute and Hospital), No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China.
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
5
|
Wang D, Deng Z, Lu M, Deng K, Li Z, Zhou F. Integrated analysis of the roles of oxidative stress related genes and prognostic value in clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:11057-11071. [PMID: 37340189 PMCID: PMC10465389 DOI: 10.1007/s00432-023-04983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Patients with clear cell renal cell carcinoma (ccRCC), which is the most commonly diagnosed subtype of renal cell carcinoma, are at risk of tumor metastasis and recrudescence. Previous research has shown that oxidative stress can induce tumorigenesis in many cancers and can be a target of cancer treatment. Despite these findings, little progress has been made understanding in the association of oxidative stress-related genes (OSRGs) with ccRCC. METHODS In vitro experiments were conducted with MTT survival assays, qRT‒PCR, apoptosis assays, cell cycle assays, ROS assays, and IHC staining. RESULTS In our study, 12 differentially expressed oxidative stress-related genes (DEOSGs) and related transcription factors (TFs) that are relevant to overall survival (OS) were screened, and their mutual regulatory networks were constructed with data from the TCGA database. Moreover, we constructed a risk model of these OSRGs and performed clinical prognostic analysis and validation. Next, we performed protein-protein interaction (PPI) network analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of MELK, PYCR1, and PML. A tissue microarray also verified the high expression of MELK and PYCR1 in ccRCC. Finally, in vitro cellular experiments demonstrated that knockdown of MELK or PYCR1 significantly inhibited ccRCC cell proliferation by causing cell apoptosis and inducing cell cycle arrest in the G1 phase. Intracellular ROS levels were elevated after these two genes were knocked down. CONCLUSION Our results revealed the potential DEORGs to be used in ccRCC prognostic prediction and identified two biomarkers, named PYCR1 and MELK, which regulated the proliferation of ccRCC cells by affecting ROS levels. Furthermore, PYCR1 and MELK could be promising targets for predicting the progression and prognosis of ccRCC, thereby serving as new targets for medical treatments.
Collapse
Affiliation(s)
- Danwen Wang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Chen H, Liu Y, Yin Z, Chen H, Wang Y, Qian Y. Homologous repair deficiency-associated genes in invasive breast cancer revealed by WGCNA co-expression network analysis and genetic perturbation similarity analysis. Cell Cycle 2023; 22:1077-1100. [PMID: 36757135 PMCID: PMC10081085 DOI: 10.1080/15384101.2023.2174339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Homologous repair deficiency (HRD) causes double-strand break repair to be impeded, which is a common driver of carcinogenesis. However, the therapeutic and prognostic potential of HRD in invasive breast cancer (BRCA) has not been fully explored using comprehensive bioinformatics analysis. MATERIALS AND METHODS HRD score was defined as the unweighted sum of LOH, TAI, and LST scores and obtained from the previous study according to Theo A et al. To characterize BRCA tumor microenvironment (TME) subtypes, "ConsensusClusterPlus" R package was used to conduct unsupervised clustering. The xCell algorithm was utilized for tumor composition analysis to estimate the TME in TCGA-BRCA. A WGCNA analysis was conducted to uncover the gene coexpression modules and hub genes in the HRD-related gene module of BRCA. The functional enrichment study was carried out using Metascape. A novel analysis pipeline, Genetic Perturbation Similarity Analysis (GPSA), was used to explore the single-gene perturbation closely related to HRD based on 3048 stable knockdown/knockout cell lines. The prognostic variables were evaluated using univariate COX analysis. Kaplan-Meier (KM) survival analysis was performed to assess the prognostic potential of HRD score. Receiver operator characteristic (ROC) curve was utilized to judge the diagnostic utility. Drug sensitivity was estimated through the R package "oncoPredict" and Genomics of Drug Sensitivity in Cancer (GDSC) database. XSum algorithm was performed to screen the candidate small molecule drugs based on the connectivity map (CMAP) database. RESULTS Low HRD score suggested a better prognosis in BRCA patients. The tumor with low HRD score had considerably greater degree of infiltration of stromal cells and infiltration of immunocytes was significantly enhanced in the high HRD score group. Using WGCNA, ten co-expression modules were obtained. The turquoise module and 25 hub genes were identified as the most correlated with HRD in BRCA. Functional enrichment analysis revealed that the turquoise gene module was mainly concentrated in the "cell cycle" pathways. Candidate HRD-related gene signatures (MELK) were screened out through WGCNA and GPSA analysis pipeline and then validated on independent validation sets. A small molecule drug (Clofibrate) that has the potential to reverse the increase of high HRD score was screened out to improve oncological outcomes in BRCA. Molecular docking suggested MELK to be one of possible molecular targets in the Clofibrate treatment of BRCA. CONCLUSION Based on bioinformatic analysis, we fully explored the therapeutic and prognostic potential of HRD in BRCA. A novel HRD-related gene signature (MELK) were identified through the combination of WGCNA and GPSA analysis. In addition, we detailed the TME landscape in BRCA and identified four unique TME subtypes in group with high or low HRD score group. Moreover, Clofibrate were screened out to improve oncological outcomes in BRCA by reversing the increase of high HRD score. Thus, our study contributes to the development of personalized clinical management and treatment regimens of BRCA.
Collapse
Affiliation(s)
- Haohao Chen
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Liu
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenglang Yin
- Department of General surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Wang
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yeben Qian
- Department of General surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Szymański Ł, Lieto K, Zdanowski R, Lewicki S, Tassan JP, Kubiak JZ. Differential Effects of Overexpression of Wild Type and Kinase-Dead MELK in Fibroblasts and Keratinocytes, Potential Implications for Skin Wound Healing and Cancer. Int J Mol Sci 2023; 24:ijms24098089. [PMID: 37175795 PMCID: PMC10179274 DOI: 10.3390/ijms24098089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Maternal embryonic leucine-zipper kinase (MELK) plays a significant role in cell cycle progression, mitosis, cell migration, cell renewal, gene expression, embryogenesis, proliferation, apoptosis, and spliceosome assembly. In addition, MELK is known to be overexpressed in multiple types of cancer and is associated with cancer proliferation. Tumorigenesis shares many similarities with wound healing, in which the rate of cell proliferation is a critical factor. Therefore, this study aimed to determine the involvement of MELK in the regulation of cell division in two cell types involved in this process, namely fibroblasts and keratinocytes. We examined how temporal overexpression of wild-type and kinase-dead MELK kinase variants affect the rate of proliferation, viability, cell cycle, and phosphorylation state of other kinases involved in these processes, such as ERK1/2, AKT1, MAPK9, p38, and p53. We explored if MELK could be used as a therapeutic stimulator of accelerated wound healing via increased proliferation. We observed that aberrant expression of MELK results in abnormal proliferation, altered cell cycle distribution, and decreased viability of the cells, which challenge the utility of MELK in accelerated wound healing. Our results indicate that, at least in healthy cells, any deviation from precisely controlled MELK expression is harmful to fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Krystyna Lieto
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Jean-Pierre Tassan
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), CNRS, University Rennes, UMR 6290, 35043 Rennes, France
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Department of Oncology, Military Institute of Medicine-National Research Institute, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes (IGDR), CNRS, University Rennes, UMR 6290, 35043 Rennes, France
| |
Collapse
|
8
|
Keshavarz-Rahaghi F, Pleasance E, Kolisnik T, Jones SJM. A p53 transcriptional signature in primary and metastatic cancers derived using machine learning. Front Genet 2022; 13:987238. [PMID: 36134028 PMCID: PMC9483853 DOI: 10.3389/fgene.2022.987238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor gene, TP53, has the highest rate of mutation among all genes in human cancer. This transcription factor plays an essential role in the regulation of many cellular processes. Mutations in TP53 result in loss of wild-type p53 function in a dominant negative manner. Although TP53 is a well-studied gene, the transcriptome modifications caused by the mutations in this gene have not yet been explored in a pan-cancer study using both primary and metastatic samples. In this work, we used a random forest model to stratify tumor samples based on TP53 mutational status and detected a p53 transcriptional signature. We hypothesize that the existence of this transcriptional signature is due to the loss of wild-type p53 function and is universal across primary and metastatic tumors as well as different tumor types. Additionally, we showed that the algorithm successfully detected this signature in samples with apparent silent mutations that affect correct mRNA splicing. Furthermore, we observed that most of the highly ranked genes contributing to the classification extracted from the random forest have known associations with p53 within the literature. We suggest that other genes found in this list including GPSM2, OR4N2, CTSL2, SPERT, and RPE65 protein coding genes have yet undiscovered linkages to p53 function. Our analysis of time on different therapies also revealed that this signature is more effective than the recorded TP53 status in detecting patients who can benefit from platinum therapies and taxanes. Our findings delineate a p53 transcriptional signature, expand the knowledge of p53 biology and further identify genes important in p53 related pathways.
Collapse
Affiliation(s)
- Faeze Keshavarz-Rahaghi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Tyler Kolisnik
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
- *Correspondence: Steven J. M. Jones,
| |
Collapse
|
9
|
Functional genomics for breast cancer drug target discovery. J Hum Genet 2021; 66:927-935. [PMID: 34285339 PMCID: PMC8384626 DOI: 10.1038/s10038-021-00962-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous disease that develops through a multistep process via the accumulation of genetic/epigenetic alterations in various cancer-related genes. Current treatment options for breast cancer patients include surgery, radiotherapy, and chemotherapy including conventional cytotoxic and molecular-targeted anticancer drugs for each intrinsic subtype, such as endocrine therapy and antihuman epidermal growth factor receptor 2 (HER2) therapy. However, these therapies often fail to prevent recurrence and metastasis due to resistance. Overall, understanding the molecular mechanisms of breast carcinogenesis and progression will help to establish therapeutic modalities to improve treatment. The recent development of comprehensive omics technologies has led to the discovery of driver genes, including oncogenes and tumor-suppressor genes, contributing to the development of molecular-targeted anticancer drugs. Here, we review the development of anticancer drugs targeting cancer-specific functional therapeutic targets, namely, MELK (maternal embryonic leucine zipper kinase), TOPK (T-lymphokine-activated killer cell-originated protein kinase), and BIG3 (brefeldin A-inhibited guanine nucleotide-exchange protein 3), as identified through comprehensive breast cancer transcriptomics.
Collapse
|
10
|
Wang K, Liu W, Xu Q, Gu C, Hu D. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153553. [PMID: 33906076 DOI: 10.1016/j.phymed.2021.153553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most malignant tumors worldwide with poor prognosis and low survival rate. Since the clinical efficacy of the commonly used 5-fluorouracil (5-FU) based chemotherapy in CRC patients is limited because of its intolerable adverse effects, there is an urgent need to explore agents that can enhance the anti-cancer activity of 5-FU, reduce adverse effects and prevent resistance. PURPOSE This study aims to investigate Tenacissoside G (TG)'s synergistic potentiation with 5-FU in inhibitory activity to colorectal cancer cells. METHODS The anti-proliferation effect of TG on 5 colorectal cancer cell lines was assessed by CCK-8 assay. The isobologram analysis and combination index methods were used to detect the synergistic effect of TG and 5-FU by the CompuSyn software using the T.C. Chou Method. The effects of TG/5-FU combination on cell cycle distribution and apoptosis induction were detected by flow cytometry. DNA damage degrees of cells treated with TG, 5-FU and their combination were evaluated by the alkaline comet assay. Protein expression regulated by the TG/5-FU combination was investigated by western blotting. Furthermore, a xenograft mouse model was established to investigate the synergistic anti-tumor effect in vivo. RESULTS In this work, we observed a dose-dependent growth inhibitory activity and cell cycle arrest induction of TG, a monomeric substance originated from Marsdenia tenacissima (Roxb.) Wight et Arn, in colorectal cancer cells. It was found that TG potentiated the anticancer effects of 5-FU with a synergism for the first time. And the co-treatment effects were also validated by in vivo experiments. The underlying mechanisms involved in the synergistic effects were probably included: (1) increased activation of caspase cascade; (2) enhancement of DNA damage degree and (3) induction of p53 phosphorylation at Serine 46. CONCLUSION TG potentiated 5-FU's inhibitory activity to human colorectal cancer through arresting cell cycle progression and inducing p53-mediated apoptosis, which may present a novel strategy in CRC therapies and contribute to the optimizing clinical application of 5-FU.
Collapse
Affiliation(s)
- Kaichun Wang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Liu
- Department of Clinical Pharmacology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Qinfen Xu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Gu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daode Hu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
11
|
Seong HA, Ha H. Ablation of AMPK-Related Kinase MPK38/MELK Leads to Male-Specific Obesity in Aged Mature Adult Mice. Diabetes 2021; 70:386-399. [PMID: 33268463 DOI: 10.2337/db20-0436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK) is implicated in diverse biological processes, including the cell cycle, apoptosis, and tumorigenesis; however, its physiological role is unknown. Using mice lacking MPK38 (MPK38-/-), we found that MPK38-/- male, but not female, mice (7 months of age) became obese while consuming a standard diet, displayed impairments in metabolism and inflammation, became more obese than wild-type mice while consuming a high-fat diet, and exhibited no castration/testosterone replacement-induced metabolic changes. The adenoviral restoration of MPK38 ameliorated the obesity-induced adverse metabolic profile of the obese male, but not female, mice. Seven-month-old MPK38-/- males displayed typical postcastration concentrations of serum testosterone with an accompanying decrease in serum luteinizing hormone (LH) levels, suggesting a role for MPK38 in the age-related changes in serum testosterone in aged mature adult male mice. The stability and activity of MPK38 were increased by dihydrotestosterone but reduced by estradiol (E2). These findings suggest MPK38 as a therapeutic target for obesity-related metabolic disorders in males.
Collapse
Affiliation(s)
- Hyun-A Seong
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyunjung Ha
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
12
|
Hu S, Su D, Sun L, Wang Z, Guan L, Liu S, Zhao B, Liu Y, Shi C, Yu J, Ma X. High-expression of ROCK1 modulates the apoptosis of lens epithelial cells in age-related cataracts by targeting p53 gene. Mol Med 2020; 26:124. [PMID: 33297931 PMCID: PMC7727231 DOI: 10.1186/s10020-020-00251-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Age-related cataract (ARC) is a serious visual impairment disease, and its pathogenesis is unclear. This article aims to investigate the role of ROCK1 in the apoptosis of lens epithelial cells (LECs) in age-related cataracts. Methods We collect anterior capsule samples from normal people, patients with age-related cataracts, young mice and naturally aging cataract mice. The oxidative stress-induced apoptosis model was constructed by cultivating HLE-B3 cells with H2O2. MTT, Hoechst 33342, and TUNEL assay were performed to explore proliferation and apoptosis. HE assay was used to observe cell morphology. The gene and protein expression were assessed by quantitative real-time PCR, western blot, immunofluorescence, and immunohistochemical staining. Result The results from the clinic and mice experiments showed that the numbers of lens epithelial cells from cataract individuals were less than the control individuals. In vitro, the apoptotic cells were increased in lens epithelial cells under H2O2 treatment. The ROCK1 protein level increased in the lens epithelial cells from age-related cataract patients and the old mice, respectively. Meanwhile, the up-regulation of the ROCK1 gene was associated with H2O2-induced HLE-B3 cells apoptosis. MTT and apoptosis assay showed ROCK1 was necessary in mediating H2O2-induced lens epithelial cells apoptosis through ROCK1 over-expression and knockdown experiment, respectively. Further investigation showed that p53 protein levels had been increased during ROCK1-mediated apoptosis in response to H2O2. Besides, ROCK1 phosphorylated p53 at ser15 to up-regulate its protein level. Conclusions This study established the novel association of ROCK1/p53 signaling with lens epithelial cells apoptosis and age-related cataract genesis.
Collapse
Affiliation(s)
- Shanshan Hu
- Hongqi Hospital of Mudanjiang Medical College, 5 Tongxiang Road, Mudanjiang, 157011, Heilongjiang, China. .,Department of Immunology, Basic Medical College of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China.,Graduate School, Peking Union Medical College, Beijing, 100081, China
| | - Lei Sun
- Hongqi Hospital of Mudanjiang Medical College, 5 Tongxiang Road, Mudanjiang, 157011, Heilongjiang, China
| | - Zhongying Wang
- Hongqi Hospital of Mudanjiang Medical College, 5 Tongxiang Road, Mudanjiang, 157011, Heilongjiang, China
| | - Lina Guan
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China
| | - Shanhe Liu
- Hongqi Hospital of Mudanjiang Medical College, 5 Tongxiang Road, Mudanjiang, 157011, Heilongjiang, China
| | - Baowen Zhao
- Hongqi Hospital of Mudanjiang Medical College, 5 Tongxiang Road, Mudanjiang, 157011, Heilongjiang, China
| | - Yong Liu
- Medical Research Center of Mudanjiang Medical College, Mudanjiang, 157011, Heilongjiang, China
| | - Cuige Shi
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China
| | - Jianbo Yu
- Hongqi Hospital of Mudanjiang Medical College, 5 Tongxiang Road, Mudanjiang, 157011, Heilongjiang, China.
| | - Xu Ma
- Department of Genetics, National Research Institute for Family Planning, Health Department, Beijing, 100081, China. .,Graduate School, Peking Union Medical College, Beijing, 100081, China.
| |
Collapse
|
13
|
Thangaraj K, Ponnusamy L, Natarajan SR, Manoharan R. MELK/MPK38 in cancer: from mechanistic aspects to therapeutic strategies. Drug Discov Today 2020; 25:2161-2173. [PMID: 33010478 DOI: 10.1016/j.drudis.2020.09.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022]
Abstract
Maternal embryonic leucine zipper kinase (MELK)/Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-related serine-threonine kinase family, which has been reported to be involved in the regulation of many cellular events, including cell proliferation, apoptosis, and metabolism, partly by phosphorylation and regulation of several signaling molecules. The abnormal expression of MELK has been associated with tumorigenesis and malignant progression in various types of cancer. Currently, several small-molecule inhibitors of MELK are under investigation although only OTS167 has entered clinical trials. In this review, we elaborate on the relative contributions of MELK pathways in the physiological process, their oncogenic role in carcinogenesis, and targeted agents under development for the treatment of cancer.
Collapse
Affiliation(s)
- Karthik Thangaraj
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Lavanya Ponnusamy
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Sathan Raj Natarajan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India
| | - Ravi Manoharan
- Department of Biochemistry, Guindy Campus, University of Madras, Chennai 600025, India.
| |
Collapse
|
14
|
Zhang Z, Sun C, Li C, Jiao X, Griffin BB, Dongol S, Wu H, Zhang C, Cao W, Dong R, Yang X, Zhang Q, Kong B. Upregulated MELK Leads to Doxorubicin Chemoresistance and M2 Macrophage Polarization via the miR-34a/JAK2/STAT3 Pathway in Uterine Leiomyosarcoma. Front Oncol 2020; 10:453. [PMID: 32391256 PMCID: PMC7188922 DOI: 10.3389/fonc.2020.00453] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/13/2020] [Indexed: 12/25/2022] Open
Abstract
Uterine leiomyosarcoma (ULMS) is the most lethal gynecologic malignancy with few therapeutic options. Chemoresistance prevails as a major hurdle in treating this malignancy, yet the mechanism of chemoresistance remains largely unclear. In this study, we certified MELK as a poor prognostic marker through bioinformatic analysis of the GEO database. Cellular experiments in vitro revealed that MELK played an essential role in ULMS cells' chemoresistance and that a high expression of MELK could lead to doxorubicin resistance. mRNA profiling uncovered the pathways that MELK was involved in which led to doxorubicin resistance. MELK was found to affect ULMS cells' chemoresistance through an anti-apoptotic mechanism via the JAK2/STAT3 pathway. miRNA profiling also revealed that upregulated MELK could induce the decrease of miRNA-34a (regulated by JAK2/STAT3 pathway). We detected that MELK overexpression could induce M2 macrophage polarization via the miR-34a/JAK2/STAT3 pathway, contributing to doxorubicin chemoresistance in the tumor microenvironment. OTSSP167, a MELK inhibitor, may increase ULMS sensitivity to doxorubicin. Our investigation could propose novel targets for early diagnosis and precision therapy in ULMS patients.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chengcheng Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Brannan B Griffin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chenyi Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| |
Collapse
|
15
|
Chen P, Wang J, Wang X, Chen X, Li C, Tan T. Cloning, tissue distribution, expression pattern, and function of porcine maternal embryonic leucine zipper kinase. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:239. [PMID: 32309386 PMCID: PMC7154462 DOI: 10.21037/atm.2020.03.46] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Maternal embryonic leucine zipper kinase (MELK) is an atypical member of the snf1/AMPK family of serine-threonine kinases, involved in diverse physiological and pathological processes, including cell proliferation, apoptosis, embryogenesis, cancer treatment resistance, and RNA processing. MELK is highly expressed in human cancers and is associated with more aggressive forms of astrocytoma, glioblastoma, breast cancer, and melanoma to date, no information about porcine MELK (pMELK) has been reported. Methods In this study, the pMELK coding sequence was cloned from swine spleen and characterized. We also quantitatively determined the expression of MELK in 11 tissues isolated from a piglet and determined its subcellular localization when expressed in swine umbilical vein endothelial cells (SUVEC) as a fusion protein. Moreover, we report the functional characterization of pMELK protein concerning its role in apoptosis. Results Sequencing analysis showed that full-length of pMELK is 2,072 bp with 17 exons, encoding 655 amino acids, including an S-TKc conserved domain. Comparison of pMELK with ten other mammalian species of their orthologous sequences showed >91% homology and an evolutionary distance <0.05, demonstrating that MELK is highly conserved in evolution. Relative quantification of MELK expression in 11 tissue samples isolated from 30-day-old piglets showed MELK expression in all tested organs and the highest expression in the superficial inguinal lymph node. Constructed a plasmid named pEGFP-MELK, and the fusion protein GFP-MELK was successfully expressed in SUVECs. Fluorescence microscopy revealed the subcellular distribution of the fusion protein GFP-MELK was limited to the cytoplasm. About function, Flow cytometry analysis showed that overexpression of GFP-pMELK in SUVEC cells enhances staurosporine (STS)—induced apoptosis, but not significantly different. The pMELK protein also was found to interact with porcine BCL-G and transient transfection of the recombinant plasmid pCMV-HA-pMELK into SUVEC cells stably expressing GFP-pBCL-G protein inhibited pBCL-G -induced apoptosis significantly. Conclusions The present study provided useful information on pMELK basic details and function in apoptosis offer a potential new molecular model for disease interventions and disease related to human MELK and BCL-G.
Collapse
Affiliation(s)
- Pengyuan Chen
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jiaqiang Wang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xingye Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Xiaolin Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chunling Li
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Taichang Tan
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
16
|
Cigliano A, Pilo MG, Mela M, Ribback S, Dombrowski F, Pes GM, Cossu A, Evert M, Calvisi DF, Utpatel K. Inhibition of MELK Protooncogene as an Innovative Treatment for Intrahepatic Cholangiocarcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 56:E1. [PMID: 31861475 PMCID: PMC7023300 DOI: 10.3390/medicina56010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Background and Objectives: Intrahepatic cholangiocarcinoma (iCCA) is a pernicious tumor characterized by a dismal outcome and scarce therapeutic options. To substantially improve the prognosis of iCCA patients, a better understanding of the molecular mechanisms responsible for development and progression of this disease is imperative. In the present study, we aimed at elucidating the role of the maternal embryonic leucine zipper kinase (MELK) protooncogene in iCCA. Materials and Methods: We analyzed the expression of MELK and two putative targets, Forkhead Box M1 (FOXM1) and Enhancer of Zeste Homolog 2 (EZH2), in a collection of human iCCA by real-time RT-PCR and immunohistochemistry (IHC). The effects on iCCA growth of both the multi-kinase inhibitor OTSSP167 and specific small-interfering RNA (siRNA) against MELK were investigated in iCCA cell lines. Results: Expression of MELK was significantly higher in tumors than in corresponding non-neoplastic liver counterparts, with highest levels of MELK being associated with patients' shorter survival length. In vitro, OTSSP167 suppressed the growth of iCCA cell lines in a dose-dependent manner by reducing proliferation and inducing apoptosis. These effects were amplified when OTSSP167 administration was coupled to the DNA-damaging agent doxorubicin. Similar results, but less remarkable, were obtained when MELK was silenced by specific siRNA in the same cells. At the molecular level, siRNA against MELK triggered downregulation of MELK and its targets. Finally, we found that MELK is a downstream target of the E2F1 transcription factor. Conclusion: Our results indicate that MELK is ubiquitously overexpressed in iCCA, where it may represent a prognostic indicator and a therapeutic target. In particular, the combination of OTSSP167 (or other, more specific MELK inhibitors) with DNA-damaging agents might be a potentially effective therapy for human iCCA.
Collapse
Affiliation(s)
- Antonio Cigliano
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Maria Giulia Pilo
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Marta Mela
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Silvia Ribback
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Frank Dombrowski
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Giovanni Mario Pes
- Department of Clinical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.M.P.); (A.C.)
| | - Antonio Cossu
- Department of Clinical, Surgical, Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (G.M.P.); (A.C.)
| | - Matthias Evert
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
| | - Diego Francesco Calvisi
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
- Institut für Pathologie, Universitätsmedizin Greifswald, 17475 Greifswald, Germany; (M.G.P.); (M.M.); (S.R.); (F.D.)
| | - Kirsten Utpatel
- Institut für Pathologie, Universitätsklinikum Regensburg, 93053 Regensburg, Germany; (M.E.); (D.F.C.); (K.U.)
| |
Collapse
|
17
|
Rembacz KP, Zrubek KM, Golik P, Michalik K, Bogusz J, Wladyka B, Romanowska M, Dubin G. Crystal structure of Maternal Embryonic Leucine Zipper Kinase (MELK) in complex with dorsomorphin (Compound C). Arch Biochem Biophys 2019; 671:1-7. [PMID: 31108049 DOI: 10.1016/j.abb.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 11/16/2022]
Abstract
Maternal Embryonic Leucine Zipper Kinase (MELK) is overexpressed in various tumors which has been convincingly linked to tumor cell survival. As such, MELK became an interesting target for pharmacological intervention. In this study we present the crystal structure of MELK in complex with dorsomorphin, an inhibitor of VEGFR and AMPK. By defining the mechanistic details of ligand recognition we identify a key residue (Cys89) at the hinge region of MELK responsible for positioning of the ligand at the catalytic pocket. This conclusion is supported by kinetic characterization of Cys89 mutants which show decreased affinity towards both ATP and dorsomorphin. The detailed binding mode of dorsomorphin characterized in this study defines a minimal requirement for MELK ligands, a valuable information for future rational design of inhibitors based on entirely new scaffolds.
Collapse
Affiliation(s)
- Krzysztof P Rembacz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Karol M Zrubek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Przemyslaw Golik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | | | - Jozefina Bogusz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Benedykt Wladyka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Malgorzata Romanowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
18
|
Thr55 phosphorylation of p21 by MPK38/MELK ameliorates defects in glucose, lipid, and energy metabolism in diet-induced obese mice. Cell Death Dis 2019; 10:380. [PMID: 31097688 PMCID: PMC6522503 DOI: 10.1038/s41419-019-1616-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 01/15/2023]
Abstract
Murine protein serine-threonine kinase 38 (MPK38)/maternal embryonic leucine zipper kinase (MELK), an AMP-activated protein kinase (AMPK)-related kinase, has previously been shown to interact with p53 and to stimulate downstream signaling. p21, a downstream target of p53, is also known to be involved in adipocyte and obesity metabolism. However, little is known about the mechanism by which p21 mediates obesity-associated metabolic adaptation. Here, we identify MPK38 as an interacting partner of p21. p21 and MPK38 interacted through the cyclin-dependent kinase (CDK) binding region of p21 and the C-terminal domain of MPK38. MPK38 potentiated p21-mediated apoptosis and cell cycle arrest in a kinase-dependent manner by inhibiting assembly of CDK2-cyclin E and CDK4-cyclin D complexes via induction of CDK2-p21 and CDK4-p21 complex formation and reductions in complex formation between p21 and its negative regulator mouse double minute 2 (MDM2), leading to p21 stabilization. MPK38 phosphorylated p21 at Thr55, stimulating its nuclear translocation, which resulted in greater association of p21 with peroxisome proliferator-activated receptor γ (PPARγ), preventing the PPARγ transactivation required for adipogenesis. Furthermore, restoration of p21 expression by adenoviral delivery in diet-induced obese mice ameliorated obesity-induced metabolic abnormalities in a MPK38 phosphorylation-dependent manner. These results suggest that MPK38 functions as a positive regulator of p21, regulating apoptosis, cell cycle arrest, and metabolism during obesity.
Collapse
|
19
|
Wu M, Yu G, Yan T, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Chen D, Wang X. Phosphorylation of SET mediates apoptosis via P53 hyperactivation and NM23-H1 nuclear import. Neurobiol Aging 2018; 69:38-47. [PMID: 29852409 DOI: 10.1016/j.neurobiolaging.2018.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 01/22/2023]
Abstract
Apoptosis plays an important role in neuron loss in Alzheimer's disease (AD). SET, an endogenous inhibitor of protein phosphatase-2A, is phosphorylated in AD brains and positively correlates with cell apoptosis. However, the mechanism underlying phosphorylated SET association with apoptosis remains unknown. Here, we show that mimetic phosphorylation of SET (S9E) induced apoptosis of primary cultured neurons. To investigate its mechanism, we overexpressed SET (S9E) in HEK293/tau cells and observed apoptosis accompanied with a marked increase of cleaved caspase-3 and cytoplasmic SET (S9E) retention with enhanced protein phosphatase-2A inhibition, which subsequently caused p53 hyperphosphorylation and activation. In addition, it caused the release of nucleoside diphosphate kinase A isoform a, a positive regulator of p53 with a DNase activity from SET/nucleoside diphosphate kinase A isoform a complex, and migration into the nucleus, resulting in DNA damage. Besides, it reduced nuclear tau accumulation leading to DNA protection deficiency. These findings suggest that SET phosphorylation is involved in the neuronal apoptotic pathway in AD and provide a new insight into the mechanism of this pathology.
Collapse
Affiliation(s)
- Mengjuan Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghai Yan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
20
|
Dual Roles of Serine-Threonine Kinase Receptor-Associated Protein (STRAP) in Redox-Sensitive Signaling Pathways Related to Cancer Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5241524. [PMID: 29849900 PMCID: PMC5933018 DOI: 10.1155/2018/5241524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) is a transforming growth factor β (TGF-β) receptor-interacting protein that has been implicated in both cell proliferation and cell death in response to various stresses. However, the precise roles of STRAP in these cellular processes are still unclear. The mechanisms by which STRAP controls both cell proliferation and cell death are now beginning to be unraveled. In addition to its biological roles, this review also focuses on the dual functions of STRAP in cancers displaying redox dysregulation, where it can behave as a tumor suppressor or an oncogene (i.e., it can either inhibit or promote tumor formation), depending on the cellular context. Further studies are needed to define the functions of STRAP and the redox-sensitive intracellular signaling pathways that enhance either cell proliferation or cell death in human cancer tissues, which may help in the development of effective treatments for cancer.
Collapse
|
21
|
Zhou S, Li GB, Luo L, Zhong L, Chen K, Li H, Jiang XJ, Fu Q, Long X, Bao JK. Structure-based discovery of new maternal embryonic leucine zipper kinase inhibitors. Org Biomol Chem 2018; 16:1489-1495. [PMID: 29411820 DOI: 10.1039/c7ob02344h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The new MELK inhibitor16showed no inhibitory effect on cancer growth, but can suppress the phosphorylation of focal adhesion kinase, a key kinase in regulating cancer cell migration and invasion.
Collapse
|
22
|
Offenburger SL, Bensaddek D, Murillo AB, Lamond AI, Gartner A. Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development. Sci Rep 2017; 7:4314. [PMID: 28659600 PMCID: PMC5489525 DOI: 10.1038/s41598-017-04375-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/12/2017] [Indexed: 11/09/2022] Open
Abstract
Asymmetric cell divisions are required for cellular diversity and defects can lead to altered daughter cell fates and numbers. In a genetic screen for C. elegans mutants with defects in dopaminergic head neuron specification or differentiation, we isolated a new allele of the transcription factor HAM-1 [HSN (Hermaphrodite-Specific Neurons) Abnormal Migration]. Loss of both HAM-1 and its target, the kinase PIG-1 [PAR-1(I)-like Gene], leads to abnormal dopaminergic head neuron numbers. We identified discrete genetic relationships between ham-1, pig-1 and apoptosis pathway genes in dopaminergic head neurons. We used an unbiased, quantitative mass spectrometry-based proteomics approach to characterise direct and indirect protein targets and pathways that mediate the effects of PIG-1 kinase loss in C. elegans embryos. Proteins showing changes in either abundance, or phosphorylation levels, between wild-type and pig-1 mutant embryos are predominantly connected with processes including cell cycle, asymmetric cell division, apoptosis and actomyosin-regulation. Several of these proteins play important roles in C. elegans development. Our data provide an in-depth characterisation of the C. elegans wild-type embryo proteome and phosphoproteome and can be explored via the Encyclopedia of Proteome Dynamics (EPD) - an open access, searchable online database.
Collapse
Affiliation(s)
- Sarah-Lena Offenburger
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alejandro Brenes Murillo
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
23
|
Cheng J, Qin B, Liu B, Huang T, Li Y, Ma L. Maternal embryonic leucine zipper kinase inhibits epithelial-mesenchymal transition by regulating transforming growth factor-β signaling. Oncol Lett 2017. [PMID: 28588728 DOI: 10.3892/ol.2017.6081] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) performs an important role in self-renewal and proliferation of progenitor cells or tumor stem cells, and is expressed in aggressive cancers, contributing to tumorigenesis. However, the function of MELK in metastasis is unknown. In the present study, the lung cancer A549 cell line was utilized in order to study the role of MELK in epithelial-mesenchymal transitions (EMTs), the initial step of tumor metastasis. It was identified that transforming growth factor-β (TGF-β) could downregulate the expression of MELK, and that MELK could inhibit EMT by regulating TGF-β signaling. MELK can interact with Smad proteins, which represses TGF-β/Smad-mediated signaling activity. The findings of the present study identified the effect of MELK in TGF-β signaling and the EMT process.
Collapse
Affiliation(s)
- Jianjian Cheng
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binyu Qin
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bao Liu
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Taibo Huang
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yuguang Li
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Lijun Ma
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
24
|
Cheng J, Qin B, Liu B, Huang T, Li Y, Ma L. Maternal embryonic leucine zipper kinase inhibits epithelial-mesenchymal transition by regulating transforming growth factor-β signaling. Oncol Lett 2017; 13:4794-4798. [PMID: 28588728 PMCID: PMC5452933 DOI: 10.3892/ol.2017.6081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) performs an important role in self-renewal and proliferation of progenitor cells or tumor stem cells, and is expressed in aggressive cancers, contributing to tumorigenesis. However, the function of MELK in metastasis is unknown. In the present study, the lung cancer A549 cell line was utilized in order to study the role of MELK in epithelial-mesenchymal transitions (EMTs), the initial step of tumor metastasis. It was identified that transforming growth factor-β (TGF-β) could downregulate the expression of MELK, and that MELK could inhibit EMT by regulating TGF-β signaling. MELK can interact with Smad proteins, which represses TGF-β/Smad-mediated signaling activity. The findings of the present study identified the effect of MELK in TGF-β signaling and the EMT process.
Collapse
Affiliation(s)
- Jianjian Cheng
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Binyu Qin
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Bao Liu
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Taibo Huang
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yuguang Li
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Lijun Ma
- Department of Respiration and Critical Care and Emergency Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
25
|
ROCK1/p53/NOXA signaling mediates cardiomyocyte apoptosis in response to high glucose in vitro and vivo. Biochim Biophys Acta Mol Basis Dis 2017; 1863:936-946. [DOI: 10.1016/j.bbadis.2017.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/04/2017] [Accepted: 01/24/2017] [Indexed: 01/02/2023]
|
26
|
Zhou D, Springer MZ, Xu D, Liu D, Hudmon A, Macleod KF, Meroueh SO. Small molecules inhibit STAT3 activation, autophagy, and cancer cell anchorage-independent growth. Bioorg Med Chem 2017; 25:2995-3005. [PMID: 28438385 DOI: 10.1016/j.bmc.2017.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancers (TNBCs) lack the signature targets of other breast tumors, such as HER2, estrogen receptor, and progesterone receptor. These aggressive basal-like tumors are driven by a complex array of signaling pathways that are activated by multiple driver mutations. Here we report the discovery of 6 (KIN-281), a small molecule that inhibits multiple kinases including maternal leucine zipper kinase (MELK) and the non-receptor tyrosine kinase bone marrow X-linked (BMX) with single-digit micromolar IC50s. Several derivatives of 6 were synthesized to gain insight into the binding mode of the compound to the ATP binding pocket. Compound 6 was tested for its effect on anchorage-dependent and independent growth of MDA-MB-231 and MDA-MB-468 breast cancer cells. The effect of 6 on BMX prompted us to evaluate its effect on STAT3 phosphorylation and DNA binding. The compound's inhibition of cell growth led to measurements of survivin, Bcl-XL, p21WAF1/CIP1, and cyclin A2 levels. Finally, LC3B-II levels were quantified following treatment of cells with 6 to determine whether the compound affected autophagy, a process that is known to be activated by STAT3. Compound 6 provides a starting point for the development of small molecules with polypharmacology that can suppress TNBC growth and metastasis.
Collapse
Affiliation(s)
- Donghui Zhou
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Maya Z Springer
- The Ben May Department for Cancer Research, University of Chicago, United States
| | - David Xu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, United States; Department of BioHealth Informatics, Indiana University School of Informatics and Computing, United States
| | - Degang Liu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Andy Hudmon
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, United States
| | - Samy O Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, United States.
| |
Collapse
|
27
|
Zinc finger protein ZPR9 functions as an activator of AMPK-related serine/threonine kinase MPK38/MELK involved in ASK1/TGF-β/p53 signaling pathways. Sci Rep 2017; 7:42502. [PMID: 28195154 PMCID: PMC5307367 DOI: 10.1038/srep42502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
Murine protein serine-threonine kinase 38 (MPK38), an AMP-activated protein kinase (AMPK)-related kinase, has been implicated in the induction of apoptosis signal-regulating kinase 1 (ASK1)-, transforming growth factor-β (TGF-β)-, and p53-mediated activity involved in metabolic homeostasis. Here, zinc finger protein ZPR9 was found to be an activator of MPK38. The association of MPK38 and ZPR9 was mediated by cysteine residues present in each of these two proteins, Cys269 and Cys286 of MPK38 and Cys305 and Cys308 of ZPR9. MPK38 phosphorylated ZPR9 at Thr252. Wild-type ZPR9, but not the ZPR9 mutant T252A, enhanced ASK1, TGF-β, and p53 function by stabilizing MPK38. The requirement of ZPR9 Thr252 phosphorylation was validated using CRISPR/Cas9-mediated ZPR9 (T252A) knockin cell lines. The knockdown of endogenous ZPR9 showed an opposite trend, resulting in the inhibition of MPK38-dependent ASK1, TGF-β, and p53 function. This effect was also demonstrated in mouse embryonic fibroblast (MEF) cells that were haploinsufficient (+/-) for ZPR9, NIH 3T3 cells with inducible knockdown of ZPR9, and CRISPR/Cas9-mediated ZPR9 knockout cells. Furthermore, high-fat diet (HFD)-fed mice displayed reduced MPK38 kinase activity and ZPR9 expression compared to that in mice on control chow, suggesting that ZPR9 acts as a physiological activator of MPK38 that may participate in obesity.
Collapse
|
28
|
Marie SKN, Oba-Shinjo SM, da Silva R, Gimenez M, Nunes Reis G, Tassan JP, Rosa JC, Uno M. Stathmin involvement in the maternal embryonic leucine zipper kinase pathway in glioblastoma. Proteome Sci 2016; 14:6. [PMID: 26973435 PMCID: PMC4788929 DOI: 10.1186/s12953-016-0094-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 03/01/2016] [Indexed: 12/02/2022] Open
Abstract
Background Maternal Embryonic Leucine Zipper Kinase (MELK) is a serine/threonine kinase involved in cell cycle, differentiation, proliferation, and apoptosis. These multiple features are consistent with it being a potential anticancer target. Nevertheless, the MELK pathway in tumorigenesis is not yet completely understood. This study aims to identify proteins associated with MELK pathway in astrocytomas. To this end, proteomic data of the human glioma cell line U87MG transfected with siRNA for MELK were compared with non-target transfected control cells and compared with oligonucleotide microarray data. Results In both assays, we identified stathmin/oncoprotein 18 (STMN1), involved in cell cycle. STMN1 gene expression was further assessed in a series of 154 astrocytomas and 22 non-neoplastic brain samples by qRT-PCR. STMN1 expression was significantly increased in malignant diffusely infiltrative astrocytomas compared with pilocytic astrocytoma (p < 0.0001). A strong correlation between MELK and STMN1 expressions was observed (r = 0.741, p < 0.0001) in glioblastoma (GBM) samples. However, no difference on survival times was found when compared GBM cases with upregulated and downregulated STMN1 (Breslow = 0.092, median survival time: 11 and 13 months, respectively). Functional assays knocking down MELK by siRNA in GBM cell line showed that gene and protein expression of both MELK and stathmin were diminished. On the other hand, when the same analysis was performed for STMN1, only stathmin gene and protein was silenced. Conclusions The results presented herein point stahtmin as a downstream target in the MELK pathway that plays a role in malignant progression of astrocytomas. Electronic supplementary material The online version of this article (doi:10.1186/s12953-016-0094-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suely Kazue Nagahashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paul, Av. Dr Arnaldo 455, Cerqueira César, São Paulo, SP 01246-903 Brazil ; Center for Studies of Cellular and Molecular Therapy (NETCEM), University of Sao Paulo, São Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paul, Av. Dr Arnaldo 455, Cerqueira César, São Paulo, SP 01246-903 Brazil
| | - Roseli da Silva
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paul, Av. Dr Arnaldo 455, Cerqueira César, São Paulo, SP 01246-903 Brazil
| | - Marcela Gimenez
- Protein Chemistry Center and Department of Molecular and Cell Biology, Medical School of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 Brazil
| | - Gisele Nunes Reis
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paul, Av. Dr Arnaldo 455, Cerqueira César, São Paulo, SP 01246-903 Brazil
| | - Jean-Pierre Tassan
- Cell Cycle Group, SFR Biosit, UMR 6290 CNRS Institut de Génétique et Développement de Rennes-Université de Rennes 1, 2 Avenue du Professeur Léon Bernard, CS 34317, 35043 Rennes, Bretagne France
| | - Jose Cesar Rosa
- Protein Chemistry Center and Department of Molecular and Cell Biology, Medical School of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, 14049-900 Brazil
| | - Miyuki Uno
- Center of Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo-ICESP, Av. Dr Arnaldo 251, 8th floor, Cerqueira César, São Paulo, SP 01246-000 Brazil
| |
Collapse
|
29
|
MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. Biosci Rep 2015; 35:BSR20150194. [PMID: 26431963 PMCID: PMC4643329 DOI: 10.1042/bsr20150194] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/10/2015] [Indexed: 01/16/2023] Open
Abstract
Protein kinase MELK has oncogenic properties and is highly overexpressed in some tumors. In the present study, we show that a novel MELK inhibitor causes both the inhibition and degradation of MELK, culminating in replication stress and a senescence phenotype. Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold.
Collapse
|
30
|
Seong HA, Manoharan R, Ha H. A crucial role for the phosphorylation of STRAP at Ser(188) by MPK38 in STRAP-dependent cell death through ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Cell Cycle 2015; 13:3357-74. [PMID: 25485581 DOI: 10.4161/15384101.2014.952165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Serine-threonine kinase receptor-associated protein (STRAP) is a TGF-β receptor-interacting protein that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP phosphorylation plays an important role in determining the pro- or anti-apoptotic function of STRAP. Murine protein serine/threonine kinase 38 (MPK38) phosphorylates STRAP at Ser(188) via direct interaction. Complex formation between STRAP and MPK38 is mediated by Cys(152) and Cys(270) of STRAP and Cys(339) and Cys(377) of MPK38, suggesting the redox dependency of this interaction. MPK38-mediated STRAP Ser(188) phosphorylation contributes to the pro-apoptotic function of STRAP by modulating key steps in STRAP-dependent ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Moreover, knockdown of endogenous MPK38 using an inducible MPK38 shRNA system and in vivo activation of MPK38 by treatment of HEK293 and STRAP-null MEF cells with 1-chloro-2,4-dinitrobenzene (DNCB), a specific inhibitor of Trx reductase, provide evidence that STRAP Ser(188) phosphorylation plays a key role in STRAP-dependent cell death. Adenoviral delivery of MPK38 in mice also demonstrates that STRAP Ser(188) phosphorylation in the liver is tightly associated with cell death and proliferation through ASK1, TGF-β, p53, and PI3K/PDK1 pathways, resulting in apoptotic cell death.
Collapse
Affiliation(s)
- Hyun-A Seong
- a Department of Biochemistry; School of Life Sciences ; Chungbuk National University ; Cheongju , Republic of Korea
| | | | | |
Collapse
|
31
|
Li Z, Shi K, Guan L, Jiang Q, Yang Y, Xu C. Activation of p53 by sodium selenite switched human leukemia NB4 cells from autophagy to apoptosis. Oncol Res 2015; 21:325-31. [PMID: 25198662 DOI: 10.3727/096504014x14024160459087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It was revealed by our previous research that sodium selenite repressed autophagy accompanied by the induction of apoptosis in human leukemia NB4 cells. The inhibition of autophagy exerted a facilitative effect on apoptosis. In the present study, we further explored the mechanisms underlying the switch from autophagy to apoptosis and elucidated p53 played a key role. Selenite induced phosphorylation of p53 at the vital site Ser15 via p38MAPK and ERK. Subsequently p53 dissociated with its inhibitory protein mouse double minute 2 (MDM2). Meanwhile, the nucleolar protein B23 transferred from the nucleolus to the nucleoplasm and associated with MDM2, probably stabilizing p53. The active p53 participated in the decrease of autophagic protein Beclin-1 and LC-3, as well as activation of apoptosis-related caspases. Furthermore, in p53 mutant U937 leukemia cells, selenite could not elicit such a switch from autophagy to apoptosis, laying emphasis on the crucial role p53 played in this process.
Collapse
Affiliation(s)
- Zhushi Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
MELK-a conserved kinase: functions, signaling, cancer, and controversy. Clin Transl Med 2015; 4:11. [PMID: 25852826 PMCID: PMC4385133 DOI: 10.1186/s40169-014-0045-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) is a highly conserved serine/threonine kinase initially found to be expressed in a wide range of early embryonic cellular stages, and as a result has been implicated in embryogenesis and cell cycle control. Recent evidence has identified a broader spectrum of tissue expression pattern for this kinase than previously appreciated. MELK is expressed in several human cancers and stem cell populations. Unique spatial and temporal patterns of expression within these tissues suggest that MELK plays a prominent role in cell cycle control, cell proliferation, apoptosis, cell migration, cell renewal, embryogenesis, oncogenesis, and cancer treatment resistance and recurrence. These findings have important implications for our understanding of development, disease, and cancer therapeutics. Furthermore understanding MELK signaling may elucidate an added dimension of stem cell control.
Collapse
|
33
|
Naka K K, Vezyraki P, Kalaitzakis A, Zerikiotis S, Michalis L, Angelidis C. Hsp70 regulates the doxorubicin-mediated heart failure in Hsp70-transgenic mice. Cell Stress Chaperones 2014; 19:853-64. [PMID: 24748476 PMCID: PMC4389845 DOI: 10.1007/s12192-014-0509-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to investigate the potential protective effect of the Hsp70 protein in the cardiac dysfunction induced by doxorubicin (DOX) and the mechanisms of its action. For this purpose, we used both wild-type mice (F1/F1) and Hsp70-transgenic mice (Tg/Tg) overexpressing human HSP70. Both types were subjected to chronic DOX administration (3 mg/kg intraperitoneally every week for 10 weeks, with an interval from weeks 4 to 6). Primary cell cultures isolated from embryos of these mice were also studied. During DOX administration, the mortality rate as well as weight reduction were lower in Tg/Tg compared to F1/F1 mice (P < 0.05). In vivo cardiac function assessment by transthoracic echocardiography showed that the reduction in left ventricular systolic function observed after DOX administration was lower in Tg/Tg mice (P < 0.05). The study in primary embryonic cell lines showed that the apoptosis after incubation with DOX was reduced in cells overexpressing Hsp70 (Tg/Tg), while the apoptotic pathway that was activated by DOX administration involved activated protein factors such as p53, Bax, caspase-9, caspase-3, and PARP-1. In myocardial protein extracts from identical mice with DOX-induced heart failure, the particular activated apoptotic pathway was confirmed, while the presence of Hsp70 appeared to inhibit the apoptotic pathway upstream of the p53 activation. Our results, in this DOX-induced heart failure model, indicate that Hsp70 overexpression in Tg/Tg transgenic mice provides protection from myocardial damage via an Hsp70-block in p53 activation, thus reducing the subsequent apoptotic mechanism.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line
- Disease Models, Animal
- Doxorubicin
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Heart Failure/chemically induced
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Failure/prevention & control
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Signal Transduction
- Systole
- Time Factors
- Tumor Suppressor Protein p53/metabolism
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Katerina Naka K
- />Department of Cardiology and Michaelidion Cardiac Center, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Patra Vezyraki
- />Laboratory of Physiology, Molecular and Cellular Physiology Unit, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Alexandros Kalaitzakis
- />Laboratory of General Biology, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Stelios Zerikiotis
- />Laboratory of Physiology, Molecular and Cellular Physiology Unit, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Lampros Michalis
- />Department of Cardiology and Michaelidion Cardiac Center, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Charalampos Angelidis
- />Laboratory of General Biology, Medical School, University of Ioannina, Ioannina, 45110 Greece
| |
Collapse
|
34
|
Zhang P, Wu SK, Wang Y, Fan ZX, Li CR, Feng M, Xu P, Wang WD, Lang JY. p53, MDM2, eIF4E and EGFR expression in nasopharyngeal carcinoma and their correlation with clinicopathological characteristics and prognosis: A retrospective study. Oncol Lett 2014; 9:113-118. [PMID: 25435943 PMCID: PMC4246848 DOI: 10.3892/ol.2014.2631] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
In the present study, the expression of p53, mouse double minute 2 homolog (MDM2), eukaryotic translation initiation factor 4E (eIF4E), and epidermal growth factor receptor (EGFR) were investigated in nasopharyngeal carcinoma (NPC), and the correlation between their expression and clinicopathological characteristics and prognosis was analyzed. The medical records of 96 NPC patients who had undergone biopsy prior to radical radiotherapy and chemotherapy between 2005 and 2009 were reviewed, retrospectively. All patients received intensity-modulated radiotherapy with concurrent platinum-based chemotherapy. Patients were followed-up for three years. Streptavidin-peroxidase immunohistochemistry was used to evaluate the expression of p53, MDM2, eIF4E and EGFR in NPC biopsy specimens, and the association between their expression and clinical parameters and survival was analyzed. The p53, MDM2, eIF4E and EGFR expression rates were 65.6% (63/96), 79.16% (76/96), 77.08% (74/96) and 89.5% (86/96), respectively. p53 (χ2,20.322; P=0.001) and EGFR (χ2,8.337; P=0.005) expression were found to correlate with T stage, whereas MDM2 (χ2,16.361; P=0.001) expression was found to correlate with lymph node metastasis. p53 expression was found to inversely correlate with MDM2 expression (r, −3.24; P<0.05). Three-year survival rates were lower in p53-positive (76.2%) patients when compared with p53-negative (93.9%) patients. In addition, three-year survival rates were lower in EGFR-positive (75.8%) patients than in EGFR-negative patients (91.2%). The Cox proportional-hazards regression model revealed that p53 (β,−0.455; χ2,5.491; P=0.019) and EGFR (β, 3.93; χ2, 11.95; P=0.001) expression were independent prognostic factors. Thus, it was hypothesized that p53 and EGFR expression present potential unfavorable prognostic markers for patients with NPC.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Song-Ke Wu
- Department of Oncology, Cangxi People's Hospital, Guangyuan, Sichuan, 618400, P.R. China
| | - Ying Wang
- Department of Pathology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Zi-Xuan Fan
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Chu-Rong Li
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Mei Feng
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Peng Xu
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
35
|
Wang Y, Lee YM, Baitsch L, Huang A, Xiang Y, Tong H, Lako A, Von T, Choi C, Lim E, Min J, Li L, Stegmeier F, Schlegel R, Eck MJ, Gray NS, Mitchison TJ, Zhao JJ. MELK is an oncogenic kinase essential for mitotic progression in basal-like breast cancer cells. eLife 2014; 3:e01763. [PMID: 24844244 PMCID: PMC4059381 DOI: 10.7554/elife.01763] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
Despite marked advances in breast cancer therapy, basal-like breast cancer (BBC), an aggressive subtype of breast cancer usually lacking estrogen and progesterone receptors, remains difficult to treat. In this study, we report the identification of MELK as a novel oncogenic kinase from an in vivo tumorigenesis screen using a kinome-wide open reading frames (ORFs) library. Analysis of clinical data reveals a high level of MELK overexpression in BBC, a feature that is largely dependent on FoxM1, a master mitotic transcription factor that is also found to be highly overexpressed in BBC. Ablation of MELK selectively impairs proliferation of basal-like, but not luminal breast cancer cells both in vitro and in vivo. Mechanistically, depletion of MELK in BBC cells induces caspase-dependent cell death, preceded by defective mitosis. Finally, we find that Melk is not required for mouse development and physiology. Together, these data indicate that MELK is a normally non-essential kinase, but is critical for BBC and thus represents a promising selective therapeutic target for the most aggressive subtype of breast cancer.DOI: http://dx.doi.org/10.7554/eLife.01763.001.
Collapse
Affiliation(s)
- Yubao Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Young-Mi Lee
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Lukas Baitsch
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Alan Huang
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Yi Xiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Haoxuan Tong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Ana Lako
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Thanh Von
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Christine Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Harvard University, Cambridge, United States
| | - Elgene Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Junxia Min
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Li Li
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Frank Stegmeier
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Robert Schlegel
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
36
|
Jiang P, Zhang D. Maternal embryonic leucine zipper kinase (MELK): a novel regulator in cell cycle control, embryonic development, and cancer. Int J Mol Sci 2013; 14:21551-60. [PMID: 24185907 PMCID: PMC3856021 DOI: 10.3390/ijms141121551] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.
Collapse
Affiliation(s)
- Pengfei Jiang
- Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mail:
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Deli Zhang
- Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mail:
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-29-8709-1117; Fax: +86-29-8709-1032
| |
Collapse
|
37
|
Manoharan R, Seong HA, Ha H. Thioredoxin inhibits MPK38-induced ASK1, TGF-β, and p53 function in a phosphorylation-dependent manner. Free Radic Biol Med 2013; 63:313-24. [PMID: 23747528 DOI: 10.1016/j.freeradbiomed.2013.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 11/20/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family. The factors that regulate MPK38 activity and function are not yet elucidated. Here, thioredoxin (Trx) was shown to be a negative regulator of MPK38. The redox-dependent association of MPK38 and Trx was mediated through the C-terminal domain of MPK38. Single and double amino acid substitution mutagenesis of MPK38 (C286S, C339S, C377S, and C339S/C377S) and Trx (C32S, C35S, and C32S/C35S) demonstrated that Cys(339) and Cys(377) of MPK38 and Cys(32) and Cys(35) of Trx are required for MPK38-Trx complex formation. MPK38 directly interacted with and phosphorylated Trx at Thr(76). Expression of wild-type Trx, but not the Trx mutants C32S/C35S and T76A, inhibited MPK38-induced ASK1, TGF-β, and p53 function by destabilizing MPK38. The E3 ubiquitin-protein ligase Mdm2 played a critical role in the regulation of MPK38 stability by Trx. Treatment of cells with 1-chloro-2,4-dinitrobenzene, a specific inhibitor of Trx reductase, decreased MPK38-Trx complex formation and subsequently increased MPK38 stability and activity, indicating that Trx negatively regulates MPK38 activity in vivo. Finally, we used ASK1-, Smad3-, and p53-null mouse embryonic fibroblasts to demonstrate that ASK1, Smad3, and p53 play important roles in the activity and function of MPK38, suggesting a functional link between MPK38 and ASK1, TGF-β, and p53 signaling pathways. These results indicate that Trx functions as a physiological inhibitor of MPK38, which plays an important role in inducing ASK1-, TGF-β-, and p53-mediated activity.
Collapse
Affiliation(s)
- Ravi Manoharan
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | |
Collapse
|
38
|
Bai J, Lei P, Zhang J, Zhao C, Liang R. Sulfite exposure-induced hepatocyte death is not associated with alterations in p53 protein expression. Toxicology 2013; 312:142-8. [PMID: 23973939 DOI: 10.1016/j.tox.2013.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
Although sulfite (SO3(2-)) is commonly used as an antimicrobial agent and preservative in foods, medicines and wine, it has also been listed as an important risk factor for the initiation and progression of liver diseases due to oxidative damage. In general, apoptosis that is induced by oxidative stress is triggered by increases in p53 and alterations in Mdm2 and Bcl-2. However, the level of involvement of the p53 signaling pathway, which has been shown to be upregulated in some animal studies, in hepatocyte death remains unclear. To examine the response of the p53 signaling pathway to stimulation with different concentrations of sulfite, a time course study of p53, Mdm2, and Bcl-2 expression was conducted in an immortalized hepatic cell line, HL-7702. When the HL-7702 cells were cultured in the presence of Na2SO3, the cell viability was significantly decreased after 24h compared to that of the control group (0mmol/L) (p<0.05). Meanwhile, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the supernatants of HL-7702 cells were significantly increased following Na2SO3 administration. Interestingly, the expression of p53 and p-p53 (Ser15) remained unchanged. In addition, no obvious alterations in Mdm2 and Bcl-2 expression were observed in HL-7702 cells that had been stimulated with various concentrations of sulfite. To further investigate the detailed mechanism underlying sulfite toxicity, caspase-3, PCNA and RIP1 expression in HL-7702 cells was studied. The expression levels of caspase-3 and PCNA were unchanged, but RIP1 expression was increased significantly after 24h of exposure. In light of this evidence, we propose that sulfite is cytotoxic to hepatocytes, but this cytotoxicity is not achieved by direct interruption of the p53 signaling pathway. In addition, we propose that an alternative necrotic process underlies hepatocellular death following sulfite exposure.
Collapse
Affiliation(s)
- Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | | | | | | | | |
Collapse
|
39
|
Cao LS, Wang J, Chen Y, Deng H, Wang ZX, Wu JW. Structural basis for the regulation of maternal embryonic leucine zipper kinase. PLoS One 2013; 8:e70031. [PMID: 23922895 PMCID: PMC3724675 DOI: 10.1371/journal.pone.0070031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/14/2013] [Indexed: 01/30/2023] Open
Abstract
MELK (maternal embryonic leucine zipper kinase), which is a member of the AMPK (AMP-activated protein kinase)-related kinase family, plays important roles in diverse cellular processes and has become a promising drug target for certain cancers. However, the regulatory mechanism of MELK remains elusive. Here, we report the crystal structure of a fragment of human MELK that contains the kinase domain and ubiquitin-associated (UBA) domain. The UBA domain tightly binds to the back of the kinase domain, which may contribute to the proper conformation and activity of the kinase domain. Interestingly, the activation segment in the kinase domain displays a unique conformation that contains an intramolecular disulfide bond. The structural and biochemical analyses unravel the molecular mechanisms for the autophosphorylation/activation of MELK and the dependence of its catalytic activity on reducing agents. Thus, our results may provide the basis for designing specific MELK inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Lu-Sha Cao
- MOE Key Laboratory of Protein Sciences and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jue Wang
- MOE Key Laboratory of Protein Sciences and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Protein Sciences and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Protein Sciences and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhi-Xin Wang
- MOE Key Laboratory of Protein Sciences and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia-Wei Wu
- MOE Key Laboratory of Protein Sciences and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Kig C, Beullens M, Beke L, Van Eynde A, Linders JT, Brehmer D, Bollen M. Maternal embryonic leucine zipper kinase (MELK) reduces replication stress in glioblastoma cells. J Biol Chem 2013; 288:24200-12. [PMID: 23836907 DOI: 10.1074/jbc.m113.471433] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Maternal embryonic leucine zipper kinase (MELK) belongs to the subfamily of AMP-activated Ser/Thr protein kinases. The expression of MELK is very high in glioblastoma-type brain tumors, but it is not clear how this contributes to tumor growth. Here we show that the siRNA-mediated loss of MELK in U87 MG glioblastoma cells causes a G1/S phase cell cycle arrest accompanied by cell death or a senescence-like phenotype that can be rescued by the expression of siRNA-resistant MELK. This cell cycle arrest is mediated by an increased expression of p21(WAF1/CIP1), an inhibitor of cyclin-dependent kinases, and is associated with the hypophosphorylation of the retinoblastoma protein and the down-regulation of E2F target genes. The increased expression of p21 can be explained by the consecutive activation of ATM (ataxia telangiectasia mutated), Chk2, and p53. Intriguingly, the activation of p53 in MELK-deficient cells is not due to an increased stability of p53 but stems from the loss of MDMX (mouse double minute-X), an inhibitor of p53 transactivation. The activation of the ATM-Chk2 pathway in MELK-deficient cells is associated with the accumulation of DNA double-strand breaks during replication, as demonstrated by the appearance of γH2AX foci. Replication stress in these cells is also illustrated by an increased number of stalled replication forks and a reduced fork progression speed. Our data indicate that glioblastoma cells have elevated MELK protein levels to better cope with replication stress during unperturbed S phase. Hence, MELK inhibitors hold great potential for the treatment of glioblastomas as such or in combination with DNA-damaging therapies.
Collapse
Affiliation(s)
- Cenk Kig
- Laboratory of Biosignaling and Therapeutics, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
41
|
Wang D, Tang J, Wang Y, Ramishetti S, Fu Q, Racette K, Liu F. Multifunctional nanoparticles based on a single-molecule modification for the treatment of drug-resistant cancer. Mol Pharm 2013; 10:1465-9. [PMID: 23473373 DOI: 10.1021/mp400022h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively explored for the treatment of MDR in cancer because of its ability to inhibit P-glycoprotein. Here, we have established multifunctional nanoparticles (MFNPs) using a single-molecule modification of TPGS, which can deliver a hydrophobic drug, paclitaxel (PTX), and a hydrophilic drug, fluorouracil (5-FU), and overcome MDR in cancer. Our data indicated that, when delivered into a PTX-resistant cell line using MFNPs, the combination of PTX and 5-FU was more cytotoxic than each agent individually.
Collapse
Affiliation(s)
- Dun Wang
- Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|