1
|
Kollara A, Burt BD, Ringuette MJ, Brown TJ. The adaptor protein VEPH1 interacts with the kinase domain of ERBB2 and impacts EGF signaling in ovarian cancer cells. Cell Signal 2023; 106:110634. [PMID: 36828346 DOI: 10.1016/j.cellsig.2023.110634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Upregulation of ERBB2 and activating mutations in downstream KRAS/BRAF and PIK3CA are found in several ovarian cancer histotypes. ERBB2 enhances signaling by the ERBB family of EGF receptors, and contains docking positions for proteins that transduce signaling through multiple pathways. We identified the adaptor protein ventricular zone-expressed pleckstrin homology domain-containing protein 1 (VEPH1) as a potential interacting partner of ERBB2 in a screen of proteins co-immunoprecipitated with VEPH1. In this study, we confirm a VEPH1 - ERBB2 interaction by co-immunoprecipitation and biotin proximity labelling and show that VEPH1 interacts with the juxtamembrane-kinase domain of ERBB2. In SKOV3 ovarian cancer cells, which bear a PIK3CA mutation and ERBB2 overexpression, ectopic VEPH1 expression enhanced EGF activation of ERK1/2, and mTORC2 activation of AKT. In contrast, in ES2 ovarian cancer cells, which bear a BRAFV600E mutation with VEPH1 amplification but low ERBB2 expression, loss of VEPH1 expression enabled further activation of ERK1/2 by EGF and enhanced EGF activation of AKT. VEPH1 expression in SKOV3 cells enhanced EGF-induced cell migration consistent with increased Snail2 and decreased E-cadherin levels. In comparison, loss of VEPH1 expression in ES2 cells led to decreased cell motility independent of EGF treatment despite higher levels of N-cadherin and Snail2. Importantly, we found that loss of VEPH1 expression rendered ES2 cells less sensitive to BRAF and MEK inhibition. This study extends the range of adaptor function of VEPH1 to ERBB2, and indicates VEPH1 has differential effects on EGF signaling in ovarian cancer cells that may be influenced by driver gene mutations.
Collapse
Affiliation(s)
- Alexandra Kollara
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| | - Brian D Burt
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Maurice J Ringuette
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Theodore J Brown
- Lunenfeld-Tanenbaum Research Institute, Sinai Health Systems, Toronto, ON, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Bai X, Sun P, Wang X, Long C, Liao S, Dang S, Zhuang S, Du Y, Zhang X, Li N, He K, Zhang Z. Structure and dynamics of the EGFR/HER2 heterodimer. Cell Discov 2023; 9:18. [PMID: 36781849 PMCID: PMC9925823 DOI: 10.1038/s41421-023-00523-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/15/2023] [Indexed: 02/15/2023] Open
Abstract
HER2 belongs to the human epidermal growth factor receptor tyrosine kinase family. Its overexpression or hyperactivation is a leading cause for multiple types of cancers. HER2 functions mainly through dimerization with other family members, such as EGFR. However, the molecular details for heterodimer assembly have not been completely understood. Here, we report cryo-EM structures of the EGF- and epiregulin-bound EGFR/HER2 ectodomain complexes at resolutions of 3.3 Å and 4.5 Å, respectively. Together with the functional analyses, we demonstrate that only the dimerization arm of HER2, but not that of EGFR, is essential for their heterodimer formation and signal transduction. Moreover, we analyze the differential membrane dynamics and transient interactions of endogenous EGFR and HER2 molecules in genome-edited cells using single-molecule live-cell imaging. Furthermore, we show that the interaction with HER2 could allow EGFR to resist endocytosis. Together, this work deepens our understanding of the unique structural properties and dynamics of the EGFR/HER2 complex.
Collapse
Affiliation(s)
- Xue Bai
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Pengyu Sun
- grid.9227.e0000000119573309State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xinghao Wang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Changkun Long
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Shuyun Liao
- grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Song Dang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shangshang Zhuang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- grid.9227.e0000000119573309State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Zhang
- grid.9227.e0000000119573309State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- grid.9227.e0000000119573309State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China. .,Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Balasubramanian H, Sankaran J, Pandey S, Goh CJH, Wohland T. The dependence of EGFR oligomerization on environment and structure: A camera-based N&B study. Biophys J 2022; 121:4452-4466. [PMID: 36335429 PMCID: PMC9748371 DOI: 10.1016/j.bpj.2022.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Number and brightness (N&B) analysis is a fluorescence spectroscopy technique to quantify oligomerization of the mobile fraction of proteins. Accurate results, however, rely on a good knowledge of nonfluorescent states of the fluorescent labels, especially of fluorescent proteins, which are widely used in biology. Fluorescent proteins have been characterized for confocal, but not camera-based, N&B, which allows, in principle, faster measurements over larger areas. Here, we calibrate camera-based N&B implemented on a total internal reflection fluorescence microscope for various fluorescent proteins by determining their propensity to be fluorescent. We then apply camera-based N&B in live CHO-K1 cells to determine the oligomerization state of the epidermal growth factor receptor (EGFR), a transmembrane receptor tyrosine kinase that is a crucial regulator of cell proliferation and survival with implications in many cancers. EGFR oligomerization in resting cells and its regulation by the plasma membrane microenvironment are still under debate. Therefore, we investigate the effects of extrinsic factors, including membrane organization, cytoskeletal structure, and ligand stimulation, and intrinsic factors, including mutations in various EGFR domains, on the receptor's oligomerization. Our results demonstrate that EGFR oligomerization increases with removal of cholesterol or sphingolipids or the disruption of GM3-EGFR interactions, indicating raft association. However, oligomerization is not significantly influenced by the cytoskeleton. Mutations in either I706/V948 residues or E685/E687/E690 residues in the kinase and juxtamembrane domains, respectively, lead to a decrease in oligomerization, indicating their necessity for EGFR dimerization. Finally, EGFR phosphorylation is oligomerization dependent, involving the extracellular domain (550-580 residues). Coupled with biochemical investigations, camera-based N&B indicates that EGFR oligomerization and phosphorylation are the outcomes of several molecular interactions involving the lipid content and structure of the cell membrane and multiple residues in the kinase, juxtamembrane, and extracellular domains.
Collapse
Affiliation(s)
- Harikrushnan Balasubramanian
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jagadish Sankaran
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Shambhavi Pandey
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Corinna Jie Hui Goh
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Biological Sciences and NUS Centre for Bio-Imaging Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Orofiamma LA, Vural D, Antonescu CN. Control of cell metabolism by the epidermal growth factor receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119359. [PMID: 36089077 DOI: 10.1016/j.bbamcr.2022.119359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) triggers the activation of many intracellular signals that control cell proliferation, growth, survival, migration, and differentiation. Given its wide expression, EGFR has many functions in development and tissue homeostasis. Some of the cellular outcomes of EGFR signaling involve alterations of specific aspects of cellular metabolism, and alterations of cell metabolism are emerging as driving influences in many physiological and pathophysiological contexts. Here we review the mechanisms by which EGFR regulates cell metabolism, including by modulation of gene expression and protein function leading to control of glucose uptake, glycolysis, biosynthetic pathways branching from glucose metabolism, amino acid metabolism, lipogenesis, and mitochondrial function. We further examine how this regulation of cell metabolism by EGFR may contribute to cell proliferation and differentiation and how EGFR-driven control of metabolism can impact certain diseases and therapy outcomes.
Collapse
Affiliation(s)
- Laura A Orofiamma
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Dafne Vural
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada; Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
5
|
Targeting the HER3 pseudokinase domain with small molecule inhibitors. Methods Enzymol 2022; 667:455-505. [PMID: 35525551 DOI: 10.1016/bs.mie.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.
Collapse
|
6
|
Peckys DB, Gaa D, de Jonge N. Quantification of EGFR-HER2 Heterodimers in HER2-Overexpressing Breast Cancer Cells Using Liquid-Phase Electron Microscopy. Cells 2021; 10:cells10113244. [PMID: 34831465 PMCID: PMC8623301 DOI: 10.3390/cells10113244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Currently, breast cancer patients are classified uniquely according to the expression level of hormone receptors, and human epidermal growth factor receptor 2 (HER2). This coarse classification is insufficient to capture the phenotypic complexity and heterogeneity of the disease. A methodology was developed for absolute quantification of receptor surface density ρR, and molecular interaction (dimerization), as well as the associated heterogeneities, of HER2 and its family member, the epidermal growth factor receptor (EGFR) in the plasma membrane of HER2 overexpressing breast cancer cells. Quantitative, correlative light microscopy (LM) and liquid-phase electron microscopy (LPEM) were combined with quantum dot (QD) labeling. Single-molecule position data of receptors were obtained from scanning transmission electron microscopy (STEM) images of intact cancer cells. Over 280,000 receptor positions were detected and statistically analyzed. An important finding was the subcellular heterogeneity in heterodimer shares with respect to plasma membrane regions with different dynamic properties. Deriving quantitative information about EGFR and HER2 ρR, as well as their dimer percentages, and the heterogeneities thereof, in single cancer cells, is potentially relevant for early identification of patients with HER2 overexpressing tumors comprising an enhanced share of EGFR dimers, likely increasing the risk for drug resistance, and thus requiring additional targeted therapeutic strategies.
Collapse
Affiliation(s)
- Diana B. Peckys
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, 66421 Homburg, Germany;
| | - Daniel Gaa
- INM—Leibniz Institute for New Materials, 66123 Saarbrücken, Germany;
| | - Niels de Jonge
- INM—Leibniz Institute for New Materials, 66123 Saarbrücken, Germany;
- Department of Physics, Saarland University, 66123 Saarbrücken, Germany
- Correspondence:
| |
Collapse
|
7
|
Pparγ1 Facilitates ErbB2-Mammary Adenocarcinoma in Mice. Cancers (Basel) 2021; 13:cancers13092171. [PMID: 33946495 PMCID: PMC8125290 DOI: 10.3390/cancers13092171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.
Collapse
|
8
|
Grindel B, Engel BJ, Hall CG, Kelderhouse LE, Lucci A, Zacharias NM, Takahashi TT, Millward SW. Mammalian Expression and In Situ Biotinylation of Extracellular Protein Targets for Directed Evolution. ACS OMEGA 2020; 5:25440-25455. [PMID: 33043224 PMCID: PMC7542843 DOI: 10.1021/acsomega.0c03990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 05/17/2023]
Abstract
Directed evolution is a powerful tool for the selection of functional ligands from molecular libraries. Extracellular domains (ECDs) of cell surface receptors are common selection targets for therapeutic and imaging agent development. Unfortunately, these proteins are often post-translationally modified and are therefore unsuitable for expression in bacterial systems. Directional immobilization of these targets is further hampered by the absence of biorthogonal groups for site-specific chemical conjugation. We have developed a nonadherent mammalian expression system for rapid, high-yield expression of biotinylated ECDs. ECDs from EGFR, HER2, and HER3 were site-specifically biotinylated in situ and recovered from the cell culture supernatant with yields of up to 10 mg/L at >90% purity. Biotinylated ECDs also contained a protease cleavage site for rapid and selective release of the ECD after immobilization on avidin/streptavidin resins and library binding. A model mRNA display selection round was carried out against the HER2 ECD with the HER2 affibody expressed as an mRNA-protein fusion. HER2 affibody-mRNA fusions were selectively released by thrombin and quantitative PCR revealed substantial improvements in the enrichment of functional affibody-mRNA fusions relative to direct PCR amplification of the resin-bound target. This methodology allows rapid purification of high-quality targets for directed evolution and selective elution of functional sequences at the conclusion of each selection round.
Collapse
Affiliation(s)
- Brian
J. Grindel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Brian J. Engel
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Carolyn G. Hall
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Lindsay E. Kelderhouse
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| | - Anthony Lucci
- Department
of Breast Surgical Oncology, MD Anderson
Cancer Center, Houston, Texas 77030, United States
| | - Niki M. Zacharias
- Department
of Urology, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Terry T. Takahashi
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Steven W. Millward
- Department
of Cancer Systems Imaging, MD Anderson Cancer
Center, Houston, Texas 77030, United States
| |
Collapse
|
9
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Liu Y, Calmel C, Desbois-Mouthon C, Sobczak-Thépot J, Karaiskou A, Praz F. Regulation of the EGFR/ErbB signalling by clathrin in response to various ligands in hepatocellular carcinoma cell lines. J Cell Mol Med 2020; 24:8091-8102. [PMID: 32515546 PMCID: PMC7348188 DOI: 10.1111/jcmm.15440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Membrane receptor intracellular trafficking and signalling are frequently altered in cancers. Our aim was to investigate whether clathrin‐dependent trafficking modulates signalling of the ErbB receptor family in response to amphiregulin (AR), EGF, heparin‐binding EGF‐like growth factor (HB‐EGF) and heregulin‐1β (HRG). Experiments were performed using three hepatocellular carcinoma (HCC) cell lines, Hep3B, HepG2 and PLC/PRF/5, expressing various levels of EGFR, ErbB2 and ErbB3. Inhibition of clathrin‐mediated endocytosis (CME), by down‐regulating clathrin heavy chain expression, resulted in a cell‐ and ligand‐specific pattern of phosphorylation of the ErbB receptors and their downstream effectors. Clathrin down‐regulation significantly decreased the ratio between phosphorylated EGFR (pEGFR) and total EGFR in all cell lines when stimulated with AR, EGF, HB‐EGF or HRG, except in HRG‐stimulated Hep3B cells in which pEGFR was not detectable. The ratio between phosphorylated ErbB2 and total ErbB2 was significantly decreased in clathrin down‐regulated Hep3B cells stimulated with any of the ligands, and in HRG‐stimulated PLC/PRF/5 cells. The ratio between phosphorylated ErbB3 and total ErbB3 significantly decreased in clathrin down‐regulated cell lines upon stimulation with EGF or HB‐EGF. STAT3 phosphorylation levels significantly increased in all cell lines irrespective of stimulation, while that of AKT remained unchanged, except in AR‐stimulated Hep3B and HepG2 cells in which pAKT was significantly decreased. Finally, ERK phosphorylation was insensitive to clathrin inhibition. Altogether, our observations indicate that clathrin regulation of ErbB signalling in HCC is a complex process that likely depends on the expression of ErbB family members and on the autocrine/paracrine secretion of their ligands in the tumour environment.
Collapse
Affiliation(s)
- Yuanhui Liu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Claire Calmel
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | | | - Joëlle Sobczak-Thépot
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Anthi Karaiskou
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Françoise Praz
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
11
|
Galli de Amorim M, Branco G, Valieris R, Tarcitano E, Tojal da Silva I, Ferreira de Araújo L, Noronha Nunes D, Dias-Neto E. The impact of HER2 overexpression on the miRNA and circRNA transcriptomes in two breast cell lines and their vesicles. Pharmacogenomics 2020; 20:493-502. [PMID: 31124410 DOI: 10.2217/pgs-2018-0182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HER2 upregulation is related with poor outcome in many tumor types. Whereas anti-HER2 treatment is the standard approach as adjuvant therapy in HER2-overexpressing breast cancer, the frequent relapses reinforce the need for alternative treatments. Here we used next-generation sequencing (NGS) to evaluate miRNAs and circRNAs in the cell-lines HB4a and C5.2, where the latter is a HER2-overexpressing clone of the former, and also from two different populations of their secreted extracellular vesicles. Whereas circRNA-levels were stable, we found at least 16 miRNAs apparently modulated by HER2-expression. The miR223-3p, miR-421 and miR-21-5p were validated in an independent cohort of 431 breast cancer patients from The Cancer Genome Atlas (TCGA). The consistent modulation of these molecules and their possible involvement in the HER2-axis makes them promising new targets to overcome HER2-activation.
Collapse
Affiliation(s)
- Maria Galli de Amorim
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Curso de Pós-graduação em Oncologia, Fundação Antônio Prudente, São Paulo, SP, Brazil
| | - Gabriela Branco
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Curso de Pós-graduação em Oncologia, Fundação Antônio Prudente, São Paulo, SP, Brazil
| | - Renan Valieris
- Laboratory of Computational Biology, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Emilio Tarcitano
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Curso de Pós-graduação em Oncologia, Fundação Antônio Prudente, São Paulo, SP, Brazil
| | - Israel Tojal da Silva
- Laboratory of Computational Biology, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Diana Noronha Nunes
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, AC Camargo Cancer Center, São Paulo, SP, Brazil.,Laboratório de Neurociências Alzira Denise Hertzog Silva (LIM27), Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
12
|
Boateng E, deKay JT, Peterson SM, Boles J, Pinnette N, Sorcher MW, Robich MP, Sawyer DB, Ryzhov S. High ErbB3 activating activity in human blood is not due to circulating neuregulin-1 beta. Life Sci 2020; 251:117634. [PMID: 32251632 DOI: 10.1016/j.lfs.2020.117634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 01/24/2023]
Abstract
Neuregulin-1β (NRG-1) is a membrane-bound or secreted growth and differentiation factor that mediates its action by binding to ErbB receptors. Circulating levels of NRG-1 are characterized by large inter-individual variability with the range of absolute values covering two orders of magnitude, from hundreds to tens of thousands of picograms per milliliter of blood. NRG-1 signaling via ErbB receptors contributes to the cell survival and downregulation of the inflammatory response. A higher level of circulating NRG-1 may indicate increased shedding of membrane-bound NRG-1, which in turn can contribute to better protection against cardiovascular stress or injury. However, it is unknown whether circulating NRG-1 can induce activation of ErbB receptors. In the current study, we performed an analysis of circulating NRG-1 functional activity using a cell-based ELISA measuring phosphorylation of ErbB3 induced by blood plasma obtained from healthy donors. We found high levels of ErbB3 activating activity in human plasma. No correlations were found between the levels of circulating NRG-1 and plasma ErbB3 activating activity. To determine the direct effect of circulating NRG-1, we incubated plasma with neutralizing antibody, which prevented the stimulatory effect of recombinant NRG-1 on activation of ErbB3. No effect of the neutralizing antibody was found on plasma-induced phosphorylation of ErbB3. We also found that a significant portion of circulating NRG-1 is comprised of full-length NRG-1 associated with large extracellular vesicles. Our results demonstrate that circulating NRG-1 does not contribute to plasma-induced ErbB3 activating activity and emphasizes the importance of functional testing of NRG-1 proteins in biological samples.
Collapse
Affiliation(s)
- Emmanuel Boateng
- The Ohio State University College of Medicine, Columbus, OH, United States of America
| | - Joanne T deKay
- Johns Hopkins University, Baltimore, MD, United States of America
| | - Sarah M Peterson
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; IDEXX Laboratories, Westbrook, ME, United States of America
| | - Jacob Boles
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Nathan Pinnette
- University of Rochester, Rochester, NY, United States of America
| | - Mary W Sorcher
- Department of Biology, University of Southern Maine, Portland, ME, United States of America; Department of Biology, University of Nevada, Reno, NV, United States of America
| | - Michael P Robich
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Douglas B Sawyer
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, ME, United States of America.
| |
Collapse
|
13
|
Differential impact of the ERBB receptors EGFR and ERBB2 on the initiation of precursor lesions of pancreatic ductal adenocarcinoma. Sci Rep 2020; 10:5241. [PMID: 32251323 PMCID: PMC7090067 DOI: 10.1038/s41598-020-62106-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Earlier diagnosis of pancreatic ductal adenocarcinoma (PDAC) requires better understanding of the mechanisms driving tumorigenesis. In this context, depletion of Epidermal Growth Factor Receptor (EGFR) is known to impair development of PDAC-initiating lesions called acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN). In contrast, the role of v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), the preferred dimerization partner of EGFR, remains poorly understood. Here, using a mouse model with inactivation of Erbb2 in pancreatic acinar cells, we found that Erbb2 is dispensable for inflammation- and KRasG12D-induced development of ADM and PanIN. A mathematical model of EGFR/ERBB2-KRAS signaling, which was calibrated on mouse and human data, supported the observed roles of EGFR and ERBB2. However, this model also predicted that overexpression of ERBB2 stimulates ERBB/KRAS signaling; this prediction was validated experimentally. We conclude that EGFR and ERBB2 differentially impact ERBB signaling during PDAC tumorigenesis, and that the oncogenic potential of ERBB2 is only manifested when it is overexpressed. Therefore, the level of ERBB2, not only its mere presence, needs to be considered when designing therapies targeting ERBB signaling.
Collapse
|
14
|
Chiasson-MacKenzie C, Morris ZS, Liu CH, Bradford WB, Koorman T, McClatchey AI. Merlin/ERM proteins regulate growth factor-induced macropinocytosis and receptor recycling by organizing the plasma membrane:cytoskeleton interface. Genes Dev 2018; 32:1201-1214. [PMID: 30143526 PMCID: PMC6120716 DOI: 10.1101/gad.317354.118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 12/19/2022]
Abstract
The architectural and biochemical features of the plasma membrane are governed by its intimate association with the underlying cortical cytoskeleton. The neurofibromatosis type 2 (NF2) tumor suppressor merlin and closely related membrane:cytoskeleton-linking protein ezrin organize the membrane:cytoskeleton interface, a critical cellular compartment that both regulates and is regulated by growth factor receptors. An example of this poorly understood interrelationship is macropinocytosis, an ancient process of nutrient uptake and membrane remodeling that can both be triggered by growth factors and manage receptor availability. We show that merlin deficiency primes the membrane:cytoskeleton interface for epidermal growth factor (EGF)-induced macropinocytosis via a mechanism involving increased cortical ezrin, altered actomyosin, and stabilized cholesterol-rich membranes. These changes profoundly alter EGF receptor (EGFR) trafficking in merlin-deficient cells, favoring increased membrane levels of its heterodimerization partner, ErbB2; clathrin-independent internalization; and recycling. Our work suggests that, unlike Ras transformed cells, merlin-deficient cells do not depend on macropinocytic protein scavenging and instead exploit macropinocytosis for receptor recycling. Finally, we provide evidence that the macropinocytic proficiency of NF2-deficient cells can be used for therapeutic uptake. This work provides new insight into fundamental mechanisms of macropinocytic uptake and processing and suggests new ways to interfere with or exploit macropinocytosis in NF2 mutant and other tumors.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zachary S Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ching-Hui Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - William B Bradford
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Thijs Koorman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Yu Y, Suryo Rahmanto Y, Lee MH, Wu PH, Phillip JM, Huang CH, Vitolo MI, Gaillard S, Martin SS, Wirtz D, Shih IM, Wang TL. Inhibition of ovarian tumor cell invasiveness by targeting SYK in the tyrosine kinase signaling pathway. Oncogene 2018; 37:3778-3789. [PMID: 29643476 PMCID: PMC6043408 DOI: 10.1038/s41388-018-0241-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/27/2018] [Accepted: 03/03/2018] [Indexed: 02/02/2023]
Abstract
Cell motility and invasiveness are prerequisites for dissemination, and largely account for cancer mortality. We have identified an actionable kinase, spleen tyrosine kinase (SYK), which is keenly tightly associated with tumor progression in ovarian cancer. Here, we report that active recombinant SYK directly phosphorylates cortactin and cofilin, which are critically involved in assembly and dynamics of actin filament through phosphorylation signaling. Enhancing SYK activity by inducing expression of a constitutively active SYK mutant, SYK130E, increased growth factor-stimulated migration and invasion of ovarian cancer cells, which was abrogated by cortactin knockdown. Similarly, SYK inhibitors significantly decreased invasion of ovarian cancer cells across basement membrane in real-time transwell assays and in 3D tumor spheroid models. SYK inactivation by targeted gene knockout or by small molecule inhibition reduced actin polymerization. Collectively, this study reported a new mechanism by which SYK signaling regulates ovarian cancer cell motility and invasiveness, and suggest a target-based strategy to prevent or suppress the advancement of ovarian malignancies.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Meng-Horng Lee
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chuan-Hsiang Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Michele I Vitolo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA
| | - Stuart S Martin
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Physical Sciences-Oncology Center, and Institute for NanoBioTechology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, 21205, USA.
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Valley CC, Lewis AK, Sachs JN. Piecing it together: Unraveling the elusive structure-function relationship in single-pass membrane receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1398-1416. [PMID: 28089689 DOI: 10.1016/j.bbamem.2017.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/17/2022]
Abstract
The challenge of crystallizing single-pass plasma membrane receptors has remained an obstacle to understanding the structural mechanisms that connect extracellular ligand binding to cytosolic activation. For example, the complex interplay between receptor oligomerization and conformational dynamics has been, historically, only inferred from static structures of isolated receptor domains. A fundamental challenge in the field of membrane receptor biology, then, has been to integrate experimentally observable dynamics of full-length receptors (e.g. diffusion and conformational flexibility) into static structural models of the disparate domains. In certain receptor families, e.g. the ErbB receptors, structures have led somewhat linearly to a putative model of activation. In other families, e.g. the tumor necrosis factor (TNF) receptors, structures have produced divergent hypothetical mechanisms of activation and transduction. Here, we discuss in detail these and other related receptors, with the goal of illuminating the current challenges and opportunities in building comprehensive models of single-pass receptor activation. The deepening understanding of these receptors has recently been accelerated by new experimental and computational tools that offer orthogonal perspectives on both structure and dynamics. As such, this review aims to contextualize those technological developments as we highlight the elegant and complex conformational communication between receptor domains. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
Affiliation(s)
| | - Andrew K Lewis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
17
|
Grimont A, Pinho AV, Cowley MJ, Augereau C, Mawson A, Giry-Laterrière M, Van den Steen G, Waddell N, Pajic M, Sempoux C, Wu J, Grimmond SM, Biankin AV, Lemaigre FP, Rooman I, Jacquemin P. SOX9 regulates ERBB signalling in pancreatic cancer development. Gut 2015; 64:1790-9. [PMID: 25336113 DOI: 10.1136/gutjnl-2014-307075] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 10/01/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The transcription factor SOX9 was recently shown to stimulate ductal gene expression in pancreatic acinar-to-ductal metaplasia and to accelerate development of premalignant lesions preceding pancreatic ductal adenocarcinoma (PDAC). Here, we investigate how SOX9 operates in pancreatic tumourigenesis. DESIGN We analysed genomic and transcriptomic data from surgically resected PDAC and extended the expression analysis to xenografts from PDAC samples and to PDAC cell lines. SOX9 expression was manipulated in human cell lines and mouse models developing PDAC. RESULTS We found genetic aberrations in the SOX9 gene in about 15% of patient tumours. Most PDAC samples strongly express SOX9 protein, and SOX9 levels are higher in classical PDAC. This tumour subtype is associated with better patient outcome, and cell lines of this subtype respond to therapy targeting epidermal growth factor receptor (EGFR/ERBB1) signalling, a pathway essential for pancreatic tumourigenesis. In human PDAC, high expression of SOX9 correlates with expression of genes belonging to the ERBB pathway. In particular, ERBB2 expression in PDAC cell lines is stimulated by SOX9. Inactivating Sox9 expression in mice confirmed its role in PDAC initiation; it demonstrated that Sox9 stimulates expression of several members of the ERBB pathway and is required for ERBB signalling activity. CONCLUSIONS By integrating data from patient samples and mouse models, we found that SOX9 regulates the ERBB pathway throughout pancreatic tumourigenesis. Our work opens perspectives for therapy targeting tumourigenic mechanisms.
Collapse
Affiliation(s)
- Adrien Grimont
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Andreia V Pinho
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Mark J Cowley
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Cécile Augereau
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Amanda Mawson
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | - Marc Giry-Laterrière
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative
| | | | - Nicola Waddell
- Australian Pancreatic Cancer Genome Initiative Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Marina Pajic
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Christine Sempoux
- Department of Pathology, Université catholique de Louvain, Cliniques Universitaires St Luc, Brussels, Belgium
| | - Jianmin Wu
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Sean M Grimmond
- Australian Pancreatic Cancer Genome Initiative Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia Wolfson Wohl Cancer Centre, University of Glasgow, Scotland, UK
| | - Andrew V Biankin
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia Wolfson Wohl Cancer Centre, University of Glasgow, Scotland, UK
| | | | - Ilse Rooman
- Cancer Research Division, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia Australian Pancreatic Cancer Genome Initiative St Vincent's Clinical School, University New South Wales, Australia
| | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
18
|
Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015; 84:739-64. [PMID: 25621509 DOI: 10.1146/annurev-biochem-060614-034402] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. The structure of intact forms of this receptor has yet to be determined, but intense investigations of fragments of the receptor have provided a detailed view of its activation mechanism, which we review here. Ligand binding converts the receptor to a dimeric form, in which contacts are restricted to the receptor itself, allowing heterodimerization of the four EGFR family members without direct ligand involvement. Activation of the receptor depends on the formation of an asymmetric dimer of kinase domains, in which one kinase domain allosterically activates the other. Coupling between the extracellular and intracellular domains may involve a switch between alternative crossings of the transmembrane helices, which form dimeric structures. We also discuss how receptor regulation is compromised by oncogenic mutations and the structural basis for negative cooperativity in ligand binding.
Collapse
|
19
|
Bessman NJ, Bagchi A, Ferguson KM, Lemmon MA. Complex relationship between ligand binding and dimerization in the epidermal growth factor receptor. Cell Rep 2014; 9:1306-17. [PMID: 25453753 DOI: 10.1016/j.celrep.2014.10.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 11/27/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays pivotal roles in development and is mutated or overexpressed in several cancers. Despite recent advances, the complex allosteric regulation of EGFR remains incompletely understood. Through efforts to understand why the negative cooperativity observed for intact EGFR is lost in studies of its isolated extracellular region (ECR), we uncovered unexpected relationships between ligand binding and receptor dimerization. The two processes appear to compete. Surprisingly, dimerization does not enhance ligand binding (although ligand binding promotes dimerization). We further show that simply forcing EGFR ECRs into preformed dimers without ligand yields ill-defined, heterogeneous structures. Finally, we demonstrate that extracellular EGFR-activating mutations in glioblastoma enhance ligand-binding affinity without directly promoting EGFR dimerization, suggesting that these oncogenic mutations alter the allosteric linkage between dimerization and ligand binding. Our findings have important implications for understanding how EGFR and its relatives are activated by specific ligands and pathological mutations.
Collapse
Affiliation(s)
- Nicholas J Bessman
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Atrish Bagchi
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathryn M Ferguson
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Lemmon
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Macdonald-Obermann JL, Pike LJ. Different epidermal growth factor (EGF) receptor ligands show distinct kinetics and biased or partial agonism for homodimer and heterodimer formation. J Biol Chem 2014; 289:26178-26188. [PMID: 25086039 DOI: 10.1074/jbc.m114.586826] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers.
Collapse
Affiliation(s)
- Jennifer L Macdonald-Obermann
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Linda J Pike
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
21
|
Bouhaddou M, Birtwistle MR. Dimerization-based control of cooperativity. MOLECULAR BIOSYSTEMS 2014; 10:1824-32. [PMID: 24736836 PMCID: PMC4060435 DOI: 10.1039/c4mb00022f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cooperativity of ligand-receptor binding influences the input-output behavior of a biochemical system and thus is an important determinant of its physiological function. Canonically, such cooperativity is understood in terms of ligand-receptor binding affinity, where an initial binding event changes the affinity for subsequent binding events. Here, we demonstrate that dimerization-a simple yet pervasive signaling motif across biology-can have significant control over cooperativity and even dominate over the canonical mechanism. Through an exhaustive parameter sensitivity analysis of a general kinetic model for signal-mediated dimerization, we show that quantitative modulation of dimerization processes can reinforce, eliminate, and even reverse cooperativity imposed by the canonical allosteric ligand-receptor binding affinity mechanism. The favored accumulation of stoichiometrically asymmetric dimers (those with ligand-receptor stoichiometry of 1 : 2) is a major determinant of dimerization-based cooperativity control. However, simulations demonstrate that favoring accumulation of such stoichiometrically asymmetric dimers can either increase or decrease cooperativity, and thus the quantitative relationship between stoichiometrically asymmetric dimers and cooperativity is highly dependent on the parameter values of the particular system of interest. These results suggest that the dimerization motif provides a novel mechanism for both generating and quantitatively tuning cooperativity that, due to the ubiquity of dimerization motifs in biochemical systems, may play a major role in a host of biological functions. Thus, the canonical, allosteric view of cooperativity is incomplete without considering dimerization effects, which is of particular importance as dimerization is often a necessary feature of the allosteric mechanism.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- Icahn School of Medicine at Mount Sinai, Department of Pharmacology and Systems Therapeutics, New York, NY 10029, USA.
| | | |
Collapse
|
22
|
Chaturvedi R, Asim M, Piazuelo MB, Yan F, Barry DP, Sierra JC, Delgado AG, Hill S, Casero RA, Bravo LE, Dominguez RL, Correa P, Polk DB, Washington MK, Rose KL, Schey KL, Morgan DR, Peek RM, Wilson KT. Activation of EGFR and ERBB2 by Helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 2014; 146:1739-51.e14. [PMID: 24530706 PMCID: PMC4035375 DOI: 10.1053/j.gastro.2014.02.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori up-regulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOX(high) cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H. pylori-infected Egfr(wa5) mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. A phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsy specimens from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H. pylori-infected Egfr(wa5) mice. H. pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damage(high) apoptosis(low) cells. Phosphoproteomic analysis showed increased EGFR and erythroblastic leukemia-associated viral oncogene B (ERBB)2 signaling. Immunoblot analysis showed the presence of a phosphorylated (p)EGFR-ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damage(high) apoptosis(low) cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR-ERBB2, and pERBB2 were increased predominantly in tissues showing gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR-ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis of gastric tissues from mice and patients, we identified a molecular signature (based on levels of pEGFR, pERBB2, and SMOX) for the initiation of gastric carcinogenesis.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fang Yan
- Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Johanna Carolina Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salisha Hill
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert A Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Luis E Bravo
- Department of Pathology, Universidad del Valle School of Medicine, Cali, Colombia
| | | | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - D Brent Polk
- Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
| | - M Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin L Schey
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Douglas R Morgan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
23
|
Macdonald-Obermann JL, Adak S, Landgraf R, Piwnica-Worms D, Pike LJ. Dynamic analysis of the epidermal growth factor (EGF) receptor-ErbB2-ErbB3 protein network by luciferase fragment complementation imaging. J Biol Chem 2013; 288:30773-30784. [PMID: 24014028 DOI: 10.1074/jbc.m113.489534] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ErbB3 is a member of the ErbB family of receptor tyrosine kinases. It is unique because it is the only member of the family whose kinase domain is defective. As a result, it is obliged to form heterodimers with other ErbB receptors to signal. In this study, we characterized the interaction of ErbB3 with the EGF receptor and ErbB2 and assessed the effects of Food and Drug Administration-approved therapeutic agents on these interactions. Our findings support the concept that ErbB3 exists in preformed clusters that can be dissociated by NRG-1β and that it interacts with other ErbB receptors in a distinctly hierarchical fashion. Our study also shows that all pairings of the EGF receptor, ErbB2, and ErbB3 form ligand-independent dimers/oligomers. The small-molecule tyrosine kinase inhibitors erlotinib and lapatinib differentially enhance the dimerization of the various ErbB receptor pairings, with the EGFR/ErbB3 heterodimer being particularly sensitive to the effects of erlotinib. The data suggest that the physiological effects of these drugs may involve not only inhibition of tyrosine kinase activity but also a dynamic restructuring of the entire network of receptors.
Collapse
Affiliation(s)
| | - Sangeeta Adak
- From the Departments of Biochemistry and Molecular Biophysics
| | - Ralf Landgraf
- the Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33101
| | - David Piwnica-Worms
- Cell Biology and Physiology, and; Developmental Biology,; the Mallinckrodt Institute of Radiology, and; the Bridging Research with Imaging, Genomics and High Throughput Technologies Institute, Washington University School of Medicine, St. Louis, Missouri 63110 and
| | - Linda J Pike
- From the Departments of Biochemistry and Molecular Biophysics,.
| |
Collapse
|
24
|
Nurwidya F, Takahashi F, Murakami A, Kobayashi I, Kato M, Shukuya T, Tajima K, Shimada N, Takahashi K. Acquired resistance of non-small cell lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Respir Investig 2013; 52:82-91. [PMID: 24636263 DOI: 10.1016/j.resinv.2013.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/21/2013] [Accepted: 07/09/2013] [Indexed: 01/23/2023]
Abstract
Activation of epidermal growth factor receptor (EGFR) triggers anti-apoptotic signaling, proliferation, angiogenesis, invasion, metastasis, and drug resistance, which leads to development and progression of human epithelial cancers, including non-small cell lung cancer (NSCLC). Inhibition of EGFR by tyrosine kinase inhibitors such as gefitinib and erlotinib has provided a new hope for the cure of NSCLC patients. However, acquired resistance to gefitinib and erlotinib via EGFR-mutant NSCLC has occurred through various molecular mechanisms such as T790M secondary mutation, MET amplification, hepatocyte growth factor (HGF) overexpression, PTEN downregulation, epithelial-mesenchymal transition (EMT), and other mechanisms. This review will discuss the biology of receptor tyrosine kinase inhibition and focus on the molecular mechanisms of acquired resistance to tyrosine kinase inhibitors of EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Akiko Murakami
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Isao Kobayashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Motoyasu Kato
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Takehito Shukuya
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Ken Tajima
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Naoko Shimada
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo 113-8421, Japan.
| |
Collapse
|
25
|
Shankaran H, Zhang Y, Tan Y, Resat H. Model-based analysis of HER activation in cells co-expressing EGFR, HER2 and HER3. PLoS Comput Biol 2013; 9:e1003201. [PMID: 23990774 PMCID: PMC3749947 DOI: 10.1371/journal.pcbi.1003201] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022] Open
Abstract
The HER/ErbB family of receptor tyrosine kinases drives critical responses in normal physiology and cancer, and the expression levels of the various HER receptors are critical determinants of clinical outcomes. HER activation is driven by the formation of various dimer complexes between members of this receptor family. The HER dimer types can have differential effects on downstream signaling and phenotypic outcomes. We constructed an integrated mathematical model of HER activation, and trafficking to quantitatively link receptor expression levels to dimerization and activation. We parameterized the model with a comprehensive set of HER phosphorylation and abundance data collected in a panel of human mammary epithelial cells expressing varying levels of EGFR/HER1, HER2 and HER3. Although parameter estimation yielded multiple solutions, predictions for dimer phosphorylation were in agreement with each other. We validated the model using experiments where pertuzumab was used to block HER2 dimerization. We used the model to predict HER dimerization and activation patterns in a panel of human mammary epithelial cells lines with known HER expression levels in response to stimulations with ligands EGF and HRG. Simulations over the range of expression levels seen in various cell lines indicate that: i) EGFR phosphorylation is driven by HER1-HER1 and HER1-HER2 dimers, and not HER1-HER3 dimers, ii) HER1-HER2 and HER2-HER3 dimers both contribute significantly to HER2 activation with the EGFR expression level determining the relative importance of these species, and iii) the HER2-HER3 dimer is largely responsible for HER3 activation. The model can be used to predict phosphorylated dimer levels for any given HER expression profile. This information in turn can be used to quantify the potencies of the various HER dimers, and can potentially inform personalized therapeutic approaches. A family of cell surface molecules called the HER receptor family plays important roles in normal physiology and cancer. This family has four members, HER1-4. These receptors convert signals received from the extracellular environment into cell decisions such as growth and survival – a process termed signal transduction. In particular, HER2 and HER3 are over-expressed in a number of tumors, and their expression levels are associated with abnormal growth and poor clinical prognosis. A key step in HER-mediated signal transduction is the formation of dimer complexes between members of this family. Different dimer types have different potencies for activating normal and aberrant responses. Prediction of the dimerization pattern for a given HER expression level may pave the way for personalized therapeutic approaches targeting specific dimers. Towards this end, we constructed a mathematical model for HER dimerization and activation. We determined unknown model parameters by analyzing HER activation data collected in a panel of human mammary epithelial cells that express different levels of the HER molecules. The model enables us to quantitatively link HER expression levels to receptor dimerization and activation. Further, the model can be used to support additional quantitative investigations into the basic biology of HER-mediated signal transduction.
Collapse
Affiliation(s)
- Harish Shankaran
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Yi Zhang
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Yunbing Tan
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, United States of America
| | - Haluk Resat
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
26
|
Oncogenes in non-small-cell lung cancer: emerging connections and novel therapeutic dynamics. THE LANCET RESPIRATORY MEDICINE 2013; 1:251-61. [PMID: 24429131 DOI: 10.1016/s2213-2600(13)70009-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-small-cell lung cancer is a heterogeneous disease that is difficult to treat. Through efforts to define the molecular mechanisms involved in lung oncogenesis, molecularly targeted approaches for patients with lung cancer have now reached the clinical arena. Despite elucidation of some molecular mechanisms of lung carcinogenesis, prognosis for patients remains poor. This Review aims to highlight the functional associations between key oncogenes that drive lung tumorigenesis and are distinct targetable molecules. Oncogenes are defined by acquisition of mutations, which results in a dominant gain-of-function of the targeted protein. In this situation, a single mutated allele is sufficient to induce malignant transformation. Importantly, tumours become addicted to particular genetic alterations that cause oncogene activation and the continued expression of the signalling. An increasing amount of evidence sustains the rationale for targeting of oncogenic pathways rather than a single oncogene. A clear priority for both researchers and clinicians is to better understand the complexity of biological networks underlying lung cancer pathogenesis. This paradigmatic shift in tailoring therapies should effectively improve outcomes for patients.
Collapse
|
27
|
Walker F, Rothacker J, Henderson C, Nice EC, Catimel B, Zhang HH, Scott AM, Bailey MF, Orchard SG, Adams TE, Liu Z, Garrett TPJ, Clayton AHA, Burgess AW. Ligand binding induces a conformational change in epidermal growth factor receptor dimers. Growth Factors 2012; 30:394-409. [PMID: 23163584 DOI: 10.3109/08977194.2012.739619] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The activation of the epidermal growth factor receptor (EGFR) kinase requires ligand binding to the extracellular domain (ECD). Previous reports demonstrate that the EGFR-ECD can be crystallized in two conformations - a tethered monomer or, in the presence of ligand, an untethered back-to-back dimer. We use Biosensor analysis to demonstrate that even in the monomeric state different C-terminal extensions of both truncated (EGFR(1-501))-ECD and full-length EGFR(1-621)-ECD can change the conformation of the ligand-binding site. The binding of a monoclonal antibody mAb806, which recognizes the dimer interface, to the truncated EGFR(1-501)-Fc fusion protein is reduced in the presence of ligand, consistent with a change in conformation. On the cell surface, the presence of erythroblastosis B2 (erbB2) increases the binding of mAb806 to the EGFR. The conformation of the erbB2: EGFR heterodimer interface changes when the cells are treated with epidermal growth factor (EGF). We propose that ligand induces kinase-inactive, pre-formed EGFR dimers and heterodimers to change conformation leading to kinase-active tetramers, where kinase activation occurs via an asymmetric interaction between EGFR dimers.
Collapse
Affiliation(s)
- Francesca Walker
- Ludwig Institute for Cancer Research Melbourne - Parkville Branch, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|