1
|
Verma S, Moreno IY, Prinholato da Silva C, Sun M, Cheng X, Gesteira TF, Coulson-Thomas VJ. Endogenous TSG-6 modulates corneal inflammation following chemical injury. Ocul Surf 2024; 32:26-38. [PMID: 38151073 PMCID: PMC11056311 DOI: 10.1016/j.jtos.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) is upregulated in various pathophysiological contexts, where it has a diverse repertoire of immunoregulatory functions. Herein, we investigated the expression and function of TSG-6 during corneal homeostasis and after injury. METHODS Human corneas, eyeballs from BALB/c (TSG-6+/+), TSG-6+/- and TSG-6-/- mice, human immortalized corneal epithelial cells and murine corneal epithelial progenitor cells were prepared for immunostaining and real time PCR analysis of endogenous expression of TSG-6. Mice were subjected to unilateral corneal debridement or alkali burn (AB) injuries and wound healing assessed over time using fluorescein stain, in vivo confocal microscopy and histology. RESULTS TSG-6 is endogenously expressed in the human and mouse cornea and established corneal epithelial cell lines and is upregulated after injury. A loss of TSG-6 has no structural and functional effect in the cornea during homeostasis. No differences were noted in the rate of corneal epithelial wound closure between BALB/c, TSG-6+/- and TSG-6-/- mice. TSG-6-/- mice presented decreased inflammatory response within the first 24 h of injury and accelerated corneal wound healing following AB when compared to control mice. CONCLUSION TSG-6 is endogenously expressed in the cornea and upregulated after injury where it propagates the inflammatory response following chemical injury.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, Houston, TX, United States; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, Houston, TX, United States
| | | | - Mingxia Sun
- College of Optometry, University of Houston, Houston, TX, United States
| | - Xuhong Cheng
- College of Optometry, University of Houston, Houston, TX, United States
| | - Tarsis F Gesteira
- College of Optometry, University of Houston, Houston, TX, United States
| | | |
Collapse
|
2
|
Greuter T, Straumann A, Fernandez-Marrero Y, Germic N, Hosseini A, Chanwangpong A, Yousefi S, Simon D, Collins MH, Bussmann C, Chehade M, Dellon ES, Furuta GT, Gonsalves N, Hirano I, Moawad FJ, Biedermann L, Safroneeva E, Schoepfer AM, Simon HU. A Multicenter Long-Term Cohort Study of Eosinophilic Esophagitis Variants and Their Progression to Eosinophilic Esophagitis Over Time. Clin Transl Gastroenterol 2024; 15:e00664. [PMID: 38318864 PMCID: PMC11042771 DOI: 10.14309/ctg.0000000000000664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Eosinophilic esophagitis (EoE) variants have been recently characterized as conditions with symptoms of esophageal dysfunction resembling EoE, but absence of significant esophageal eosinophilia. Their disease course and severity have yet to be determined. METHODS Patients from 6 EoE centers with symptoms of esophageal dysfunction, but peak eosinophil counts of <15/hpf in esophageal biopsies and absence of gastroesophageal reflux disease with at least one follow-up visit were included. Clinical, (immuno)histological, and molecular features were determined and compared with EoE and healthy controls. RESULTS We included 54 patients with EoE variants (EoE-like esophagitis 53.7%; lymphocytic esophagitis 13.0%; and nonspecific esophagitis 33.3%). In 8 EoE-like esophagitis patients, EoE developed after a median of 14 months (interquartile range 3.6-37.6). Such progression increased over time (17.6% year 1, 32.0% year 3, and 62.2% year 6). Sequential RNA sequencing analyses revealed only 7 genes associated with this progression (with TSG6 and ALOX15 among the top 3 upregulated genes) with upregulation of a previously attenuated Th2 pathway. Immunostaining confirmed the involvement of eosinophil-associated proteins (TSG6 and ALOX15) and revealed a significantly increased number of GATA3-positive cells during progression, indicating a Th1/Th2 switch. Transition from one EoE variant (baseline) to another variant (during follow-up) was seen in 35.2% (median observation time of 17.3 months). DISCUSSION Transition of EoE variants to EoE suggests the presence of a disease spectrum. Few genes seem to be associated with the progression to EoE with upregulation of a previously attenuated Th2 signal. These genes, including GATA3 as a Th1/Th2 switch regulator, may represent potential therapeutic targets in early disease pathogenesis.
Collapse
Affiliation(s)
- Thomas Greuter
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland;
- Division of Gastroenterology and Hepatology, University Hospital Lausanne–Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland;
- GZO–Zurich Regional Health Center, Wetzikon, Switzerland;
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland;
| | | | - Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland;
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, Bern, Switzerland;
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland;
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland;
| | - Margaret H. Collins
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evan S. Dellon
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Glenn T. Furuta
- Department of Pediatrics, Gastrointestinal Eosinophilic Diseases Program, University of Colorado School of Medicine, Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Nirmala Gonsalves
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois, USA
| | - Ikuo Hirano
- Division of Gastroenterology and Hepatology, Northwestern University, Chicago, Illinois, USA
| | - Fouad J. Moawad
- Division of Gastroenterology, Scripps Clinic, La Jolla Jolla, California, USA
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland;
| | - Ekaterina Safroneeva
- Insitute of Social and Preventive Medicine, University of Bern, Bern, Switzerland;
| | - Alain M. Schoepfer
- Division of Gastroenterology and Hepatology, University Hospital Lausanne–Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland;
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland;
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany.
| |
Collapse
|
3
|
Moreno IY, Parsaie A, Gesteira TF, Coulson-Thomas VJ. Characterization of the Limbal Epithelial Stem Cell Niche. Invest Ophthalmol Vis Sci 2023; 64:48. [PMID: 37906057 PMCID: PMC10619699 DOI: 10.1167/iovs.64.13.48] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Purpose Limbal epithelial stem cells (LESCs) reside within a LSC niche (LSCN). We recently identified that hyaluronan (HA) is a major constituent of the LSCN, and that HA is necessary for maintaining LESCs in the "stem cell" state, both in vitro and in vivo. Herein, we characterized the LSCN to identify key components of the HA-specific LSCN. Methods The cornea and limbal rim were dissected from mouse corneas, subjected to mRNA extraction, and sequenced using a NextSeq 500 (Illumina) and data processed using CLC Genomics Workbench 20 (Qiagen) and the STRING database to identify key components of the LSCN. Their expression was confirmed by real-time PCR, Western blotting, and immunohistochemistry. Furthermore, the differential expression of key compounds in different corneal cell types were determined with single-cell RNA sequencing. Results We identified that the hyaladherins inter-alpha-inhibitor (IαI), TSG-6 and versican are highly expressed in the limbus. Specifically, HA/HC complexes are present in the LSCN, in the stroma underlying the limbal epithelium, and surrounding the limbal vasculature. For IαI, heavy chains 5 and 2 (HC5 and HC2) were found to be the most highly expressed HCs in the mouse and human limbus and were associate with HA-forming HA/HC-specific matrices. Conclusions The LSCN contains HA/HC complexes, which have been previously correlated with stem cell niches. The identification of HA/HC complexes in the LSCN could serve as a new therapeutic avenue for treating corneal pathology. Additionally, HA/HC complexes could be used as a substrate for culturing LESCs before LESC transplantation.
Collapse
Affiliation(s)
- Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Arian Parsaie
- College of Optometry, University of Houston, Houston, Texas, United States
- College of Natural Science and Mathematics, University of Houston, Houston, Texas, United States
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
4
|
Albtoush N, Queisser KA, Zawerton A, Lauer ME, Beswick EJ, Petrey AC. TSG6 hyaluronan matrix remodeling dampens the inflammatory response during colitis. Matrix Biol 2023; 121:149-166. [PMID: 37391162 PMCID: PMC10530565 DOI: 10.1016/j.matbio.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical "HA-cable" structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kimberly A Queisser
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ash Zawerton
- Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark E Lauer
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Department of Pathology, Division of Microbiology & Immunology, University of Utah School of Medicine, Salt Lake City, Utah, 84132, USA; Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
5
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
6
|
Tang F, Brune JE, Chang MY, Reeves SR, Altemeier WA, Frevert CW. Defining the versican interactome in lung health and disease. Am J Physiol Cell Physiol 2022; 323:C249-C276. [PMID: 35649251 PMCID: PMC9291419 DOI: 10.1152/ajpcell.00162.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM) imparts critical mechanical and biochemical information to cells in the lungs. Proteoglycans are essential constituents of the ECM and play a crucial role in controlling numerous biological processes, including regulating cellular phenotype and function. Versican, a chondroitin sulfate proteoglycan required for embryonic development, is almost absent from mature, healthy lungs and is reexpressed and accumulates in acute and chronic lung disease. Studies using genetically engineered mice show that the versican-enriched matrix can be pro- or anti-inflammatory depending on the cellular source or disease process studied. The mechanisms whereby versican develops a contextual ECM remain largely unknown. The primary goal of this review is to provide an overview of the interaction of versican with its many binding partners, the "versican interactome," and how through these interactions, versican is an integrator of complex extracellular information. Hopefully, the information provided in this review will be used to develop future studies to determine how versican and its binding partners can develop contextual ECMs that control select biological processes. Although this review focuses on versican and the lungs, what is described can be extended to other proteoglycans, tissues, and organs.
Collapse
Affiliation(s)
- Fengying Tang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Jourdan E Brune
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Mary Y Chang
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen R Reeves
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - William A Altemeier
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Charles W Frevert
- Center for Lung Biology, The University of Washington at South Lake Union, Seattle, Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Crotty KM, Yeligar SM. Hyaladherins May be Implicated in Alcohol-Induced Susceptibility to Bacterial Pneumonia. Front Immunol 2022; 13:865522. [PMID: 35634317 PMCID: PMC9133445 DOI: 10.3389/fimmu.2022.865522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.
Collapse
Affiliation(s)
- Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States.,Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| |
Collapse
|
8
|
Albtoush N, Petrey AC. The role of Hyaluronan synthesis and degradation in the critical respiratory illness COVID-19. Am J Physiol Cell Physiol 2022; 322:C1037-C1046. [PMID: 35442830 PMCID: PMC9126216 DOI: 10.1152/ajpcell.00071.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyaluronan (HA) is a polysaccharide found in all tissues as an integral component of the extracellular matrix (ECM) that plays a central regulatory role in inflammation. In fact, HA matrices are increasingly considered as a barometer of inflammation. A number of proteins specifically recognize the HA structure and these interactions modify cell behavior and control the stability of the ECM. Moreover, inflamed airways are remarkably rich with HA and are associated with various inflammatory diseases including cystic fibrosis, influenza, sepsis, and more recently coronavirus disease 2019 (COVID-19). COVID-19 is a worldwide pandemic caused by a novel coronavirus called SARS-CoV-2, and infected individuals have a wide range of disease manifestations ranging from asymptomatic to severe illness. Critically ill COVID-19 patient cases are frequently complicated by development of acute respiratory distress syndrome (ARDS), which typically leads to poor outcomes with high mortality rate. In general, ARDS is characterized by poor oxygenation accompanied with severe lung inflammation, damage, and vascular leakage and has been suggested to be linked to an accumulation of HA within the airways. Here, we provide a succinct overview of known inflammatory mechanisms regulated by HA in general, and those both observed and postulated in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, United States.,Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
9
|
Garantziotis S. Modulation of hyaluronan signaling as a therapeutic target in human disease. Pharmacol Ther 2021; 232:107993. [PMID: 34587477 DOI: 10.1016/j.pharmthera.2021.107993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The extracellular matrix is an active participant, modulator and mediator of the cell, tissue, organ and organismal response to injury. Recent research has highlighted the role of hyaluronan, an abundant glycosaminoglycan constituent of the extracellular matrix, in many fundamental biological processes underpinning homeostasis and disease development. From this basis, emerging studies have demonstrated the therapeutic potential of strategies which target hyaluronan synthesis, biology and signaling, with significant promise as therapeutics for a variety of inflammatory and immune diseases. This review summarizes the state of the art in this field and discusses challenges and opportunities in what could emerge as a new class of therapeutic agents, that we term "matrix biologics".
Collapse
Affiliation(s)
- Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
10
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
11
|
Kellar GG, Reeves SR, Barrow KA, Debley JS, Wight TN, Ziegler SF. Juvenile, but Not Adult, Mice Display Increased Myeloid Recruitment and Extracellular Matrix Remodeling during Respiratory Syncytial Virus Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:3050-3057. [PMID: 33097575 PMCID: PMC7747670 DOI: 10.4049/jimmunol.2000683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/23/2020] [Indexed: 01/21/2023]
Abstract
Early life respiratory syncytial virus (RSV) infection has been linked to the onset of asthma. Despite this association, our knowledge of the progression of the initial viral infection is limited, and no safe or effective vaccine currently exists. Bronchioalveolar lavage, whole-lung cellular isolation, and gene expression analysis were performed on 3-wk- (juvenile) and 8-wk-old (adult) RSV-infected C57BL/6 mice to investigate age-related differences in immunologic responses; juvenile mice displayed a sustained myeloid infiltrate (including monocytes and neutrophils) with increased RNA expression of Ccl2, Ccl3, and Ccl4, when compared with adult mice, at 72 h postinfection. Juvenile mice demonstrated αSma expression (indicative of myofibroblast activity), increased hyaluronan deposition in the lung parenchyma (attributed to asthma progression), and a lack of CD64 upregulation on the surface of monocytes (which, in conjunction with serum amyloid P, is responsible for clearing residual hyaluronan and cellular debris). RSV infection of human airway epithelial cell, human lung fibroblast, and U937 monocyte cocultures (at air-liquid interface) displayed similar CCL expression and suggested matrix metalloproteinase-7 and MMP9 as possible extracellular matrix modifiers. These mouse data, in conjunction with our findings in human monocytes, suggest that the sustained influx of myeloid cells in the lungs of juvenile mice during acute RSV infection could potentiate extracellular matrix remodeling, facilitating conditions that support the development of asthma.
Collapse
Affiliation(s)
- Gerald G Kellar
- U.S. Army, Department of Defense, Arlington, VA 22202
- Benaroya Research Institute, Seattle, WA 98101
- Department of Immunology, University of Washington, Seattle, WA 98195
| | - Stephen R Reeves
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195; and
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Kaitlyn A Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Jason S Debley
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195; and
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | | | - Steven F Ziegler
- Benaroya Research Institute, Seattle, WA 98101;
- Department of Immunology, University of Washington, Seattle, WA 98195
| |
Collapse
|
12
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Oral Feeding of Cow Milk Containing A1 Variant of β Casein Induces Pulmonary Inflammation in Male Balb/c Mice. Sci Rep 2020; 10:8053. [PMID: 32415285 PMCID: PMC7228999 DOI: 10.1038/s41598-020-64997-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/22/2020] [Indexed: 11/08/2022] Open
Abstract
Milk is globally consumed as a rich source of protein and calcium. A major protein component of milk is casein, with β-casein having 2 major variants A1 and A2. Of these, A1 casein variant has been implicated as a potential etiological factor in several pathologies, but direct effect on lungs has not been studied. The objective of the present study was to evaluate the A1and A2 β casein variants of cow milk as factors causing allergic airway disease in murine model. Mice fed with A1A1 milk exhibited increased airway hyperresponsiveness with increasing concentration of bronchoconstrictor (methacholine), which was not observed in mice fed with A2A2 milk. Significantly elevated levels of IL-4 and IL-5 were found in bronchoalveolar lavage and serum of A1A1 variant fed mice. Increased IgE and IgG levels along with increased infiltration of lymphocytes and eosinophils, leading to peribronchial inflammation was also observed in A1A1 variant fed mice, although, no goblet cell hyperplasia or airway remodeling was observed. In contrast, A2A2 milk fed mice presented phenotype matching the control group, while A1A2 milk fed group presented an intermediate phenotype. In summary, our results show that A1 form of cow milk has a proinflammatory effect on the lung resulting in phenotype closely matching with the typical allergic asthma phenotype.
Collapse
|
14
|
Shakya S, Mack JA, Alipour M, Maytin EV. Cutaneous Wounds in Mice Lacking TSG-6 Exhibit Delayed Closure and an Abnormal Inflammatory Response. J Invest Dermatol 2020; 140:2505-2514. [PMID: 32422216 DOI: 10.1016/j.jid.2020.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
We investigated how loss of TSG-6 affects wound closure and skin inflammation. TSG-6 has several known biological functions, including the enzymatic transfer of heavy-chain proteins from inter-α-trypsin inhibitor to hyaluronan to form heavy-chain protein-hyaluronan complexes. TSG-6 and heavy-chain protein-hyaluronan are constitutively expressed in normal skin and increase post-wounding but are completely absent in TSG-6-null mice. Wound closure rates are significantly delayed in TSG-6-null mice relative to wildtype mice. Neutrophil recruitment is delayed in early wounds (12 hours and day 1), whereas late wounds (day 7) show elevated neutrophil accumulation. In addition, granulation phase resolution is delayed, with persistent blood vessels and reduced dermal collagen at 10 days. The proinflammatory cytokine TNFα is elevated >3-fold in unwounded TSG-6-null skin and increases further after wounding (from 12 hours to 7 days) before returning to baseline by day 10. Other cytokines examined, such as IL-6, IL-10, and monocyte chemotactic protein-1, showed no consistent differences. Reintroduction of TSG-6 into TSG-6-null wounds rescues both the delay in wound closure and the aberrant neutrophil phenotype. In summary, our study indicates that TSG-6 plays an important role in regulating wound closure and inflammation during cutaneous wound repair.
Collapse
Affiliation(s)
- Sajina Shakya
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Judith A Mack
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Dermatology, Dermatology & Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Minou Alipour
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward V Maytin
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio, USA; Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Dermatology, Dermatology & Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
15
|
Todd JL, Kelly FL, Nagler A, Banner K, Pavlisko EN, Belperio JA, Brass D, Weigt SS, Palmer SM. Amphiregulin contributes to airway remodeling in chronic allograft dysfunction after lung transplantation. Am J Transplant 2020; 20:825-833. [PMID: 31665560 PMCID: PMC7042065 DOI: 10.1111/ajt.15667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 01/25/2023]
Abstract
Chronic lung allograft dysfunction (CLAD), a condition of excess matrix deposition and airways fibrosis, limits survival after lung transplantation. Amphiregulin (Areg) is an epidermal growth factor receptor (EGFR) ligand suggested to regulate airway injury and repair. We sought to determine whether Areg expression increases in CLAD, localize the cellular source of Areg induction in CLAD, and assess its effects on airway matrix deposition. Lung fluid Areg protein was quantified in patients with or without CLAD. In situ hybridization was performed to localize Areg and EGFR transcript in CLAD and normal lung tissue. Expression of hyaluronan, a matrix constituent that accumulates in CLAD, was measured in Areg-exposed bronchial epithelial cells in the presence or absence of an EGFR inhibitor. We demonstrated that lung fluid Areg protein was significantly increased in CLAD in a discovery and replication cohort. Areg and EGFR transcripts were abundantly expressed within CLAD tissue, localized to basally distributed airway epithelial cells overlying fibrotic regions. Areg-exposed bronchial epithelial cells increased hyaluronan and hyaluronan synthase expression in an EGFR-dependent manner. Collectively, these novel observations suggest that Areg contributes to airway remodeling and CLAD. Moreover these data implicate a role for EGFR signaling in CLAD pathogenesis, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Jamie L. Todd
- Duke University Medical Center; Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; Durham, North Carolina,Duke Clinical Research Institute; Duke University Medical Center; Durham, North Carolina
| | - Fran L. Kelly
- Duke University Medical Center; Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; Durham, North Carolina
| | - Andrew Nagler
- Duke University Medical Center; Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; Durham, North Carolina
| | - Kane Banner
- Duke University Medical Center; Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; Durham, North Carolina
| | | | - John A. Belperio
- University of California Los Angeles; Department of Medicine; Division of Pulmonary Medicine; Los Angeles, California
| | - David Brass
- Duke University Medical Center; Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; Durham, North Carolina
| | - S. Sam Weigt
- University of California Los Angeles; Department of Medicine; Division of Pulmonary Medicine; Los Angeles, California
| | - Scott M. Palmer
- Duke University Medical Center; Department of Medicine; Division of Pulmonary, Allergy and Critical Care Medicine; Durham, North Carolina,Duke Clinical Research Institute; Duke University Medical Center; Durham, North Carolina
| |
Collapse
|
16
|
TNF-α and INF-γ primed canine stem cell-derived extracellular vesicles alleviate experimental murine colitis. Sci Rep 2020; 10:2115. [PMID: 32034203 PMCID: PMC7005871 DOI: 10.1038/s41598-020-58909-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammatory bowel diseases (IBD) are characterized by relapsing inflammation and immune activation diseases of the gastrointestinal tract. Extracellular vesicles, which elicit similar biological activity to the stem cell themselves, have been used experimentally to treat dextran sulfate sodium (DSS)-induced colitis in murine models though immunosuppressive potential. In this study, we investigated whether the Extracellular vesicles (EVs) obtained by stimulating inflammatory cytokine on canine adipose mesenchymal stem cells (cASC) improved anti-inflammatory and/or immunosuppressive potential of EVs, and/or their ability to alleviate inflammation in colitis. We also explored the correlation between immune cells and the inflammatory repressive effect of primed EVs. Pro-inflammatory cytokines such as TNF-α and IFN-γ increased immunosuppressive protein such as HGF, TSG-6, PGE2 and TGF-β in EVs. Moreover, the anti-inflammatory effect of EVs was improved through pretreatment with inflammatory cytokines. Importantly, EVs obtained from primed stem cells effectively induced macrophage polarization toward an anti-inflammatory M2 phenotype and suppressed activated immunity by enhancing regulatory T cells in inflamed colon in mice. Our results provide a new and effective therapy for the EVs obtained from ASC stimulated with TNF-α and IFN-γ against not only IBD, but also immune-mediated disease.
Collapse
|
17
|
Reeves SR, Barrow KA, Rich LM, White MP, Shubin NJ, Chan CK, Kang I, Ziegler SF, Piliponsky AM, Wight TN, Debley JS. Respiratory Syncytial Virus Infection of Human Lung Fibroblasts Induces a Hyaluronan-Enriched Extracellular Matrix That Binds Mast Cells and Enhances Expression of Mast Cell Proteases. Front Immunol 2020; 10:3159. [PMID: 32047499 PMCID: PMC6997473 DOI: 10.3389/fimmu.2019.03159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
Human lung fibroblasts (HLFs) treated with the viral mimetic polyinosine-polycytidylic acid (poly I:C) form an extracellular matrix (ECM) enriched in hyaluronan (HA) that avidly binds monocytes and lymphocytes. Mast cells are important innate immune cells in both asthma and acute respiratory infections including respiratory syncytial virus (RSV); however, the effect of RSV on HA dependent mast cell adhesion and/or function is unknown. To determine if RSV infection of HLFs leads to the formation of a HA-enriched ECM that binds and enhances mast cell activity primary HLFs were infected with RSV for 48 h prior to leukocyte binding studies using a fluorescently labeled human mast cell line (LUVA). Parallel HLFs were harvested for characterization of HA production by ELISA and size exclusion chromatography. In separate experiments, HLFs were infected as above for 48 h prior to adding LUVA cells to HLF wells. Co-cultures were incubated for 48 h at which point media and cell pellets were collected for analysis. The role of the hyaladherin tumor necrosis factor-stimulated gene 6 (TSG-6) was also assessed using siRNA knockdown. RSV infection of primary HLFs for 48 h enhanced HA-dependent LUVA binding assessed by quantitative fluorescent microscopy. This coincided with increased HLF HA synthase (HAS) 2 and HAS3 expression and decreased hyaluronidase (HYAL) 2 expression leading to increased HA accumulation in the HLF cell layer and the presence of larger HA fragments. Separately, LUVAs co-cultured with RSV-infected HLFs for 48 h displayed enhanced production of the mast cell proteases, chymase, and tryptase. Pre-treatment with the HA inhibitor 4-methylumbelliferone (4-MU) and neutralizing antibodies to CD44 (HA receptor) decreased mast cell protease expression in co-cultured LUVAs implicating a direct role for HA. TSG-6 expression was increased over the 48-h infection. Inhibition of HLF TSG-6 expression by siRNA knockdown led to decreased LUVA binding suggesting an important role for this hyaladherin for LUVA adhesion in the setting of RSV infection. In summary, RSV infection of HLFs contributes to inflammation via HA-dependent mechanisms that enhance mast cell binding as well as mast cell protease expression via direct interactions with the ECM.
Collapse
Affiliation(s)
- Stephen R Reeves
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, United States.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kaitlyn A Barrow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Maria P White
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas J Shubin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Christina K Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Adrian M Piliponsky
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, United States
| | - Jason S Debley
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, United States.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Jha KA, Pentecost M, Lenin R, Gentry J, Klaic L, Del Mar N, Reiner A, Yang CH, Pfeffer LM, Sohl N, Gangaraju R. TSG-6 in conditioned media from adipose mesenchymal stem cells protects against visual deficits in mild traumatic brain injury model through neurovascular modulation. Stem Cell Res Ther 2019; 10:318. [PMID: 31690344 PMCID: PMC6833275 DOI: 10.1186/s13287-019-1436-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Retinal inflammation affecting the neurovascular unit may play a role in the development of visual deficits following mild traumatic brain injury (mTBI). We have shown that concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) can limit retinal damage from blast injury and improve visual function. In this study, we addressed the hypothesis that TNFα-stimulated gene-6 (TSG-6), an anti-inflammatory protein released by mesenchymal cells, mediates the observed therapeutic potential of ASCs via neurovascular modulation. METHODS About 12-week-old C57Bl/6 mice were subjected to 50-psi air pulse on the left side of the head overlying the forebrain resulting in an mTBI. Age-matched sham blast mice served as control. About 1 μl of ASC-CCM (siControl-ASC-CCM) or TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) was delivered intravitreally into both eyes. One month following injection, the ocular function was assessed followed by molecular and immunohistological analysis. In vitro, mouse microglial cells were used to evaluate the anti-inflammatory effect of ASC-CCM. Efficacy of ASC-CCM in normalizing retinal vascular permeability was assessed using trans-endothelial resistance (TER) and VE-cadherin expression in the presence of TNFα (1 ng/ml). RESULTS We show that intravitreal injection of ASC-CCM (siControl-ASC-CCM) but not the TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) mitigates the loss of visual acuity and contrast sensitivity, retinal expression of genes associated with microglial and endothelial activation, and retinal GFAP immunoreactivity at 4 weeks after blast injury. In vitro, siControl-ASC-CCM but not the siTSG-6-ASC-CCM not only suppressed microglial activation and STAT3 phosphorylation but also protected against TNFα-induced endothelial permeability as measured by transendothelial electrical resistance and decreased STAT3 phosphorylation. CONCLUSIONS Our findings suggest that ASCs respond to an inflammatory milieu by secreting higher levels of TSG-6 that mediates the resolution of the inflammatory cascade on multiple cell types and correlates with the therapeutic potency of the ASC-CCM. These results expand our understanding of innate mesenchymal cell function and confirm the importance of considering methods to increase the production of key analytes such as TSG-6 if mesenchymal stem cell secretome-derived biologics are to be developed as a treatment solution against the traumatic effects of blast injuries and other neurovascular inflammatory conditions of the retina.
Collapse
Affiliation(s)
- Kumar Abhiram Jha
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Mickey Pentecost
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA.,Present Address: Pathways to Stem Cell Science, Monrovia, CA, USA
| | - Raji Lenin
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Jordy Gentry
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Lada Klaic
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA
| | - Chuan He Yang
- Department of Pathology, University of Tennessee Health Science Center, College of Medicine, 19 South Manassas Street, Suite#214, Memphis, TN, 38163, USA
| | - Lawrence M Pfeffer
- Department of Pathology, University of Tennessee Health Science Center, College of Medicine, 19 South Manassas Street, Suite#214, Memphis, TN, 38163, USA
| | - Nicolas Sohl
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA.
| |
Collapse
|
19
|
Courtwright AM, Lamattina AM, Louis PH, Trindade AJ, Burkett P, Imani J, Shrestha S, Divo M, Keller S, Rosas IO, Goldberg HJ, El-Chemaly S. Hyaluronan and LYVE-1 and allograft function in lung transplantation recipients. Sci Rep 2019; 9:9003. [PMID: 31227795 PMCID: PMC6588572 DOI: 10.1038/s41598-019-45309-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/04/2019] [Indexed: 11/23/2022] Open
Abstract
Hyaluronan (HA) is associated with innate immune response activation and may be a marker of allograft dysfunction in lung transplant recipients. This was a prospective, single center study comparing levels of bronchioalveolar lavage (BAL) and serum HA and the HA immobilizer LYVE-1 in lung transplant recipients with and without acute cellular rejection (ACR). Chronic lung allograft dysfunction (CLAD)-free survival was also evaluated based on HA and LYVE-1 levels. 78 recipients were enrolled with a total of 115 diagnostic biopsies and 1.5 years of median follow-up. Serum HA was correlated with BAL HA (r = 0.25, p = 0.01) and with serum LYVE-1 (r = 0.32, p = 0.002). There was significant variation in HA and LYVE-1 over time, regardless of ACR status. Levels of serum HA (median 74.7 vs 82.7, p = 0.69), BAL HA (median 149.4 vs 134.5, p = 0.39), and LYVE-1 (mean 190.2 vs 183.8, p = 0.72) were not associated with ACR. CLAD-free survival was not different in recipients with any episode of elevated serum HA (HR = 1.5, 95% CI = 0.3–7.7, p = 0.61) or BAL HA (HR = 0.94, 95% CI = 0.2–3.6, p = 0.93). These results did not differ when stratified by bilateral transplant status. In this small cohort, serum HA, BAL HA, and LYVE-1 levels are not associated with ACR or CLAD-free survival in lung transplant recipients.
Collapse
Affiliation(s)
| | | | | | | | | | - Jewel Imani
- Brigham and Women's Hospital, Boston, MA, United States
| | | | - Miguel Divo
- Brigham and Women's Hospital, Boston, MA, United States
| | - Steve Keller
- Brigham and Women's Hospital, Boston, MA, United States
| | - Ivan O Rosas
- Brigham and Women's Hospital, Boston, MA, United States
| | | | | |
Collapse
|
20
|
TNFα-stimulated protein 6 (TSG-6) reduces lung inflammation in an experimental model of bronchopulmonary dysplasia. Pediatr Res 2019; 85:390-397. [PMID: 30538263 DOI: 10.1038/s41390-018-0250-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Tumor necrosis factor-stimulated protein 6 (TSG-6) is a glycoprotein that modulates inflammation. Here we tested the hypothesis that intra-tracheal (IT) administration of an adenovirus overexpressing TSG-6 (AdTSG-6) would decrease inflammation and restore lung structure in experimental BPD. METHODS Newborn Sprague-Dawley rats exposed to normoxia (RA) or hyperoxia (85% O2) from postnatal day (P) 1-P14 were randomly assigned to receive IT AdTSG-6 or placebo (PL) on P3. The effect of IT AdTSG-6 on lung inflammation, alveolarization, angiogenesis, apoptosis, pulmonary vascular remodeling, and pulmonary hypertension were evaluated on P14. Data were analyzed by two-way ANOVA. RESULTS TSG-6 mRNA was significantly increased in pups who received IT AdTSG-6. Compared to RA, hyperoxia PL-treated pups had increased NF-kβ activation and lung inflammation. In contrast, IT AdTSG-6 hyperoxia-treated pups had decreased lung phosphorylated NF-kβ expression and markers of inflammation. This was accompanied by an improvement in alveolarization, angiogenesis, pulmonary vascular remodeling, and pulmonary hypertension. CONCLUSIONS IT AdTSG-6 decreases lung inflammation and improves lung structure in neonatal rats with experimental BPD. These findings suggest that therapies that increase lung TSG-6 expression may have beneficial effects in preterm infants with BPD.
Collapse
|
21
|
Ni K, Gill A, Cao D, Koike K, Schweitzer KS, Garantziotis S, Petrache I. Intravascular heavy chain-modification of hyaluronan during endotoxic shock. Biochem Biophys Rep 2018; 17:114-121. [PMID: 30623115 PMCID: PMC6307094 DOI: 10.1016/j.bbrep.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 12/11/2022] Open
Abstract
During inflammation, the covalent linking of the ubiquitous extracellular polysaccharide hyaluronan (HA) with the heavy chains (HC) of the serum protein inter alpha inhibitor (IαI) is exclusively mediated by the enzyme tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6). While significant advances have been made regarding how HC-modified HA (HC-HA) is an important regulator of inflammation, it remains unclear why HC-HA plays a critical role in promoting survival in intraperitoneal lipopolysaccharide (LPS)-induced endotoxemia while exerting only a modest role in the outcomes following intratracheal exposure to LPS. To address this gap, the two models of intraperitoneal LPS-induced endotoxic shock and intratracheal LPS-induced acute lung injury were directly compared in TSG-6 knockout mice and littermate controls. HC-HA formation, endogenous TSG-6 activity, and inflammatory markers were assessed in plasma and lung tissue. TSG-6 knockout mice exhibited accelerated mortality during endotoxic shock. While both intraperitoneal and intratracheal LPS induced HC-HA formation in lung parenchyma, only systemically-induced endotoxemia increased plasma TSG-6 levels and intravascular HC-HA formation. Cultured human lung microvascular endothelial cells secreted TSG-6 in response to both TNFα and IL1β stimulation, indicating that, in addition to inflammatory cells, the endothelium may secrete TSG-6 into circulation during systemic inflammation. These data show for the first time that LPS-induced systemic inflammation is uniquely characterized by significant vascular induction of TSG-6 and HC-HA, which may contribute to improved outcomes of endotoxemia. HC-HA deficiency accelerated mortality after IP LPS, but only modestly affected IT LPS outcomes. Both intratracheal (IT) and intraperitoneal (IP) LPS triggered lung HC-HA formation. IP LPS, but not IT LPS instillation induced intravascular TSG-6 and HC-HA. Intravascular HC-HA formation may be protective against LPS-induced injury.
Collapse
Key Words
- ALI, acute lung injury
- AM, alveolar macrophage
- CXCL2, chemokine (C-X-C motif) ligand 2
- ECM, Extracellular matrix
- Endotoxic shock
- HA, hyaluronic acid (hyaluronan)
- HC, heavy chain (IαI)
- Hyaluronic acid
- Inter-alpha-inhibitor
- IαI, inter-alpha-inhibitor
- LPS, lipopolysaccharide
- Mega-Da, megaDalton
- PαI, Pre-α-inhibitor
- Serum-derived hyaluronan-associated protein
- TBW, total body weight
- TNFα stimulated gene 6
- TNFα, tumor necrosis factor α;
- TSG-6, TNFα-stimulated gene-6
- hAM, human alveolar macrophages
- hTSG-6, human TSG-6
- kDa, kiloDalton
Collapse
Affiliation(s)
- Kevin Ni
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amar Gill
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Danting Cao
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kengo Koike
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Kelly S Schweitzer
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | | | - Irina Petrache
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Morgan DJ, Casulli J, Chew C, Connolly E, Lui S, Brand OJ, Rahman R, Jagger C, Hussell T. Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Front Immunol 2018; 9:2943. [PMID: 30619303 PMCID: PMC6302086 DOI: 10.3389/fimmu.2018.02943] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary infections arise as a consequence of previous or concurrent conditions and occur in the community or in the hospital setting. The events allowing secondary infections to gain a foothold have been studied for many years and include poor nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute inflammation, primary immune deficiencies, and immune suppression by infection or medication. Children, the elderly and the ill are particularly susceptible. This review is concerned with secondary bacterial infections of the lung that occur following viral infection. Using influenza virus infection as an example, with comparisons to rhinovirus and respiratory syncytial virus infection, we will update and review defective bacterial innate immunity and also highlight areas for potential new investigation. It is currently estimated that one in 16 National Health Service (NHS) hospital patients develop an infection, the most common being pneumonia, lower respiratory tract infections, urinary tract infections and infection of surgical sites. The continued drive to understand the mechanisms of why secondary infections arise is therefore of key importance.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christine Chew
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Rizwana Rahman
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Johnson P, Arif AA, Lee-Sayer SSM, Dong Y. Hyaluronan and Its Interactions With Immune Cells in the Healthy and Inflamed Lung. Front Immunol 2018; 9:2787. [PMID: 30555472 PMCID: PMC6281886 DOI: 10.3389/fimmu.2018.02787] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan is a hygroscopic glycosaminoglycan that contributes to both extracellular and pericellular matrices. While the production of hyaluronan is essential for mammalian development, less is known about its interaction and function with immune cells. Here we review what is known about hyaluronan in the lung and how it impacts immune cells, both at homeostasis and during lung inflammation and fibrosis. In the healthy lung, alveolar macrophages provide the first line of defense and play important roles in immunosurveillance and lipid surfactant homeostasis. Alveolar macrophages are surrounded by a coat of hyaluronan that is bound by CD44, a major hyaluronan receptor on immune cells, and this interaction contributes to their survival and the maintenance of normal alveolar macrophage numbers. Alveolar macrophages are conditioned by the alveolar environment to be immunosuppressive, and can phagocytose particulates without alerting an immune response. However, during acute lung infection or injury, an inflammatory immune response is triggered. Hyaluronan levels in the lung are rapidly increased and peak with maximum leukocyte infiltration, suggesting a role for hyaluronan in facilitating leukocyte access to the injury site. Hyaluronan can also be bound by hyaladherins (hyaluronan binding proteins), which create a provisional matrix to facilitate tissue repair. During the subsequent remodeling process hyaluronan concentrations decline and levels return to baseline as homeostasis is restored. In chronic lung diseases, the inflammatory and/or repair phases persist, leading to sustained high levels of hyaluronan, accumulation of associated immune cells and an inability to resolve the inflammatory response.
Collapse
Affiliation(s)
- Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yifei Dong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
24
|
Johnson CG, Stober VP, Cyphert-Daly JM, Trempus CS, Flake GP, Cali V, Ahmad I, Midura RJ, Aronica MA, Matalon S, Garantziotis S. High molecular weight hyaluronan ameliorates allergic inflammation and airway hyperresponsiveness in the mouse. Am J Physiol Lung Cell Mol Physiol 2018; 315:L787-L798. [PMID: 30188746 PMCID: PMC6425518 DOI: 10.1152/ajplung.00009.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a major cause of morbidity in both pediatric and adult patients. Recent research has highlighted the role of hyaluronan (HA), an extracellular matrix glycosaminoglycan, in asthma pathogenesis. Experimental allergic airway inflammation and clinical asthma are associated with an increase of shorter fragments of HA (sHA), which complex with inter-α-inhibitor heavy chains (HCs) and induce inflammation and airway hyperresponsiveness (AHR). Importantly, the effects of sHA can be antagonized by the physiological counterpart high molecular weight HA (HMWHA). We used a mouse model of house dust mite-induced allergic airway inflammation and demonstrated that instilled HMWHA ameliorated allergic airway inflammation and AHR, even when given after the establishment of allergic sensitization and after challenge exposures. Furthermore, instilled HMWHA reduced the development of HA-HC complexes and the activation of Rho-associated, coiled-coil containing protein kinase 2. We conclude that airway application of HMWHA is a potential treatment for allergic airway inflammation.
Collapse
Affiliation(s)
- Collin G Johnson
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Vandy P Stober
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Jaime M Cyphert-Daly
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Carol S Trempus
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Gordon P Flake
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | - Valbona Cali
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, and Pulmonary Injury and Repair Center, School of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ronald J Midura
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Mark A Aronica
- Department of Pathobiology, Cleveland Clinic Foundation , Cleveland, Ohio
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, and Pulmonary Injury and Repair Center, School of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Stavros Garantziotis
- Division of Intramural Research, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| |
Collapse
|
25
|
Bell TJ, Brand OJ, Morgan DJ, Salek-Ardakani S, Jagger C, Fujimori T, Cholewa L, Tilakaratna V, Östling J, Thomas M, Day AJ, Snelgrove RJ, Hussell T. Defective lung function following influenza virus is due to prolonged, reversible hyaluronan synthesis. Matrix Biol 2018; 80:14-28. [PMID: 29933044 PMCID: PMC6548309 DOI: 10.1016/j.matbio.2018.06.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Little is known about the impact of viral infections on lung matrix despite its important contribution to mechanical stability and structural support. The composition of matrix also indirectly controls inflammation by influencing cell adhesion, migration, survival, proliferation and differentiation. Hyaluronan is a significant component of the lung extracellular matrix and production and degradation must be carefully balanced. We have discovered an imbalance in hyaluronan production following resolution of a severe lung influenza virus infection, driven by hyaluronan synthase 2 from epithelial cells, endothelial cells and fibroblasts. Furthermore hyaluronan is complexed with inter-α-inhibitor heavy chains due to elevated TNF-stimulated gene 6 expression and sequesters CD44-expressing macrophages. We show that intranasal administration of exogenous hyaluronidase is sufficient to release inter-α-inhibitor heavy chains, reduce lung hyaluronan content and restore lung function. Hyaluronidase is already used to facilitate dispersion of co-injected materials in the clinic. It is therefore feasible that fibrotic changes following severe lung infection and inflammation could be overcome by targeting abnormal matrix production. Influenza causes prolonged changes in hyaluronan due to increased synthase activity Influenza induces persistent hyaluronan cross-linking by inter-alpha-inhibitor heavy chains Pockets of persistent hyaluronan are associated with CD44-expressing macrophages Digestion of hyaluronan with intranasal hyaluronidase restores lung function but upon cessation of treatment post-viral complications return
Collapse
Affiliation(s)
- Thomas J Bell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK; Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Samira Salek-Ardakani
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Toshifumi Fujimori
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Lauren Cholewa
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK
| | - Viranga Tilakaratna
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Jörgen Östling
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Matt Thomas
- Respiratory, Inflammation & Autoimmunity IMED, AstraZeneca, Gothenburg, Sweden
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Robert J Snelgrove
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, UK.
| |
Collapse
|
26
|
Rapid clearance of heavy chain-modified hyaluronan during resolving acute lung injury. Respir Res 2018; 19:107. [PMID: 29855321 PMCID: PMC5984366 DOI: 10.1186/s12931-018-0812-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/14/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Several inflammatory lung diseases display abundant presence of hyaluronic acid (HA) bound to heavy chains (HC) of serum protein inter-alpha-inhibitor (IαI) in the extracellular matrix. The HC-HA modification is critical to neutrophil sequestration in liver sinusoids and to survival during experimental lipopolysaccharide (LPS)-induced sepsis. Therefore, the covalent HC-HA binding, which is exclusively mediated by tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6), may play an important role in the onset or the resolution of lung inflammation in acute lung injury (ALI) induced by respiratory infection. METHODS Reversible ALI was induced by a single intratracheal instillation of LPS or Pseudomonas aeruginosa in mice and outcomes were studied for up to six days. We measured in the lung or the bronchoalveolar fluid HC-HA formation, HA immunostaining localization and roughness, HA fragment abundance, and markers of lung inflammation and lung injury. We also assessed TSG-6 secretion by TNFα- or LPS-stimulated human alveolar macrophages, lung fibroblast Wi38, and bronchial epithelial BEAS-2B cells. RESULTS Extensive HC-modification of lung HA, localized predominantly in the peri-broncho-vascular extracellular matrix, was notable early during the onset of inflammation and was markedly decreased during its resolution. Whereas human alveolar macrophages secreted functional TSG-6 following both TNFα and LPS stimulation, fibroblasts and bronchial epithelial cells responded to only TNFα. Compared to wild type, TSG-6-KO mice, which lacked HC-modified HA, exhibited modest increases in inflammatory cells in the lung, but no significant differences in markers of lung inflammation or injury, including histopathological lung injury scores. CONCLUSIONS Respiratory infection induces rapid HC modification of HA followed by fragmentation and clearance, with kinetics that parallel the onset and resolution phase of ALI, respectively. Alveolar macrophages may be an important source of pulmonary TSG-6 required for HA remodeling. The formation of HC-modified HA had a minor role in the onset, severity, or resolution of experimental reversible ALI induced by respiratory infection with gram-negative bacteria.
Collapse
|
27
|
Hyaluronan interactions with innate immunity in lung biology. Matrix Biol 2018; 78-79:84-99. [PMID: 29410190 DOI: 10.1016/j.matbio.2018.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Lung disease is a leading cause of morbidity and mortality worldwide. Innate immune responses in the lung play a central role in the pathogenesis of lung disease and the maintenance of lung health, and thus it is crucial to understand factors that regulate them. Hyaluronan is ubiquitous in the lung, and its expression is increased following lung injury and in disease states. Furthermore, hyaladherins like inter-α-inhibitor, tumor necrosis factor-stimulated gene 6, pentraxin 3 and versican are also induced and help form a dynamic hyaluronan matrix in injured lung. This review synthesizes present knowledge about the interactions of hyaluronan and its associated hyaladherins with the lung immune system, and the implications of these interactions for lung biology and disease.
Collapse
|
28
|
Day AJ, Milner CM. TSG-6: A multifunctional protein with anti-inflammatory and tissue-protective properties. Matrix Biol 2018; 78-79:60-83. [PMID: 29362135 DOI: 10.1016/j.matbio.2018.01.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) is an inflammation-associated secreted protein that has been implicated as having important and diverse tissue protective and anti-inflammatory properties, e.g. mediating many of the immunomodulatory and beneficial activities of mesenchymal stem/stromal cells. TSG-6 is constitutively expressed in some tissues, which are either highly metabolically active or subject to challenges from the environment, perhaps providing protection in these contexts. The diversity of its functions are dependent on the binding of TSG-6 to numerous ligands, including matrix molecules such as glycosaminoglycans, as well as immune regulators and growth factors that themselves interact with these linear polysaccharides. It is becoming apparent that TSG-6 can directly affect matrix structure and modulate the way extracellular signalling molecules interact with matrix. In this review, we focus mainly on the literature for TSG-6 over the last 10 years, summarizing its expression, structure, ligand-binding properties, biological functions and highlighting TSG-6's potential as a therapeutic for a broad range of disease indications.
Collapse
Affiliation(s)
- Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | - Caroline M Milner
- Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
29
|
Stober VP, Johnson CG, Majors A, Lauer ME, Cali V, Midura RJ, Wisniewski HG, Aronica MA, Garantziotis S. TNF-stimulated gene 6 promotes formation of hyaluronan-inter-α-inhibitor heavy chain complexes necessary for ozone-induced airway hyperresponsiveness. J Biol Chem 2017; 292:20845-20858. [PMID: 29122888 PMCID: PMC5743062 DOI: 10.1074/jbc.m116.756627] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Exposure to pollutants, such as ozone, exacerbates airway inflammation and hyperresponsiveness (AHR). TNF-stimulated gene 6 (TSG-6) is required to transfer inter-α-inhibitor heavy chains (HC) to hyaluronan (HA), facilitating HA receptor binding. TSG-6 is necessary for AHR in allergic asthma, because it facilitates the development of a pathological HA-HC matrix. However, the role of TSG-6 in acute airway inflammation is not well understood. Here, we hypothesized that TSG-6 is essential for the development of HA- and ozone-induced AHR. TSG-6-/- and TSG-6+/+ mice were exposed to ozone or short-fragment HA (sHA), and AHR was assayed via flexiVent. The AHR response to sHA was evaluated in the isolated tracheal ring assay in tracheal rings from TSG-6-/- or TSG-6+/+, with or without the addition of exogenous TSG-6, and with or without inhibitors of Rho-associated, coiled-coil-containing protein kinase (ROCK), ERK, or PI3K. Smooth-muscle cells from mouse tracheas were assayed in vitro for signaling pathways. We found that TSG-6 deficiency protects against AHR after ozone (in vivo) or sHA (in vitro and in vivo) exposure. Moreover, TSG-6-/- tracheal ring non-responsiveness to sHA was reversed by exogenous TSG-6 addition. sHA rapidly activated RhoA, ERK, and Akt in airway smooth-muscle cells, but only in the presence of TSG-6. Inhibition of ROCK, ERK, or PI3K/Akt blocked sHA/TSG-6-mediated AHR. In conclusion, TSG-6 is necessary for AHR in response to ozone or sHA, in part because it facilitates rapid formation of HA-HC complexes. The sHA/TSG-6 effect is mediated by RhoA, ERK, and PI3K/Akt signaling.
Collapse
Affiliation(s)
- Vandy P Stober
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Collin G Johnson
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Alana Majors
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Mark E Lauer
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Valbona Cali
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Ronald J Midura
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | | | - Mark A Aronica
- the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, and
| | - Stavros Garantziotis
- From the Immunity Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
30
|
Goldstein BD, Lauer ME, Caplan AI, Bonfield TL. Chronic asthma and Mesenchymal stem cells: Hyaluronan and airway remodeling. J Inflamm (Lond) 2017; 14:18. [PMID: 28860944 PMCID: PMC5577750 DOI: 10.1186/s12950-017-0165-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that ovalbumin sensitization promotes chronic asthma phenotype in murine asthma model. Human mesenchymal stem cells (hMSCs) are multipotent cells in vitro that have been shown to decrease inflammation and can reverse airway remodeling when infused into an in vivo chronic asthma model. However, the mechanism by which hMSCs reverse remodeling is still unclear. In this study, we hypothesized that hMSCs influence remodeling by decreasing extracellular matrix (ECM) deposition, more specifically by decreasing collagen I, collagen III, and hyaluronan synthesis. METHODS Chronic asthma phenotype was produced in an in vitro model with 3 T3 murine airway fibroblast cells by stimulating with GM-CSF. Collagen I and collagen III gene expression was investigated using RT-PCR and Taqman techniques. Hyaluronan was evaluated using FACE and Western Blots. The chronic asthma phenotype was produced in vivo in murine model using sensitization with ovalbumin with and without hMSC infusion therapy. ECM deposition (specifically trichrome staining, soluble and insoluble collagen deposition, and hyaluronan production) was evaluated. Image quantification was used to monitor trichrome staining changes. RESULTS GM-CSF which induced collagen I and collagen III production was down-regulated with hMSC using co-culture. In the in vivo model, Ovalbumin induced enhanced ECM deposition, soluble and insoluble collagen production, and lung elastance. hMSC infusions decreased ECM deposition as evidenced by decreases in soluble and insoluble collagen production. CONCLUSION hMSCs participate in improved outcomes of remodeling by reversing excess collagen deposition and changing hyaluronan levels.
Collapse
Affiliation(s)
- Benjamin D. Goldstein
- Department of Pediatric Pulmonology, Rainbow Babies and Children’s Hospital, University Hospitals Cleveland Medical Center, Cleveland, OH USA
| | - Mark E. Lauer
- Cleveland Clinic Foundation, Department of Biomedical Engineering, Cleveland, OH USA
| | - Arnold I. Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH USA
| | - Tracey L. Bonfield
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH USA
- Department of Pediatrics, Division of Pulmonary, Allergy and Sleep Medicine, 10900 Euclid Avenue, Biomedical Research Building #822, Cleveland, OH 44106-4948 USA
| |
Collapse
|
31
|
Feng H, Pyykkö I, Zou J. Involvement of Ubiquitin-Editing Protein A20 in Modulating Inflammation in Rat Cochlea Associated with Silver Nanoparticle-Induced CD68 Upregulation and TLR4 Activation. NANOSCALE RESEARCH LETTERS 2016; 11:240. [PMID: 27142878 PMCID: PMC4854861 DOI: 10.1186/s11671-016-1430-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Silver nanoparticles (AgNPs) were shown to temporarily impair the biological barriers in the skin of the external ear canal, mucosa of the middle ear, and inner ear, causing partially reversible hearing loss after delivery into the middle ear. The current study aimed to elucidate the molecular mechanism, emphasizing the TLR signaling pathways in association with the potential recruitment of macrophages in the cochlea and the modulation of inflammation by ubiquitin-editing protein A20. Molecules potentially involved in these signaling pathways were thoroughly analysed using immunohistochemistry in the rat cochlea exposed to AgNPs at various concentrations through intratympanic injection. The results showed that 0.4 % AgNPs but not 0.02 % AgNPs upregulated the expressions of CD68, TLR4, MCP1, A20, and RNF11 in the strial basal cells, spiral ligament fibrocytes, and non-sensory supporting cells of Corti's organ. 0.4 % AgNPs had no effect on CD44, TLR2, MCP2, Rac1, myosin light chain, VCAM1, Erk1/2, JNK, p38, IL-1β, TNF-α, TNFR1, TNFR2, IL-10, or TGF-β. This study suggested that AgNPs might confer macrophage-like functions on the strial basal cells and spiral ligament fibrocytes and enhance the immune activities of non-sensory supporting cells of Corti's organ through the upregulation of CD68, which might be involved in TLR4 activation. A20 and RNF11 played roles in maintaining cochlear homeostasis via negative regulation of the expressions of inflammatory cytokines.
Collapse
Affiliation(s)
- Hao Feng
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland
| | - Jing Zou
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere, Medisiinarinkatu 3, 33520, Tampere, Finland.
- Department of Otolaryngology-Head and Neck Surgery, Center for Otolaryngology-Head and Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
32
|
Dong Y, Arif A, Olsson M, Cali V, Hardman B, Dosanjh M, Lauer M, Midura RJ, Hascall VC, Brown KL, Johnson P. Endotoxin free hyaluronan and hyaluronan fragments do not stimulate TNF-α, interleukin-12 or upregulate co-stimulatory molecules in dendritic cells or macrophages. Sci Rep 2016; 6:36928. [PMID: 27869206 PMCID: PMC5116629 DOI: 10.1038/srep36928] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/24/2016] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix glycosaminoglycan, hyaluronan, has been described as a regulator of tissue inflammation, with hyaluronan fragments reported to stimulate innate immune cells. High molecular mass hyaluronan is normally present in tissues, but upon inflammation lower molecular mass fragments are generated. It is unclear if these hyaluronan fragments induce an inflammatory response or are a consequence of inflammation. In this study, mouse bone marrow derived macrophages and dendritic cells (DCs) were stimulated with various sizes of hyaluronan from different sources, fragmented hyaluronan, hyaluronidases and heavy chain modified-hyaluronan (HA-HC). Key pro-inflammatory molecules, tumour necrosis factor alpha, interleukin-1 beta, interleukin-12, CCL3, and the co-stimulatory molecules, CD40 and CD86 were measured. Only human umbilical cord hyaluronan, bovine testes and Streptomyces hyaluronlyticus hyaluronidase stimulated macrophages and DCs, however, these reagents were found to be contaminated with endotoxin, which was not fully removed by polymyxin B treatment. In contrast, pharmaceutical grade hyaluronan and hyaluronan fragments failed to stimulate in vitro-derived or ex vivo macrophages and DCs, and did not induce leukocyte recruitment after intratracheal instillation into mouse lungs. Hence, endotoxin-free pharmaceutical grade hyaluronan does not stimulate macrophages and DCs in our inflammatory models. These results emphasize the importance of ensuring hyaluronan preparations are endotoxin free.
Collapse
Affiliation(s)
- Yifei Dong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Arif Arif
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Mia Olsson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada.,Department of Pediatrics, British Columbia Children's Hospital Research Institute, Vancouver, B.C. Canada
| | - Valbona Cali
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, U.S.A
| | - Blair Hardman
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Manisha Dosanjh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| | - Mark Lauer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, U.S.A
| | - Ronald J Midura
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, U.S.A
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195, U.S.A
| | - Kelly L Brown
- Department of Pediatrics, British Columbia Children's Hospital Research Institute, Vancouver, B.C. Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, B.C. V6T 1Z3, Canada
| |
Collapse
|
33
|
Garantziotis S, Li Z, Potts EN, Kimata K, Zhuo L, Morgan DL, Savani RC, Noble PW, Foster WM, Schwartz DA, Hollingsworth JW. Hyaluronan mediates ozone-induced airway hyperresponsiveness in mice. J Biol Chem 2016; 291:19257-8. [PMID: 27613954 DOI: 10.1074/jbc.a116.802400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
34
|
Wang Z, DiDonato JA, Buffa J, Comhair SA, Aronica MA, Dweik RA, Lee NA, Lee JJ, Thomassen MJ, Kavuru M, Erzurum SC, Hazen SL. Eosinophil Peroxidase Catalyzed Protein Carbamylation Participates in Asthma. J Biol Chem 2016; 291:22118-22135. [PMID: 27587397 DOI: 10.1074/jbc.m116.750034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 12/21/2022] Open
Abstract
The biochemical mechanisms through which eosinophils contribute to asthma pathogenesis are unclear. Here we show eosinophil peroxidase (EPO), an abundant granule protein released by activated eosinophils, contributes to characteristic asthma-related phenotypes through oxidative posttranslational modification (PTM) of proteins in asthmatic airways through a process called carbamylation. Using a combination of studies we now show EPO uses plasma levels of the pseudohalide thiocyanate (SCN-) as substrate to catalyze protein carbamylation, as monitored by PTM of protein lysine residues into Nϵ-carbamyllysine (homocitrulline), and contributes to the pathophysiological sequelae of eosinophil activation. Studies using EPO-deficient mice confirm EPO serves as a major enzymatic source for protein carbamylation during eosinophilic inflammatory models, including aeroallergen challenge. Clinical studies similarly revealed significant enrichment in carbamylation of airway proteins recovered from atopic asthmatics versus healthy controls in response to segmental allergen challenge. Protein-bound homocitrulline is shown to be co-localized with EPO within human asthmatic airways. Moreover, pathophysiologically relevant levels of carbamylated protein either incubated with cultured human airway epithelial cells in vitro, or provided as an aerosolized exposure in non-sensitized mice, induced multiple asthma-associated phenotypes including induction of mucin, Th2 cytokines, IFNγ, TGFβ, and epithelial cell apoptosis. Studies with scavenger receptor-A1 null mice reveal reduced IL-13 generation following exposure to aerosolized carbamylated protein, but no changes in other asthma-related phenotypes. In summary, EPO-mediated protein carbamylation is promoted during allergen-induced asthma exacerbation, and can both modulate immune responses and trigger a cascade of many of the inflammatory signals present in asthma.
Collapse
Affiliation(s)
- Zeneng Wang
- From the Departments of Cellular and Molecular Medicine
| | | | | | | | | | | | - Nancy A Lee
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona 85259
| | - James J Lee
- the Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona 85259
| | - Mary Jane Thomassen
- the Division of Pulmonary, Critical Care & Sleep Medicine, East Carolina University, Greenville, North Carolina 27834, and
| | - Mani Kavuru
- the Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University and Hospital, Philadelphia, Pennsylvania 19107
| | | | - Stanley L Hazen
- From the Departments of Cellular and Molecular Medicine, Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
35
|
Coulson-Thomas VJ, Lauer ME, Soleman S, Zhao C, Hascall VC, Day AJ, Fawcett JW. Tumor Necrosis Factor-stimulated Gene-6 (TSG-6) Is Constitutively Expressed in Adult Central Nervous System (CNS) and Associated with Astrocyte-mediated Glial Scar Formation following Spinal Cord Injury. J Biol Chem 2016; 291:19939-52. [PMID: 27435674 PMCID: PMC5025681 DOI: 10.1074/jbc.m115.710673] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/18/2022] Open
Abstract
Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) binds to hyaluronan and can reorganize/stabilize its structure, also enhancing the binding of this glycosaminoglycan to its cell surface receptor, CD44. TSG-6 is rapidly up-regulated in response to inflammatory cytokines protecting tissues from the damaging effects of inflammation. Despite TSG-6 treatment having been shown to improve outcomes in an experimental model of traumatic brain injury, TSG-6 expression has not been extensively studied in the central nervous system (CNS). We hereby analyzed the expression profile of TSG-6 in the developing CNS and following injury. We show that TSG-6 is expressed in the rat CNS by GFAP(+) and CD44(+) astrocytes, solely in the mature brain and spinal cord, and is not present during the development of the CNS. TSG-6(-/-) mice present a reduced number of GFAP(+) astrocytes when compared with the littermate TSG-6(+/-) mice. TSG-6 expression is drastically up-regulated after injury, and the TSG-6 protein is present within the glial scar, potentially coordinating and stabilizing the formation of this hyaluronan-rich matrix. This study shows that TSG-6 is expressed in the CNS, suggesting a role for TSG-6 in astrocyte activation and tissue repair. We hypothesize that within this context TSG-6 could participate in the formation of the glial scar and confer anti-inflammatory properties. Further studies are required to elucidate the therapeutic potential of targeting TSG-6 after CNS injury to promote its protective effects while reducing the inhibitory properties of the glial scar in axon regeneration.
Collapse
Affiliation(s)
- Vivien J Coulson-Thomas
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| | - Mark E Lauer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Sara Soleman
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Chao Zhao
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Clinical Neurosciences, Clifford Allbutt Building, University of Cambridge, Cambridge CB2 0AH, United Kingdom, and
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - James W Fawcett
- From the John Van Geest Cambridge Centre for Brain Repair, The E. D. Adrian Building, Forvie Site, Robinson Way, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| |
Collapse
|
36
|
Liang J, Jiang D, Noble PW. Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 2016; 97:186-203. [PMID: 26541745 PMCID: PMC4753080 DOI: 10.1016/j.addr.2015.10.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Accumulation and turnover of extracellular matrix is a hallmark of tissue injury, repair and remodeling in human diseases. Hyaluronan is a major component of the extracellular matrix and plays an important role in regulating tissue injury and repair, and controlling disease outcomes. The function of hyaluronan depends on its size, location, and interactions with binding partners. While fragmented hyaluronan stimulates the expression of an array of genes by a variety of cell types regulating inflammatory responses and tissue repair, cell surface hyaluronan provides protection against tissue damage from the environment and promotes regeneration and repair. The interactions of hyaluronan and its binding proteins participate in the pathogenesis of many human diseases. Thus, targeting hyaluronan and its interactions with cells and proteins may provide new approaches to developing therapeutics for inflammatory and fibrosing diseases. This review focuses on the role of hyaluronan in biological and pathological processes, and as a potential therapeutic target in human diseases.
Collapse
Affiliation(s)
- Jiurong Liang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W Noble
- Department of Medicine and Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
37
|
Garantziotis S, Brezina M, Castelnuovo P, Drago L. The role of hyaluronan in the pathobiology and treatment of respiratory disease. Am J Physiol Lung Cell Mol Physiol 2016; 310:L785-95. [PMID: 26747781 DOI: 10.1152/ajplung.00168.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Hyaluronan, a ubiquitous naturally occurring glycosaminoglycan, is a major component of the extracellular matrix, where it participates in biological processes that include water homeostasis, cell-matrix signaling, tissue healing, inflammation, angiogenesis, and cell proliferation and migration. There are emerging data that hyaluronan and its degradation products have an important role in the pathobiology of the respiratory tract. We review the role of hyaluronan in respiratory diseases and present evidence from published literature and from clinical practice supporting hyaluronan as a novel treatment for respiratory diseases. Preliminary data show that aerosolized exogenous hyaluronan has beneficial activity against airway inflammation, protects against bronchial hyperreactivity and remodeling, and disrupts the biofilm associated with chronic infection. This suggests a role in airway diseases with a predominant inflammatory component such as rhinosinusitis, asthma, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. The potential for hyaluronan to complement conventional therapy will become clearer when data are available from controlled trials in larger patient populations.
Collapse
Affiliation(s)
- Stavros Garantziotis
- Clinical Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina;
| | - Martin Brezina
- Clinic of Pediatric Pneumology and Phthisiology, University Hospital Bratislava, Bratislava, Slovakia
| | - Paolo Castelnuovo
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Insubria, Ospedale di Circolo, Fondazione Macchi, Varese, Italy; and
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Galeazzi Orthopaedic Institute, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Lorentzen KA, Chai S, Chen H, Danielsen CC, Simonsen U, Wogensen L. Mechanisms involved in extracellular matrix remodeling and arterial stiffness induced by hyaluronan accumulation. Atherosclerosis 2015; 244:195-203. [PMID: 26671518 DOI: 10.1016/j.atherosclerosis.2015.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIMS Hyperglycemia induces hyaluronan (HA) accumulation in the vasculature. Excessive accumulation of HA around the vascular smooth muscle cells (VSMC) results in increased aortic stiffness and strength and accelerated atherosclerosis in ApoE(-)/(-) mice. We hypothesized that HA accumulation primes the vasculature for atherosclerosis by crosslinking and reorganizing the extracellular matrix (ECM) and by pushing VSMC differentiation towards a less mature phenotype. METHODS Aortas from HAS-2 transgenic (Tg) mice and wild type mice were used for all experiments. Biomechanics and cross-sectional area measurements were performed before and after HA digestion. The vessel and ECM composition was examined by immunoblotting and electron microscopy. Primary VSMC cultures were examined by qPCR and thymidine incorporation. RESULTS Tg mice aorta cross-sectional area was increased before (14%, p = 0.0148), but not after HA digestion (p = 0.3437). The increase in vessel stiffness (32%, p = 0.0217) and strength (31%, p = 0.0043) in the Tg aorta persisted after HA digestion. Crosslinking of HA by heavy chains from Inter-α-Inhibitor was increased (175%, p = 0.0006). The Tg VSMCs have the appearance of a synthetic phenotype supported by a 40% decrease in α-smooth muscle actin isoform X1 (p = 0.0296) and an increase in proliferation (63%, p = 0.0048) and osteoprotegerin production (133%, p = 0.0010) in cultured Tg VSMCs. CONCLUSIONS Our results show that induced HA accumulation is followed by increased HA crosslinking and create a shift in VSMC phenotype and proliferation. These findings may provide a mechanism for how hyperglycemia through HA accumulation prime the vascular wall for cholesterol and leucocyte accumulation and development of atherosclerosis.
Collapse
Affiliation(s)
- Karen Axelgaard Lorentzen
- The Research Laboratory for Biochemical Pathology, The Institute of Clinical Medicine, Aarhus University, Aarhus University Hospital, Noerrebrogade 44, Bld. 3B -1, DK-8000 Aarhus C, Denmark.
| | - Song Chai
- The Research Laboratory for Biochemical Pathology, The Institute of Clinical Medicine, Aarhus University, Aarhus University Hospital, Noerrebrogade 44, Bld. 3B -1, DK-8000 Aarhus C, Denmark.
| | - Hui Chen
- The Research Laboratory for Biochemical Pathology, The Institute of Clinical Medicine, Aarhus University, Aarhus University Hospital, Noerrebrogade 44, Bld. 3B -1, DK-8000 Aarhus C, Denmark.
| | - Carl Christian Danielsen
- Institute of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Bld. 1233, Room 132, 8000 Aarhus C, Denmark.
| | - Ulf Simonsen
- Pharmacology, Institute of Biomedicine, Research and Education, East. Aarhus University Bartholins Allé 6, Bld. 1242, Room 341, 8000 Aarhus C, Denmark.
| | - Lise Wogensen
- The Research Laboratory for Biochemical Pathology, The Institute of Clinical Medicine, Aarhus University, Aarhus University Hospital, Noerrebrogade 44, Bld. 3B -1, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
39
|
Abbadi A, Lauer M, Swaidani S, Wang A, Hascall V. Hyaluronan Rafts on Airway Epithelial Cells. J Biol Chem 2015; 291:1448-55. [PMID: 26601955 DOI: 10.1074/jbc.m115.704288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 11/06/2022] Open
Abstract
Many cells, including murine airway epithelial cells, respond to a variety of inflammatory stimuli by synthesizing leukocyte-adhesive hyaluronan (HA) cables that remain attached to their cell surfaces. This study shows that air-liquid interface cultures of murine airway epithelial cells (AECs) also actively synthesize and release a majority of their HA onto their ciliated apical surfaces to form a heavy chain hyaluronan (HC-HA) matrix in the absence of inflammatory stimuli. These matrices do not resemble the rope-like HA cables but occur in distinct sheets or rafts that can capture and embed leukocytes from cell suspensions. The HC-HA modification involves the transfer of heavy chains from the inter-α-inhibitor (IαI) proteoglycan, which has two heavy chains (HC1 and HC2) on its chondroitin sulfate chain. The transesterification transfer of HCs from chondroitin sulfate to HA is mediated by tumor necrosis factor-induced gene 6 (TSG-6), which is up-regulated in inflammatory reactions. Because the AEC cultures do not have TSG-6 nor serum, the source of IαI, assays for HCs and TSG-6 were done. The results show that AECs synthesize TSG-6 and their own heavy chain donor (pre-IαI) with a single heavy chain 3 (HC3), which are also constitutively expressed by human renal proximal tubular epithelial cells. These leukocyte adhesive HC3-HA structures were also found in the bronchoalveolar lavage of naïve mice and were observed on their apical ciliated surfaces. Thus, these leukocyte-adhesive HA rafts are now identified as HC3-HA complexes that could be part of a host defense mechanism filling some important gaps in our current understanding of murine airway epithelial biology and secretions.
Collapse
Affiliation(s)
- Amina Abbadi
- From the Department of Biomedical Engineering and Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | - Mark Lauer
- From the Department of Biomedical Engineering and
| | - Shadi Swaidani
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Aimin Wang
- From the Department of Biomedical Engineering and
| | | |
Collapse
|
40
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
41
|
Lauer ME, Majors AK, Comhair S, Ruple LM, Matuska B, Subramanian A, Farver C, Dworski R, Grandon D, Laskowski D, Dweik RA, Erzurum SC, Hascall VC, Aronica MA. Hyaluronan and Its Heavy Chain Modification in Asthma Severity and Experimental Asthma Exacerbation. J Biol Chem 2015. [PMID: 26209637 DOI: 10.1074/jbc.m115.663823] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA) is a large (>1500 kDa) polysaccharide of the extracellular matrix that has been linked to severity and inflammation in asthma. During inflammation, HA becomes covalently modified with heavy chains (HC-HA) from inter-α-inhibitor (IαI), which functions to increase its avidity for leukocytes. Our murine model of allergic pulmonary inflammation suggested that HC-HA may contribute to inflammation, adversely effecting lower airway remodeling and asthma severity. Our objective was to characterize the levels of HA and HC-HA in asthmatic subjects and to correlate these levels with asthma severity. We determined the levels and distribution of HA and HC-HA (i) from asthmatic and control lung tissue, (ii) in bronchoalveolar lavage fluid obtained from non-severe and severe asthmatics and controls, and (iii) in serum and urine from atopic asthmatics after an experimental asthma exacerbation. HC-HA distribution was observed (i) in the thickened basement membrane of asthmatic lower airways, (ii) around smooth muscle cells of the asthmatic submucosa, and (iii) around reserve cells of the asthmatic epithelium. Patients with severe asthma had increased HA levels in bronchoalveolar lavage fluid that correlated with pulmonary function and nitric oxide levels, whereas HC-HA was only observed in a patient with non-severe asthma. After an experimental asthma exacerbation, serum HA was increased within 4 h after challenge and remained elevated through 5 days after challenge. Urine HA and HC-HA were not significantly different. These data implicate HA and HC-HA in the pathogenesis of asthma severity that may occur in part due to repetitive asthma exacerbations over the course of the disease.
Collapse
Affiliation(s)
- Mark E Lauer
- From the Pediatric Institute and the Departments of Biomedical Engineering
| | | | | | | | | | - Ahila Subramanian
- the Respiratory Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio 44195 and
| | | | - Ryszard Dworski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | | | - Dan Laskowski
- Pathobiology, the Respiratory Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio 44195 and
| | - Raed A Dweik
- Pathobiology, the Respiratory Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio 44195 and
| | - Serpil C Erzurum
- Pathobiology, the Respiratory Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio 44195 and
| | | | - Mark A Aronica
- Pathobiology, the Respiratory Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio 44195 and
| |
Collapse
|
42
|
Torihashi S, Ho M, Kawakubo Y, Komatsu K, Nagai M, Hirayama Y, Kawabata Y, Takenaka-Ninagawa N, Wanachewin O, Zhuo L, Kimata K. Acute and temporal expression of tumor necrosis factor (TNF)-α-stimulated gene 6 product, TSG6, in mesenchymal stem cells creates microenvironments required for their successful transplantation into muscle tissue. J Biol Chem 2015; 290:22771-81. [PMID: 26178374 DOI: 10.1074/jbc.m114.629774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/25/2022] Open
Abstract
Previously, we demonstrated that when mesenchymal stem cells (MSCs) from mouse ES cells were transplanted into skeletal muscle, more than 60% of them differentiated into muscles in the crush-injured tibialis anterior muscle in vivo, although MSCs neither differentiated nor settled in the intact muscle. Microenvironments, including the extracellular matrix between the injured and intact muscle, were quite different. In the injured muscle, hyaluronan (HA), heavy chains of inter-α-inhibitor (IαI), CD44, and TNF-α-stimulated gene 6 product (TSG-6) increased 24-48 h after injury, although basement membrane components of differentiated muscle such as perlecan, laminin, and type IV collagen increased gradually 4 days after the crush. We then investigated the microenvironments crucial for cell transplantation, using the lysate of C2C12 myotubules for mimicking injured circumstances in vivo. MSCs settled in the intact muscle when they were transplanted together with the C2C12 lysate or TSG6. MSCs produced and released TSG6 when they were cultured with C2C12 lysates in vitro. MSCs pretreated with the lysate also settled in the intact muscle. Furthermore, MSCs whose TSG6 was knocked down by shRNA, even if transplanted or pretreated with the lysate, could not settle in the muscle. Immunofluorescent staining showed that HA and IαI always co-localized or were distributed closely, suggesting formation of covalent complexes, i.e. the SHAP-HA complex in the presence of TSG6. Thus, TSG6, HA, and IαI were crucial factors for the settlement and probably the subsequent differentiation of MSCs.
Collapse
Affiliation(s)
- Shigeko Torihashi
- From the Department of Rehabilitation Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-9673, Japan
| | - Mioko Ho
- the Department of Physical Therapy, Nagoya University School of Health Sciences, Nagoya 461-8673, Japan
| | - Yuji Kawakubo
- the Department of Physical Therapy, Nagoya University School of Health Sciences, Nagoya 461-8673, Japan
| | - Kazumi Komatsu
- the Department of Physical Therapy, Nagoya University School of Health Sciences, Nagoya 461-8673, Japan
| | - Masataka Nagai
- the Department of Physical Therapy, Nagoya University School of Health Sciences, Nagoya 461-8673, Japan
| | - Yuri Hirayama
- the Department of Physical Therapy, Nagoya University School of Health Sciences, Nagoya 461-8673, Japan
| | - Yuka Kawabata
- From the Department of Rehabilitation Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-9673, Japan
| | - Nana Takenaka-Ninagawa
- From the Department of Rehabilitation Sciences, Nagoya University Graduate School of Medicine, Nagoya 461-9673, Japan, the Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan, and
| | - Orawan Wanachewin
- the Advanced Medical Research Center and Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan, the Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lisheng Zhuo
- the Advanced Medical Research Center and Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Koji Kimata
- the Advanced Medical Research Center and Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan,
| |
Collapse
|
43
|
Lauer ME, Loftis J, de la Motte C, Hascall VC. Analysis of the heavy-chain modification and TSG-6 activity in pathological hyaluronan matrices. Methods Mol Biol 2015; 1229:543-8. [PMID: 25325979 DOI: 10.1007/978-1-4939-1714-3_42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
During inflammation and developmental processes, heavy chains (HCs) from inter-α-inhibitor (IαI) are covalently transferred to hyaluronan (HA) via the enzyme tumor-necrosis-factor-stimulated-gene 6 (TSG-6) to form a HC-HA complex. In this manuscript, we describe a gel-based assay to detect HC-HA and TSG-6 activity in tissues.
Collapse
Affiliation(s)
- Mark E Lauer
- Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA,
| | | | | | | |
Collapse
|
44
|
Biology and biotechnology of hyaluronan. Glycoconj J 2015; 32:93-103. [PMID: 25971701 DOI: 10.1007/s10719-015-9586-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
The hyaluronan (HA) polymer is a critical component of extracellular matrix with a remarkable structure: is a linear and unbranched polymer without sulphate or phosphate groups. It is ubiquitous in mammals showing several biological functions, ranging from cell proliferation and migration to angiogenesis and inflammation. For its critical biological functions the amount of HA in tissues is carefully controlled by different mechanisms including covalent modification of the synthetic enzymes and epigenetic control of their gene expression. The concentration of HA is also critical in several pathologies including cancer, diabetes and inflammation. Beside these biological roles, the structural properties of HA allow it to take advantage of its capacity to form gels even at concentration of 1 % producing scaffolds with very promising applications in regenerative medicine as biocompatible material for advanced therapeutic uses. In this review we highlight the biological aspects of HA addressing the mechanisms controlling the HA content in tissues as well as its role in important human pathologies. In the second part of the review we highlight the different use of HA polymers in the modern biotechnology.
Collapse
|
45
|
Lee-Sayer SSM, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol 2015; 6:150. [PMID: 25926830 PMCID: PMC4396519 DOI: 10.3389/fimmu.2015.00150] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 01/04/2023] Open
Abstract
Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.
Collapse
Affiliation(s)
- Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Yifei Dong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Mia Olsson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Kelly L Brown
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia , Vancouver, BC , Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
46
|
Ghosh S, Hoselton SA, Wanjara SB, Carlson J, McCarthy JB, Dorsam GP, Schuh JM. Hyaluronan stimulates ex vivo B lymphocyte chemotaxis and cytokine production in a murine model of fungal allergic asthma. Immunobiology 2015; 220:899-909. [PMID: 25698348 DOI: 10.1016/j.imbio.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/24/2015] [Indexed: 12/19/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the airways characterized by excessive eosinophilic and lymphocytic inflammation with associated changes in the extracellular matrix (ECM) resulting in airway wall remodeling. Hyaluronan (HA) is a nonsulfated glycosaminoglycan ECM component that functions as a structural cushion in its high molecular mass (HMM) but has been implicated in metastasis and other disease processes when it is degraded to smaller fragments. However, relatively little is known about the role HA in mediating inflammatory responses in allergy and asthma. In the present study, we used a murine Aspergillus fumigatus inhalational model to mimic human disease. After observing in vivo that a robust B cell recruitment followed a massive eosinophilic egress to the lumen of the allergic lung and corresponded with the detection of low molecular mass HA (LMM HA), we examined the effect of HA on B cell chemotaxis and cytokine production in the ex vivo studies. We found that LMM HA functioned through a CD44-mediated mechanism to elicit chemotaxis of B lymphocytes, while high molecular mass HA (HMM HA) had little effect. LMM HA, but not HMM HA, also elicited the production of IL-10 and TGF-β1 in these cells. Taken together, these findings demonstrate a critical role for ECM components in mediating leukocyte migration and function which are critical to the maintenance of allergic inflammatory responses.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Steve B Wanjara
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer Carlson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - James B McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
47
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Hyaluronan fragments as mediators of inflammation in allergic pulmonary disease. Immunobiology 2014; 220:575-88. [PMID: 25582403 DOI: 10.1016/j.imbio.2014.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/22/2022]
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen, leading to a disease course that is often very difficult to treat with standard asthma therapies. As a result of interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to allergens may experience a greater degree of tissue injury followed by airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. In addition, turnover of extracellular matrix (ECM) components is a hallmark of tissue injury and repair. This review focuses on the role of the glycosaminoglycan hyaluronan (HA), a component of the ECM, in pulmonary injury and repair with an emphasis on allergic asthma. Both the synthesis and degradation of the ECM are critical contributors to tissue repair and remodeling. Fragmented HA accumulates during tissue injury and functions in ways distinct from the larger native polymer. There is gathering evidence that HA degradation products are active participants in stimulating the expression of inflammatory genes in a variety of immune cells at the injury site. In this review, we will consider recent advances in the understanding of the mechanisms that are associated with HA accumulation and inflammatory cell recruitment in the asthmatic lung.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Scott A Hoselton
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Glenn P Dorsam
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jane M Schuh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
48
|
Concise Review: Mesenchymal Stem Cells Ameliorate Tissue Injury via Secretion of Tumor Necrosis Factor-α Stimulated Protein/Gene 6. Stem Cells Int 2014; 2014:761091. [PMID: 25580135 PMCID: PMC4279254 DOI: 10.1155/2014/761091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/22/2014] [Accepted: 11/30/2014] [Indexed: 12/18/2022] Open
Abstract
Numerous reports have described therapeutic benefits in various disease models after administration of the adult stem/progenitor cells from bone marrow or other tissues referred to as mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs). They all showed that one of the important effects of MSCs is to act against excessive inflammatory responses and repair the damaged tissues. The therapeutic benefits of MSCs were initially interpreted by their migration, engraftment, and differentiation into target tissues. However, remarkable anatomical structural repairs and functional improvements were increasingly observed with a small number of or even no MSCs in the injured tissues. This suggests that most beneficial effects are largely due to paracrine secretions or cell-to-cell contacts that have multiple effects involving modulation of inflammatory and immune responses. Currently, the therapeutic benefits of MSCs are in part explained by the cells being activated by signals from injured tissues to express an anti-inflammatory protein, tumor-necrosis-factor-α-induced protein 6. This important mechanism of action has attracted increasing attention, and therefore we conducted this review to summarize the latest research.
Collapse
|
49
|
Adipose tissue-derived stem cells suppress acute cellular rejection by TSG-6 and CD44 interaction in rat kidney transplantation. Transplantation 2014; 98:277-84. [PMID: 24983309 DOI: 10.1097/tp.0000000000000230] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND In addition to its abundance and easy accessibility, adipose tissue yields more potent immunoregulatory stem cells (adipose tissue-derived stem cells, ADSCs) than does bone marrow. However, the beneficial effects of ADSCs on alloreactivity are scarcely known. This study evaluated the beneficial effects of ADSCs in rat kidney transplantation and analyzed the underlying molecular mechanism. METHODS Dark Agouti rat kidneys were transplanted into Lewis rats. Autologous ADSCs (2×10) were injected through the left renal artery of the donors before the nephrectomy (ADSCs group). Graft survival, histologic changes, and the expression of several cytokines and proteins were assessed. In an in vitro experiment, the immunosuppressive capacity of ADSCs was tested in a mixed lymphocyte reaction. RESULTS Histologic findings of the ADSCs group revealed a reduced rejection grade, whereas the number of infiltrated CD4/CD8 T cells was also significantly decreased as compared to the control. Relative to these findings, injection of ADSCs led to a significantly prolonged mean graft survival compared with the control. In vitro, autologous ADSCs dose-dependently suppressed alloreactive lymphocytes. Moreover, ADSCs increased the level of tumor necrosis factor-inducible gene 6 protein (TSG-6) in mixed lymphocyte reaction, which has an anti-inflammatory capacity. Recombinant TSG-6 markedly suppressed alloreactive T cells through downregulating CD44, which may lead to the suppression of T-cell activation and infiltration into allografts. CONCLUSION Our findings clearly showed that ADSCs attenuated acute rejection by secreting TSG-6 as well as through direct cell interaction. These findings contribute to the clinical application of these cells in solid organ transplantation.
Collapse
|
50
|
Rolandsson S, Karlsson JC, Scheding S, Westergren-Thorsson G. Specific subsets of mesenchymal stroma cells to treat lung disorders--finding the Holy Grail. Pulm Pharmacol Ther 2014; 29:93-5. [PMID: 25239767 DOI: 10.1016/j.pupt.2014.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022]
Abstract
Accumulating studies, both in animals and human clinical trials with mesenchymal stroma cells (MSC) support the hypothesis of therapeutic effects of these cells in various disorders. However, despite success in immune-mediated disorders such as Crohns' disease, lung disorders such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary disease (IPF) treated with MSC have so far not yielded a revolutionary effect on clinical symptoms. Promising data on immunomodulatory effects in COPD have kept nourishing the research into finding specific traits of MSC beneficial in disease. A heterogeneous population of injected cells might drown a potential therapeutic role of a specific group of MSC. Thus careful analysis of MSC regarding their molecular capabilities such as delivering specific therapeutic vesicles to the environment, or plain cytokine/chemokine fingerprinting might prove useful in augmenting therapies against lung diseases.
Collapse
Affiliation(s)
- Sara Rolandsson
- Lung Biology, Department of Experimental Medical Sciences, BMC D12, Lund University, Lund 221 84, Sweden
| | - Jenny C Karlsson
- Lung Biology, Department of Experimental Medical Sciences, BMC D12, Lund University, Lund 221 84, Sweden.
| | - Stefan Scheding
- Laboratory for Mesenchymal Stem Cells and Cellular Therapies, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund 22184, Sweden; Divison of Hematology, Skåne University Hospital, Lund, Sweden
| | | |
Collapse
|