1
|
Hogg JA, Cousin MA. Control of Synaptotagmin-1 Trafficking by SV2A-Mechanism and Consequences for Presynaptic Function and Dysfunction. J Neurochem 2025; 169:e16308. [PMID: 39853744 PMCID: PMC11758464 DOI: 10.1111/jnc.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade. In this review we will assess the evidence that the primary role of SV2A is to control the expression and localisation of Syt1 at the presynapse. This will integrate biochemical, cell biological and physiological studies where the interaction, trafficking and functional output of Syt1 is altered by SV2A. The potential for SV2A-dependent epilepsy to be a result of dysfunctional Syt1 expression and localisation is also discussed. Finally, a series of key open questions will be posed that require resolution before a definitive role for SV2A in Syt1 function in health and disease can be confirmed.
Collapse
Affiliation(s)
- James A. Hogg
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| |
Collapse
|
2
|
Mittal A, Martin MF, Levin EJ, Adams C, Yang M, Provins L, Hall A, Procter M, Ledecq M, Hillisch A, Wolff C, Gillard M, Horanyi PS, Coleman JA. Structures of synaptic vesicle protein 2A and 2B bound to anticonvulsants. Nat Struct Mol Biol 2024; 31:1964-1974. [PMID: 38898101 DOI: 10.1038/s41594-024-01335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Epilepsy is a common neurological disorder characterized by abnormal activity of neuronal networks, leading to seizures. The racetam class of anti-seizure medications bind specifically to a membrane protein found in the synaptic vesicles of neurons called synaptic vesicle protein 2 (SV2) A (SV2A). SV2A belongs to an orphan subfamily of the solute carrier 22 organic ion transporter family that also includes SV2B and SV2C. The molecular basis for how anti-seizure medications act on SV2s remains unknown. Here we report cryo-electron microscopy structures of SV2A and SV2B captured in a luminal-occluded conformation complexed with anticonvulsant ligands. The conformation bound by anticonvulsants resembles an inhibited transporter with closed luminal and intracellular gates. Anticonvulsants bind to a highly conserved central site in SV2s. These structures provide blueprints for future drug design and will facilitate future investigations into the biological function of SV2s.
Collapse
Affiliation(s)
- Anshumali Mittal
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew F Martin
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Jonathan A Coleman
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Holland SH, Carmona-Martinez R, O’Connor K, O’Neil D, Roos A, Spendiff S, Lochmüller H. A Deficiency in Glutamine-Fructose-6-Phosphate Transaminase 1 (Gfpt1) in Skeletal Muscle Results in Reduced Glycosylation of the Delta Subunit of the Nicotinic Acetylcholine Receptor (AChRδ). Biomolecules 2024; 14:1252. [PMID: 39456185 PMCID: PMC11506803 DOI: 10.3390/biom14101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
The neuromuscular junction (NMJ) is the site where the motor neuron innervates skeletal muscle, enabling muscular contraction. Congenital myasthenic syndromes (CMS) arise when mutations in any of the approximately 35 known causative genes cause impaired neuromuscular transmission at the NMJ, resulting in fatigable muscle weakness. A subset of five of these CMS-causative genes are associated with protein glycosylation. Glutamine-fructose-6-phosphate transaminase 1 (Gfpt1) is the rate-limiting enzyme within the hexosamine biosynthetic pathway (HBP), a metabolic pathway that produces the precursors for glycosylation. We hypothesized that deficiency in Gfpt1 expression results in aberrant or reduced glycosylation, impairing the proper assembly and stability of key NMJ-associated proteins. Using both in vitro and in vivo Gfpt1-deficient models, we determined that the acetylcholine receptor delta subunit (AChRδ) has reduced expression and is hypo-glycosylated. Using laser capture microdissection, NMJs were harvested from Gfpt1 knockout mouse muscle. A lower-molecular-weight species of AChRδ was identified at the NMJ that was not detected in controls. Furthermore, Gfpt1-deficient muscle lysates showed impairment in protein O-GlcNAcylation and sialylation, suggesting that multiple glycan chains are impacted. Other key NMJ-associated proteins, in addition to AChRδ, may also be differentially glycosylated in Gfpt1-deficient muscle.
Collapse
Affiliation(s)
- Stephen Henry Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Kaela O’Connor
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Daniel O’Neil
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Roos
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Pediatric Neurology, Center for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany
- Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Dr. Eric Poulin Center for Neuromuscular Disorders, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Faculty of Medicine, Medical Center, University of Freiburg, 79085 Freiburg, Germany
- Centro Nacional de Analisis Genomico (CNAG), 08028 Barcelona, Spain
| |
Collapse
|
4
|
Martin SL, Uribe C, Strafella AP. PET imaging of synaptic density in Parkinsonian disorders. J Neurosci Res 2024; 102:e25253. [PMID: 37814917 DOI: 10.1002/jnr.25253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Synaptic dysfunction and altered synaptic pruning are present in people with Parkinsonian disorders. Dopamine loss and alpha-synuclein accumulation, two hallmarks of Parkinson's disease (PD) pathology, contribute to synaptic dysfunction and reduced synaptic density in PD. Atypical Parkinsonian disorders are likely to have unique spatiotemporal patterns of synaptic density, differentiating them from PD. Therefore, quantification of synaptic density has the potential to support diagnoses, monitor disease progression, and treatment efficacy. Novel radiotracers for positron emission tomography which target the presynaptic vesicle protein SV2A have been developed to quantify presynaptic density. The radiotracers have successfully investigated synaptic density in preclinical models of PD and people with Parkinsonian disorders. Therefore, this review will summarize the preclinical and clinical utilization of SV2A radiotracers in people with Parkinsonian disorders. We will evaluate how SV2A abundance is associated with other imaging modalities and the considerations for interpreting SV2A in Parkinsonian pathology.
Collapse
Affiliation(s)
- Sarah L Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. J Biol Chem 2023; 299:105361. [PMID: 37865312 PMCID: PMC10679506 DOI: 10.1016/j.jbc.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Laurie S Minamide
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Zephyr Lenninger
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - James R Bamburg
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
6
|
Bradberry MM, Peters-Clarke TM, Shishkova E, Chapman ER, Coon JJ. N-glycoproteomics of brain synapses and synaptic vesicles. Cell Rep 2023; 42:112368. [PMID: 37036808 PMCID: PMC10560701 DOI: 10.1016/j.celrep.2023.112368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
At mammalian neuronal synapses, synaptic vesicle (SV) glycoproteins are essential for robust neurotransmission. Asparagine (N)-linked glycosylation is required for delivery of the major SV glycoproteins synaptophysin and SV2A to SVs. Despite this key role for N-glycosylation, the molecular compositions of SV N-glycans are largely unknown. In this study, we combined organelle isolation techniques and high-resolution mass spectrometry to characterize N-glycosylation at synapses and SVs from mouse brain. Detecting over 2,500 unique glycopeptides, we found that SVs harbor a distinct population of oligomannose and highly fucosylated N-glycans. Using complementary fluorescence methods, we identify at least one highly fucosylated N-glycan enriched in SVs compared with synaptosomes. High fucosylation was characteristic of SV proteins, plasma membrane proteins, and cell adhesion molecules with key roles in synaptic function and development. Our results define the N-glycoproteome of a specialized neuronal organelle and inform timely questions in the glycobiology of synaptic pruning and neuroinflammation.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Evgenia Shishkova
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
7
|
Watson ET, Pauers MM, Seibert MJ, Vevea JD, Chapman ER. Synaptic vesicle proteins are selectively delivered to axons in mammalian neurons. eLife 2023; 12:e82568. [PMID: 36729040 PMCID: PMC9894587 DOI: 10.7554/elife.82568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Neurotransmitter-filled synaptic vesicles (SVs) mediate synaptic transmission and are a hallmark specialization in neuronal axons. Yet, how SV proteins are sorted to presynaptic nerve terminals remains the subject of debate. The leading model posits that these proteins are randomly trafficked throughout neurons and are selectively retained in presynaptic boutons. Here, we used the RUSH (retention using selective hooks) system, in conjunction with HaloTag labeling approaches, to study the egress of two distinct transmembrane SV proteins, synaptotagmin 1 and synaptobrevin 2, from the soma of mature cultured rat and mouse neurons. For these studies, the SV reporter constructs were expressed at carefully controlled, very low levels. In sharp contrast to the selective retention model, both proteins selectively and specifically entered axons with minimal entry into dendrites. However, even moderate overexpression resulted in the spillover of SV proteins into dendrites, potentially explaining the origin of previous non-polarized transport models, revealing the limited, saturable nature of the direct axonal trafficking pathway. Moreover, we observed that SV constituents were first delivered to the presynaptic plasma membrane before incorporation into SVs. These experiments reveal a new-found membrane trafficking pathway, for SV proteins, in classically polarized mammalian neurons and provide a glimpse at the first steps of SV biogenesis.
Collapse
Affiliation(s)
- Emma T Watson
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Michaela M Pauers
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Michael J Seibert
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Jason D Vevea
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| |
Collapse
|
8
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
López-Hernández T, Takenaka KI, Mori Y, Kongpracha P, Nagamori S, Haucke V, Takamori S. Clathrin-independent endocytic retrieval of SV proteins mediated by the clathrin adaptor AP-2 at mammalian central synapses. eLife 2022; 11:e71198. [PMID: 35014951 PMCID: PMC8752090 DOI: 10.7554/elife.71198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Conflicting models have been proposed regarding the mechanisms of SV endocytosis, most notably clathrin/adaptor protein complex 2 (AP-2)-mediated endocytosis and clathrin-independent ultrafast endocytosis. Partitioning between these pathways has been suggested to be controlled by temperature and stimulus paradigm. We report on the comprehensive survey of six major SV proteins to show that SV endocytosis in mouse hippocampal neurons at physiological temperature occurs independent of clathrin while the endocytic retrieval of a subset of SV proteins including the vesicular transporters for glutamate and GABA depend on sorting by the clathrin adaptor AP-2. Our findings highlight a clathrin-independent role of the clathrin adaptor AP-2 in the endocytic retrieval of select SV cargos from the presynaptic cell surface and suggest a revised model for the endocytosis of SV membranes at mammalian central synapses.
Collapse
Affiliation(s)
| | - Koh-ichiro Takenaka
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of MedicineTokyoJapan
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha UniversityKyotoJapan
| |
Collapse
|
10
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
11
|
Li Y, Li S, Liu J, Huo Y, Luo XJ. The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Mol Psychiatry 2021; 26:7102-7104. [PMID: 34376824 DOI: 10.1038/s41380-021-01261-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Hartwig C, Méndez GM, Bhattacharjee S, Vrailas-Mortimer AD, Zlatic SA, Freeman AAH, Gokhale A, Concilli M, Werner E, Sapp Savas C, Rudin-Rush S, Palmer L, Shearing N, Margewich L, McArthy J, Taylor S, Roberts B, Lupashin V, Polishchuk RS, Cox DN, Jorquera RA, Faundez V. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. J Neurosci 2021; 41:215-233. [PMID: 33208468 PMCID: PMC7810662 DOI: 10.1523/jneurosci.1284-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Shatabdi Bhattacharjee
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | | | | | - Amanda A H Freeman
- The Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Erica Werner
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | | | - Laura Palmer
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Nicole Shearing
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Lindsey Margewich
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Jacob McArthy
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Savanah Taylor
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Blaine Roberts
- Departments of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Daniel N Cox
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
13
|
Boll I, Jensen P, Schwämmle V, Larsen MR. Depolarization-dependent Induction of Site-specific Changes in Sialylation on N-linked Glycoproteins in Rat Nerve Terminals. Mol Cell Proteomics 2020; 19:1418-1435. [PMID: 32518069 PMCID: PMC8143646 DOI: 10.1074/mcp.ra119.001896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.
Collapse
Affiliation(s)
- Inga Boll
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Pia Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
14
|
Sun M, Han X, Chang F, Xu H, Colgan L, Liu Y. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells. J Biomed Res 2020; 35:339-350. [PMID: 34230437 PMCID: PMC8502691 DOI: 10.7555/jbr.34.20200095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs) is indispensable for efficient cholinergic transmission. Previous studies have suggested that the dileucine motif within the C-terminus of the transporter is sufficient for its targeting to SVs. However, the cytosolic machinery underlying specific regulation of VAChT trafficking and targeting to SVs is still unclear. Here we used the C-terminus of VAChT as a bait in a yeast two-hybrid screen to identify sorting nexin 5 (SNX5) as its novel interacting protein. SNX5 was detected in the SVs enriched LP2 subcellular fraction of rat brain homogenate and showed strong colocalization with VAChT in both brain sections and PC12 cells. Binding assays suggested that the C-terminal domain of VAChT can interact with both BAR and PX domain of SNX5. Depletion of SNX5 enhanced the degradation of VAChT and the process was mediated through the lysosomal pathway. More importantly, we found that, in PC12 cells, the depletion of SNX5 expression significantly decreased the synaptic vesicle-like vesicles (SVLVs) localization of VAChT. Therefore, the results suggest that SNX5 is a novel regulator for both stability and SV targeting of VAChT.
Collapse
Affiliation(s)
- Meihen Sun
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hongfei Xu
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Lesley Colgan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA. E-mail: lesley.col
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China. E-mail:
| |
Collapse
|
15
|
Neurotrophic factors and target-specific retrograde signaling interactions define the specificity of classical and neuropeptide cotransmitter release at identified Lymnaea synapses. Sci Rep 2020; 10:13526. [PMID: 32782285 PMCID: PMC7419297 DOI: 10.1038/s41598-020-70322-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Many neurons concurrently and/or differentially release multiple neurotransmitter substances to selectively modulate the activity of distinct postsynaptic targets within a network. However, the molecular mechanisms that produce synaptic heterogeneity by regulating the cotransmitter release characteristics of individual presynaptic terminals remain poorly defined. In particular, we know little about the regulation of neuropeptide corelease, despite the fact that they mediate synaptic transmission, plasticity and neuromodulation. Here, we report that an identified Lymnaea neuron selectively releases its classical small molecule and peptide neurotransmitters, acetylcholine and FMRFamide-derived neuropeptides, to differentially influence the activity of distinct postsynaptic targets that coordinate cardiorespiratory behaviour. Using a combination of electrophysiological, molecular, and pharmacological approaches, we found that neuropeptide cotransmitter release was regulated by cross-talk between extrinsic neurotrophic factor signaling and target-specific retrograde arachidonic acid signaling, which converged on modulation of glycogen synthase kinase 3. In this context, we identified a novel role for the Lymnaea synaptophysin homologue as a specific and synapse-delimited inhibitory regulator of peptide neurotransmitter release. This study is among the first to define the cellular and molecular mechanisms underlying the differential release of cotransmitter substances from individual presynaptic terminals, which allow for context-dependent tuning and plasticity of the synaptic networks underlying patterned motor behaviour.
Collapse
|
16
|
Jensen BK, Schuldi MH, McAvoy K, Russell KA, Boehringer A, Curran BM, Krishnamurthy K, Wen X, Westergard T, Ma L, Haeusler AR, Edbauer D, Pasinelli P, Trotti D. Synaptic dysfunction induced by glycine-alanine dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. EMBO Mol Med 2020; 12:e10722. [PMID: 32347002 PMCID: PMC7207170 DOI: 10.15252/emmm.201910722] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients.
Collapse
Affiliation(s)
- Brigid K Jensen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Martin H Schuldi
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Kevin McAvoy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Katelyn A Russell
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Ashley Boehringer
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Bridget M Curran
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Xinmei Wen
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Thomas Westergard
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Le Ma
- Department of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Aaron R Haeusler
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| | - Piera Pasinelli
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Davide Trotti
- Jefferson Weinberg ALS CenterDepartment of NeuroscienceVickie and Jack Farber Institute for NeuroscienceThomas Jefferson UniversityPhiladelphiaPAUSA
| |
Collapse
|
17
|
Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proc Natl Acad Sci U S A 2019; 116:18098-18108. [PMID: 31431523 DOI: 10.1073/pnas.1908051116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.
Collapse
|
18
|
Khayat W, Hackett A, Shaw M, Ilie A, Dudding-Byth T, Kalscheuer VM, Christie L, Corbett MA, Juusola J, Friend KL, Kirmse BM, Gecz J, Field M, Orlowski J. A recurrent missense variant in SLC9A7 causes nonsyndromic X-linked intellectual disability with alteration of Golgi acidification and aberrant glycosylation. Hum Mol Genet 2019; 28:598-614. [PMID: 30335141 DOI: 10.1093/hmg/ddy371] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Collapse
Affiliation(s)
- Wujood Khayat
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anna Hackett
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Marie Shaw
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alina Ilie
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Tracy Dudding-Byth
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Louise Christie
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Kathryn L Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Brian M Kirmse
- Department of Pediatrics, Division of Medical Genetics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - John Orlowski
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Ciruelas K, Marcotulli D, Bajjalieh SM. Synaptic vesicle protein 2: A multi-faceted regulator of secretion. Semin Cell Dev Biol 2019; 95:130-141. [PMID: 30826548 DOI: 10.1016/j.semcdb.2019.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
Synaptic Vesicle Protein 2 (SV2) comprises a recently evolved family of proteins unique to secretory vesicles that undergo calcium-regulated exocytosis. In this review we consider SV2s' structural features, evolution, and function and discuss its therapeutic potential as the receptors for an expanding class of drugs used to treat epilepsy and cognitive decline.
Collapse
Affiliation(s)
- Kristine Ciruelas
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Daniele Marcotulli
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Sandra M Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, WA, United States.
| |
Collapse
|
20
|
Riemann D, Petkova A, Dresbach T, Wallrafen R. An Optical Assay for Synaptic Vesicle Recycling in Cultured Neurons Overexpressing Presynaptic Proteins. J Vis Exp 2018:58043. [PMID: 30010661 PMCID: PMC6101998 DOI: 10.3791/58043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
At active presynaptic nerve terminals, synaptic vesicles undergo cycles of exo- and endocytosis. During recycling, the luminal domains of SV transmembrane proteins become exposed at the cell surface. One of these proteins is Synaptotagmin-1 (Syt1). An antibody directed against the luminal domain of Syt1, once added to the culture medium, is taken up during the exo-endocytotic cycle. This uptake is proportional to the amount of SV recycling and can be quantified through immunofluorescence. Here, we combine Syt1 antibody uptake with double transfection of cultured hippocampal neurons. This allows us to (1) localize presynaptic sites based on expression of recombinant presynaptic marker Synaptophysin, (2) determine their functionality using Syt1 uptake, and (3) characterize the targeting and effects of a protein of interest, GFP-Rogdi.
Collapse
Affiliation(s)
- Donatus Riemann
- Institute for Anatomy and Embryology, University Medical Centre Göttingen
| | - Andoniya Petkova
- Institute for Anatomy and Embryology, University Medical Centre Göttingen
| | - Thomas Dresbach
- Institute for Anatomy and Embryology, University Medical Centre Göttingen;
| | - Rebecca Wallrafen
- Institute for Anatomy and Embryology, University Medical Centre Göttingen
| |
Collapse
|
21
|
MacDougall DD, Lin Z, Chon NL, Jackman SL, Lin H, Knight JD, Anantharam A. The high-affinity calcium sensor synaptotagmin-7 serves multiple roles in regulated exocytosis. J Gen Physiol 2018; 150:783-807. [PMID: 29794152 PMCID: PMC5987875 DOI: 10.1085/jgp.201711944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
MacDougall et al. review the structure and function of the calcium sensor synaptotagmin-7 in exocytosis. Synaptotagmin (Syt) proteins comprise a 17-member family, many of which trigger exocytosis in response to calcium. Historically, most studies have focused on the isoform Syt-1, which serves as the primary calcium sensor in synchronous neurotransmitter release. Recently, Syt-7 has become a topic of broad interest because of its extreme calcium sensitivity and diversity of roles in a wide range of cell types. Here, we review the known and emerging roles of Syt-7 in various contexts and stress the importance of its actions. Unique functions of Syt-7 are discussed in light of recent imaging, electrophysiological, and computational studies. Particular emphasis is placed on Syt-7–dependent regulation of synaptic transmission and neuroendocrine cell secretion. Finally, based on biochemical and structural data, we propose a mechanism to link Syt-7’s role in membrane fusion with its role in subsequent fusion pore expansion via strong calcium-dependent phospholipid binding.
Collapse
Affiliation(s)
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Nara L Chon
- Department of Chemistry, University of Colorado, Denver, CO
| | - Skyler L Jackman
- Vollum Institute, Oregon Health & Science University, Portland, OR
| | - Hai Lin
- Department of Chemistry, University of Colorado, Denver, CO
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
22
|
Talbot CJ, Kubilus JK. Developmental analysis of SV2 in the embryonic chicken corneal epithelium. Exp Eye Res 2018; 172:137-143. [PMID: 29654771 DOI: 10.1016/j.exer.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Intraepithelial corneal nerves (ICNs) help protect the cornea as part of the blink reflex and by modulating tear production. ICNs are also thought to regulate the health and homeostasis of the cornea through the release of trophic factors. Disruption to these nerves can lead to vision loss. Despite their importance little is known about how corneal nerves function and even less is known about how the cornea is initially innervated during its embryonic development. Here, we investigated the innervation of the embryonic chicken cornea. Western blot and immunohistochemistry were used to characterize the localization of the synaptic vesicle marker SV2, a molecule thought to be involved in the release of trophic factors from sensory nerves. The data show that both SV2 and synaptotagmin co-localize to ICNs. Nerves in the conjunctiva also contained SV2 and synaptotagmin, but these were localized to below the basal layers of the conjunctiva epithelium. SV2 isolated from corneal epithelium migrates in western blot at a heavier weight than SV2 isolated from brain, which suggests a role in vesicle targeting, as the deglycosylating enzyme PnGase does not affect corneal SV2.
Collapse
Affiliation(s)
- Christopher J Talbot
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - James K Kubilus
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
23
|
Deschenes MR, Adan MA, Kapral MC, Kressin KA, Leathrum CM, Seo A, Li S, Schaffrey EC. Neuromuscular adaptability of male and female rats to muscle unloading. J Neurosci Res 2017; 96:284-296. [PMID: 28759131 DOI: 10.1002/jnr.24129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 11/12/2022]
Abstract
Previously, it has been shown that following muscle unloading, males and females experience different maladaptations in neuromuscular function. As a follow-up, the present investigation sought to determine if male and female neuromuscular systems demonstrated similar, or disparate morphological adaptations to muscle unloading. Twenty young adult male, and 20 young adult female rats were randomly assigned to one of two treatment protocols: muscle unloading, or control conditions. Following the 2-week intervention period, immunofluorescent procedures were used to quantify pre- and post-synaptic features of neuromuscular junctions (NMJs), and to assess myofiber profiles (size and fiber type composition) of the soleus, plantaris, and EDL muscles. A 2-way ANOVA with main effects for sex and treatment was then used to identify statistically significant (p ≤ .05) differences among structural parameters. Analysis of NMJs showed a consistent lack of differences between males and females. Overall, NMJs were also found to be resistant to the effects of unloading. When examining myofiber profiles, however, male myofibers were revealed to be significantly larger than female ones in each of the muscles examined. Unloading resulted in significant myofiber atrophy only in the primarily weight-bearing soleus muscle. Only the EDL showed unloading-induced differences in myofiber type distribution (Type II → I). These data indicate that different components of the neuromuscular system (NMJs, myofibers) respond uniquely to unloading, and that sex affects myofiber type profiles, but not NMJs. Moreover, it appears that only muscles that have their habitual activity patterns disturbed by unloading (i.e., the soleus, adapt to that intervention).
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA, USA.,Program in Neuroscience, The College of William & Mary, Williamsburg, VA, USA
| | - Matthew A Adan
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Maria C Kapral
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Kaitlin A Kressin
- Program in Neuroscience, The College of William & Mary, Williamsburg, VA, USA
| | - Colleen M Leathrum
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Anna Seo
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Shuhan Li
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| | - Ellen C Schaffrey
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA, USA
| |
Collapse
|
24
|
Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B. Puzzling Out Synaptic Vesicle 2 Family Members Functions. Front Mol Neurosci 2017; 10:148. [PMID: 28588450 PMCID: PMC5438990 DOI: 10.3389/fnmol.2017.00148] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Collapse
Affiliation(s)
- Odile Bartholome
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Judit Sánchez Gil
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium.,Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), University of LiègeLiège, Belgium
| |
Collapse
|
25
|
Afuwape OAT, Wasser CR, Schikorski T, Kavalali ET. Synaptic vesicle pool-specific modification of neurotransmitter release by intravesicular free radical generation. J Physiol 2016; 595:1223-1238. [PMID: 27723113 DOI: 10.1113/jp273115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/04/2016] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Synaptic transmission is mediated by the release of neurotransmitters from synaptic vesicles in response to stimulation or through the spontaneous fusion of a synaptic vesicle with the presynaptic plasma membrane. There is growing evidence that synaptic vesicles undergoing spontaneous fusion versus those fusing in response to stimuli are functionally distinct. In this study, we acutely probe the effects of intravesicular free radical generation on synaptic vesicles that fuse spontaneously or in response to stimuli. By targeting vesicles that preferentially release spontaneously, we can dissociate the effects of intravesicular free radical generation on spontaneous neurotransmission from evoked neurotransmission and vice versa. Taken together, these results further advance our knowledge of the synapse and the nature of the different synaptic vesicle pools mediating neurotransmission. ABSTRACT Earlier studies suggest that spontaneous and evoked neurotransmitter release processes are maintained by synaptic vesicles which are segregated into functionally distinct pools. However, direct interrogation of the link between this putative synaptic vesicle pool heterogeneity and neurotransmission has been difficult. To examine this link, we tagged vesicles with horseradish peroxidase (HRP) - a haem-containing plant enzyme - or antibodies against synaptotagmin-1 (syt1). Filling recycling vesicles in hippocampal neurons with HRP and subsequent treatment with hydrogen peroxide (H2 O2 ) modified the properties of neurotransmitter release depending on the route of HRP uptake. While strong depolarization-induced uptake of HRP suppressed evoked release and augmented spontaneous release, HRP uptake during mild activity selectively impaired evoked release, whereas HRP uptake at rest solely potentiated spontaneous release. Expression of a luminal HRP-tagged syt1 construct and subsequent H2 O2 application resulted in a similar increase in spontaneous release and suppression as well as desynchronization of evoked release, recapitulating the canonical syt1 loss-of-function phenotype. An antibody targeting the luminal domain of syt1, on the other hand, showed that augmentation of spontaneous release and suppression of evoked release phenotypes are dissociable depending on whether the antibody uptake occurred at rest or during depolarization. Taken together, these findings indicate that vesicles that maintain spontaneous and evoked neurotransmitter release preserve their identity during recycling and syt1 function in suppression of spontaneous neurotransmission can be acutely dissociated from syt1 function to synchronize synaptic vesicle exocytosis upon stimulation.
Collapse
Affiliation(s)
- Olusoji A T Afuwape
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| | - Catherine R Wasser
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| | - Thomas Schikorski
- Department of Anatomy, Universidad Central Del Caribe, Bayamon, PR, 00960, Puerto Rico
| | - Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390-9111, USA.,Department of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| |
Collapse
|
26
|
Only the complex N559-glycan in the synaptic vesicle glycoprotein 2C mediates high affinity binding to botulinum neurotoxin serotype A1. Biochem J 2016; 473:2645-54. [PMID: 27313224 DOI: 10.1042/bcj20160439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/16/2016] [Indexed: 11/17/2022]
Abstract
The extraordinary potency of botulinum neurotoxins (BoNTs) is mediated by their high neurospecificity, targeting peripheral cholinergic motoneurons leading to flaccid paralysis and successive respiratory failure. Complex polysialo gangliosides accumulate BoNTs on the plasma membrane and facilitate subsequent binding to synaptic vesicle membrane proteins which results in toxin endocytosis. The luminal domain 4 (LD4) of the three synaptic vesicle glycoprotein 2 (SV2) isoforms A-C mediates uptake of the clinically most relevant serotype BoNT/A1. SV2C-LD4 exhibits the strongest protein-protein interaction and comprises five putative N-glycosylation sites (PNG sites). Here, we expressed human SV2C-LD4 fused to human IgG-Fc in prokaryotic and eukaryotic expression systems to analyse the effect of N-glycosylation of SV2C on the interaction with BoNT/A1. Mass spectrometric analysis of gSV2CLD-Fc demonstrates glycosylation of N534, N559 and N565, the latter two residing at the BoNT/A interface. Mutational analysis demonstrates that only the N559-glycan, but not N565-glycan increases affinity of BoNT/A for human gSV2C-LD4. The N559-glycan was characterised as a complex core-fucosylated type with a heterogeneity ranging up to tetra-antennary structure with bisecting N-acetylglucosamine which can establish extensive interactions with BoNT/A. The mutant gSV2CLD-Fc N559A displayed a 50-fold increased dissociation rate kd resulting in an overall 12-fold decreased binding affinity in surface plasmon resonance (SPR) experiments. The delayed dissociation might provide BoNT/A more time for endocytosis into synaptic vesicles. In conclusion, we show the importance of the complex N559-glycan of SV2C-LD4, adding a third anchor point beside a ganglioside and the SV2C-LD4 peptide, for BoNT/A neuronal cell surface binding and uptake.
Collapse
|
27
|
Gordon SL, Cousin MA. The iTRAPs: Guardians of Synaptic Vesicle Cargo Retrieval During Endocytosis. Front Synaptic Neurosci 2016; 8:1. [PMID: 26903854 PMCID: PMC4746236 DOI: 10.3389/fnsyn.2016.00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
The reformation of synaptic vesicles (SVs) during endocytosis is essential for the maintenance of neurotransmission in central nerve terminals. Newly formed SVs must be generated with the correct protein cargo in the correct stoichiometry to be functional for exocytosis. Classical clathrin adaptor protein complexes play a key role in sorting and clustering synaptic vesicle cargo in this regard. However it is becoming increasingly apparent that additional “fail-safe” mechanisms exist to ensure the accurate retrieval of essential cargo molecules. For example, the monomeric adaptor proteins AP180/CALM and stonin-2 are required for the efficient retrieval of synaptobrevin II (sybII) and synaptotagmin-1 respectively. Furthermore, recent studies have revealed that sybII and synaptotagmin-1 interact with other SV cargoes to ensure a high fidelity of retrieval. These cargoes are synaptophysin (for sybII) and SV2A (for synaptotagmin-1). In this review, we summarize current knowledge regarding the retrieval mechanisms for both sybII and synaptotagmin-1 during endocytosis. We also define and set criteria for a new functional group of SV molecules that facilitate the retrieval of their interaction partners. We have termed these molecules intrinsic trafficking partners (iTRAPs) and we discuss how the function of this group impacts on presynaptic performance in both health and disease.
Collapse
Affiliation(s)
- Sarah L Gordon
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, VIC, Australia
| | - Michael A Cousin
- Centre for Integrative Physiology, University of Edinburgh Edinburgh, UK
| |
Collapse
|
28
|
Neurotrophin-dependent plasticity of neurotransmitter segregation in the rat superior cervical ganglionin vivo. Dev Neurobiol 2015; 76:832-46. [DOI: 10.1002/dneu.22362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/16/2015] [Accepted: 11/06/2015] [Indexed: 01/26/2023]
|
29
|
Abad-Rodríguez J, Díez-Revuelta N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 2015; 40:385-96. [PMID: 25936977 DOI: 10.1016/j.tibs.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 02/04/2023]
Abstract
Nervous system function relies on the capacity of neurons to organize specialized domains for impulse reception or transmission. Such a polarized architecture relies on highly discriminatory and efficient mechanisms for the transport and targeting of required molecules to their functional positions. Glycans play a central role in polarized traffic based on their extraordinary capacity to encrypt bio-information. Glycan-based interactions exquisitely regulate cargo selection, trafficking, and targeting to the axon membrane. This generates segregated functional domains, where basal nerve processes such as axon growth, synaptic activity, or myelination take place. Deciphering the details of the glycan structures and carbohydrate-binding molecules that underlie these mechanisms improves our knowledge of nerve physiology and defines novel specific approaches for neurological treatments.
Collapse
Affiliation(s)
- José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain.
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
30
|
Madeo M, Kovács AD, Pearce DA. The human synaptic vesicle protein, SV2A, functions as a galactose transporter in Saccharomyces cerevisiae. J Biol Chem 2014; 289:33066-71. [PMID: 25326386 DOI: 10.1074/jbc.c114.584516] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SV2A is a synaptic vesicle membrane protein expressed in neurons and endocrine cells and involved in the regulation of neurotransmitter release. Although the exact function of SV2A still remains elusive, it was identified as the specific binding site for levetiracetam, a second generation antiepileptic drug. Our sequence analysis demonstrates that SV2A has significant homology with several yeast transport proteins belonging to the major facilitator superfamily (MFS). Many of these transporters are involved in sugar transport into yeast cells. Here we present evidence showing, for the first time, that SV2A is a galactose transporter. We expressed human SV2A in hexose transport-deficient EBY.VW4000 yeast cells and demonstrated that these cells are able to grow on galactose-containing medium but not on other fermentable carbon sources. Furthermore, the addition of the SV2A-binding antiepileptic drug levetiracetam to the medium inhibited the galactose-dependent growth of hexose transport-deficient EBY.VW4000 yeast cells expressing human SV2A. Most importantly, direct measurement of galactose uptake in the same strain verified that SV2A is able to transport extracellular galactose inside the cells. The newly identified galactose transport capability of SV2A may have an important role in regulating/modulating synaptic function.
Collapse
Affiliation(s)
- Marianna Madeo
- From the Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota 57104 and
| | - Attila D Kovács
- From the Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota 57104 and
| | - David A Pearce
- From the Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota 57104 and the Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, 57104
| |
Collapse
|
31
|
Liu H, Bai H, Xue R, Takahashi H, Edwardson JM, Chapman ER. Linker mutations reveal the complexity of synaptotagmin 1 action during synaptic transmission. Nat Neurosci 2014; 17:670-7. [PMID: 24657966 PMCID: PMC4139111 DOI: 10.1038/nn.3681] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
The Ca(2+) sensor for rapid synaptic vesicle exocytosis, synaptotagmin 1 (syt), is largely composed of two Ca(2+)-sensing C2 domains, C2A and C2B. We investigated the apparent synergy between the tandem C2 domains by altering the length and rigidity of the linker that connects them. The behavior of the linker mutants revealed a correlation between the ability of the C2 domains to penetrate membranes in response to Ca(2+) and to drive evoked neurotransmitter release in cultured mouse neurons, uncovering a step in excitation-secretion coupling. Using atomic force microscopy, we found that the synergy between these C2 domains involved intra-molecular interactions between them. Thus, syt function is markedly affected by changes in the physical nature of the linker that connects its tandem C2 domains. Moreover, the linker mutations uncoupled syt-mediated regulation of evoked and spontaneous release, revealing that syt also acts as a fusion clamp before the Ca(2+) trigger.
Collapse
Affiliation(s)
- Huisheng Liu
- 1] Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA. [2] [3]
| | - Hua Bai
- 1] Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA. [2]
| | - Renhao Xue
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Scott H, Panin VM. The role of protein N-glycosylation in neural transmission. Glycobiology 2014; 24:407-17. [PMID: 24643084 DOI: 10.1093/glycob/cwu015] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have explored the function of N-linked glycosylation in the nervous system, demonstrating essential roles of carbohydrate structures in neural development. The function of N-glycans in neural physiology remains less understood; however, increasing evidence indicates that N-glycans can play specific modulatory roles controlling neural transmission and excitability of neural circuits. These roles are mediated via effects on synaptic proteins involved in neurotransmitter release, transporters that regulate nerotransmitter concentrations, neurotransmitter receptors, as well as via regulation of proteins that control excitability and response to milieu stimuli, such as voltage-gated ion channels and transient receptor potential channels, respectively. Sialylated N-glycan structures are among the most potent modulators of cell excitability, exerting prominent effects on voltage gated Na(+) and K(+) channels. This modulation appears to be underlain by complex molecular mechanisms involving electrostatic effects, as well as interaction modes based on more specific steric effects and interactions with lectins and other molecules. Data also indicate that particular features of N-glycans, such as their location on a protein and structural characteristics, can be specifically associated with the effect of glycosylation. These features and their functional implications can vary between different cell types, which highlight the importance of in vivo analyses of glycan functions. Experimental challenges are associated with the overwhelming complexity of the nervous system and glycosylation pathways in vertebrates, and thus model organisms like Drosophila should help elucidate evolutionarily conserved mechanisms underlying glycan functions. Recent studies supported this notion and shed light on functions of several glycosylation genes involved in the regulation of the nervous system.
Collapse
Affiliation(s)
- Hilary Scott
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | | |
Collapse
|
33
|
Scott H, Panin VM. N-glycosylation in regulation of the nervous system. ADVANCES IN NEUROBIOLOGY 2014; 9:367-94. [PMID: 25151388 DOI: 10.1007/978-1-4939-1154-7_17] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein N-glycosylation can influence the nervous system in a variety of ways by affecting functions of glycoproteins involved in nervous system development and physiology. The importance of N-glycans for different aspects of neural development has been well documented. For example, some N-linked carbohydrate structures were found to play key roles in neural cell adhesion and axonal targeting during development. At the same time, the involvement of glycosylation in the regulation of neural physiology remains less understood. Recent studies have implicated N-glycosylation in the regulation of neural transmission, revealing novel roles of glycans in synaptic processes and the control of neural excitability. N-Glycans were found to markedly affect the function of several types of synaptic proteins involved in key steps of synaptic transmission, including neurotransmitter release, reception, and uptake. Glycosylation also regulates a number of channel proteins, such as TRP channels that control responses to environmental stimuli and voltage-gated ion channels, the principal determinants of neuronal excitability. Sialylated carbohydrate structures play a particularly prominent part in the modulation of voltage-gated ion channels. Sialic acids appear to affect channel functions via several mechanisms, including charge interactions, as well as other interactions that probably engage steric effects and interactions with other molecules. Experiments also indicated that some structural features of glycans can be particularly important for their function. Since glycan structures can vary significantly between different cell types and depend on the metabolic state of the cell, it is important to analyze glycan functions using in vivo approaches. While the complexity of the nervous system and intricacies of glycosylation pathways can create serious obstacles for in vivo experiments in vertebrates, recent studies have indicated that more simple and experimentally tractable model organisms like Drosophila should provide important advantages for elucidating evolutionarily conserved functions of N-glycosylation in the nervous system.
Collapse
Affiliation(s)
- Hilary Scott
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX, 77843, USA
| | | |
Collapse
|
34
|
Roles of Carbohydrates in the Interaction of Pathogens with Neural Cells. ADVANCES IN NEUROBIOLOGY 2014; 9:395-413. [DOI: 10.1007/978-1-4939-1154-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Gordon SL, Cousin MA. The Sybtraps: control of synaptobrevin traffic by synaptophysin, α-synuclein and AP-180. Traffic 2013; 15:245-54. [PMID: 24279465 PMCID: PMC3992847 DOI: 10.1111/tra.12140] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023]
Abstract
Synaptobrevin II (sybII) is a key fusogenic molecule on synaptic vesicles (SVs) therefore the active maintenance of both its conformation and location in sufficient numbers on this organelle is critical in both mediating and sustaining neurotransmitter release. Recently three proteins have been identified having key roles in the presentation, trafficking and retrieval of sybII during the fusion and endocytosis of SVs. The nerve terminal protein α-synuclein catalyses sybII entry into SNARE complexes, whereas the monomeric adaptor protein AP-180 is required for sybII retrieval during SV endocytosis. Overarching these events is the tetraspan SV protein synaptophysin, which is a major sybII interaction partner on the SV. This review will evaluate recent studies to propose working models for the control of sybII traffic by synaptophysin and other Sybtraps (sybII trafficking partners) and suggest how dysfunction in sybII traffic may contribute to human disease.
Collapse
Affiliation(s)
- Sarah L Gordon
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, Scotland, EH8 9XD, UK
| | | |
Collapse
|
36
|
Parkinson W, Dear ML, Rushton E, Broadie K. N-glycosylation requirements in neuromuscular synaptogenesis. Development 2013; 140:4970-81. [PMID: 24227656 DOI: 10.1242/dev.099192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neural development requires N-glycosylation regulation of intercellular signaling, but the requirements in synaptogenesis have not been well tested. All complex and hybrid N-glycosylation requires MGAT1 (UDP-GlcNAc:α-3-D-mannoside-β1,2-N-acetylglucosaminyl-transferase I) function, and Mgat1 nulls are the most compromised N-glycosylation condition that survive long enough to permit synaptogenesis studies. At the Drosophila neuromuscular junction (NMJ), Mgat1 mutants display selective loss of lectin-defined carbohydrates in the extracellular synaptomatrix, and an accompanying accumulation of the secreted endogenous Mind the gap (MTG) lectin, a key synaptogenesis regulator. Null Mgat1 mutants exhibit strongly overelaborated synaptic structural development, consistent with inhibitory roles for complex/hybrid N-glycans in morphological synaptogenesis, and strengthened functional synapse differentiation, consistent with synaptogenic MTG functions. Synapse molecular composition is surprisingly selectively altered, with decreases in presynaptic active zone Bruchpilot (BRP) and postsynaptic Glutamate receptor subtype B (GLURIIB), but no detectable change in a wide range of other synaptic components. Synaptogenesis is driven by bidirectional trans-synaptic signals that traverse the glycan-rich synaptomatrix, and Mgat1 mutation disrupts both anterograde and retrograde signals, consistent with MTG regulation of trans-synaptic signaling. Downstream of intercellular signaling, pre- and postsynaptic scaffolds are recruited to drive synaptogenesis, and Mgat1 mutants exhibit loss of both classic Discs large 1 (DLG1) and newly defined Lethal (2) giant larvae [L(2)GL] scaffolds. We conclude that MGAT1-dependent N-glycosylation shapes the synaptomatrix carbohydrate environment and endogenous lectin localization within this domain, to modulate retention of trans-synaptic signaling ligands driving synaptic scaffold recruitment during synaptogenesis.
Collapse
Affiliation(s)
- William Parkinson
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
37
|
X-linked intellectual disability-associated mutations in synaptophysin disrupt synaptobrevin II retrieval. J Neurosci 2013; 33:13695-700. [PMID: 23966691 DOI: 10.1523/jneurosci.0636-13.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptophysin is an integral synaptic vesicle (SV) protein that accounts for ∼10% of total SV protein cargo. Deletion of synaptophysin results in the defective retrieval of synaptobrevin II (sybII) from the plasma membrane during endocytosis, coupled with a slowing in the speed of endocytosis. Synaptophysin has been implicated in X-linked intellectual disability, with a recent study identifying four separate synaptophysin gene mutations in families affected by the disorder. To determine how these mutations may affect synaptophysin function, we expressed them in cultured neurons derived from synaptophysin knock-out mice. Two distinct truncating mutants were mislocalized throughout the axon and phenocopied the arrest of sybII retrieval in synaptophysin knock-out cultures. The remaining two mutants displayed a nerve terminal localization but did not support efficient sybII retrieval. Interestingly, one mutant fully rescued SV endocytosis kinetics, suggesting that sybII retrieval and endocytosis speed are independent from each other. These studies suggest that the efficient retrieval of sybII by synaptophysin may be key to maintaining synaptic health and perturbation of this event may contribute to the pathogenesis underlying neurodevelopmental disorders such as X-linked intellectual disability.
Collapse
|
38
|
Costantini L, Snapp E. Probing endoplasmic reticulum dynamics using fluorescence imaging and photobleaching techniques. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; 60:21.7.1-21.7.29. [PMID: 24510787 PMCID: PMC3920296 DOI: 10.1002/0471143030.cb2107s60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This unit describes approaches and tools for studying the dynamics and organization of endoplasmic reticulum (ER) membranes and proteins in living cells using fluorescence microscopy. The ER plays a key role in secretory protein biogenesis, calcium regulation, and lipid synthesis. However, study of these processes has often been restricted to biochemical assays that average millions of lysed cells or imaging of static fixed cells. With new fluorescent protein (FP) reporter tools, sensitive commercial microscopes, and photobleaching techniques, investigators can interrogate the behaviors of ER proteins, membranes, and stress pathways in single live cells. Solutions are described for imaging challenges relevant to the ER, including the mobility of ER membranes, a range of ER structures, and the influence of post-translational modifications on FP reporters. Considerations for performing photobleaching assays for ER proteins are discussed. Finally, reporters and drugs for studying misfolded secretory protein stress and the unfolded protein response are described.
Collapse
Affiliation(s)
- Lindsey Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Erik Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
39
|
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 2013; 38:3529-39. [DOI: 10.1111/ejn.12360] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | - Gisela Gómez-Lira
- Department of Pharmacobiology; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; Calzada de los Tenorios 235 Col. Granjas Coapa C.P. 14330 D. F., Mexico
| |
Collapse
|
40
|
Armbruster M, Messa M, Ferguson SM, De Camilli P, Ryan TA. Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts. eLife 2013; 2:e00845. [PMID: 23908769 PMCID: PMC3728620 DOI: 10.7554/elife.00845] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Abstract
Modulation of synaptic vesicle retrieval is considered to be potentially important in steady-state synaptic performance. Here we show that at physiological temperature endocytosis kinetics at hippocampal and cortical nerve terminals show a bi-phasic dependence on electrical activity. Endocytosis accelerates for the first 15–25 APs during bursts of action potential firing, after which it slows with increasing burst length creating an optimum stimulus for this kinetic parameter. We show that activity-dependent acceleration is only prominent at physiological temperature and that the mechanism of this modulation is based on the dephosphorylation of dynamin 1. Nerve terminals in which dynamin 1 and 3 have been replaced with dynamin 1 harboring dephospho- or phospho-mimetic mutations in the proline-rich domain eliminate the acceleration phase by either setting endocytosis at an accelerated state or a decelerated state, respectively. DOI:http://dx.doi.org/10.7554/eLife.00845.001 Neurons communicate with each other at specialized junctions called synapses. When signals travelling along a neuron reach the presynaptic cell, this triggers small packages (vesicles) containing neurotransmitter molecules to release their contents into the synapse, and these molecules then cross the gap and bind to receptors on the postsynaptic neuron. To release their cargo, individual vesicles fuse with the plasma membrane of the presynaptic neuron and form a ‘pore’ through which neurotransmitter molecules can leave the cell. However, to avoid running out of vesicles, the neuron must recycle and rebuild them through a process known as endocytosis. This involves recapturing the proteins that make up the synaptic vesicle and internalizing them back into the presynaptic terminal. Exactly how endocytosis is regulated has been the subject of much debate in recent years. Now, Armbruster et al. have used fluorescent markers to study the timing of endocytosis in unprecedented detail. Observations of individual synapses reveal that when a series of action potentials (spikes of electrical activity) occurs in a neuron, endocytosis accelerates during the first few action potentials, and then slows. However, this acceleration was only detectable at a physiological temperature of 37°C—markedly higher than the 30°C at which synaptic endocytosis is typically studied. The new study showed that acceleration of endocytosis depends on the phosphorylation status of dynamin, a mechano-chemical enzyme long known to be crucial for endocytosis, which helps to sever the connection between the endocytosing membrane and the surface of the cell. Phosphorylation is a common mechanism for controlling enzyme activity, and involves the addition of phosphate groups to specific amino acids by enzymes called kinases. Phosphatase enzymes reverse the process by removing the phosphate groups. Dynamin is usually phosphorylated at two specific amino acids, but when levels of calcium in the cell increase (as occurs during action potentials), a phosphatase called calcineurin dephosphorylates these sites. Using versions of dynamin that were either permanently phosphorylated or never phosphorylated, Armbruster et al. showed that a decrease in dynamin phosphorylation was required for the initial acceleration of endocytosis. This type of regulation seems to optimize the recycling of vesicles to enable neurons to respond effectively to brief bursts of stimulation. Given that dynamin phosphorylation is conserved in evolution, it is likely that regulation of synaptic endocytosis is a key mechanism for ensuring the efficient functioning of the nervous system. Future research will investigate how calcium influx mediates the later slowing of endocytosis, and help to further unravel this previously unknown regulatory process. DOI:http://dx.doi.org/10.7554/eLife.00845.002
Collapse
Affiliation(s)
- Moritz Armbruster
- Department of Biochemistry , Weill Cornell Medical College , New York , United States ; The David Rockefeller Graduate Program , Rockefeller University , New York , United States
| | | | | | | | | |
Collapse
|