1
|
Pesenti L, de Oliveira Formiga R, Tamassia N, Gardiman E, Chable de la Héronnière F, Gasperini S, Chicher J, Kuhn L, Hammann P, Le Gall M, Saraceni-Tasso G, Martin C, Hosmalin A, Breckler M, Hervé R, Decker P, Ladjemi MZ, Pène F, Burgel PR, Cassatella MA, Witko-Sarsat V. Neutrophils Display Novel Partners of Cytosolic Proliferating Cell Nuclear Antigen Involved in Interferon Response in COVID-19 Patients. J Innate Immun 2025; 17:154-175. [PMID: 40015257 PMCID: PMC11867639 DOI: 10.1159/000543633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/13/2025] [Indexed: 03/01/2025] Open
Abstract
INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions. INTRODUCTION Neutrophils are key players in the hyperinflammatory response during SARS-CoV-2 infection. The cytosolic proliferating cell nuclear antigen (PCNA) is a scaffolding protein highly dependent on the microenvironment status and known to interact with numerous proteins that regulate neutrophil functions. This study aimed to examine the cytosolic protein content and PCNA interactome in neutrophils from COVID-19 patients. METHODS Proteomic analyses were performed on neutrophil cytosols from healthy donors and patients with severe or critical COVID-19. In vitro approaches were used to explore the biological significance of the COVID-19-specific PCNA interactome. RESULTS Neutrophil cytosol analysis revealed a strong interferon (IFN) protein signature, with variations according to disease severity. Interactome analysis identified associations of PCNA with proteins involved in interferon signaling, cytoskeletal organization, and neutrophil extracellular trap (NET) formation, such as protein arginine deiminase type-4 (PADI4) and histone H3, particularly in critical patients. Functional studies of interferon signaling showed that T2AA, a PCNA scaffold inhibitor, downregulated IFN-related genes, including STAT1, MX1, IFIT1, and IFIT2 in neutrophils. Additionally, T2AA specifically inhibited the secretion of CXCL10, an IFN-dependent cytokine. PCNA was also found to interact with key effector proteins implicated in NET formation, such as histone H3, especially in critical COVID-19 cases. CONCLUSION The analysis of the PCNA interactome has unveiled new protein partners that enhance the interferon pathway, thereby modulating immune responses and contributing to hyperinflammation in COVID-19. These findings provide valuable insights into interferon dysregulation in other immune-related conditions.
Collapse
Affiliation(s)
- Lucie Pesenti
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Strasbourg-Esplanade Proteomics Platform, CNRS UAR1589, Molecular and Cellular Biology Institute, University of Strasbourg, Strasbourg, France
| | - Morgane Le Gall
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | | | - Clémence Martin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Anne Hosmalin
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Magali Breckler
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Roxane Hervé
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Patrice Decker
- INSERM UMR 1125, Bobigny, France
- UFR SMBH, Li2P, Université Sorbonne Paris Nord, Bobigny, France
| | - Maha Zohra Ladjemi
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
| | - Frédéric Pène
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Intensive Medicine and Reanimation, AP-HP, Cochin Hospital, Paris, France
| | - Pierre-Régis Burgel
- INSERM U1016, Institut Cochin, CNRS 8104, Université Paris Cité, Paris, France
- Department of Respiratory Medicine, AP-HP, Cochin Hospital, Paris, France
| | - Marco A. Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | |
Collapse
|
2
|
Cheng L, Shi Z, Yue Y, Wang Y, Qin Y, Zhao W, Hu Y, Li Q, Guo M, An L, Wang S, Tian J. Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs. J Anim Sci Biotechnol 2024; 15:148. [PMID: 39501409 PMCID: PMC11539329 DOI: 10.1186/s40104-024-01109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Exogenous gonadotropin-controlled ovarian stimulation is the critical step in animal reproductive management, such as pig, sheep, bovine and other species. It helps synchronize ovulation or stimulate multiple ovulations. However, a number of evidence indicated an unexpected decrease in pregnancy outcomes following ovarian stimulation. This study aimed to explore the underlying mechanism of the pregnancy defect and develop a practical rescue strategy. RESULTS Compared with those in the control group, gilts that underwent ovarian stimulation showed a decrease in pregnancy rate, farrowing rate, and total number of piglets born. Stimulated gilts also showed an increase in estradiol (E2) levels. The supraphysiological E2 level was correlated with the decrease in the number of piglets born. Furthermore, we found that high levels of E2 impair uterine receptivity, as shown by the overproliferation of endometrial epithelial cells. In vitro mechanistic studies demonstrated that high levels of E2 hyperactivate FGF-FGFR-ERK signaling cascade in the uterine endometrium, and in turn induces overproliferation of endometrial epithelial cells. Of note, N-acetyl-L-cysteine (NAC) supplementation effectively inhibits ERK hyperphosphorylation and ameliorates endometrial epithelial overproliferation. Importantly, in vivo experiments indicated that dietary NAC supplementation, compared with ovarian stimulation group, improves the uterine receptivity in gilts, and significantly increases the pregnancy rate and total number of piglets born. CONCLUSIONS Ovarian stimulation-induced supraphysiological levels of E2 impairs uterine receptivity by hyperactivating FGF-FGFR-ERK signaling cascade, thereby reducing pregnancy rate and litter size. Supplementing NAC to a conventional diet for gilts ameliorates hyperactivated ERK signaling and improves uterine receptivity, thus rescuing adverse pregnancy outcomes following ovarian stimulation.
Collapse
Affiliation(s)
- Linghua Cheng
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhicheng Shi
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuan Yue
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yue Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yusheng Qin
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Zhao
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yupei Hu
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qin Li
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Min Guo
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei An
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shumin Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jianhui Tian
- Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
3
|
Kwan A, Mcdermott-Brown I, Muthana M. Proliferating Cell Nuclear Antigen in the Era of Oncolytic Virotherapy. Viruses 2024; 16:1264. [PMID: 39205238 PMCID: PMC11359830 DOI: 10.3390/v16081264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a well-documented accessory protein of DNA repair and replication. It belongs to the sliding clamp family of proteins that encircle DNA and acts as a mobile docking platform for interacting proteins to mount and perform their metabolic tasks. PCNA presence is ubiquitous to all cells, and when located in the nucleus it plays a role in DNA replication and repair, cell cycle control and apoptosis in proliferating cells. It also plays a crucial role in the infectivity of some viruses, such as herpes simplex viruses (HSVs). However, more recently it has been found in the cytoplasm of immune cells such as neutrophils and macrophages where it has been shown to be involved in the development of a pro-inflammatory state. PCNA is also expressed on the surface of certain cancer cells and can play a role in preventing immune cells from killing tumours, as well as being associated with cancer virulence. Given the growing interest in oncolytic viruses (OVs) as a novel cancer therapeutic, this review considers the role of PCNA in healthy, cancerous, and immune cells to gain an understanding of how PCNA targeted therapy and oncolytic virotherapy may interact in the future.
Collapse
Affiliation(s)
| | | | - Munitta Muthana
- Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (A.K.)
| |
Collapse
|
4
|
Ferrão Maciel-Fiuza M, Rengel BD, Wachholz GE, do Amaral Gomes J, de Oliveira MR, Kowalski TW, Roehe PM, Luiz Vianna FS, Schüler-Faccini L, Mayer FQ, Varela APM, Fraga LR. New candidate genes potentially involved in Zika virus teratogenesis. Comput Biol Med 2024; 173:108259. [PMID: 38522248 DOI: 10.1016/j.compbiomed.2024.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Despite efforts to elucidate Zika virus (ZIKV) teratogenesis, still several issues remain unresolved, particularly on the molecular mechanisms behind the pathogenesis of Congenital Zika Syndrome (CZS). To answer this question, we used bioinformatics tools, animal experiments and human gene expression analysis to investigate genes related to brain development potentially involved in CZS. Searches in databases for genes related to brain development and CZS were performed, and a protein interaction network was created. The expression of these genes was analyzed in a CZS animal model and secondary gene expression analysis (DGE) was performed in human cells exposed to ZIKV. A total of 2610 genes were identified in the databases, of which 1013 were connected. By applying centrality statistics of the global network, 36 candidate genes were identified, which, after selection resulted in nine genes. Gene expression analysis revealed distinctive expression patterns for PRKDC, PCNA, ATM, SMC3 as well as for FGF8 and SHH in the CZS model. Furthermore, DGE analysis altered expression of ATM, PRKDC, PCNA. In conclusion, systems biology are helpful tools to identify candidate genes to be validated in vitro and in vivo. PRKDC, PCNA, ATM, SMC3, FGF8 and SHH have altered expression in ZIKV-induced brain malformations.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Duarte Rengel
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriela Elis Wachholz
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Julia do Amaral Gomes
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maikel Rosa de Oliveira
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thayne Woycinck Kowalski
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Bioinformatics Core, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Centro Universitário CESUCA, Cachoeirinha, Brazil
| | - Paulo Michel Roehe
- Department of Microbiology, Immunology and Parasitology, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Sales Luiz Vianna
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lavínia Schüler-Faccini
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Graduate Program in Molecular and Cellular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula Muterle Varela
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil.
| | - Lucas Rosa Fraga
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Teratogen Information System, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Allen LAH. PCNA at the crossroads of human neutrophil activation, metabolism, and survival. J Leukoc Biol 2024; 115:201-204. [PMID: 38057160 DOI: 10.1093/jleuko/qiad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
The proliferating cell nuclear antigen scaffold differentially binds hexokinase, procaspase-9, and p47phox to regulate neutrophil metabolism, viability and activation state.
Collapse
Affiliation(s)
- Lee-Ann H Allen
- Department of Molecular Microbiology and Immunology, One Hospital Drive, M616B Medical Sciences Building, University of Missouri, Columbia, MO 65212, United States
- Research Division, Harry S. Truman Memorial Veterans' Hospital, 800 Hospital Drive, Columbia, MO 65201, United States
| |
Collapse
|
6
|
Aymonnier K, Bosetta E, Leborgne NGF, Ullmer A, Le Gall M, De Chiara A, Salnot V, Many S, Scapini P, Wicks I, Chatfield S, Martin KR, Witko-Sarsat V. G-CSF reshapes the cytosolic PCNA scaffold and modulates glycolysis in neutrophils. J Leukoc Biol 2024; 115:205-221. [PMID: 37824822 DOI: 10.1093/jleuko/qiad122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Cytosolic proliferating cell nuclear antigen (PCNA) is involved in neutrophil survival and function, in which it acts as a scaffold and associates with proteins involved in apoptosis, NADPH oxidase activation, cytoskeletal dynamics, and metabolism. While the PCNA interactome has been characterized in neutrophils under homeostatic conditions, less is known about neutrophil PCNA in pathophysiological contexts. Granulocyte colony-stimulating factor (G-CSF) is a cytokine produced in response to inflammatory stimuli that regulates many aspects of neutrophil biology. Here, we used isolated normal-density neutrophils from G-CSF-treated haemopoietic stem cell donors (GDs) as a model to understand the role of PCNA during inflammation. Proteomic analysis of the neutrophil cytosol revealed significant differences between GDs and healthy donors (HDs). PCNA was one of the most upregulated proteins in GDs, and the PCNA interactome was significantly different in GDs compared with HDs. Importantly, while PCNA associated with almost all enzymes involved in glycolysis in HDs, these associations were decreased in GDs. Functionally, neutrophils from GDs had a significant increase in glycolysis compared with HDs. Using p21 competitor peptides, we showed that PCNA negatively regulates neutrophil glycolysis in HDs but had no effect on GD neutrophils. These data demonstrate that G-CSF alters the PCNA scaffold, affecting interactions with key glycolytic enzymes, and thus regulates glycolysis, the main energy pathway utilized by neutrophils. By this selective control of glycolysis, PCNA can organize neutrophils functionality in parallel with other PCNA mechanisms of prolonged survival. PCNA may therefore be instrumental in the reprogramming that neutrophils undergo in inflammatory or tumoral settings.
Collapse
Affiliation(s)
- Karen Aymonnier
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Enzo Bosetta
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Nathan G F Leborgne
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Audrey Ullmer
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Morgane Le Gall
- Proteom'IC facility, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du Faubourg Saint Jacques, Paris F-75014, France
| | - Alessia De Chiara
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Virginie Salnot
- Proteom'IC facility, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du Faubourg Saint Jacques, Paris F-75014, France
| | - Souganya Many
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| | - Patrizia Scapini
- Department of General Pathology, University of Verona, Verona 37134, Italy
| | - Ian Wicks
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
- Department of Rheumatology, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Simon Chatfield
- Department of Rheumatology, Royal Melbourne Hospital, Grattan Street, Parkville, Victoria 3050, Australia
| | - Katherine R Martin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia
| | - Véronique Witko-Sarsat
- Department of Immunology, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris Cité, 27 rue du faubourg Saint Jacques, Paris F-75014, France
| |
Collapse
|
7
|
D'Antongiovanni V, Segnani C, Ippolito C, Antonioli L, Colucci R, Fornai M, Bernardini N, Pellegrini C. Pathological Remodeling of the Gut Barrier as a Prodromal Event of High-Fat Diet-Induced Obesity. J Transl Med 2023; 103:100194. [PMID: 37290605 DOI: 10.1016/j.labinv.2023.100194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Intestinal barrier alterations represent a primum movens in obesity and related intestinal dysfunctions. However, whether gut barrier remodeling represents prodromal events in obesity before weight gain, metabolic alterations, and systemic inflammation remains unclear. Herein, we examined morphologic changes in the gut barrier in a mouse model of high-fat diet (HFD) since the earliest phases of diet assumption. C57BL/6J mice were fed with standard diet (SD) or HFD for 1, 2, 4, or 8 weeks. Remodeling of intestinal epithelial barrier, inflammatory infiltrate, and collagen deposition in the colonic wall was assessed by histochemistry and immunofluorescence analysis. Obese mice displayed increased body and epididymal fat weight along with increased plasma resistin, IL-1β, and IL-6 levels after 8 weeks of HFD. Starting from 1 week of HFD, mice displayed (1) a decreased claudin-1 expression in lining epithelial cells, (2) an altered mucus in goblet cells, (3) an increase in proliferating epithelial cells in colonic crypts, (4) eosinophil infiltration along with an increase in vascular P-selectin, and (5) deposition of collagen fibers. HFD intake is associated with morphologic changes in the large bowel at mucosal and submucosal levels. In particular, the main changes include alterations in the mucous layer and intestinal epithelial barrier integrity and activation of mucosal defense-enhanced fibrotic deposition. These changes represent early events occurring before the development of obesity condition that could contribute to compromising the intestinal mucosal barrier and functions, opening the way for systemic dissemination.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health," University of Pisa, Pisa, Italy.
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Ballav S, Ranjan A, Basu S. Partial Activation of PPAR-γ by Synthesized Quercetin Derivatives Modulates TGF-β1-Induced EMT in Lung Cancer Cells. Adv Biol (Weinh) 2023; 7:e2300037. [PMID: 37042092 DOI: 10.1002/adbi.202300037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/10/2023] [Indexed: 04/13/2023]
Abstract
Non-small cell lung cancer (NSCLC) has a very low survival rate due to poor response to chemotherapy and late detection. Epithelial to mesenchymal transition (EMT) is regarded as a major contributor to drive metastasis during NSCLC progression. Towards this, transforming growth factor-beta 1 (TGF-β1) is the key driver that endows cancer cells with increased aggressiveness. Recently, this group synthesized a series of Schiff base quercetin derivatives (QDs) and ascertained their effectiveness on EMT markers of A549 cell line. This study evidenced that the EMT process is counteracted via the partial activation of a nuclear hormone receptor, Peroxisome proliferator-activated receptor (PPAR)-γ through QDs. Here, that work is extended to investigate the interplay between PPAR-γ partial activation and TGF-β1-induced EMT in human lung cancer A549 cells. The results reveal that TGF-β1 plays a critical role in suppressing PPAR-γ, which is markedly reversed and increased by partial agonists: QUE2FH and QUESH at both protein and transcriptional levels. The partial agonists not only stimulate PPAR-γ in a balanced manner but also prevent the loss of E-cadherin and acquisition of TGF-β1-induced mesenchymal markers (Snail, Slug, Vimentin, and Zeb-1). Subsequently, the effects are accompanied by attenuation of TGF-β1-induced migratory ability of A549 cells.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411 033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411 033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Tathawade, Pune, Maharashtra, 411 033, India
| |
Collapse
|
9
|
Lama P, Tiwari J, Mutreja P, Chauhan S, Harding IJ, Dolan T, Adams MA, Maitre CL. Cell clusters in intervertebral disc degeneration: an attempted repair mechanism aborted via apoptosis. Anat Cell Biol 2023; 56:382-393. [PMID: 37503630 PMCID: PMC10520859 DOI: 10.5115/acb.23.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 07/29/2023] Open
Abstract
Cell clusters are a histological hallmark feature of intervertebral disc degeneration. Clusters arise from cell proliferation, are associated with replicative senescence, and remain metabolically, but their precise role in various stages of disc degeneration remain obscure. The aim of this study was therefore to investigate small, medium, and large size cell-clusters. For this purpose, human disc samples were collected from 55 subjects, aged 37-72 years, 21 patients had disc herniation, 10 had degenerated non-herniated discs, and 9 had degenerative scoliosis with spinal curvature <45°. 15 non-degenerated control discs were from cadavers. Clusters and matrix changes were investigated with histology, immunohistochemistry, and Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Data obtained were analyzed with spearman rank correlation and ANOVA. Results revealed, small and medium-sized clusters were positive for cell proliferation markers Ki-67 and proliferating cell nuclear antigen (PCNA) in control and slightly degenerated human discs, while large cell clusters were typically more abundant in severely degenerated and herniated discs. Large clusters associated with matrix fissures, proteoglycan loss, matrix metalloproteinase-1 (MMP-1), and Caspase-3. Spatial association findings were reconfirmed with SDS-PAGE that showed presence to these target markers based on its molecular weight. Controls, slightly degenerated discs showed smaller clusters, less proteoglycan loss, MMP-1, and Caspase-3. In conclusion, cell clusters in the early stages of degeneration could be indicative of repair, however sustained loading increases large cell clusters especially around microscopic fissures that accelerates inflammatory catabolism and alters cellular metabolism, thus attempted repair process initiated by cell clusters fails and is aborted at least in part via apoptosis.
Collapse
Affiliation(s)
- Polly Lama
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Jerina Tiwari
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Pulkit Mutreja
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Sukirti Chauhan
- Department of Anatomy, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Sikkim, India
| | - Ian J Harding
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | - Trish Dolan
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | - Michael A Adams
- Centre for Clinical Anatomy, University of Bristol, Bristol, UK
| | | |
Collapse
|
10
|
Knaneh J, Hodak E, Fedida-Metula S, Edri A, Eren R, Yoffe Y, Amitay-Laish I, Prag Naveh H, Lubin I, Porgador A, Moyal L. mAb14, a Monoclonal Antibody against Cell Surface PCNA: A Potential Tool for Sezary Syndrome Diagnosis and Targeted Immunotherapy. Cancers (Basel) 2023; 15:4421. [PMID: 37686697 PMCID: PMC10486495 DOI: 10.3390/cancers15174421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of primary cutaneous T-cell lymphoma (CTCL). Proliferating cell nuclear antigen (PCNA) is expressed on the cell surface of cancer cells (csPCNA), but not on normal cells. It functions as an immune checkpoint ligand by interacting with natural killer (NK) cells through the NK inhibitory receptor NKp44, leading to the inhibition of NK cytotoxicity. A monoclonal antibody (mAb14) was established to detect csPCNA on cancer cells and block their interaction with NKp44. In this study, three CTCL cell lines and peripheral blood mononuclear cells (PBMCs) from patients with SS and healthy donors were analyzed for csPCNA using mAb14, compared to monoclonal antibody PC10, against nuclear PCNA (nPCNA). The following assays were used: immunostaining, imaging flow cytometry, flow cytometry, cell sorting, cell cycle analysis, ELISA, and the NK-cell cytotoxic assay. mAb14 successfully detected PCNA on the membrane and in the cytoplasm of viable CTCL cell lines associated with the G2/M phase. In the Sézary PBMCs, csPCNA was expressed on lymphoma cells that had an atypical morphology and not on normal cells. Furthermore, it was not expressed on PBMCs from healthy donors. In the co-culture of peripheral blood NK (pNK) cells with CTCL lines, mAb14 increased the secretion of IFN-γ, indicating the reactivation of pNK activity. However, mAb14 did not enhance the cytotoxic activity of pNK cells against CTCL cell lines. The unique expression of csPCNA detected by mAb14 suggests that csPCNA and mAb14 may serve as a potential biomarker and tool, respectively, for detecting malignant cells in SS and possibly other CTCL variants.
Collapse
Affiliation(s)
- Jamal Knaneh
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
| | - Emmilia Hodak
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| | | | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410101, Israel; (A.E.); (A.P.)
| | - Rachel Eren
- PiNK Biopharma Ltd., Ness Ziona 7403648, Israel; (S.F.-M.); (Y.Y.)
| | - Yael Yoffe
- PiNK Biopharma Ltd., Ness Ziona 7403648, Israel; (S.F.-M.); (Y.Y.)
| | - Iris Amitay-Laish
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Division of Dermatology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Hadas Prag Naveh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Division of Dermatology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Ido Lubin
- Core Facility, Felsenstein Medical Research Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410101, Israel; (A.E.); (A.P.)
- National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva 8410101, Israel
| | - Lilach Moyal
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| |
Collapse
|
11
|
Hashimoto H, Hara K, Hishiki A. Structural basis for molecular interactions on the eukaryotic DNA sliding clamps PCNA and RAD9-RAD1-HUS1. J Biochem 2022; 172:189-196. [PMID: 35731009 DOI: 10.1093/jb/mvac053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
DNA sliding clamps are widely conserved in all living organisms and play crucial roles in DNA replication and repair. Each DNA sliding clamp is a doughnut-shaped protein with a quaternary structure that encircles the DNA strand and recruits various factors involved in DNA replication and repair, thereby stimulating their biological functions. Eukaryotes have two types of DNA sliding clamp, proliferating cell nuclear antigen (PCNA) and RAD9-RAD1-HUS1 (9-1-1). The homo-trimer PCNA physically interacts with multiple proteins containing a PIP-box and/or APIM. The two motifs bind to PCNA by a similar mechanism; in addition, the bound PCNA structure is similar, implying a universality of PCNA interactions. In contrast to PCNA, 9-1-1 is a hetero-trimer composed of RAD9, RAD1, and HUS1 subunits. Although 9-1-1 forms a trimeric ring structure similar to PCNA, the C-terminal extension of the RAD9 is intrinsically unstructured. Based on the structural similarity between PCNA and 9-1-1, the mechanism underlying the interaction of 9-1-1 with its partners was thought to be analogous to that of PCNA. Unexpectedly, however, the recent structure of the 9-1-1 ring bound to a partner has revealed a novel interaction distinct from that of PCNA, potentially providing a new principle for molecular interactions on DNA sliding clamps.
Collapse
Affiliation(s)
- Hiroshi Hashimoto
- School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8002, Japan
| | - Kodai Hara
- School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8002, Japan
| | - Asami Hishiki
- School of Pharmaceutical Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8002, Japan
| |
Collapse
|
12
|
Zambalde ÉP, Pavan ICB, Mancini MCS, Severino MB, Scudero OB, Morelli AP, Amorim MR, Bispo-dos-Santos K, Góis MM, Toledo-Teixeira DA, Parise PL, Mauad T, Dolhnikoff M, Saldiva PHN, Marques-Souza H, Proenca-Modena JL, Ventura AM, Simabuco FM. Characterization of the Interaction Between SARS-CoV-2 Membrane Protein (M) and Proliferating Cell Nuclear Antigen (PCNA) as a Potential Therapeutic Target. Front Cell Infect Microbiol 2022; 12:849017. [PMID: 35677658 PMCID: PMC9168989 DOI: 10.3389/fcimb.2022.849017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is an emerging virus from the Coronaviridae family and is responsible for the ongoing COVID-19 pandemic. In this work, we explored the previously reported SARS-CoV-2 structural membrane protein (M) interaction with human Proliferating Cell Nuclear Antigen (PCNA). The M protein is responsible for maintaining virion shape, and PCNA is a marker of DNA damage which is essential for DNA replication and repair. We validated the M-PCNA interaction through immunoprecipitation, immunofluorescence co-localization, and PLA (Proximity Ligation Assay). In cells infected with SARS-CoV-2 or transfected with M protein, using immunofluorescence and cell fractioning, we documented a reallocation of PCNA from the nucleus to the cytoplasm and the increase of PCNA and γH2AX (another DNA damage marker) expression. We also observed an increase in PCNA and γH2AX expression in the lung of a COVID-19 patient by immunohistochemistry. In addition, the inhibition of PCNA translocation by PCNA I1 and Verdinexor led to a reduction of plaque formation in an in vitro assay. We, therefore, propose that the transport of PCNA to the cytoplasm and its association with M could be a virus strategy to manipulate cell functions and may be considered a target for COVID-19 therapy.
Collapse
Affiliation(s)
- Érika Pereira Zambalde
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Isadora Carolina Betim Pavan
- Laboratory of Signaling Mechanisms, School of Pharmaceutical Sciences, University of Campinas, (Unicamp), Campinas, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Orlando Bonito Scudero
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Mariene Ribeiro Amorim
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Karina Bispo-dos-Santos
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Mariana Marcela Góis
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| | - Daniel A. Toledo-Teixeira
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Pierina Lorencini Parise
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Thais Mauad
- São Paulo University Medical School, Department of Pathology, University of São Paulo (USP), São Paulo, Brazil
| | - Marisa Dolhnikoff
- São Paulo University Medical School, Department of Pathology, University of São Paulo (USP), São Paulo, Brazil
| | | | | | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas (Unicamp), Campinas, Brazil
- Hub of Global Health (HGH), University of Campinas (Unicamp), Campinas, Brazil
| | - Armando Morais Ventura
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health, School of Applied Sciences, University of Campinas (Unicamp), Limeira, Brazil
| |
Collapse
|
13
|
Wing CE, Fung HYJ, Chook YM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol 2022; 23:307-328. [PMID: 35058649 PMCID: PMC10101760 DOI: 10.1038/s41580-021-00446-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/25/2022]
Abstract
Efficient and regulated nucleocytoplasmic trafficking of macromolecules to the correct subcellular compartment is critical for proper functions of the eukaryotic cell. The majority of the macromolecular traffic across the nuclear pores is mediated by the Karyopherin-β (or Kap) family of nuclear transport receptors. Work over more than two decades has shed considerable light on how the different Kap family members bring their respective cargoes into the nucleus or the cytoplasm in efficient and highly regulated manners. In this Review, we overview the main features and established functions of Kap family members, describe how Kaps recognize their cargoes and discuss the different ways in which these Kap-cargo interactions can be regulated, highlighting new findings and open questions. We also describe current knowledge of the import and export of the components of three large gene expression machines - the core replisome, RNA polymerase II and the ribosome - pointing out the questions that persist about how such large macromolecular complexes are trafficked to serve their function in a designated subcellular location.
Collapse
|
14
|
Ge Q, Jia D, Cen D, Qi Y, Shi C, Li J, Sang L, Yang LJ, He J, Lin A, Chen S, Wang L. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. J Clin Invest 2021; 131:152911. [PMID: 34591791 DOI: 10.1172/jci152911] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence has shown that open reading frames inside long noncoding RNAs (lncRNAs) could encode micropeptides. However, their roles in cellular energy metabolism and tumor progression remain largely unknown. Here, we identified a 94 amino acid-length micropeptide encoded by lncRNA LINC00467 in colorectal cancer. We also characterized its conservation across higher mammals, localization to mitochondria, and the concerted local functions. This peptide enhanced the ATP synthase construction by interacting with the subunits α and γ (ATP5A and ATP5C), increased ATP synthase activity and mitochondrial oxygen consumption rate, and thereby promoted colorectal cancer cell proliferation. Hence, this micropeptide was termed ATP synthase-associated peptide (ASAP). Furthermore, loss of ASAP suppressed patient-derived xenograft growth with attenuated ATP synthase activity and mitochondrial ATP production. Clinically, high expression of ASAP and LINC00467 predicted poor prognosis of colorectal cancer patients. Taken together, our findings revealed a colorectal cancer-associated micropeptide as a vital player in mitochondrial metabolism and provided a therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Qiwei Ge
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Dong Cen
- Department of General Surgery and
| | - Yadong Qi
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Junhong Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Lingjie Sang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Luo-Jia Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Lima TS, Mallya S, Jankeel A, Messaoudi I, Lodoen MB. Toxoplasma gondii Extends the Life Span of Infected Human Neutrophils by Inducing Cytosolic PCNA and Blocking Activation of Apoptotic Caspases. mBio 2021; 12:e02031-20. [PMID: 33500339 PMCID: PMC7858050 DOI: 10.1128/mbio.02031-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that has the remarkable ability to infect and replicate in neutrophils, immune cells with an arsenal of antimicrobial effector mechanisms. We report that T. gondii infection extends the life span of primary human peripheral blood neutrophils by delaying spontaneous apoptosis, serum starvation-induced apoptosis, and tumor necrosis alpha (TNF-α)-mediated apoptosis. T. gondii blockade of apoptosis was associated with an inhibition of processing and activation of the apoptotic caspases caspase-8 and -3, decreased phosphatidylserine exposure on the plasma membrane, and reduced cell death. We performed a global transcriptome analysis of T. gondii-infected peripheral blood neutrophils using RNA sequencing (RNA-Seq) and identified gene expression changes associated with DNA replication and DNA repair pathways, which in mature neutrophils are indicative of changes in regulators of cell survival. Consistent with the RNA-Seq data, T. gondii infection upregulated transcript and protein expression of PCNA, which is found in the cytosol of human neutrophils, where it functions as a key inhibitor of apoptotic pro-caspases. Infection of neutrophils resulted in increased interaction of PCNA with pro-caspase-3. Inhibition of this interaction with an AlkB homologue 2 PCNA-interacting motif (APIM) peptide reversed the infection-induced delay in cell death. Taken together, these findings indicate a novel strategy by which T. gondii manipulates cell life span in primary human neutrophils, which may allow the parasite to maintain an intracellular replicative niche and avoid immune clearance.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that can cause life-threatening disease in immunocompromised individuals and in the developing fetus. Interestingly, T. gondii has evolved strategies to successfully manipulate the host immune system to establish a productive infection and evade host defense mechanisms. Although it is well documented that neutrophils are mobilized during acute T. gondii infection and infiltrate the site of infection, these cells can also be actively infected by T. gondii and serve as a replicative niche for the parasite. However, there is a limited understanding of the molecular processes occurring within T. gondii-infected neutrophils. This study reveals that T. gondii extends the life span of human neutrophils by inducing the expression of PCNA, which prevents activation of apoptotic caspases, thus delaying apoptosis. This strategy may allow the parasite to preserve its replicative intracellular niche.
Collapse
Affiliation(s)
- Tatiane S Lima
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
16
|
Qi HM, Cao Q, Liu Q. TLR4 regulates vascular smooth muscle cell proliferation in hypertension via modulation of the NLRP3 inflammasome. Am J Transl Res 2021; 13:314-325. [PMID: 33527026 PMCID: PMC7847527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Backgroud: Toll-like receptor 4 (TLR4), a key mediator of inflammatory responses, which is associated with vascular remodeling. The association between TLR4 and NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in the regulation of vascular smooth muscle cell (VSMC) proliferation remains unclear. This study was to explore the role and underlying mechanisms of TLR4 in the proliferation of VSMC in hypertension. METHODS VSMC proliferation after TLR4 overexpression or downregulation was determined by CCK-8, EdU Incorporation and colony formation assays. Western blots were carried out to investigate the expression of TLR4 and NLRP3 inflammasome components in VSMCs. Next, blood pressure measurements and Hematoxylin and Eosin (HE) staining assays were performed in spontaneously hypertensive rats (SHR). Media thickness (M) and diameter lumen (L) were measured as indicators of vascular remodeling. The expression of TLR4, PCNA and NLRP3 inflammasome complex was analyzed by Western blots in the aorta of SHR. RESULTS We showed that TLR4 overexpression with cDNA enhanced, while knockdown of TLR4 with shRNA inhibited Ang II-induced VSMC proliferation. Besides, TLR4 overexpression upregulated the proteion expression of the NLRP3 inflammasome components including NLRP3, ASC and caspase-1, whereas their corresponding levels of expression were observed to decrease in TLR4 shRNA-transfected VSMCs. Knockdown of TLR4 attenuated vascular remodeling, blood pressure (BP) and the levels of NLRP3, ASC, caspase-1, IL-1β and IL-18 in SHR aortas. CONCLUSION This study revealed that TLR4 regulated Ang II-induced VSMC proliferation through modulating the NLRP3 inflammasome. Knockdown of TLR4 attenuated the BP and vascular remodeling by inhibiting the expression of the NLRP3 inflammasome component in SHR. Our results support that TLR4 regulates VSMC proliferation in hypertension via triggering the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hui-Meng Qi
- Department of General Practice, The First Hospital of China Medical UniversityShenyang, China
| | - Qin Cao
- Department of Gastroenterolog, The First Hospital of China Medical UniversityShenyang, China
| | - Qiang Liu
- Department of Nephrology, The First Hospital of China Medical UniversityShenyang, China
| |
Collapse
|
17
|
Tang D, Liu X, Chen K, Li Z, Dai Y, Xu J, Zhang HT, Gao X, Liu L. Cytoplasmic PCNA is located in the actin belt and involved in osteoclast differentiation. Aging (Albany NY) 2020; 12:13297-13317. [PMID: 32597793 PMCID: PMC7377826 DOI: 10.18632/aging.103434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Osteoporosis (OP) is an age-related osteolytic disease and characterized by low bone mass and more prone to fracture due to active osteoclasts. Proliferating cell nuclear antigen (PCNA) has been long identified as a nuclear protein playing critical roles in the regulation of DNA replication and repair. Recently, a few studies have demonstrated the cytoplasmic localization of PCNA and its function associated with apoptosis in neutrophil and neuroblastoma cells. However, the involvement of PCNA, including the cytoplasmic PCNA, in the osteoclast differentiation remains unclear. In the present study, we show that PCNA is translocated from nucleus to cytoplasm during the RANKL-induced osteoclast differentiation, and localized in the actin belt of mature osteoclast. Knockdown of PCNA significantly affected the integrity of actin belt, the formation of multinucleated osteoclasts, the expression of osteoclast-specific genes, and the in vitro bone resorption. Interactomic study has revealed β-actin as the major interacting partner of the cytoplasmic PCNA, suggesting that cytoplasmic PCNA might play a critical role in the differentiation of osteoclast through regulation of actin-cytoskeleton remodeling. Taken together, our results demonstrate the critical role of cytoplasmic PCNA during the process of osteoclast differentiation, and provided a potential therapeutic target for treatment of osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Donge Tang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.,Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Kezhi Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Zhipeng Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, Guangdong, China
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth 6009, Western Australia, Australia
| | - Huan-Tian Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.,Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Thönnes M, Vogt M, Steinborn K, Hausken KN, Levavi-Sivan B, Froschauer A, Pfennig F. An ex vivo Approach to Study Hormonal Control of Spermatogenesis in the Teleost Oreochromis niloticus. Front Endocrinol (Lausanne) 2020; 11:443. [PMID: 32793114 PMCID: PMC7366826 DOI: 10.3389/fendo.2020.00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
As the male reproductive organ, the main task of the testis is the production of fertile, haploid spermatozoa. This process, named spermatogenesis, starts with spermatogonial stem cells, which undergo a species-specific number of mitotic divisions until starting meiosis and further morphological maturation. The pituitary gonadotropins, luteinizing hormone, and follicle stimulating hormone, are indispensable for vertebrate spermatogenesis, but we are still far from fully understanding the complex regulatory networks involved in this process. Therefore, we developed an ex vivo testis cultivation system which allows evaluating the occurring changes in histology and gene expression. The experimental circulatory flow-through setup described in this work provides the possibility to study the function of the male tilapia gonads on a cellular and transcriptional level for at least 7 days. After 1 week of culture, tilapia testis slices kept their structure and all stages of spermatogenesis could be detected histologically. Without pituitary extract (tilPE) however, fibrotic structures appeared, whereas addition of tilPE preserved spermatogenic cysts and somatic interstitium completely. We could show that tilPE has a stimulatory effect on spermatogonia proliferation in our culture system. In the presence of tilPE or hCG, the gene expression of steroidogenesis related genes (cyp11b2 and stAR2) were notably increased. Other testicular genes like piwil1, amh, or dmrt1 were not expressed differentially in the presence or absence of gonadotropins or gonadotropin containing tilPE. We established a suitable system for studying tilapia spermatogenesis ex vivo with promise for future applications.
Collapse
Affiliation(s)
- Michelle Thönnes
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Marlen Vogt
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Katja Steinborn
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Krist N. Hausken
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alexander Froschauer
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
| | - Frank Pfennig
- Faculty of Biology, School of Science, Institute of Zoology, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Frank Pfennig
| |
Collapse
|
19
|
Lee CC, Wang JW, Leu WM, Huang YT, Huang YW, Hsu YH, Meng M. Proliferating Cell Nuclear Antigen Suppresses RNA Replication of Bamboo Mosaic Virus through an Interaction with the Viral Genome. J Virol 2019; 93:e00961-19. [PMID: 31511381 PMCID: PMC6819918 DOI: 10.1128/jvi.00961-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Bamboo mosaic virus (BaMV), a member of the Potexvirus genus, has a monopartite positive-strand RNA genome on which five open reading frames (ORFs) are organized. ORF1 encodes a 155-kDa nonstructural protein (REPBaMV) that plays a core function in replication/transcription of the viral genome. To find out cellular factors modulating the replication efficiency of BaMV, a putative REPBaMV-associated protein complex from Nicotiana benthamiana leaf was isolated on an SDS-PAGE gel, and a few proteins preferentially associated with REPBaMV were identified by tandem mass spectrometry. Among them, proliferating cell nuclear antigen (PCNA) was particularly noted. Overexpression of PCNA strongly suppressed the accumulation of BaMV coat protein and RNAs in leaf protoplasts. In addition, PCNA exhibited an inhibitory effect on BaMV polymerase activity. A pulldown assay confirmed a binding capability of PCNA toward BaMV genomic RNA. Mutations at D41 or F114 residues, which are critical for PCNA to function in nuclear DNA replication and repair, disabled PCNA from binding BaMV genomic RNA as well as suppressing BaMV replication. This suggests that PCNA bound to the viral RNA may interfere with the formation of a potent replication complex or block the replication process. Interestingly, BaMV is almost invisible in the newly emerging leaves where PCNA is actively expressed. Accordingly, PCNA is probably one of the factors restricting the proliferation of BaMV in young leaves. Foxtail mosaic virus and Potato virus X were also suppressed by PCNA in the protoplast experiment, suggesting a general inhibitory effect of PCNA on the replication of potexviruses.IMPORTANCE Knowing the dynamic interplay between plant RNA viruses and their host is a basic step toward first understanding how the viruses survive the plant defense mechanisms and second gaining knowledge of pathogenic control in the field. This study found that plant proliferating cell nuclear antigen (PCNA) imposes a strong inhibition on the replication of several potexviruses, including Bamboo mosaic virus, Foxtail mosaic virus, and Potato virus X Based on the tests on Bamboo mosaic virus, PCNA is able to bind the viral genomic RNA, and this binding is a prerequisite for the protein to suppress the virus replication. This study also suggests that PCNA plays an important role in restricting the proliferation of potexviruses in the rapidly dividing tissues of plants.
Collapse
Affiliation(s)
- Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jhih-Wei Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ming Leu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ting Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
20
|
Ohayon D, De Chiara A, Dang PMC, Thieblemont N, Chatfield S, Marzaioli V, Burgener SS, Mocek J, Candalh C, Pintard C, Tacnet-Delorme P, Renault G, Lagoutte I, Favier M, Walker F, Hurtado-Nedelec M, Desplancq D, Weiss E, Benarafa C, Housset D, Marie JC, Frachet P, El-Benna J, Witko-Sarsat V. Cytosolic PCNA interacts with p47phox and controls NADPH oxidase NOX2 activation in neutrophils. J Exp Med 2019; 216:2669-2687. [PMID: 31492810 PMCID: PMC6829599 DOI: 10.1084/jem.20180371] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/17/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022] Open
Abstract
This study describes a novel function of cytosolic proliferating cell nuclear antigen (PCNA) in the control of neutrophil NADPH oxidase, a complex pivotal for ROS generation in inflammation. Inhibition of neutrophil PCNA results in a potent antiinflammatory effect in colitis. Neutrophils produce high levels of reactive oxygen species (ROS) by NADPH oxidase that are crucial for host defense but can lead to tissue injury when produced in excess. We previously described that proliferating cell nuclear antigen (PCNA), a nuclear scaffolding protein pivotal in DNA synthesis, controls neutrophil survival through its cytosolic association with procaspases. We herein showed that PCNA associated with p47phox, a key subunit of NADPH oxidase, and that this association regulated ROS production. Surface plasmon resonance and crystallography techniques demonstrated that the interdomain-connecting loop of PCNA interacted directly with the phox homology (PX) domain of the p47phox. PCNA inhibition by competing peptides or by T2AA, a small-molecule PCNA inhibitor, decreased NADPH oxidase activation in vitro. Furthermore, T2AA provided a therapeutic benefit in mice during trinitro-benzene-sulfonic acid (TNBS)–induced colitis by decreasing oxidative stress, accelerating mucosal repair, and promoting the resolution of inflammation. Our data suggest that targeting PCNA in inflammatory neutrophils holds promise as a multifaceted antiinflammatory strategy.
Collapse
Affiliation(s)
- Delphine Ohayon
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Alessia De Chiara
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Pham My-Chan Dang
- LabEx Inflamex, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1149, Centre National de la Recherche Scientifique ERL8252, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Nathalie Thieblemont
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Simon Chatfield
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Viviana Marzaioli
- LabEx Inflamex, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1149, Centre National de la Recherche Scientifique ERL8252, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Sabrina Sofia Burgener
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julie Mocek
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Céline Candalh
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Coralie Pintard
- LabEx Inflamex, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1149, Centre National de la Recherche Scientifique ERL8252, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Pascale Tacnet-Delorme
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
| | - Gilles Renault
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Isabelle Lagoutte
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | - Maryline Favier
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France.,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| | | | - Margarita Hurtado-Nedelec
- LabEx Inflamex, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1149, Centre National de la Recherche Scientifique ERL8252, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Dominique Desplancq
- Ecole Supérieure de Biotechnologie de Strasbourg, Centre National de la Recherche Scientifique UMR 7242, Université de Strasbourg, Strasbourg, France
| | - Etienne Weiss
- Ecole Supérieure de Biotechnologie de Strasbourg, Centre National de la Recherche Scientifique UMR 7242, Université de Strasbourg, Strasbourg, France
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominique Housset
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
| | - Jean-Claude Marie
- LabEx Inflamex, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1149, Centre National de la Recherche Scientifique ERL8252, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Philippe Frachet
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France
| | - Jamel El-Benna
- LabEx Inflamex, Sorbonne Paris Cité, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1149, Centre National de la Recherche Scientifique ERL8252, Centre de Recherche sur l'Inflammation, Université Paris Diderot, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR 8104, Université Paris-Descartes, Cochin Institute, Paris, France .,LabEx Inflamex, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
21
|
Kundu K, Ghosh S, Sarkar R, Edri A, Brusilovsky M, Gershoni-Yahalom O, Yossef R, Shemesh A, Soria JC, Lazar V, Joshua BZ, Campbell KS, Elkabets M, Porgador A. Inhibition of the NKp44-PCNA Immune Checkpoint Using a mAb to PCNA. Cancer Immunol Res 2019; 7:1120-1134. [PMID: 31164357 DOI: 10.1158/2326-6066.cir-19-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 05/30/2019] [Indexed: 02/05/2023]
Abstract
mAb-based blocking of the immune checkpoints involving the CTLA4-B7 and PD1-PDL1 inhibitory axes enhance T-cell-based adaptive immune responses in patients with cancer. We show here that antitumor responses by natural killer (NK) cells can be enhanced by a checkpoint-blocking mAb, 14-25-9, which we developed against proliferating cell nuclear antigen (PCNA). PCNA is expressed on the surface of cancer cells and acts as an inhibitory ligand for the NK-cell receptor, NKp44-isoform1. We tested for cytoplasmic- and membrane-associated PCNA by FACS- and ImageStream-based staining of cell lines and IHC of human cancer formalin fixed, paraffin embedded tissues. The mAb, 14-25-9, inhibited binding of chimeric NKp44 receptor to PCNA and mostly stained the cytoplasm and membrane of tumor cells, whereas commercial antibody (clone PC10) stained nuclear PCNA. NK functions were measured using ELISA-based IFNγ secretion assays and FACS-based killing assays. The NK92-NKp44-1 cell line and primary human NK cells showed increased IFNγ release upon coincubation with mAb 14-25-9 and various solid tumor cell lines and leukemias. Treatment with 14-25-9 also increased NK cytotoxic activity. In vivo efficacy was evaluated on patient-derived xenografts (PDX)-bearing NSG mice. In PDX-bearing mice, intravenous administration of mAb 14-25-9 increased degranulation (CD107a expression) of intratumorally injected patient autologous or allogeneic NK cells, as well as inhibited tumor growth when treated long term. Our study describes a mAb against the NKp44-PCNA innate immune checkpoint that can enhance NK-cell antitumor activity both in vitro and in vivo.
Collapse
Affiliation(s)
- Kiran Kundu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Susmita Ghosh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rhitajit Sarkar
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Rami Yossef
- Surgery Branch, NCI, NIH, Bethesda, Maryland
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Vladimir Lazar
- Worldwide Innovative Network (WIN) Association - WIN Consortium, Villejuif, France
| | - Ben-Zion Joshua
- Department of Otolaryngology-Head and Neck Surgery, Soroka Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kerry S Campbell
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel. .,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
22
|
Zolbin MM, Mamillapalli R, Nematian SE, Goetz TG, Taylor HS. Adipocyte alterations in endometriosis: reduced numbers of stem cells and microRNA induced alterations in adipocyte metabolic gene expression. Reprod Biol Endocrinol 2019; 17:36. [PMID: 30982470 PMCID: PMC6463663 DOI: 10.1186/s12958-019-0480-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endometriosis is an estrogen dependent, inflammatory disorder occurring in 5-10% of reproductive-aged women. Women with endometriosis have a lower body mass index (BMI) and decreased body fat compared to those without the disease, yet few studies have focused on the metabolic abnormalities in adipose tissue in women with endometriosis. Previously, we identified microRNAs that are differentially expressed in endometriosis and altered in the serum of women with the disease. Here we explore the effect of endometriosis on fat tissue and identified a role for endometriosis-related microRNAs in fat metabolism and a reduction in adipocyte stem cell number. METHODS Primary adipocyte cells cultured from 20 patients with and without endometriosis were transfected with mimics and inhibitors of microRNAs 342-3p or Let 7b-5p to model the status of these microRNAs in endometriosis. RNA was extracted for gene expression analysis by qRT-PCR. PCNA expression was used as a marker of adipocyte proliferation. Endometriosis was induced experimentally in 9-week old female C57BL/6 mice and after 10 months fat tissue was harvested from both the subcutaneous (inguinal) and visceral (mesenteric) tissue. Adipose-derived mesenchymal stem cells in fat tissue were characterized in both endometriosis and non-endometriosis mice by FACS analysis. RESULTS Gene expression analysis showed that endometriosis altered the expression of Cebpa, Cebpb, Ppar-γ, leptin, adiponectin, IL-6, and HSL, which are involved in driving brown adipocyte differentiation, appetite, insulin sensitivity and fat metabolism. Each gene was regulated by an alteration in microRNA expression known to occur in endometriosis. Analysis of the stem cell content of adipose tissue in a mouse model of endometriosis demonstrated a reduced number of adipocyte stem cells. CONCLUSIONS We demonstrate that microRNAs Let-7b and miR-342-3p affected metabolic gene expression significantly in adipocytes of women with endometriosis. Similarly, there is a reduction in the adipose stem cell population in a mouse model of endometriosis. Taken together these data suggest that endometriosis alters BMI in part through an effect on adipocytes and fat metabolism.
Collapse
Affiliation(s)
- Masoumeh Majidi Zolbin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA.
| | - Sepide E Nematian
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| | - Teddy G Goetz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
23
|
Yao M, Fang W, Smart C, Hu Q, Huang S, Alvarez N, Fields P, Cheng N. CCR2 Chemokine Receptors Enhance Growth and Cell-Cycle Progression of Breast Cancer Cells through SRC and PKC Activation. Mol Cancer Res 2018; 17:604-617. [PMID: 30446625 DOI: 10.1158/1541-7786.mcr-18-0750] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
Basal-like breast cancers are an aggressive breast cancer subtype, which often lack estrogen receptor, progesterone receptor, and Her2 expression, and are resistant to antihormonal and targeted therapy, resulting in few treatment options. Understanding the underlying mechanisms that regulate progression of basal-like breast cancers would lead to new therapeutic targets and improved treatment strategies. Breast cancer progression is characterized by inflammatory responses, regulated in part by chemokines. The CCL2/CCR2 chemokine pathway is best known for regulating breast cancer progression through macrophage-dependent mechanisms. Here, we demonstrated important biological roles for CCL2/CCR2 signaling in breast cancer cells. Using the MCF10CA1d xenograft model of basal-like breast cancer, primary tumor growth was significantly increased with cotransplantation of patient-derived fibroblasts expressing high levels of CCL2, and was inhibited with CRISP/R gene ablation of stromal CCL2. CRISP/R gene ablation of CCR2 in MCF10CA1d breast cancer cells inhibited breast tumor growth and M2 macrophage recruitment and validated through CCR2 shRNA knockdown in the 4T1 model. Reverse phase protein array analysis revealed that cell-cycle protein expression was associated with CCR2 expression in basal-like breast cancer cells. CCL2 treatment of basal-like breast cancer cell lines increased proliferation and cell-cycle progression associated with SRC and PKC activation. Through pharmacologic approaches, we demonstrated that SRC and PKC negatively regulated expression of the cell-cycle inhibitor protein p27KIP1, and are necessary for CCL2-induced breast cancer cell proliferation. IMPLICATIONS: This report sheds novel light on CCL2/CCR2 chemokine signaling as a mitogenic pathway and cell-cycle regulator in breast cancer cells.
Collapse
Affiliation(s)
- Min Yao
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Wei Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis Smart
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Nehemiah Alvarez
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Patrick Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas. .,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
24
|
Xing T, Hass DT, Zhang SS, Barnstable CJ. The 3-Phosphoinositide-Dependent Protein Kinase 1 Inhibits Rod Photoreceptor Development. Front Cell Dev Biol 2018; 6:134. [PMID: 30364083 PMCID: PMC6191476 DOI: 10.3389/fcell.2018.00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/24/2018] [Indexed: 01/30/2023] Open
Abstract
The transition of rod precursor cells to post-mitotic rod photoreceptors can be promoted by extrinsic factors such as insulin-like growth factor 1 (IGF-1), which regulates phosphatidylinositide concentration, and consequently the 3-phosphoinositide-dependent protein kinase-1 (PDPK-1). PDPK-1 is a 63 kDa cytoplasmic kinase that controls cell proliferation and differentiation. In the mouse retina, PDPK-1 and its phosphorylated derivative p-PDPK-1 (Ser241), showed peak expression during the first postnatal (PN) day with a substantial decline by PN7 and in the adult retina. Though initially widely distributed among cell types, PDPK-1 expression decreased first in the inner retina and later in the outer retina. When PDPK-1 is inhibited in neonatal retinal explants by BX795, there is a robust increase in rod photoreceptor numbers. The increase in rods depended on the activity of PKC, as BX795 had no effect when PKC is inhibited. Inhibition of PDPK-1-dependent kinases, such as P70-S6K, but not others, such as mTORC-1, stimulated rod development. The P70-S6K-dependent increase in rods appears to be correlated with phosphorylation of Thr252 and not at Thr389, a substrate of mTORC-1. This pathway is also inactive while PKC activity is inhibited. We also found that inhibition of the kinase mTORC-2, also stimulated by insulin activity, similarly increased rod formation, and this effect appears to be independent of PKC activity. This may represent a novel intracellular signaling pathway that also stimulates photoreceptor development. Consistent with previous studies, stimulation of STAT3 activity is sufficient to prevent any PDPK-1, P70-S6K, or mTORC2-dependent increase in rods. Together the data indicate that PDPK-1 and other intrinsic kinases downstream of IGF-1 are key regulators of rod photoreceptor formation.
Collapse
Affiliation(s)
- Tiaosi Xing
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, United States
| | - Daniel T Hass
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Samuel S Zhang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
25
|
Agarwal P, Cole LK, Chandrakumar A, Hauff KD, Ravandi A, Dolinsky VW, Hatch GM. Phosphokinome Analysis of Barth Syndrome Lymphoblasts Identify Novel Targets in the Pathophysiology of the Disease. Int J Mol Sci 2018; 19:ijms19072026. [PMID: 30002286 PMCID: PMC6073761 DOI: 10.3390/ijms19072026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/25/2022] Open
Abstract
Barth Syndrome (BTHS) is a rare X-linked genetic disease in which the specific biochemical deficit is a reduction in the mitochondrial phospholipid cardiolipin (CL) as a result of a mutation in the CL transacylase tafazzin. We compared the phosphokinome profile in Epstein-Barr-virus-transformed lymphoblasts prepared from a BTHS patient with that of an age-matched control individual. As expected, mass spectrometry analysis revealed a significant (>90%) reduction in CL in BTHS lymphoblasts compared to controls. In addition, increased oxidized phosphatidylcholine (oxPC) and phosphatidylethanolamine (PE) levels were observed in BTHS lymphoblasts compared to control. Given the broad shifts in metabolism associated with BTHS, we hypothesized that marked differences in posttranslational modifications such as phosphorylation would be present in the lymphoblast cells of a BTHS patient. Phosphokinome analysis revealed striking differences in the phosphorylation levels of phosphoproteins in BTHS lymphoblasts compared to control cells. Some phosphorylated proteins, for example, adenosine monophosphate kinase, have been previously validated as bonafide modified phosphorylation targets observed in tafazzin deficiency or under conditions of reduced cellular CL. Thus, we report multiple novel phosphokinome targets in BTHS lymphoblasts and hypothesize that alteration in the phosphokinome profile may provide insight into the pathophysiology of BTHS and potential therapeutic targets.
Collapse
Affiliation(s)
- Prasoon Agarwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Laura K Cole
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Abin Chandrakumar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Clinical Research Unit, Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Kristin D Hauff
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| | - Amir Ravandi
- Physiology and Pathophysiology, University of Manitoba, St. Boniface Hospital Research Center, Winnipeg, MB R2H 2A6, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Grant M Hatch
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Children's Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada.
- Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
26
|
Gravina GL, Mancini A, Colapietro A, Marampon F, Sferra R, Pompili S, Biordi LA, Iorio R, Flati V, Argueta C, Landesman Y, Kauffman M, Shacham S, Festuccia C. Pharmacological treatment with inhibitors of nuclear export enhances the antitumor activity of docetaxel in human prostate cancer. Oncotarget 2017; 8:111225-111245. [PMID: 29340049 PMCID: PMC5762317 DOI: 10.18632/oncotarget.22760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Background and aims Docetaxel (DTX) modestly increases patient survival of metastatic castration-resistant prostate cancer (mCRPC) due to insurgence of pharmacological resistance. Deregulation of Chromosome Region Maintenance (CRM-1)/ exportin-1 (XPO-1)-mediated nuclear export may play a crucial role in this phenomenon. Material and methods Here, we evaluated the effects of two Selective Inhibitor of Nuclear Export (SINE) compounds, selinexor (KPT-330) and KPT-251, in association with DTX by using 22rv1, PC3 and DU145 cell lines with their. DTX resistant derivatives. Results and conclusions We show that DTX resistance may involve overexpression of β-III tubulin (TUBB3) and P-glycoprotein as well as increased cytoplasmic accumulation of Foxo3a. Increased levels of XPO-1 were also observed in DTX resistant cells suggesting that SINE compounds may modulate DTX effectiveness in sensitive cells as well as restore the sensitivity to DTX in resistant ones. Pretreatment with SINE compounds, indeed, sensitized to DTX through increased tumor shrinkage and apoptosis by preventing DTX-induced cell cycle arrest. Basally SINE compounds induce FOXO3a activation and nuclear accumulation increasing the expression of FOXO-responsive genes including p21, p27 and Bim causing cell cycle arrest. SINE compounds-catenin and survivin supporting apoptosis. βdown-regulated Cyclin D1, c-myc, Nuclear sequestration of p-Foxo3a was able to reduce ABCB1 and TUBB3 H2AX levels, prolonged γ expression. Selinexor treatment increased DTX-mediated double strand breaks (DSB), and reduced the levels of DNA repairing proteins including DNA PKc and Topo2A. Our results provide supportive evidence for the therapeutic use of SINE compounds in combination with DTX suggesting their clinical use in mCRPC patients.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, Division of Applied Biology, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
27
|
Chatzileontiadou DSM, Samiotaki M, Alexopoulou AN, Cotsiki M, Panayotou G, Stamatiadi M, Balatsos NAA, Leonidas DD, Kontou M. Proteomic Analysis of Human Angiogenin Interactions Reveals Cytoplasmic PCNA as a Putative Binding Partner. J Proteome Res 2017; 16:3606-3622. [PMID: 28777577 DOI: 10.1021/acs.jproteome.7b00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human Angiogenin (hAng) is a member of the ribonuclease A superfamily and a potent inducer of neovascularization. Protein interactions of hAng in the nucleus and cytoplasm of the human umbilical vein cell line EA.hy926 have been investigated by mass spectroscopy. Data are available via ProteomeXchange with identifiers PXD006583 and PXD006584. The first gel-free analysis of hAng immunoprecipitates revealed many statistically significant potential hAng-interacting proteins involved in crucial biological pathways. Surprisingly, proliferating cell nuclear antigen (PCNA), was found to be immunoprecipitated with hAng only in the cytoplasm. The hAng-PCNA interaction and colocalization in the specific cellular compartment was validated with immunoprecipitation, immunoblotting, and immunocytochemistry. The results revealed that PCNA is predominantly localized in the cytoplasm, while hAng is distributed both in the nucleus and in the cytoplasm. hAng and PCNA colocalize in the cytoplasm, suggesting that they may interact in this compartment.
Collapse
Affiliation(s)
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming" , Vari 16672, Greece
| | | | - Marina Cotsiki
- Biomedical Sciences Research Center "Alexander Fleming" , Vari 16672, Greece
| | - George Panayotou
- Biomedical Sciences Research Center "Alexander Fleming" , Vari 16672, Greece
| | - Melina Stamatiadi
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| | - Maria Kontou
- Department of Biochemistry and Biotechnology, University of Thessaly , Biopolis, 41500 Larissa, Greece
| |
Collapse
|
28
|
Abstract
The life span of a neutrophil is a tightly regulated process as extended survival is beneficial for pathogen elimination and cell death necessary to prevent cytotoxic content release from activated neutrophils at the inflammatory site. Therefore, the control between survival and death must be a dynamic process. We have previously described that proliferating cell nuclear antigen (PCNA) which is known as a nuclear protein pivotal in DNA synthesis, is a key element in controlling neutrophil survival through its association with procaspases. Contrary to the dogma which asserted that PCNA has a strictly nuclear function, in mature neutrophils, PCNA is present exclusively within the cytosol due to its nuclear export at the end of the granulocytic differentiation. More recent studies are consistent with the notion that the cytosolic scaffold of PCNA is aimed at modulating neutrophil fate rather than simply preventing death. Ultimately, targeting neutrophil survival might have important applications not just in the field of immunology and inflammation, but also in hematology and transfusion. The neutrophil emerges as a unique and powerful cellular model to unravel the basic mechanisms governing the cell cycle-independent functions of PCNA and should be considered as a leader of the pack.
Collapse
Affiliation(s)
- Véronique Witko-Sarsat
- INSERM U1016, Paris, France.,Institut Cochin, Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, Paris, France
| | - Delphine Ohayon
- INSERM U1016, Paris, France.,Institut Cochin, Faculté de Médecine Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, Paris, France
| |
Collapse
|
29
|
Application of Immunohistochemistry in Toxicologic Pathology of the Hematolymphoid System. IMMUNOPATHOLOGY IN TOXICOLOGY AND DRUG DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-47377-2_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Ohayon D, De Chiara A, Chapuis N, Candalh C, Mocek J, Ribeil JA, Haddaoui L, Ifrah N, Hermine O, Bouillaud F, Frachet P, Bouscary D, Witko-Sarsat V. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia. Sci Rep 2016; 6:35561. [PMID: 27759041 PMCID: PMC5069676 DOI: 10.1038/srep35561] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023] Open
Abstract
Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.
Collapse
Affiliation(s)
- Delphine Ohayon
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Alessia De Chiara
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Nicolas Chapuis
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Hematology Department, Cochin Hospital, Assistance publique-Hôpitaux de Paris (APHP), Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Céline Candalh
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Julie Mocek
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| | - Jean-Antoine Ribeil
- Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Biotherapy Department, Necker Hospital, Paris, France
| | - Lamya Haddaoui
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Norbert Ifrah
- FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France.,Hematology Department CHU &UMR INSERM U892/CNRS6299, Université d'Angers, France
| | - Olivier Hermine
- Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Hematology Department, Necker Hospital Assistance publique-Hôpitaux de Paris (APHP), France.,INSERM UMR1163, CNRS ERL 8254, Institut Imagine, Paris, France
| | - Frédéric Bouillaud
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France
| | - Philippe Frachet
- Institut de Biologie Structurale, Centre Etude Atomique, Grenoble, France.,Université Grenoble Alpes, CNRS, UMR 5075, Grenoble, France
| | - Didier Bouscary
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Hematology Department, Cochin Hospital, Assistance publique-Hôpitaux de Paris (APHP), Paris, France.,FILO: French Innovative Leukemia Organization (GOELAMS), CHU Bretonneau, TOURS France
| | - Véronique Witko-Sarsat
- INSERM U1016, Institut Cochin, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,CNRS UMR 8104, Paris, France.,Center of Excellence, Labex Inflamex, France
| |
Collapse
|
31
|
Gil-Ranedo J, Hernando E, Riolobos L, Domínguez C, Kann M, Almendral JM. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly. PLoS Pathog 2015; 11:e1004920. [PMID: 26067441 PMCID: PMC4466232 DOI: 10.1371/journal.ppat.1004920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. Cellular and viral life cycles are connected through multiple, though poorly understood, mechanisms. Parvoviruses infect humans and a broad spectrum of animals, causing a variety of diseases, but they are also used in experimental cancer therapy and serve as vectors for gene therapy. Parvoviruses can only multiply in proliferating cells providing essential replicative and transcriptional functions. However, it is unknown whether the cell cycle regulatory machinery may also control parvovirus assembly. We found that the nuclear translocation of parvovirus MVM capsid subunits (VPs) was highly dependent on physiological cell cycle regulations in mammalian fibroblasts, including: quiescence, progression through G1/S boundary, DNA synthesis, and cell to cell contacts. VPs nuclear translocation was significantly more sensitive to cell cycle controls than viral genome replication and gene expression. The results support nuclear capsid assembly as the major driving process of parvoviruses biological hallmarks, such as pathogenesis in proliferative tissues and tropism for cancer cells. In addition, disturbing the tight coupling of parvovirus assembly with the cell cycle may determine viral persistence in quiescent and post-mitotic host tissues. These findings may contribute to understand cellular regulations on the assembly of other nuclear eukaryotic viruses, and to develop cell cycle-based avenues for antiviral therapy.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Eva Hernando
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Laura Riolobos
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Carlos Domínguez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Michael Kann
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, Bordeaux, France
| | - José M. Almendral
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Bahey NG, El-Drieny EAEA. Immunoelectron microscope localization of androgen receptors and proliferating cell nuclear antigen in the epithelial cells of albino rat ventral prostate. J Microsc Ultrastruct 2015; 3:75-81. [PMID: 30023185 PMCID: PMC6014191 DOI: 10.1016/j.jmau.2015.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 12/22/2014] [Accepted: 01/11/2015] [Indexed: 12/16/2022] Open
Abstract
Androgen receptor (AR) and proliferating cell nuclear antigen (PCNA) play a crucial role in development and progression of various prostatic diseases including prostatic carcinoma that is a leading cause of death in males. Previous studies have evaluated the expression pattern of AR and PCNA in prostate epithelial cells using immunohistochemistry (IHC). However, this technique has limited ability to identify their precise subcellular localization. Therefore, the aim of this study was to localize, subcellularly, AR and PCNA in the secretory epithelial cells of rat ventral prostate using post embedding immunogold-electron microscopy. The ventral lobes were dissected from six adult male albino rats after being perfused with paraformaldehyde. Some specimens were immuno-labeled with AR or PCNA and others were processed for immuno-electron microscope of AR and PCNA using 15-nm gold conjugated secondary antibodies. The results showed that, by immunoperoxidase reaction, AR and PCNA were localized diffusely throughout the nuclei of the epithelial cells of prostatic acini without visible cytoplasmic expression. However, the higher resolution immuno-electron microscopy was able to detect AR and PCNA in the nucleus and some cytoplasmic organelles. In conclusion, this study emphasizes the importance of immuno-electron microscopy in precise localization of AR and PCNA at the subcelullar levels in the secretory epithelial cells of the rat prostatic acini. These findings will help to further understand the mechanism of action of these receptors under normal and pathological conditions that could have future clinical application after careful human investigation.
Collapse
Affiliation(s)
- Noha Gamal Bahey
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland, UK.,Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
33
|
Fung HYJ, Chook YM. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 2014; 27:52-61. [PMID: 24631835 PMCID: PMC4108548 DOI: 10.1016/j.semcancer.2014.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/19/2022]
Abstract
CRM1 or XPO1 is the major nuclear export receptor in the cell, which controls the nuclear-cytoplasmic localization of many proteins and RNAs. CRM1 is also a promising cancer drug target as the transport receptor is overexpressed in many cancers where some of its cargos are misregulated and mislocalized to the cytoplasm. Atomic level understanding of CRM1 function has greatly facilitated recent drug discovery and development of CRM1 inhibitors to target a variety of malignancies. Numerous atomic resolution CRM1 structures are now available, explaining how the exporter recognizes nuclear export signals in its cargos, how RanGTP and cargo bind with positive cooperativity, how RanBP1 causes release of export cargos in the cytoplasm and how diverse inhibitors such as Leptomycin B and the new KPT-SINE compounds block nuclear export. This review summarizes structure-function studies that explain CRM1-cargo recognition, release and inhibition.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| |
Collapse
|
34
|
Freund G, Desplancq D, Stoessel A, Weinsanto R, Sibler AP, Robin G, Martineau P, Didier P, Wagner J, Weiss E. Generation of an intrabody-based reagent suitable for imaging endogenous proliferating cell nuclear antigen in living cancer cells. J Mol Recognit 2014; 27:549-58. [DOI: 10.1002/jmr.2378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Guillaume Freund
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Dominique Desplancq
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Audrey Stoessel
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Robin Weinsanto
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Annie-Paule Sibler
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Gautier Robin
- Institut de Recherche en Cancérologie de Montpellier, U896; INSERM/Université Montpellier 1; Campus Val d'Aurelle Montpellier France
| | - Pierre Martineau
- Institut de Recherche en Cancérologie de Montpellier, U896; INSERM/Université Montpellier 1; Campus Val d'Aurelle Montpellier France
| | - Pascal Didier
- Faculté de Pharmacie, UMR 7213; CNRS/Université de Strasbourg; Route du Rhin Illkirch France
| | - Jérôme Wagner
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Etienne Weiss
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| |
Collapse
|
35
|
Zhao H, Zhang T, Xia C, Shi L, Wang S, Zheng X, Hu T, Zhang B. Berberine ameliorates cartilage degeneration in interleukin-1β-stimulated rat chondrocytes and in a rat model of osteoarthritis via Akt signalling. J Cell Mol Med 2013; 18:283-92. [PMID: 24286347 PMCID: PMC3930415 DOI: 10.1111/jcmm.12186] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022] Open
Abstract
Berberine, a plant alkaloid used in Chinese medicine, has broad cell-protective functions in a variety of cell lines. Chondrocyte apoptosis contributes to the pathogenesis of cartilage degeneration in osteoarthritis (OA). However, little is known about the effect and underlying mechanism of berberine on OA chondrocytes. Here, we assessed the effects of berberine on cartilage degeneration in interleukin-1β (IL-1β)-stimulated rat chondrocytes and in a rat model of OA. The results of an MTT assay and western blotting analysis showed that berberine attenuated the inhibitory effect of IL-1β on the cell viability and proliferating cell nuclear antigen expression in rat chondrocytes. Furthermore, berberine activated Akt, which triggered p70S6K/S6 pathway and up-regulated the levels of aggrecan and Col II expression in IL-1β-stimulated rat chondrocytes. In addition, berberine increased the level of proteoglycans in cartilage matrix and the thickness of articular cartilage, with the elevated levels of Col II, p-Akt and p-S6 expression in a rat OA model, as demonstrated by histopathological and immunohistochemistry techniques. The data thus strongly suggest that berberine may ameliorate cartilage degeneration from OA by promoting cell survival and matrix production of chondrocytes, which was partly attributed to the activation of Akt in IL-1β-stimulated articular chondrocytes and in a rat OA model. The resultant chondroprotective effects indicate that berberine merits consideration as a therapeutic agent in OA.
Collapse
Affiliation(s)
- Honghai Zhao
- Zhongshan Hospital, University of Xiamen, Xiamen, Fujian, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
De Chiara A, Pederzoli-Ribeil M, Mocek J, Candalh C, Mayeux P, Millet A, Witko-Sarsat V. Characterization of cytosolic proliferating cell nuclear antigen (PCNA) in neutrophils: antiapoptotic role of the monomer. J Leukoc Biol 2013; 94:723-31. [DOI: 10.1189/jlb.1212637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
Parras-Moltó M, Campos-Laborie FJ, García-Diéguez J, Rodríguez-Griñolo MR, Pérez-Pulido AJ. Classification of protein motifs based on subcellular localization uncovers evolutionary relationships at both sequence and functional levels. BMC Bioinformatics 2013; 14:229. [PMID: 23865897 PMCID: PMC3724711 DOI: 10.1186/1471-2105-14-229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/09/2013] [Indexed: 11/22/2022] Open
Abstract
Background Most proteins have evolved in specific cellular compartments that limit their functions and potential interactions. On the other hand, motifs define amino acid arrangements conserved between protein family members and represent powerful tools for assigning function to protein sequences. The ideal motif would identify all members of a protein family but in practice many motifs identify both family members and unrelated proteins, referred to as True Positive (TP) and False Positive (FP) sequences, respectively. Results To address the relationship between protein motifs, protein function and cellular localization, we systematically assigned subcellular localization data to motif sequences from the comprehensive PROSITE sequence motif database. Using this data we analyzed relationships between localization and function. We find that TPs and FPs have a strong tendency to localize in different compartments. When multiple localizations are considered, TPs are usually distributed between related cellular compartments. We also identified cases where FPs are concentrated in particular subcellular regions, indicating possible functional or evolutionary relationships with TP sequences of the same motif. Conclusions Our findings suggest that the systematic examination of subcellular localization has the potential to uncover evolutionary and functional relationships between motif-containing sequences. We believe that this type of analysis complements existing motif annotations and could aid in their interpretation. Our results shed light on the evolution of cellular organelles and potentially establish the basis for new subcellular localization and function prediction algorithms.
Collapse
Affiliation(s)
- Marcos Parras-Moltó
- Centro Andaluz de Biologia del Desarrollo (CABD, UPO-CSIC-JA), Facultad de Ciencias Experimentales (Área de Genética), Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | | | | | | | | |
Collapse
|
38
|
Tang J, Liu N, Tolbert E, Ponnusamy M, Ma L, Gong R, Bayliss G, Yan H, Zhuang S. Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:160-72. [PMID: 23684791 DOI: 10.1016/j.ajpath.2013.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 11/18/2022]
Abstract
Severe acute kidney injury (AKI) is frequently accompanied by maladaptive repair and renal fibrogenesis; however, the molecular mechanisms that mediate these acute and chronic consequences of AKI remain poorly understood. In this study, we examined the role of epidermal growth factor receptor (EGFR) in these processes using waved-2 (Wa-2) mice, which have reduced EGFR activity, and their wild-type (WT) littermates after renal ischemia. Renal EGFR phosphorylation was induced within 2 days after ischemia, increased over time, and remained elevated at 28 days in WT mice, but this was diminished in Wa-2 mice. At the early stage of postischemia (2 days), Wa-2 mice developed more severe acute renal tubular damage with less reparative responses as indicated by enhanced tubular cell apoptosis, and reduced dedifferentiation and proliferation as compared to WT animals. At the late stage of postischemia (28 days), Wa-2 mice exhibited a less severe renal interstitial fibrosis as shown by reduced activation/proliferation of renal myofibroblasts and decreased deposition of extracellular matrix proteins. EGFR activation also contributed to cell cycle arrest at the G2/M phase, a cellular event associated with production of profibrogenetic factors, in the injured kidney. Collectively, these results indicate that severe AKI results in sustained activation of EGFR, which is required for reparative response of renal tubular cells initially, but eventually leads to fibrogenesis.
Collapse
Affiliation(s)
- Jinhua Tang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chiara AD, Pederzoli-Ribeil M, Burgel PR, Danel C, Witko-Sarsat V. Targeting cytosolic proliferating cell nuclear antigen in neutrophil-dominated inflammation. Front Immunol 2012; 3:311. [PMID: 23181059 PMCID: PMC3501000 DOI: 10.3389/fimmu.2012.00311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/17/2012] [Indexed: 12/12/2022] Open
Abstract
New therapeutic approaches that can accelerate neutrophil apoptosis under inflammatory conditions to enhance the resolution of inflammation are now under study. Neutrophils are deprived of proliferative capacity and have a tightly controlled lifespan to avoid their persistence at the site of injury. We have recently described that the proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repair of proliferating cells is a key regulator of neutrophil survival. The nuclear-to-cytoplasmic relocalization occurred during granulocytic differentiation and is dependent on a nuclear export sequence thus strongly suggesting that PCNA has physiologic cytoplasmic functions. In this review, we will try to put into perspective the physiologic relevance of PCNA in neutrophils. We will discuss key issues such as molecular structure, post-translational modifications, based on our knowledge of nuclear PCNA, assuming that similar principles governing its function are conserved between nuclear and cytosolic PCNA. The example of cystic fibrosis that features one of the most intense neutrophil-dominated pulmonary inflammation will be discussed. We believe that through an intimate comprehension of the cytosolic PCNA scaffold based on nuclear PCNA knowledge, novel pathways regulating neutrophil survival can be unraveled and innovative agents can be developed to dampen inflammation where it proves detrimental.
Collapse
Affiliation(s)
- Alessia De Chiara
- Department of Immunology and Hematology, INSERM U1016, Cochin Institute ParisFrance
- Paris Descartes UniversityParis, France
- CNRS-UMR 8104Paris, France
| | - Magali Pederzoli-Ribeil
- Department of Immunology and Hematology, INSERM U1016, Cochin Institute ParisFrance
- Paris Descartes UniversityParis, France
- CNRS-UMR 8104Paris, France
| | - Pierre-Régis Burgel
- Paris Descartes UniversityParis, France
- Department of Pneumology, Cochin HospitalParis, France
| | - Claire Danel
- Paris Diderot UniversityParis, France
- Department of Pneumology, Bichat HospitalParis, France
| | - Véronique Witko-Sarsat
- Department of Immunology and Hematology, INSERM U1016, Cochin Institute ParisFrance
- Paris Descartes UniversityParis, France
- CNRS-UMR 8104Paris, France
| |
Collapse
|