1
|
Dai Y, Chen X, He G, Gao J, Guo X. Rare cases of a second recurrence of nephroblastoma with MLLT1 gene mutation: case report and literature review. Front Oncol 2024; 14:1487544. [PMID: 39687897 PMCID: PMC11646860 DOI: 10.3389/fonc.2024.1487544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Nephroblastoma or Wilms tumor is the most common tumor of the urinary system in childhood. The survival rate can reach more than 90% after multidisciplinary treatment, but there is still a certain recurrence rate. In recent years, domestic and foreign scholars have analyzed the gene mutations related to the recurrence of nephroblastoma from the genetics or epigenetics perspective. However, few reports on the relationship between MLLT1 and the pathogenesis have been reported; patients with MLLT1 gene mutations are often associated with poor prognosis. In this case, we report the recurrence of nephroblastoma with MLLT1 gene mutation and review relevant literature. The studies on molecular genetic mechanism will provide a theoretical basis for early warning, optimize individualized treatment plan, and are important for improving prognosis.
Collapse
Affiliation(s)
- Yiling Dai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Medical School of Sichuan University, Chengdu, Sichuan, China
| | - Guoqian He
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
3
|
Wang Z, Wu D, Zhang Y, Chen W, Yang Y, Yang Y, Zu G, An Y, Yu X, Qin Y, Xu X, Chen X. PITX2 functions as a transcription factor for GPX4 and protects pancreatic cancer cells from ferroptosis. Exp Cell Res 2024; 439:114074. [PMID: 38710403 DOI: 10.1016/j.yexcr.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ferroptosis inhibits tumor progression in pancreatic cancer cells, while PITX2 is known to function as a pro-oncogenic factor in various tumor types, protecting them from ferroptosis and thereby promoting tumor progression. In this study, we sought to investigate the regulatory role of PITX2 in tumor cell ferroptosis within the context of pancreatic cancer. We conducted PITX2 knockdown experiments using lentiviral infection in two pancreatic cancer cell lines, namely PANC-1 and BxPC-3. We assessed protein expression through immunoblotting and mRNA expression through RT-PCR. To confirm PITX2 as a transcription factor for GPX4, we employed Chromatin Immunoprecipitation (ChIP) and Dual-luciferase assays. Furthermore, we used flow cytometry to measure reactive oxygen species (ROS), lipid peroxidation, and apoptosis and employed confocal microscopy to assess mitochondrial membrane potential. Additionally, electron microscopy was used to observe mitochondrial structural changes and evaluate PITX2's regulation of ferroptosis in pancreatic cancer cells. Our findings demonstrated that PITX2, functioning as a transcription factor for GPX4, promoted GPX4 expression, thereby exerting an inhibitory effect on ferroptosis in pancreatic cancer cells and consequently promoting tumor progression. Moreover, PITX2 enhanced the invasive and migratory capabilities of pancreatic cancer cells by activating the WNT signaling pathway. Knockdown of PITX2 increased ferroptosis and inhibited the proliferation of PANC-1 and BxPC-3 cells. Notably, the inhibitory effect on ferroptosis resulting from PITX2 overexpression in these cells could be countered using RSL3, an inhibitor of GPX4. Overall, our study established PITX2 as a transcriptional regulator of GPX4 that could promote tumor progression in pancreatic cancer by reducing ferroptosis. These findings suggest that PITX2 may serve as a potential therapeutic target for combating ferroptosis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Di Wu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Zhang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weibo Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yang Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Guangchen Zu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yong An
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
4
|
Yang Y, Zhu J, Chiba Y, Fukumoto S, Qin M, Wang X. Enamel defects of Axenfeld-Rieger syndrome and the role of PITX2 in its pathogenesis. Oral Dis 2023; 29:3654-3664. [PMID: 35836351 DOI: 10.1111/odi.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To investigate the detailed ultrastructural patterns of dental abnormalities affected by Axenfeld-Rieger syndrome (ARS) with a heterozygous microdeletion involving paired-like homeodomain 2 (PITX2) and explored the underlying molecular mechanisms driving enamel defects. SUBJECTS AND METHODS Sanger sequencing, genomic quantitative PCR analysis, and chromosomal microarray analysis (CMA) were used to screen the disease-causing mutation in one ARS proband. An exfoliated tooth from an ARS patient was analyzed with scanning electron microscopy and micro-computerized tomography. A stable Pitx2 knockdown cell line was generated to simulate PITX2 haploinsufficiency. Cell proliferation and ameloblast differentiation were analyzed, and the role of the Wnt/β-catenin pathway in proliferation of ameloblast precursor cells was investigated. RESULTS An approximately 0.216 Mb novel deletion encompassing PITX2 was identified. The affected tooth displayed a thinner and broken layer of enamel and abnormal enamel biomineralization. PITX2 downregulation inhibited the proliferation and differentiation of inner enamel epithelial cells, and LiCl stifmulation partially reversed the proliferation ability after Pitx2 knockdown. CONCLUSIONS Enamel formation is disturbed in some patients with ARS. Pitx2 knockdown can influence the proliferation and ameloblast differentiation of inner enamel epithelial cells, and PITX2 may regulate cell proliferation via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Junxia Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuta Chiba
- Division of Oral Health, Section of Oral Medicine for Children, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Satoshi Fukumoto
- Division of Oral Health, Section of Oral Medicine for Children, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Wu D, Chen W, Yang Y, Qin Y, Zu G, Zhang Y, An Y, Sun D, Xu X, Chen X. PITX2 in pancreatic stellate cells promotes EMT in pancreatic cancer cells via the Wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1393-1403. [PMID: 37337632 PMCID: PMC10520469 DOI: 10.3724/abbs.2023118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 06/21/2023] Open
Abstract
Since the prognosis of patients with pancreatic cancer is very poor and there is a lack of treatment methods, this study is performed to investigate the function of PITX2 in pancreatic stellate cells (PSCs) in the progression of pancreatic cancer. Scientific hypotheses are proposed according to bioinformatics analysis and tissue microarray analysis. Stable knockdown of PITX2 in PSCs is achieved through lentiviral infection. The relative expressions of PITX2, α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are measured in wild-type PSCs and PITX2-knockdown PSCs. Proliferative capacity is measured by EdU assay. After coculture with PSCs, the proliferation, invasion and migration capacity of pancreatic cancer cells are tested. EMT and Wnt/β-catenin downstream genes of pancreatic cancer cells are investigated to reveal the potential mechanism. Bioinformatics analysis reveals that the PITX2 gene is highly expressed in stromal cells in pancreatic cancer and is correlated with squamous-type PDAC. Analysis of PDAC tissue microarray further demonstrates that high PITX2 level in stromal cells is correlated with poor prognosis in PDAC. After stable knockdown of PITX2 in PSCs, the relative protein levels of α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are decreased, and the proliferative capacity of PSCs is also decreased. After coculture with PSCs, in which PITX2 expression is downregulated, the proliferation, invasion and migration capacities of pancreatic cancer cells are inhibited. Thus, our results show that PITX2-silenced PSCs inhibit the growth, migration and invasion of pancreatic cancer cells via reduced EMT and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Weibo Chen
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yang Yang
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Guangchen Zu
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yue Zhang
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yong An
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Donglin Sun
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Xiaowu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Xuemin Chen
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| |
Collapse
|
6
|
Tian L, Li X, Ying Y, Wang L, Qiao Y, Wang D, Song Y, Li N, Liu X. Pitx2 suppression at meiotic stages associates with seasonal inhibition of testis development in Rattus norvegicus caraco. Integr Zool 2023; 18:543-551. [PMID: 35639924 DOI: 10.1111/1749-4877.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bicoid-related transcription factor 2 (Pitx2) plays a crucial role in the development of many organs and tissues by affecting the mitotic cell cycle. Postnatal testis development is related to mitosis and meiosis in multiple cell types, but the role of Pitx2 gene in seasonal inhibition of testicular development remains unknown in rodents. We analyzed PITX2 protein and Pitx2 mRNA expression features using both laboratory and wild male Rattus norvegicus caraco. In postnatal testicle of laboratory colony, we found that PITX2 was expressed in Leydig cells, pachytene spermatocytes, round spermatids, and elongating spermatids rather than spermatogonia and leptotene/zygotene spermatocytes. Pitx2b expression significantly increased along with the occurrence of pachytene spermatocytes and round spermatids, while decreased along with the processes of elongated spermatids. In wild male rats with similar testes weight, a significantly suppressed Pitx2b expression occurred with an active meiotic stage in the inhibited testes in autumn and winter, compared with the normally developing testes in spring and summer. These results indicate that Pitx2b expression suppression plays a crucial role in the seasonal inhibition of testis development.
Collapse
Affiliation(s)
- Lin Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xixuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Ying
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
van Kampen SJ, Han SJ, van Ham WB, Kyriakopoulou E, Stouthart EW, Goversen B, Monshouwer-Kloots J, Perini I, de Ruiter H, van der Kraak P, Vink A, van Laake LW, Groeneweg JA, de Boer TP, Tsui H, Boogerd CJ, van Veen TAB, van Rooij E. PITX2 induction leads to impaired cardiomyocyte function in arrhythmogenic cardiomyopathy. Stem Cell Reports 2023; 18:749-764. [PMID: 36868229 PMCID: PMC10031305 DOI: 10.1016/j.stemcr.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 03/05/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive disease characterized by electrophysiological and structural remodeling of the ventricles. However, the disease-causing molecular pathways, as a consequence of desmosomal mutations, are poorly understood. Here, we identified a novel missense mutation within desmoplakin in a patient clinically diagnosed with ACM. Using CRISPR-Cas9, we corrected this mutation in patient-derived human induced pluripotent stem cells (hiPSCs) and generated an independent knockin hiPSC line carrying the same mutation. Mutant cardiomyocytes displayed a decline in connexin 43, NaV1.5, and desmosomal proteins, which was accompanied by a prolonged action potential duration. Interestingly, paired-like homeodomain 2 (PITX2), a transcription factor that acts a repressor of connexin 43, NaV1.5, and desmoplakin, was induced in mutant cardiomyocytes. We validated these results in control cardiomyocytes in which PITX2 was either depleted or overexpressed. Importantly, knockdown of PITX2 in patient-derived cardiomyocytes is sufficient to restore the levels of desmoplakin, connexin 43, and NaV1.5.
Collapse
Affiliation(s)
- Sebastiaan J van Kampen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Su Ji Han
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Elizabeth W Stouthart
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Birgit Goversen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, the Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Petra van der Kraak
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Linda W van Laake
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Judith A Groeneweg
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hoyee Tsui
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Hii EPW, Ramanathan A, Pandarathodiyil AK, Wong GR, Sekhar EVS, Binti Talib R, Zaini ZM, Zain RB. Homeobox Genes in Odontogenic Lesions: A Scoping Review. Head Neck Pathol 2023; 17:218-232. [PMID: 36344906 PMCID: PMC10063701 DOI: 10.1007/s12105-022-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions. METHOD An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered. RESULTS A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma. CONCLUSIONS This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Collapse
Affiliation(s)
- Erica Pey Wen Hii
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Gou Rean Wong
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - E V Soma Sekhar
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Zuraiza Mohamad Zaini
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| |
Collapse
|
9
|
Jiang L, Wang X, Ma F, Wang X, Shi M, Yan Q, Liu M, Chen J, Shi C, Guan XY. PITX2C increases the stemness features of hepatocellular carcinoma cells by up-regulating key developmental factors in liver progenitor. J Exp Clin Cancer Res 2022; 41:211. [PMID: 35765089 PMCID: PMC9238105 DOI: 10.1186/s13046-022-02424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumor cells exhibited phenotypic and molecular characteristics similar to their lineage progenitor cells. Liver developmental signaling pathways are showed to be associated with HCC development and oncogenesis. The similarities of expression profiling between liver progenitors (LPs) and HCC suggest that understanding the molecular mechanism during liver development could provide insights into HCC.
Methods
To profile the dynamic gene expression during liver development, cells from an in vitro liver differentiation model and two paired hepatocellular carcinoma (HCC) samples were analyzed using deep RNA sequencing. The expression levels of selected genes were analyzed by qRT-PCR. Moreover, the role of a key transcription factor, pituitary homeobox 2 (PITX2), was characterized via in vitro and vivo functional assays. Furthermore, molecular mechanism studies were performed to unveil how PITX2C regulate the key developmental factors in LPs, thereby increasing the stemness of HCC.
Results
PITX2 was found to exhibit a similar expression pattern to specific markers of LPs. PITX2 consists of three isoforms (PITX2A/B/C). The expression of PITX2 is associated with tumor size and overall survival rate, whereas only PITX2C expression is associated with AFP and differentiation in clinical patients. PITX2A/B/C has distinct functions in HCC tumorigenicity. PITX2C promotes HCC metastasis, self-renewal and chemoresistance. Molecular mechanism studies showed that PITX2C could up-regulate RALYL which could enhance HCC stemness via the TGF-β pathway. Furthermore, ChIP assays confirmed the role of PITX2C in regulating key developmental factors in LP.
Conclusion
PITX2C is a newly discovered transcription factor involved in hepatic differentiation and could increase HCC stemness by upregulating key transcriptional factors related to liver development.
Collapse
|
10
|
Wang J, Yang Q, Tang M, Liu W. Validation and analysis of expression, prognosis and immune infiltration of WNT gene family in non-small cell lung cancer. Front Oncol 2022; 12:911316. [PMID: 35957916 PMCID: PMC9359207 DOI: 10.3389/fonc.2022.911316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Early diagnosis and prognosis prediction of non-small cell lung cancer (NSCLC) have been challenging. Signaling cascades involving the Wingless-type (WNT) gene family play important biological roles and show prognostic value in various cancers, including NSCLC. On this basis, this study aimed to investigate the significance of WNTs in the prognosis and tumor immunity in NSCLC by comprehensive analysis. Expression and methylation levels of WNTs were obtained from the ONCOMINE, TIMER, and UALCAN. The dataset obtained from The Cancer Genome Atlas (TCGA) was utilized for prognostic analysis. cBioPortal was used to perform genetic alterations and correlation analysis of WNTs. R software was employed for functional enrichment and pathway analysis, partial statistics, and graph drawing. TRRUST was used to find key transcription factors. GEPIA was utilized for the analysis of expression, pathological staging, etc. Correlative analysis of immune infiltrates from TIMER. TISIDB was used for further immune infiltration validation analysis. Compared with that of normal tissues, WNT2/2B/3A/4/7A/9A/9B/11 expressions decreased, while WNT3/5B/6/7B/8B/10A/10B/16 expressions increased in lung adenocarcinoma (LUAD); WNT2/3A/7A/11 expressions were lessened, while WNT2B/3/5A/5B/6/7B/10A/10B/16 expressions were enhanced in squamous cell lung cancer (LUSC). Survival analysis revealed that highly expressed WNT2B and lowly expressed WNT7A predicted better prognostic outcomes in LUAD and LUSC. In the study of immune infiltration levels, WNT2, WNT9B, and WNT10A were positively correlated with six immune cells in LUAD; WNT1, WNT2, and WNT9B were positively correlated with six immune cells in LUSC, while WNT7B was negatively correlated. Our study indicated that WNT2B and WNT7A might have prognostic value in LUAD, and both of them might be important prognostic factors in LUSC and correlated to immune cell infiltration in LUAD and LUSC to a certain extent. Considering the prognostic value of WNT2B and WNT7A in NSCLC, we validated their mRNA and protein expression levels in NSCLC by performing qRT-PCR, western blot, and immunohistochemical staining on NSCLC pathological tissues and cell lines. This study may provide some direction for the subsequent exploration of the prognostic value of the WNTs and their role as biomarkers in NSCLC.
Collapse
Affiliation(s)
- Jianglin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingping Yang
- Department of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mengjie Tang
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei Liu,
| |
Collapse
|
11
|
Lin Q, Wu L, Chatla S, Chowdhury FA, Atale N, Joseph J, Du W. Hematopoietic stem cell regeneration through paracrine regulation of the Wnt5a/Prox1 signaling axis. J Clin Invest 2022; 132:155914. [PMID: 35703178 PMCID: PMC9197516 DOI: 10.1172/jci155914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
The crosstalk between the BM microenvironment (niche) and hematopoietic stem cells (HSCs) is critical for HSC regeneration. Here, we show that in mice, deletion of the Fanconi anemia (FA) genes Fanca and Fancc dampened HSC regeneration through direct effects on HSCs and indirect effects on BM niche cells. FA HSCs showed persistent upregulation of the Wnt target Prox1 in response to total body irradiation (TBI). Accordingly, lineage-specific deletion of Prox1 improved long-term repopulation of the irradiated FA HSCs. Forced expression of Prox1 in WT HSCs mimicked the defective repopulation phenotype of FA HSCs. WT mice but not FA mice showed significant induction by TBI of BM stromal Wnt5a protein. Mechanistically, FA proteins regulated stromal Wnt5a expression, possibly through modulating the Wnt5a transcription activator Pax2. Wnt5a treatment of irradiated FA mice enhanced HSC regeneration. Conversely, Wnt5a neutralization inhibited HSC regeneration after TBI. Wnt5a secreted by LepR+CXCL12+ BM stromal cells inhibited β-catenin accumulation, thereby repressing Prox1 transcription in irradiated HSCs. The detrimental effect of deregulated Wnt5a/Prox1 signaling on HSC regeneration was also observed in patients with FA and aged mice. Irradiation induced upregulation of Prox1 in the HSCs of aged mice, and deletion of Prox1 in aged HSCs improved HSC regeneration. Treatment of aged mice with Wnt5a enhanced hematopoietic repopulation. Collectively, these findings identified the paracrine Wnt5a/Prox1 signaling axis as a regulator of HSC regeneration under conditions of injury and aging.
Collapse
Affiliation(s)
- Qiqi Lin
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Fabliha A Chowdhury
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Neha Atale
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jonathan Joseph
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Bu Q, Liu S, Wang Z, Zou J, Wang P, Cao H, Li D, Cao B, An X, Song Y, Li G. PITX2 regulates steroidogenesis in granulosa cells of dairy goat by the WNT/β-catenin pathway. Gen Comp Endocrinol 2022; 321-322:114027. [PMID: 35300988 DOI: 10.1016/j.ygcen.2022.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
Paired-like homeodomain transcription factor 2 (PITX2), a major driver of multiple tissue development, is a transcription factor that regulates gene expression in organisms. However, it is unknown if PITX2 regulates goat granulosa cell (GC) steroidogenesis. Therefore, we investigated the role and mechanism of PITX2 in GC steroidogenesis. In our study, PITX2 significantly facilitated the secretion level of estrogen and progesterone through increasing CYP11A1, CYP19A1, and STAR mRNA and protein expressions in GCs. Furthermore, PITX2 participated in the WNT pathway, enhancing the production of E2 and P4 in GCs. PITX2 in GCs increased the DVL-1 and CTNNB1 expression, involved in the WNT/β-catenin signaling pathway related to steroidogenesis. Moreover, GC steroidogenesis-related gene translation was decreased by CTNNB1-siRNA but enhanced when transfected with PITX2. PITX2 regulates secretion of E2 and P4 from GCs via the WNT/β-catenin pathway and alters GC proliferation and steroidogenesis. These findings will help understand the role of PITX2 in goat ovarian follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiahao Zou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dexian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
Tuerxun K, Zhang S, Zhang Y. Downregulation of PITX2 inhibits the proliferation and migration of liver cancer cells and induces cell apoptosis. Open Life Sci 2022; 16:1322-1329. [PMID: 35071766 PMCID: PMC8724353 DOI: 10.1515/biol-2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Paired-like homeodomain 2 (PITX2) functions as a transcription factor to participate in vertebrate embryogenesis, and dysregulated PITX2 expression was associated with the progression of various cancers. The functional role of PITX2 in tumorigenesis of liver cancer remains unknown. Western blot analysis showed that expression levels of PITX2 were enhanced in the liver cancer tissues and cells. siRNAs targeting PITX2 induced downregulation of PITX2 in liver cancer cells. siRNA-induced knockdown of PITX2 decreased liver cancer cell viability and proliferation, while promoting cell apoptosis by increasing cleaved-PARP, cleaved caspase 3, and cleaved caspase 9. The knockdown of PITX2 repressed liver cancer cell migration and invasion. In conclusion, elevated PITX2 expression was associated with liver cancer progression through repression of cell apoptosis and promoting cell proliferation and metastasis, and silencing of PITX2 might serve as a potential therapeutic strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Kebinuer Tuerxun
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Shufang Zhang
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Yuexin Zhang
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| |
Collapse
|
14
|
Napieralski R, Schricker G, Auer G, Aubele M, Perkins J, Magdolen V, Ulm K, Hamann M, Walch A, Weichert W, Kiechle M, Wilhelm OG. PITX2 DNA-Methylation: Predictive versus Prognostic Value for Anthracycline-Based Chemotherapy in Triple-Negative Breast Cancer Patients. Breast Care (Basel) 2021; 16:523-531. [PMID: 34720812 DOI: 10.1159/000510468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background PITX2 DNA methylation has been shown to predict outcomes in high-risk breast cancer patients after anthracycline-based chemotherapy. To determine its prognostic versus predictive value, the impact of PITX2 DNA methylation on outcomes was studied in an untreated cohort vs. an anthracycline-treated triple-negative breast cancer (TNBC) cohort. Material and Methods The percent DNA methylation ratio (PMR) of paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time PCR test. Patient samples of routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue and clinical data from 144 TNBC patients of 2 independent cohorts (i.e., 66 untreated patients and 78 patients treated with anthracycline-based chemotherapy) were analyzed. Results The risk of 5- and 10-year overall survival (OS) increased continuously with rising PITX2 DNA methylation in the anthracycline-treated population, but it increased only slightly during 10-year follow-up time in the untreated patient population. PITX2 DNA methylation with a PMR cutoff of 2 did not show significance for poor vs. good outcomes (OS) in the untreated patient cohort (HR = 1.55; p = 0.259). In contrast, the PITX2 PMR cutoff of 2 identified patients with poor (PMR >2) vs. good (PMR ≤2) outcomes (OS) with statistical significance in the anthracycline-treated cohort (HR = 3.96; p = 0.011). The results in the subgroup of patients who did receive anthracyclines only (no taxanes) confirmed this finding (HR = 5.71; p = 0.014). Conclusion In this hypothesis-generating study PITX2 DNA methylation demonstrated predominantly predictive value in anthracycline treatment in TNBC patients. The risk of poor outcome (OS) correlates with increasing PITX2 DNA methylation.
Collapse
Affiliation(s)
| | | | - Gert Auer
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Viktor Magdolen
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Moritz Hamann
- Department of Gynecology Rotkreuzklinikum München, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
15
|
Wang B, Wang X, Tseng Y, Huang M, Luo F, Zhang J, Liu J. Distinguishing colorectal adenoma from hyperplastic polyp by WNT2 expression. J Clin Lab Anal 2021; 35:e23961. [PMID: 34477243 PMCID: PMC8529141 DOI: 10.1002/jcla.23961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colorectal adenoma (CRA) is a classical premalignant lesion, with high incidence and mainly coexisting with hyperplastic polyp (HPP). Hence, this study aimed to distinguish CRA from HPP by molecular expression profiling and advance the prevention of CRA and its malignance. METHODS CRA and paired HPP biopsies were collected by endoscopy. Through RNA-sequencing (RNA-seq), the differentially expressed genes (DEGs) were obtained. Functional enrichment analysis was performed based on the DEGs. The STRING database and Cytoscape were used to construct the protein-protein interaction (PPI) network and perform module analysis. Hub genes were validated by real-time quantitative PCR (RT-qPCR) and immunohistochemistry. The ROC curve was drawn to establish the specificity of the hub genes. RESULTS 485 significant DEGs were identified including 133 up-regulated and 352 down-regulated. The top 10 up-regulated genes were DLX5, MMP10, TAC1, ACAN, TAS2R38, WNT2, PHYHIPL, DKK4, DUSP27, and ABCA12. The top 10 down-regulated genes were SFRP2, CHRDL1, KBTBD12, RERGL, DPP10, CLCA4, GREM2, TMIGD1, FEV, and OTOP3. Wnt signaling pathway and extracellular matrix (ECM) were up-regulated in CRA. Three hub genes including WNT2, WNT5A, and SFRP1 were filtered out via Cytoscape. Further RT-qPCR and immunohistochemistry confirmed that WNT2 was highly expressed in CRA. The area under the ROC curve (AUC) at 0.98 indicated the expression level of WNT2 as a candidate to differ CRA from HPP. CONCLUSION Our study suggests Wnt signaling pathway and ECM are enriched in CRA, and WNT2 may be used as a novel biomarker for distinguishing CRA from HPP and preventing the malignance of CRA.
Collapse
Affiliation(s)
- Bangting Wang
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Xin Wang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
| | - Yujen Tseng
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Meina Huang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesFudan UniversityShanghaiChina
| | - Feifei Luo
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Jun Zhang
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Liu
- Department of Digestive Diseases, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
16
|
Zhang H, Qi J, Guo J, Wang Y, Guan Y, Fan J, Sui L, Xu Y, Kong L, Yan B, Kong Y. Paired-like homeodomain transcription factor 2 affects endometrial cell function and embryo implantation through the Wnt/β-catenin pathway. Cell Biol Int 2021; 45:1957-1965. [PMID: 34003541 DOI: 10.1002/cbin.11636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/16/2021] [Indexed: 11/10/2022]
Abstract
The successful implantation of embryos is crucial for pregnancy in mammals. This complex process is inevitably dependent on the development of the endometrium. The paired-like homeodomain transcription factor 2 (PITX2) is involved in a variety of biological processes, but whether it is involved in embryo implantation has not been reported. In this study, we aimed to investigate uterine expression and regulation of PITX2 during implantation. We found that PITX2 was elevated in the human endometrium in the secretory phase. The results of the pregnant mouse models showed that PITX2 expression was spatiotemporal in mouse endometrial tissue throughout peri-implantation period, and it was significantly upregulated at the time of implantation. Interestingly, PITX2 was mainly localized to the glandular epithelium cells on D2.5-3.5 of pregnancy, while D5.5-6.5 was largely expressed in stromal cells. In vitro, PITX2 regulated endometrial cells proliferation, migration, invasion, and other functions through the Wnt/β-catenin signaling pathway. In addition, a significant decrease in the rate of embryo implantation was observed after injecting PITX2 small interfering RNA into the uterine horn. These results demonstrate the effects of PITX2 on the physiological function of endometrial cells and embryo implantation, suggesting a role in the endometrial regulatory mechanism during implantation.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jia Qi
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jinqiu Guo
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yufei Wang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Guan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jianhui Fan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Sui
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuefei Xu
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Bin Yan
- Department of Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Kong
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
17
|
Tran TQ, Kioussi C. Pitx genes in development and disease. Cell Mol Life Sci 2021; 78:4921-4938. [PMID: 33844046 PMCID: PMC11073205 DOI: 10.1007/s00018-021-03833-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Homeobox genes encode sequence-specific transcription factors (SSTFs) that recognize specific DNA sequences and regulate organogenesis in all eukaryotes. They are essential in specifying spatial and temporal cell identity and as a result, their mutations often cause severe developmental defects. Pitx genes belong to the PRD class of the highly evolutionary conserved homeobox genes in all animals. Vertebrates possess three Pitx paralogs, Pitx1, Pitx2, and Pitx3 while non-vertebrates have only one Pitx gene. The ancient role of regulating left-right (LR) asymmetry is conserved while new functions emerge to afford more complex body plan and functionalities. In mouse, Pitx1 regulates hindlimb tissue patterning and pituitary development. Pitx2 is essential for the development of the oral cavity and abdominal wall while regulates the formation and symmetry of other organs including pituitary, heart, gut, lung among others by controlling growth control genes upon activation of the Wnt/ß-catenin signaling pathway. Pitx3 is essential for lens development and migration and survival of the dopaminergic neurons of the substantia nigra. Pitx gene mutations are linked to various congenital defects and cancers in humans. Pitx gene family has the potential to offer a new approach in regenerative medicine and aid in identifying new drug targets.
Collapse
Affiliation(s)
- Thai Q Tran
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA
| | - Chrissa Kioussi
- Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
18
|
Liu L, Fang C, Sun Y, Liu W. Evaluation of key miRNAs during early pregnancy in Kazakh horse using RNA sequencing. PeerJ 2021; 9:e10796. [PMID: 33665012 PMCID: PMC7908884 DOI: 10.7717/peerj.10796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background miRNA has an important role in cell differentiation, biological development, and physiology. Milk production is an important quantitative trait in livestock and miRNA plays a role in the amount of milk produced. Methods The role of regulatory miRNAs involved in equine milk production is not fully understood. We constructed two miRNA libraries for Kazakh horse milk production from higher-producing (H group) and lower-producing (L group) individuals, and used RNA-Seq technology to identify the differentially expressed miRNAs between the two milk phenotypes of Kazakh horses. Results A total of 341 known and 333 novel miRNAs were detected from the H and L groups, respectively. Eighty-three differentially expressed miRNAs were identified between the H and L group s, of which 32 were known miRNAs (27 were up-regulated, five were down-regulated) and 51 were novel miRNAs (nine were up-regulated, 42 were down-regulated). A total of 2,415 genes were identified. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these genes were annotated to mammary gland development, mammary gland morphogenesis, tissue development and PI3K-Akt signaling pathways, insulin signaling pathway and TGF-beta signaling pathway, among others. Five miRNAs (miR-199a-3p, miR143, miR145, miR221, miR486-5p) were identified as affecting horse milk production and these five miRNAs were validated using qRT-PCR. Conclusions We described a methodology for the transcriptome-wide profiling of miRNAs in milk, which may help the design of new intervention strategies to improve the milk yield of Kazakh horses.
Collapse
Affiliation(s)
- LingLing Liu
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - Chao Fang
- Department of Animal Production, Farah Research Centre from the Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - YinZe Sun
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| | - WuJun Liu
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang, China
| |
Collapse
|
19
|
Chehover M, Reich R, Davidson B. Expression of Wnt pathway molecules is associated with disease outcome in metastatic high-grade serous carcinoma. Virchows Arch 2020; 477:249-258. [PMID: 31900634 DOI: 10.1007/s00428-019-02737-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/15/2019] [Accepted: 12/22/2019] [Indexed: 11/25/2022]
Abstract
The objective of this study was to analyze the expression and clinical role of Wnt pathway molecules in metastatic high-grade serous carcinoma (HGSC). mRNA expression by qPCR of 20 molecules related to Wnt signaling (WNT1, WNT2, WNT3, WNT4, WNT5A, WNT6, WNT7, WNT11, FZD1, FZD4, FZD5, FZD6, FZD7, FZD8, FZD10, LRP5, LRP6, DKK, CCND, RUNX2) was analyzed in 87 HGSC effusions. Thirty-nine surgical specimens (19 ovarian, 20 from other intra-abdominal sites) were analyzed for comparative purposes. Protein expression of YAP and LRP and their phosphorylated forms by western blotting were analyzed in 52 tumors. Significant differences in mRNA expression as a function of the anatomic site were observed for WNT3 (p = 0.005), WNT5A (p = 0.008), WNT7 (p < 0.001), FRZ5 (p = 0.04), and FRZ6 (p < 0.001). YAP and LRP and their phosphorylated forms were detected in HGSC specimens. FZD10 was overexpressed in effusions from patients who had complete response to chemotherapy compared with those with less favorable response (p = 0.037). WNT4 (p = 0.005), WNT7 (p = 0.047), RUNX2 (p = 0.038), LRP5 (p = 0.022), LRP6 (p = 0.011), FZD6 (p = 0.036), FZD7 (p = 0.004), and FZD10 (p = 0.015) levels were inversely related to primary chemoresistance. High FZD5 levels in pre-chemotherapy effusions tapped at diagnosis and high WNT2 levels in post-chemotherapy disease recurrence effusions were related to shorter overall survival (p = 0.018 and p = 0.011, respectively), whereas high RUNX2 (p = 0.031) and FZD1 (p = 0.029) in post-chemotherapy effusions were associated with longer overall survival. In multivariate analysis of post-chemotherapy cases, WNT2 (p = 0.002), RUNX2 (p = 0.017), FZD1 (p = 0.036), and FZD4 (p = 0.013) were independent prognosticators. In conclusion, expression of Wnt pathway molecules is anatomic site dependent. In HGSC effusions, it is informative of chemoresponse and survival.
Collapse
Affiliation(s)
- Michal Chehover
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Reuven Reich
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.,David R. Bloom Center for Pharmacy and the Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Faculty of Medicine, N-0316, Oslo, Norway.
| |
Collapse
|
20
|
Cao H, Dong X, Mao H, Xu N, Yin Z. Expression Analysis of the PITX2 Gene and Associations between Its Polymorphisms and Body Size and Carcass Traits in Chickens. Animals (Basel) 2019; 9:ani9121001. [PMID: 31756915 PMCID: PMC6940742 DOI: 10.3390/ani9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The Wuliang Mountain Black-bone chicken is a Chinese indigenous breed with good meat quality and strong resistance to disease. Like most of the other Chinese domestic breeds, it has a much slower early growth rate compared with foreign chicken breeds. Therefore, the genetic selection of body size and carcass traits is still the focus of Chinese indigenous chicken breeding. The paired-like homeodomain transcription factor 2 (PITX2) gene, an important transcription factor, plays an important role during the development of the eye, heart, skeletal muscle and other tissues in mammals. In chicken, the PITX2 gene affects the late myogenic differentiation of the limb. The objectives of this study were to detect the expression of the PITX2 gene and analyze the associations between the polymorphisms in the exons of the PITX2 gene and body size as well as carcass traits in chickens. The results could contribute to Chinese chicken breeding based on marker assisted-selection. Abstract PITX2 is expressed in and plays an important role in myocytes of mice, and it has effects on late myogenic differentiation in chickens. However, the expression profile and polymorphisms of PITX2 remain unclear in chickens. Therefore, the aim of the present study was to detect its expression and investigate single nucleotide polymorphisms (SNPs) within its exons and then to evaluate whether these polymorphisms affect body size as well as carcass traits in chickens. The expression analysis showed that the expression level of chicken PITX2 mRNA in the leg muscle and hypophysis was significantly higher (p < 0.01) than those in other tissues. The results of polymorphisms analysis identified two SNPs (i.e., g.9830C > T and g.10073C > T) in exon 1 and 10 SNPs (i.e., g.12713C > T, g.12755C > T, g.12938G > A, g. 3164C > T, g.13019G > A, g.13079G > A, g.13285G > A, g.13335G > A, g.13726A > G and g.13856C > T) in exon 3, including four novel SNPs (i.e., g.9830C > T, g.12713C > T, g.12938G > A and g.13856C > T). In the loci of g.10073C > T and g.12713C > T, chickens with the CT genotype had the highest (p < 0.05 or p < 0.01) breast depth and breast angle, respectively. For the locus of g.13335G > A, chickens with the GG genotype had the highest (p < 0.05 or p < 0.01) breast angle and shank circumference. For the locus of g.13726A > G, chickens with the GG genotype had the highest breast width, fossil keel bone length and shank circumference. The locus of g.12713A > G had significant effects on the PITX2 mRNA expression level in leg muscle. The H1H7 diplotype showed the highest shank circumference, and the H2H8 diplotype showed the highest breast muscle rate. The present research suggested that polymorphisms of the exons of the PITX2 gene were significantly associated with the body size and carcass traits of Wuliang Mountain Black-bone chickens and the PITX2 gene could be a potential candidate gene for molecular marker-aided selection in Wuliang Mountain Black-bone chickens and other chicken breeds.
Collapse
|
21
|
Sproll P, Eid W, Biason-Lauber A. CBX2-dependent transcriptional landscape: implications for human sex development and its defects. Sci Rep 2019; 9:16552. [PMID: 31719618 PMCID: PMC6851130 DOI: 10.1038/s41598-019-53006-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022] Open
Abstract
Sex development, a complex and indispensable process in all vertebrates, has still not been completely elucidated, although new genes involved in sex development are constantly being discovered and characterized. Chromobox Homolog 2 (CBX2) is one of these new additions and has been identified through a 46,XY girl with double heterozygous variants on CBX2.1, causing Differences of Sex Development (DSD). The mutated CBX2.1 failed to adequately regulate downstream targets important for sex development in humans, specifically steroidogenic factor 1 (NR5A1/SF1). To better place CBX2.1 in the human sex developmental cascade, we performed siRNA and CBX2.1 overexpression experiments and created a complete CRISPR/Cas9-CBX2 knockout in Sertoli-like cells. Furthermore, we deployed Next Generation Sequencing techniques, RNA-Sequencing and DamID-Sequencing, to identify new potential CBX2.1 downstream genes. The combination of these two next generation techniques enabled us to identify genes that are both bound and regulated by CBX2.1. This allowed us not only to expand our current knowledge about the influence of CBX2.1 in human sex development, but also to advance our insight in the mechanisms governing one of the most important decisions during embryonal development, the commitment to either female or male gonads.
Collapse
Affiliation(s)
- Patrick Sproll
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Wassim Eid
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, 21526, Egypt
| | - Anna Biason-Lauber
- Division of Endocrinology, Section of Medicine, University of Fribourg, Fribourg, 1700, Switzerland.
| |
Collapse
|
22
|
Yang K, Zhu J, Tan Y, Sun X, Zhao H, Tang G, Zhang D, Qi H. Whole-exome sequencing identified compound heterozygous variants in ROR2 gene in a fetus with Robinow syndrome. J Clin Lab Anal 2019; 34:e23074. [PMID: 31617258 PMCID: PMC7031599 DOI: 10.1002/jcla.23074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 12/18/2022] Open
Abstract
Background Autosomal recessive Robinow syndrome (ARRS) is a rare genetic disorder, which affects the development of multiple systems, particularly the bones. Objectives The aim of this study was to investigate the genetic cause of a ARRS fetus and to evaluate the reliability of whole‐exome sequencing (WES) in prenatal diagnosis on cases with indistinguishable multiple malformation. Methods Clinical and ultrasonic evaluations were conducted on the fetus, and multiplatform genetic techniques were used to identify the variation responsible for RS. The pathogenicity of the novel variation was evaluated by in silico methods. Western blotting (WB) and immunohistochemistry (IHC) were performed on fetal tissues after the fetus' stillbirth and postabortal autopsy. Results A compound heterozygous variation consisting c.613C > T and c.904C > T in ROR2 gene was identified. In silico prediction suggested that c.904C > T was a deleterious variant. IHC result demonstrated that ror2 expression level of the proband in osteochondral tissue significantly increased comparing with that of the control sample. Conclusions For the first time in Chinese population, we characterized a novel variation in ROR2 gene causing ARRS. This study extended the mutation spectrum of ARRS and provided a promising strategy for prenatal diagnosis of cases with ambiguous multiple deformities.
Collapse
Affiliation(s)
- Kai Yang
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Jianjiang Zhu
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Xiaofei Sun
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Huawei Zhao
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Guodong Tang
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Dongliang Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hong Qi
- Department of Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
23
|
Hill MC, Kadow ZA, Li L, Tran TT, Wythe JD, Martin JF. A cellular atlas of Pitx2-dependent cardiac development. Development 2019; 146:dev180398. [PMID: 31201182 PMCID: PMC6602352 DOI: 10.1242/dev.180398] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
The Pitx2 gene encodes a homeobox transcription factor that is required for mammalian development. Disruption of PITX2 expression in humans causes congenital heart diseases and is associated with atrial fibrillation; however, the cellular and molecular processes dictated by Pitx2 during cardiac ontogeny remain unclear. To characterize the role of Pitx2 during murine heart development we sequenced over 75,000 single cardiac cell transcriptomes between two key developmental timepoints in control and Pitx2 null embryos. We found that cardiac cell composition was dramatically altered in mutants at both E10.5 and E13.5. Interestingly, the differentiation dynamics of both anterior and posterior second heart field-derived progenitor cells were disrupted in Pitx2 mutants. We also uncovered evidence for defects in left-right asymmetry within atrial cardiomyocyte populations. Furthermore, we were able to detail defects in cardiac outflow tract and valve development associated with Pitx2 Our findings offer insight into Pitx2 function and provide a compilation of gene expression signatures for further detailing the complexities of heart development that will serve as the foundation for future studies of cardiac morphogenesis, congenital heart disease and arrhythmogenesis.
Collapse
Affiliation(s)
- Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary A Kadow
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lele Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tien T Tran
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua D Wythe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Heart Institute, Houston, TX 77030, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:96. [PMID: 31043858 PMCID: PMC6460850 DOI: 10.1186/s12935-019-0800-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background The homeodomain transcription factor, PITX2 is associated with tumorigenesis of multiple cancers. In this research, we aimed to study the expression, function and mechanism of PITX2 in lung adenocarcinoma (LUAD). Methods The TCGA dataset was used to analyze the expression and clinical significance of PITX2 in LUAD. The expression of PITX2 in tumor samples and LUAD cell lines was examined by quantitative real-time PCR (qRT-PCR) and western blotting. Small interfering RNAs (siRNAs) were constructed to knockdown PITX2 and to determine the physiological function of PITX2 in vitro. Xenograft model was used to confirm the role of PITX2 in vivo. Results PITX2 was overexpressed in LUAD and patients with high level of PITX2 had a worse overall survival and an advanced clinical stage. Knockdown of PITX2 inhibited cell proliferation, migration and invasion of LUAD cells. Further study revealed that the oncogenic role of PITX2 was dependent on activating Wnt/β-catenin signaling pathway, especially by transcriptionally regulating the Wnt gene family member, WNT3A. Lastly, we identified miR-140-5p as a negative mediator of PITX2 by binding its 3′UTR and ectopic expression of miR-140-5p inhibited progression of LUAD cells via suppressing the expression of PITX2. Conclusions Up-regulation of PITX2 acts as an oncogene in LUAD by activating Wnt/β-catenin signaling pathway, suggesting that PITX2 may serve as a novel diagnostic and prognostic biomarker in LUAD. Electronic supplementary material The online version of this article (10.1186/s12935-019-0800-7) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
26
|
Gao J, Yu SR, Yuan Y, Zhang LL, Lu JW, Feng JF, Hu SN. MicroRNA-590-5p functions as a tumor suppressor in breast cancer conferring inhibitory effects on cell migration, invasion, and epithelial-mesenchymal transition by downregulating the Wnt-β-catenin signaling pathway. J Cell Physiol 2019; 234:1827-1841. [PMID: 30191949 DOI: 10.1002/jcp.27056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Breast cancer remains one of the foremost primary causes of female morbidity and mortality worldwide. During the current study, the effect of miR-590-5p and paired-like homeodomain transcription factor 2 (PITX2) on proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) of human breast cancer via the Wnt-β-catenin signaling pathway was investigated. Breast cancer-related genes and related signaling pathways were obtained from KEGG database. The PITX2 regulatory microRNA was predicted. To define the contributory role by which miR-590-5p influences the progression of breast cancer, the interaction between miR-590-5p and PITX2 was explored; the proliferation, invasion, and migration abilities as well as the tumor growth and metastasis in nude mice were detected following the overexpression or silencing of miR-590-5p. PITX2 was determined to share a correlation with breast cancer and miR-590-5p was selected for further analysis. PITX2, Wnt-1, β-catenin, N-cadherin, and vimentin all displayed higher levels, while miR-590-5p and E-cadherin expression were lower among breast cancer tissues than in the adjacent normal tissue. After overexpression of miR-590-5p or si-PITX2, the expression of E-cadherin was markedly increased, decreases in the expression of Wnt-1, β-catenin, N-cadherin, and vimentin, as well as inhibited cell proliferation, invasion, migration, metastasis, and EMT were observed. This study provides evidence suggesting that the transfection of overexpressed miR-590-5p can act to alleviate the effects of breast cancer demonstrating an ability to inhibit the processes of cell proliferation, migration, and invasion as well as EMT by suppressing the expression of PITX2 and activation of the Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Jin Gao
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-Rong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Yuan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Li Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Wei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Feng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Sai-Nan Hu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
NDRG3 overexpression is associated with a poor prognosis in patients with hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20180907. [PMID: 30413609 PMCID: PMC6435526 DOI: 10.1042/bsr20180907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023] Open
Abstract
N-myc downstream-regulated gene 3 (NDRG3), an important member of the NDRG family, is involved in cell proliferation, differentiation, and other biological processes. The present study analyzed NDRG3 expression in hepatocellular carcinoma (HCC) and explored the relationship between expression of NDRG3 in HCC patients and their clinicopathological characteristics. We performed quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) analysis and immunohistochemistry (IHC) analyses on HCC tissues to elucidate NDRG3 expression characteristics in HCC patients. Kaplan-Meier survival curve and Cox regression analyses were used to evaluate the prognoses of 102 patients with HCC. The results revealed that compared with non-tumor tissues, HCC tissues showed significantly higher NDRG3 expression. In addition, our analyses showed that NDRG3 expression was statistically associated with tumor size (P=0.048) and pathological grade (P=0.001). Survival analysis and Kaplan-Meier curves revealed that NDRG3 expression is an independent prognostic indicator for disease-free survival (P=0.002) and overall survival (P=0.005) in HCC patients. The data indicate that NDRG3 expression may be considered as a oncogenic biomarker and a novel predictor for HCC prognosis.
Collapse
|
28
|
Schmitt M, Wilhelm OG, Noske A, Schricker G, Napieralski R, Vetter M, Aubele M, Perkins J, Lauber J, Ulm K, Thomssen C, Martens JWM, Weichert W, Kiechle M. Clinical Validation of PITX2 DNA Methylation to Predict Outcome in High-Risk Breast Cancer Patients Treated with Anthracycline-Based Chemotherapy. Breast Care (Basel) 2018; 13:425-433. [PMID: 30800037 DOI: 10.1159/000493016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Breast cancer patients at high risk for recurrence are treated with anthracycline-based chemotherapy, but not all patients do equally benefit from such a regimen. To further improve therapy decision-making, biomarkers predicting outcome are of high unmet medical need. Methods: The percent DNA methylation ratio (PMR) of the promoter gene coding for the Paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time polymerase chain reaction (PCR) test. The multicenter study was conducted in routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue from 205 lymph node-positive breast cancer patients treated with adjuvant anthracycline-based chemotherapy. Results: The cut-off for the PITX2 methylation status (PMR = 12) was confirmed in a randomly selected cohort (n = 60) and validated (n = 145) prospectively with disease-free survival (DFS) at the 10-year follow-up. DFS was significantly different between the PMR ≤ 12 versus the PMR > 12 group with a hazard ratio (HR) of 2.74 (p < 0.001) in the validation cohort and also for the patient subgroup treated additionally with endocrine therapy (HR 2.47; p = 0.001). Conclusions: Early-stage lymph node-positive breast cancer patients with low PITX2 methylation do benefit from adjuvant anthracycline-based chemotherapy. Patients with a high PITX2 DNA methylation ratio, approximately 30%, show poor outcome and should thus be considered for alternative chemotherapy regimens.
Collapse
Affiliation(s)
- Manfred Schmitt
- Therawis Diagnostics GmbH, Munich, Germany.,Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Aurelia Noske
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | | | | | - Martina Vetter
- Department of Gynecology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Christoph Thomssen
- Department of Gynecology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - John W M Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - Wilko Weichert
- Institute of Pathology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Marion Kiechle
- Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
29
|
Yan H, Jiang E, Zhu H, Hu L, Liu J, Qu L. The novel 22 bp insertion mutation in a promoter region of the <i>PITX2</i> gene is associated with litter size and growth traits in goats. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-329-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The paired-like homeodomain 2 (PITX2) gene plays a critical role in
regulating development, reproduction, and growth traits in ruminants. Hence,
the objective of this study was to explore the polymorphisms of this gene and
to evaluate their associations with quantitative traits. Herein, a novel
insertion in the promoter region of the PITX2 gene was reported in
Shaanbei white cashmere (SBWC) goats (n=1012). The genotype distributions
between mothers of single-kid and multi-kid groups within SBWC goats were
significantly different (P<0.01), implying that this indel mutation might
affect the litter size. Furthermore, association analysis found that this
indel mutation was significantly associated with litter size (P=0.001).
Individuals with genotype DD had a significantly smaller litter size than
those with other genotypes (P<0.01). Besides, this indel was significantly
associated with the body length (P=0.042) and the chest width (P=0.031). Especially, the individuals with genotype DD had a significantly
lower body length than those with genotype II (P<0.05), which was
consistent with the trend in litter size. These findings suggested that the
new 22 bp indel mutation within the PITX2 gene is significantly
associated with litter size and growth traits; this can be utilized as a
functional molecular marker in goat breeding.
Collapse
|
30
|
Cheng L, Li L, Wang L, Li X, Xing H, Zhou J. A random forest classifier predicts recurrence risk in patients with ovarian cancer. Mol Med Rep 2018; 18:3289-3297. [PMID: 30066910 PMCID: PMC6102638 DOI: 10.3892/mmr.2018.9300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/23/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is associated with a poor prognosis due to difficulties in early detection. The aims of the present study were to construct a recurrence risk prediction model and to reveal important OC genes or pathways. RNA sequencing data was obtained for 307 OC samples, and the corresponding clinical data were downloaded from The Cancer Genome Atlas database. Additionally, two validation datasets, GSE44104 (20 recurrent and 40 non-recurrent OC samples) and GSE49997 (204 OC samples), were obtained from the Gene Expression Omnibus database. Differentially expressed genes were screened using the differential expression via distance synthesis algorithm, followed by gene ontology enrichment analysis and weighted gene coexpression network analysis (WGCNA). Furthermore, subnetwork analysis was conducted for the protein-protein interaction (PPI) network using the BioNet package. Finally, a random forest classifier was constructed based on the subnetwork nodes, and its reliability was validated using the GSE44104 and GSE49997 validation datasets. A total of 44 upregulated and 117 downregulated genes were identified in the recurrent samples. Enrichment analysis indicated that cytochrome P450 family 17 subfamily A member 1 (CYP17A1) was associated with ‘positive regulation of steroid hormone biosynthetic processes’. WGCNA identified turquoise and grey modules that were significantly correlated with status and prognosis. A significant PPI subnetwork containing 16 nodes was also identified, including: Transcription factor GATA-4; fibroblast growth factor 9; aromatase; 3β-hydroxysteroid dehydrogenase/δ5-4-isomerase type 2; corticosteroid 11β-dehydrogenase isozyme 1; CYP17A1; pituitary homeobox 2; left-right determination factor 1; homeobox protein ARX; estrogen receptor β; steroidogenic factor 1; forkhead box protein L2; myocardin; steroidogenic acute regulatory protein mitochondrial; vesicular inhibitory amino acid transporter; and twist-related protein 1. A random forest classifier was constructed using the subnetwork nodes as feature genes, which exhibited a 92% true positive rate when classifying recurrent and non-recurrent OC samples. The classifying efficiency of the random forest classifier was validated using the two other independent datasets. Overall, 44 upregulated and 117 downregulated genes associated with OC recurrence were identified. Furthermore, the 16 subnetwork node genes that were identified may be important molecules in OC recurrence.
Collapse
Affiliation(s)
- Li Cheng
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Lin Li
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Liling Wang
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Xiaofang Li
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| | - Jinting Zhou
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
31
|
Bhattacharya R, Ray Chaudhuri S, Roy SS. FGF9-induced ovarian cancer cell invasion involves VEGF-A/VEGFR2 augmentation by virtue of ETS1 upregulation and metabolic reprogramming. J Cell Biochem 2018; 119:8174-8189. [PMID: 29904943 DOI: 10.1002/jcb.26820] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/28/2018] [Indexed: 12/15/2022]
Abstract
Ovarian cancer (OC) renders its lethality to enhanced metastasis and late detection. A plethora of growth factors including Vascular Endothelial Growth Factor (VEGF) and Fibroblast Growth Factor (FGF) stimulated signaling pathways regulate the invasive/metastatic behavior of ovarian tumors contributing to its aggressiveness. Autocrine VEGF-functioning by virtue of upregulated VEGFR2 contributes to the invasiveness of OC cells by modulating the MMPs. Studies have highlighted the interaction between FGF and VEGF signaling pathways during angiogenesis. Moreover, the previous involvement of FGF9 in controlling the OC invasiveness prompted us to investigate its role in regulating VEGF-A/VEGFR2 expression that may control the invasive behavior of the cells. Here we demonstrate that, FGF9-induction resulted in the augmentation of VEGF-A/VEGFR2 levels and the subsequent invasion of OC cells through the activation of the ERK-signaling pathway. Moreover, the ETS1 transcription factor was found to enhance the VEGFA/VEGFR2 expression by directly binding to their promoters and facilitated FGF9-dependent elevation of VEGF-signaling which augmented the metastatic potential of OC cells. Enhanced cellular invasiveness was associated with increased aerobic glycolysis, LDH-A expression, and lactate production. Lactate, in turn, controlled VEGF-A/VEGFR2 expression and the resulting cell invasion. Taken together, the augmentation of VEGF-A/VEGFR2 expression and subsequent invasion of OC cells were governed by FGF9-dependent enhancement of both ETS1 and LDH-A/lactate levels. Therefore, this study provides an insight into the mechanism governing elevated VEGF-autocrine functioning in OC that contributes to its invasive/metastatic behavior.
Collapse
Affiliation(s)
- Rahul Bhattacharya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Susri Ray Chaudhuri
- Tata Translational Cancer Research Centre, Tata Medical Centre, Kolkata, India
| | - Sib S Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Biology Campus, Kolkata, India
| |
Collapse
|
32
|
Hendee KE, Sorokina EA, Muheisen SS, Reis LM, Tyler RC, Markovic V, Cuturilo G, Link BA, Semina EV. PITX2 deficiency and associated human disease: insights from the zebrafish model. Hum Mol Genet 2018; 27:1675-1695. [PMID: 29506241 PMCID: PMC5932568 DOI: 10.1093/hmg/ddy074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/30/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
The PITX2 (paired-like homeodomain 2) gene encodes a bicoid-like homeodomain transcription factor linked with several human disorders. The main associated congenital phenotype is Axenfeld-Rieger syndrome, type 1, an autosomal dominant condition characterized by variable defects in the anterior segment of the eye, an increased risk of glaucoma, craniofacial dysmorphism and dental and umbilical anomalies; in addition to this, one report implicated PITX2 in ring dermoid of the cornea and a few others described cardiac phenotypes. We report three novel PITX2 mutations-c.271C > T, p.(Arg91Trp); c.259T > C, p.(Phe87Leu); and c.356delA, p.(Gln119Argfs*36)-identified in independent families with typical Axenfeld-Rieger syndrome characteristics and some unusual features such as corneal guttata, Wolf-Parkinson-White syndrome, and hyperextensibility. To gain further insight into the diverse roles of PITX2/pitx2 in vertebrate development, we generated various genetic lesions in the pitx2 gene via TALEN-mediated genome editing. Affected homozygous zebrafish demonstrated congenital defects consistent with the range of PITX2-associated human phenotypes: abnormal development of the cornea, iris and iridocorneal angle; corneal dermoids; and craniofacial dysmorphism. In addition, via comparison of pitx2M64* and wild-type embryonic ocular transcriptomes we defined molecular changes associated with pitx2 deficiency, thereby implicating processes potentially underlying disease pathology. This analysis identified numerous affected factors including several members of the Wnt pathway and collagen types I and V gene families. These data further support the link between PITX2 and the WNT pathway and suggest a new role in regulation of collagen gene expression during development.
Collapse
Affiliation(s)
- Kathryn E Hendee
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena A Sorokina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Sanaa S Muheisen
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Linda M Reis
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Rebecca C Tyler
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Vujica Markovic
- Faculty of Medicine, University of Belgrade, Serbia
- Clinical Centre of Serbia, University Eye Hospital, Belgrade, Serbia
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Serbia
- Department of Medical Genetics, University Children’s Hospital, Belgrade, Serbia
| | - Brian A Link
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena V Semina
- Department of Pediatrics and Children’s Research Institute Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
33
|
Zhang T, Zheng T, Wang C, Zhang W, Jia D, Wang R, Qiao B. EFFECTS OF Wnt / β-CATENIN SIGNALING PATHWAY AND STAR D7 ON TESTOSTERONE SYNTHESIS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:155-162. [PMID: 31149252 PMCID: PMC6516511 DOI: 10.4183/aeb.2018.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND This study aimed to assess the mechanism through which Wnt/ beta - catenin signaling pathway, and StarD7, prometes testosterone synthesis, and to explore a new pathway for the regulation of testosterone synthesis. ANIMALS AND METHODS Leydig cells were isolated from male Sprague-Dawley rats divided into four groups and treated with Annexin 5 in concentration of 0, 0.1, 1 and 10 nmol/L. Testosterone secretion, expression of StarD7, StarD7 mRNA, β-catenin and changes of β - catenin localization in Leydig cells of testis of rats were tested in the four groups. RESULTS mRNA and protein levels of StarD7 and β-catenin increased significantly, upon stimulation with 1 nmol/L annexin 5. Accumulation of β-catenin inside the cells and the nucleus, was observed by immunofluorescence staining, in cells treated with annexin 5. These findings indicate a possible role of StarD7 and β-catenin in the process of annexin5-mediated stimulation of testosterone synthesis. CONCLUSIONS Wnt/β-catenin signaling pathway and StarD7 are involved in the process of annexin5 stimulation of testosterone synthesis. Activation of Wnt/ β-catenin signaling pathway by Annexin5, and increase in StarD7 expression lead to elevated expression of key regulatory enzymes in testosterone synthesis, thus promoting testosterone synthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - B. Qiao
- The First Affiliated Hospital of Zhengzhou University, Department of Urology, Zhengzhou, China
| |
Collapse
|
34
|
Zhao H, He S, Wang S, Zhu Y, Xu H, Luo R, Lan X, Cai Y, Sun X. Two New Insertion/Deletion Variants of the PITX2 Gene and their Effects on Growth Traits in Sheep. Anim Biotechnol 2017; 29:276-282. [PMID: 29200321 DOI: 10.1080/10495398.2017.1379415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In China, Tong sheep (TS) and Lanzhou fat-tailed sheep (LFTS) are two closely relative endanger breeds for low meat production and low fecundity, finding some marker-assisted selected (MAS) is our first priority for improving their growth traits. For this purpose, Hu sheep (HS) and small-tailed Han sheep (STHS) were compared with two endangered breeds (TS and LFTS). Paired-liked homeodomain transcription factor 2 (PITX2) gene was the important member of PITX family, which could adjust animal growth through hypothalamic-pituitary-adrenal axis. During the past years, insertion/deletion (indel) has become increasingly popular in application as MAS. In this study, two novel indel loci were identified, and five significant differences, including chest width, hip width, chest depth, chest circumference, and body height, were found between different breeds. Interestingly, there was no DD genotype and smaller number of ID genotye. All the ID genotypes were significantly greater than II genotype, which was to say the allele of "D" was dominant variation and its frequency was lower, which demonstrated that it has huge space for selection. Briefly, the two indel were potential and useful DNA markers for selecting excellent individuals in relation to growth traits in sheep.
Collapse
Affiliation(s)
- Haidong Zhao
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Shuai He
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Shuhui Wang
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Yanjiao Zhu
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Hongwei Xu
- b Science Experimental Center , Northwest University for Nationalities , Lanzhou , China
| | - Renyun Luo
- c Ruilin Sci-Tech Culture and Breeding Limit Company , Yongjing , China
| | - Xianyong Lan
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| | - Yong Cai
- c Ruilin Sci-Tech Culture and Breeding Limit Company , Yongjing , China.,d College of Life Science and Engineering , Northwest University for Nationalities , Lanzhou , China
| | - Xiuzhu Sun
- a College of Animal Science and Technology , Northwest A&F University , Yangling , China
| |
Collapse
|
35
|
Ca 2+/nuclear factor of activated T cells signaling is enriched in early-onset rectal tumors devoid of canonical Wnt activation. J Mol Med (Berl) 2017; 96:135-146. [PMID: 29124284 DOI: 10.1007/s00109-017-1607-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Our previous extensive analysis revealed a significant proportion of early-onset colorectal tumors from India to be localized to the rectum in younger individuals and devoid of deregulated Wnt/β-catenin signaling. In the current study, we performed a comprehensive genome-wide analysis of clinically well-annotated microsatellite stable early-onset sporadic rectal cancer (EOSRC) samples. Results revealed extensive DNA copy number alterations in rectal tumors in the absence of deregulated Wnt/β-catenin signaling. More importantly, transcriptome profiling revealed a (non-Wnt/β-catenin, non-MSI) genetic signature that could efficiently and specifically identify Wnt- rectal cancer. The genetic signature included a significant representation of genes belonging to Ca2+/NFAT signaling pathways that were validated in additional samples. The validated NFAT target genes exhibited significantly higher expression levels than canonical Wnt/β-catenin targets in Wnt- samples, an observation confirmed in other CRC expression data sets as well. We confirmed the validated genes to be transcriptionally regulated by NFATc1 by (a) evaluating their respective transcript levels and (b) performing promoter-luciferase and chromatin immunoprecipitation assays following ectopic expression as well as knockdown of NFATc1 in CRC cells. NFATc1 and its targets RUNX2 and GSN could drive increased migration in CRC cells. Finally, the validated genes were associated with poor survival in the cancer genome atlas CRC expression data set. This study is the first comprehensive molecular characterization of EOSRC that appears to be driven by noncanonical tumorigenesis pathways. KEY MESSAGES Early-onset sporadic rectal cancer exhibits DNA gain and loss without Wnt activation. Ca2+/NFAT signaling appears to be activated in the absence of Wnt activation. An eight-gene genetic signature distinguishes Wnt+ and Wnt- rectal tumors. NFAT and its target genes regulate tumorigenic properties in CRC cells.
Collapse
|
36
|
Aubele M, Schmitt M, Napieralski R, Paepke S, Ettl J, Absmaier M, Magdolen V, Martens J, Foekens JA, Wilhelm OG, Kiechle M. The Predictive Value of PITX2 DNA Methylation for High-Risk Breast Cancer Therapy: Current Guidelines, Medical Needs, and Challenges. DISEASE MARKERS 2017; 2017:4934608. [PMID: 29138528 PMCID: PMC5613359 DOI: 10.1155/2017/4934608] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/13/2017] [Indexed: 12/15/2022]
Abstract
High-risk breast cancer comprises distinct tumor entities such as triple-negative breast cancer (TNBC) which is characterized by lack of estrogen (ER) and progesterone (PR) and the HER2 receptor and breast malignancies which have spread to more than three lymph nodes. For such patients, current (inter)national guidelines recommend anthracycline-based chemotherapy as the standard of care, but not all patients do equally benefit from such a chemotherapy. To further improve therapy decision-making, predictive biomarkers are of high, so far unmet, medical need. In this respect, predictive biomarkers would permit patient selection for a particular kind of chemotherapy and, by this, guide physicians to optimize the treatment plan for each patient individually. Besides DNA mutations, DNA methylation as a patient selection marker has received increasing clinical attention. For instance, significant evidence has accumulated that methylation of the PITX2 (paired-like homeodomain transcription factor 2) gene might serve as a novel predictive and prognostic biomarker, for a variety of cancer diseases. This review highlights the current understanding of treatment modalities of high-risk breast cancer patients with a focus on recommended treatment options, with special attention on the future clinical application of PITX2 as a predictive biomarker to personalize breast cancer management.
Collapse
Affiliation(s)
- Michaela Aubele
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675 Munich, Germany
| | - Manfred Schmitt
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675 Munich, Germany
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | | | - Stefan Paepke
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Johannes Ettl
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Magdalena Absmaier
- Department of Dermatology, Klinikum rechts der Isar, Technische Universität München, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - John Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - John A. Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Olaf G. Wilhelm
- Therawis Diagnostics GmbH, Grillparzerstrasse 14, 81675 Munich, Germany
| | - Marion Kiechle
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| |
Collapse
|
37
|
Suh SS, Lee SG, Youn UJ, Han SJ, Kim IC, Kim S. Comprehensive Expression Profiling and Functional Network Analysis of Porphyra-334, One Mycosporine-Like Amino Acid (MAA), in Human Keratinocyte Exposed with UV-radiation. Mar Drugs 2017; 15:md15070196. [PMID: 28672785 PMCID: PMC5532638 DOI: 10.3390/md15070196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/17/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
Mycosporine-like amino acids (MAAs) have been highlighted as pharmacologically active secondary compounds to protect cells from harmful UV-radiation by absorbing its energy. Previous studies have mostly focused on characterizing their physiological properties such as antioxidant activity and osmotic regulation. However, molecular mechanisms underlying their UV-protective capability have not yet been revealed. In the present study, we investigated the expression profiling of porphyra-334-modulated genes or microRNA (miRNAs) in response to UV-exposure and their functional networks, using cDNA and miRNAs microarray. Based on our data, we showed that porphyra-334-regulated genes play essential roles in UV-affected biological processes such as Wnt (Wingless/integrase-1) and Notch pathways which exhibit antagonistic relationship in various biological processes; the UV-repressed genes were in the Wnt signaling pathway, while the activated genes were in the Notch signaling. In addition, porphyra-334-regulated miRNAs can target many genes related with UV-mediated biological processes such as apoptosis, cell proliferation and translational elongation. Notably, we observed that functional roles of the target genes for up-regulated miRNAs are inversely correlated with those for down-regulated miRNAs; the former genes promote apoptosis and translational elongation, whereas the latter function as inhibitors in these processes. Taken together, these data suggest that porphyra-334 protects cells from harmful UV radiation through the comprehensive modulation of expression patterns of genes involved in UV-mediated biological processes, and that provide a new insight to understand its functional molecular networks.
Collapse
Affiliation(s)
- Sung-Suk Suh
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Sung Gu Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea.
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
| | - Se Jong Han
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea.
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea.
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea.
| |
Collapse
|
38
|
Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin. Cell Death Dis 2017; 8:e2762. [PMID: 28471452 PMCID: PMC5520748 DOI: 10.1038/cddis.2017.77] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Ovarian carcinoma (OC) patients encounter the severe challenge of clinical management owing to lack of screening measures, chemoresistance and finally dearth of non-toxic therapeutics. Cancer cells deploy various defense strategies to sustain the tumor microenvironment, among which deregulated apoptosis remains a versatile promoter of cancer progression. Although recent research has focused on identifying agents capable of inducing apoptosis in cancer cells, yet molecules efficiently breaching their survival advantage are yet to be classified. Here we identify lectin, Sambucus nigra agglutinin (SNA) to exhibit selectivity towards identifying OC by virtue of its specific recognition of α-2, 6-linked sialic acids. Superficial binding of SNA to the OC cells confirm the hyper-sialylated status of the disease. Further, SNA activates the signaling pathways of AKT and ERK1/2, which eventually promotes de-phosphorylation of dynamin-related protein-1 (Drp-1). Upon its translocation to the mitochondrial fission loci Drp-1 mediates the central role of switch in the mitochondrial phenotype to attain fragmented morphology. We confirmed mitochondrial outer membrane permeabilization resulting in ROS generation and cytochrome-c release into the cytosol. SNA response resulted in an allied shift of the bioenergetics profile from Warburg phenotype to elevated mitochondrial oxidative phosphorylation, altogether highlighting the involvement of mitochondrial dysfunction in restraining cancer progression. Inability to replenish the SNA-induced energy crunch of the proliferating cancer cells on the event of perturbed respiratory outcome resulted in cell cycle arrest before G2/M phase. Our findings position SNA at a crucial juncture where it proves to be a promising candidate for impeding progression of OC. Altogether we unveil the novel aspect of identifying natural molecules harboring the inherent capability of targeting mitochondrial structural dynamics, to hold the future for developing non-toxic therapeutics for treating OC.
Collapse
|
39
|
Ray U, Roy Chowdhury S, Vasudevan M, Bankar K, Roychoudhury S, Roy SS. Gene regulatory networking reveals the molecular cue to lysophosphatidic acid-induced metabolic adaptations in ovarian cancer cells. Mol Oncol 2017; 11:491-516. [PMID: 28236660 PMCID: PMC5527468 DOI: 10.1002/1878-0261.12046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Extravasation and metastatic progression are two main reasons for the high mortality rate associated with cancer. The metastatic potential of cancer cells depends on a plethora of metabolic challenges prevailing within the tumor microenvironment. To achieve higher rates of proliferation, cancer cells reprogram their metabolism, increasing glycolysis and biosynthetic activities. Just why this metabolic reprogramming predisposes cells towards increased oncogenesis remains elusive. The accumulation of myriad oncolipids in the tumor microenvironment has been shown to promote the invasiveness of cancer cells, with lysophosphatidic acid (LPA) being one such critical factor enriched in ovarian cancer patients. Cellular bioenergetic studies confirm that oxidative phosphorylation is suppressed and glycolysis is increased with long exposure to LPA in ovarian cancer cells compared with non‐transformed epithelial cells. We sought to uncover the regulatory complexity underlying this oncolipid‐induced metabolic perturbation. Gene regulatory networking using RNA‐Seq analysis identified the oncogene ETS‐1 as a critical mediator of LPA‐induced metabolic alterations for the maintenance of invasive phenotype. Moreover, LPA receptor‐2 specific PtdIns3K‐AKT signaling induces ETS‐1 and its target matrix metalloproteases. Abrogation of ETS‐1 restores cellular bioenergetics towards increased oxidative phosphorylation and reduced glycolysis, and this effect was reversed by the presence of LPA. Furthermore, the bioenergetic status of LPA‐treated ovarian cancer cells mimics hypoxia through induction of hypoxia‐inducible factor‐1α, which was found to transactivate ets‐1. Studies in primary tumors generated in syngeneic mice corroborated the in vitro findings. Thus, our study highlights the phenotypic changes induced by the pro‐metastatic factor ETS‐1 in ovarian cancer cells. The relationship between enhanced invasiveness and metabolic plasticity further illustrates the critical role of metabolic adaptation of cancer cells as a driver of tumor progression. These findings reveal oncolipid‐induced metabolic predisposition as a new mechanism of tumorigenesis and propose metabolic inhibitors as a potential approach for future management of aggressive ovarian cancer.
Collapse
Affiliation(s)
- Upasana Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | - Shreya Roy Chowdhury
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| | | | - Kiran Bankar
- Bionivid Technology Private Limited, Bangalore, India
| | | | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, India
| |
Collapse
|
40
|
Zhang JX, Chen ZH, Xu Y, Chen JW, Weng HW, Yun M, Zheng ZS, Chen C, Wu BL, Li EM, Fu JH, Ye S, Xie D. Downregulation of MicroRNA-644a Promotes Esophageal Squamous Cell Carcinoma Aggressiveness and Stem Cell-like Phenotype via Dysregulation of PITX2. Clin Cancer Res 2017; 23:298-310. [PMID: 27407092 DOI: 10.1158/1078-0432.ccr-16-0414] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE We previously reported the oncogenic role of paired-like homeodomain 2 (PITX2) in esophageal squamous cell carcinoma (ESCC). In this study, we aimed to identify the miRNA regulators of PITX2 and the mechanism underlying the pathogenesis of ESCC. EXPERIMENTAL DESIGN Using miRNA profiling and bioinformatics analyses, we identified miR-644a as a negative mediator of PITX2 in ESCC. A series of in vivo and in vitro assays were performed to confirm the effect of miR-644a on PITX2-mediated ESCC malignancy. RESULTS ESCC cells and tissues expressed less miR-644a than normal epithelial controls. In patient samples, lower expression of miR-644a in ESCC tissues was significantly correlated with tumor recurrence and/or metastasis, such that miR-644a, PITX2, and the combination of the two were independent prognostic indicators for ESCC patient's survival (P < 0.05). Gain- and loss-of-function studies demonstrated that miR-644a inhibited ESCC cell growth, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo In addition, miR-644a dramatically suppressed self-renewal and stem cell-like traits in ESCC cells. Furthermore, the effect of upregulation of miR-644a was similar to that of PITX2 knockdown in ESCC cells. Mechanistic studies revealed that miR-644a attenuates ESCC cells' malignancy and stem cell-associated phenotype, at least partially, by inactivation of the Akt/GSK-3β/β-catenin signaling pathway through PITX2. Furthermore, promoter hypermethylation caused downregulation of miR-644a in ESCC. CONCLUSIONS Downregulation of miR-644a plays an important role in promoting both aggressiveness and stem-like traits of ESCC cells, suggesting that miR-644a may be useful as a novel prognostic biomarker or therapeutic target for the disease. Clin Cancer Res; 23(1); 298-310. ©2016 AACR.
Collapse
Affiliation(s)
- Jia-Xing Zhang
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
| | - Zhen-Hua Chen
- Department of Urology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jie-Wei Chen
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| | - Hui-Wen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Miao Yun
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zou-San Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Jian-Hua Fu
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Dan Xie
- The State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, P.R. China.
- Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
41
|
Zhang X, Zhang S, Yang Q, Lei C, Chen H, Lan X. Exploration of dairy goat PITX2 alternative splice events and differential isoform expression. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Cao H, Amendt BA. pySAPC, a python package for sparse affinity propagation clustering: Application to odontogenesis whole genome time series gene-expression data. Biochim Biophys Acta Gen Subj 2016; 1860:2613-8. [PMID: 27288587 DOI: 10.1016/j.bbagen.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Developmental dental anomalies are common forms of congenital defects. The molecular mechanisms of dental anomalies are poorly understood. Systematic approaches such as clustering genes based on similar expression patterns could identify novel genes involved in dental anomalies and provide a framework for understanding molecular regulatory mechanisms of these genes during tooth development (odontogenesis). METHODS A python package (pySAPC) of sparse affinity propagation clustering algorithm for large datasets was developed. Whole genome pair-wise similarity was calculated based on expression pattern similarity based on 45 microarrays of several stages during odontogenesis. RESULTS pySAPC identified 743 gene clusters based on expression pattern similarity during mouse tooth development. Three clusters are significantly enriched for genes associated with dental anomalies (with FDR <0.1). The three clusters of genes have distinct expression patterns during odontogenesis. CONCLUSIONS Clustering genes based on similar expression profiles recovered several known regulatory relationships for genes involved in odontogenesis, as well as many novel genes that may be involved with the same genetic pathways as genes that have already been shown to contribute to dental defects. GENERAL SIGNIFICANCE By using sparse similarity matrix, pySAPC use much less memory and CPU time compared with the original affinity propagation program that uses a full similarity matrix. This python package will be useful for many applications where dataset(s) are too large to use full similarity matrix. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52244, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA 52244, USA; Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52244, USA.
| |
Collapse
|
43
|
Wnt9A Induction Linked to Suppression of Human Colorectal Cancer Cell Proliferation. Int J Mol Sci 2016; 17:495. [PMID: 27049382 PMCID: PMC4848951 DOI: 10.3390/ijms17040495] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023] Open
Abstract
Most studies of Wnt signaling in malignant tissues have focused on the canonical Wnt pathway (CWP) due to its role in stimulating cellular proliferation. The role of the non-canonical Wnt pathway (NCWP) in tissues with dysregulated Wnt signaling is not fully understood. Understanding NCWP’s role is important since these opposing pathways act in concert to maintain homeostasis in healthy tissues. Our preliminary studies demonstrated that LiCl inhibited proliferation of primary cells derived from colorectal cancer (CRC). Since LiCl stimulates cell proliferation in normal tissues and NCWP suppresses it, the present study was designed to investigate the impact of NCWP components in LiCl-mediated effects. LiCl-mediated inhibition of CRC cell proliferation (p < 0.001) and increased apoptosis (p < 0.01) coincided with 23-fold increase (p < 0.025) in the expression of the NCWP ligand, Wnt9A. LiCl also suppressed β-catenin mRNA (p < 0.03), total β-catenin protein (p < 0.025) and the active form of β-catenin. LiCl-mediated inhibition of CRC cell proliferation was partially reversed by IWP-2, and Wnt9A antibody. Recombinant Wnt9A protein emulated LiCl effects by suppressing β-catenin protein (p < 0.001), inhibiting proliferation (p < 0.001) and increasing apoptosis (p < 0.03). This is the first study to demonstrate induction of a NCWP ligand, Wnt9A as part of a mechanism for LiCl-mediated suppression of CRC cell proliferation.
Collapse
|
44
|
Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, Tang Y, Bai T, Wu S, Wei L, Zang Y, Zhang J, Wang L. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget 2016; 7:11208-22. [PMID: 26848620 PMCID: PMC4905467 DOI: 10.18632/oncotarget.7158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/23/2016] [Indexed: 12/14/2022] Open
Abstract
The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhe Shen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - He Jiang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanping Tang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Bai
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji Zhang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
45
|
Nabavi S, Schmolze D, Maitituoheti M, Malladi S, Beck AH. EMDomics: a robust and powerful method for the identification of genes differentially expressed between heterogeneous classes. Bioinformatics 2016; 32:533-41. [PMID: 26515818 PMCID: PMC4743632 DOI: 10.1093/bioinformatics/btv634] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION A major goal of biomedical research is to identify molecular features associated with a biological or clinical class of interest. Differential expression analysis has long been used for this purpose; however, conventional methods perform poorly when applied to data with high within class heterogeneity. RESULTS To address this challenge, we developed EMDomics, a new method that uses the Earth mover's distance to measure the overall difference between the distributions of a gene's expression in two classes of samples and uses permutations to obtain q-values for each gene. We applied EMDomics to the challenging problem of identifying genes associated with drug resistance in ovarian cancer. We also used simulated data to evaluate the performance of EMDomics, in terms of sensitivity and specificity for identifying differentially expressed gene in classes with high within class heterogeneity. In both the simulated and real biological data, EMDomics outperformed competing approaches for the identification of differentially expressed genes, and EMDomics was significantly more powerful than conventional methods for the identification of drug resistance-associated gene sets. EMDomics represents a new approach for the identification of genes differentially expressed between heterogeneous classes and has utility in a wide range of complex biomedical conditions in which sample classes show within class heterogeneity. AVAILABILITY AND IMPLEMENTATION The R package is available at http://www.bioconductor.org/packages/release/bioc/html/EMDomics.html.
Collapse
Affiliation(s)
- Sheida Nabavi
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Daniel Schmolze
- Department of Pathology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mayinuer Maitituoheti
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA and
| | - Sadhika Malladi
- Department of Pathology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA, The Harker School, San Jose, CA, USA
| | - Andrew H Beck
- Department of Pathology and Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Perlman EJ, Gadd S, Arold ST, Radhakrishnan A, Gerhard DS, Jennings L, Huff V, Guidry Auvil JM, Davidsen TM, Dome JS, Meerzaman D, Hsu CH, Nguyen C, Anderson J, Ma Y, Mungall AJ, Moore RA, Marra MA, Mullighan CG, Ma J, Wheeler DA, Hampton OA, Gastier-Foster JM, Ross N, Smith MA. MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours. Nat Commun 2015; 6:10013. [PMID: 26635203 PMCID: PMC4686660 DOI: 10.1038/ncomms10013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour.
Collapse
Affiliation(s)
- Elizabeth J. Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Ave, Chicago, Illinosis 60611, USA
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Ave, Chicago, Illinosis 60611, USA
| | - Stefan T. Arold
- King Abdullah University of Science and Technology, Department of Biochemistry and Molecular Biology, Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center, Thuwal 23955, Saudi Arabia
| | - Anand Radhakrishnan
- King Abdullah University of Science and Technology, Department of Biochemistry and Molecular Biology, Division of Biological and Environmental Sciences and Engineering, Computational Bioscience Research Center, Thuwal 23955, Saudi Arabia
| | - Daniela S. Gerhard
- Office of Cancer Genomics, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Lawrence Jennings
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University's Feinberg School of Medicine, 225 E. Chicago Ave, Chicago, Illinosis 60611, USA
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030, USA
| | - Jaime M. Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Tanja M. Davidsen
- Office of Cancer Genomics, National Cancer Institute, 31 Center Drive, Bethesda, Maryland 20892, USA
| | - Jeffrey S. Dome
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Children's National Medical Center, 111 Michigan Avenue, NW, Washington DC 20010, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Chih Hao Hsu
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - Cu Nguyen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA
| | - James Anderson
- Frontier Science and Technology Research Foundation, 505 S. Rosa Rd #100, Madison, Wisconsin 53719, USA
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Andrew J. Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Richard A. Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Marco A. Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 4S6
| | - Charles G. Mullighan
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, Tennessee 38105, USA
| | - Jing Ma
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 342, Memphis, Tennessee 38105, USA
| | - David A. Wheeler
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | - Oliver A. Hampton
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Ohio State University College of Medicine, Columbus, Ohio 43205, USA
| | - Julie M. Gastier-Foster
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Departments of Pathology and Pediatrics, Ohio State University College of Medicine, 700 Children's Drive, Columbus, Ohio 43205, USA
| | - Nicole Ross
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Malcolm A. Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, 9609 Medical Center Drive, RM 5-W414, MSC 9737, Bethesda, Maryland 20892, USA
| |
Collapse
|
47
|
Basu M, Bhattacharya R, Ray U, Mukhopadhyay S, Chatterjee U, Roy SS. Invasion of ovarian cancer cells is induced byPITX2-mediated activation of TGF-β and Activin-A. Mol Cancer 2015; 14:162. [PMID: 26298390 PMCID: PMC4546816 DOI: 10.1186/s12943-015-0433-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Most ovarian cancers are highly invasive in nature and the high burden of metastatic disease make them a leading cause of mortality among all gynaecological malignancies. The homeodomain transcription factor, PITX2 is associated with cancer in different tissues. Our previous studies demonstrated increased PITX2 expression in human ovarian tumours. Growing evidence linking activation of TGF-β pathway by homeodomain proteins prompted us to look for the possible involvement of this signalling pathway in PITX2-mediated progression of ovarian cancer. METHODS The status of TGF-β signalling in human ovarian tissues was assessed by immunohistochemistry. The expression level of TGFB/INHBA and other invasion-associated genes was measured by quantitative-PCR (Q-PCR) and Western Blot after transfection/treatments with clones/reagents in normal/cancer cells. The physiological effect of PITX2 on invasion/motility was checked by matrigel invasion and wound healing assay. The PITX2- and activin-induced epithelial-mesenchymal transition (EMT) was evaluated by Q-PCR of respective markers and confocal/phase-contrast imaging of cells. RESULTS Human ovarian tumours showed enhanced TGF-β signalling. Our study uncovers the PITX2-induced expression of TGFB1/2/3 as well as INHBA genes (p < 0.01) followed by SMAD2/3-dependent TGF-β signalling pathway. PITX2-induced TGF-β pathway regulated the expression of invasion-associated genes, SNAI1, CDH1 and MMP9 (p < 0.01) that accounted for enhanced motility/invasion of ovarian cancers. Snail and MMP9 acted as important mediators of PITX2-induced invasiveness of ovarian cancer cells. PITX2 over-expression resulted in loss of epithelial markers (p < 0.01) and gain of mesenchymal markers (p < 0.01) that contributed significantly to ovarian oncogenesis. PITX2-induced INHBA expression (p < 0.01) contributed to EMT in both normal and ovarian cancer cells. CONCLUSIONS Overall, our findings suggest a significant contributory role of PITX2 in promoting invasive behaviour of ovarian cancer cells through up-regulation of TGFB/INHBA. We have also identified the previously unknown involvement of activin-A in promoting EMT. Our work provides novel mechanistic insights into the invasive behavior of ovarian cancer cells. The extension of this study have the potential for therapeutic applications in future.
Collapse
Affiliation(s)
- Moitri Basu
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Rahul Bhattacharya
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Upasana Ray
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Uttara Chatterjee
- Department of Pathology, IPGMER and SSKM Hospital, 244 AJC Bose Road, Kolkata, India.
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.
| |
Collapse
|
48
|
Zhong LX, Li H, Wu ML, Liu XY, Zhong MJ, Chen XY, Liu J, Zhang Y. Inhibition of STAT3 signaling as critical molecular event in resveratrol-suppressed ovarian cancer cells. J Ovarian Res 2015; 8:25. [PMID: 25896424 PMCID: PMC4409989 DOI: 10.1186/s13048-015-0152-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/10/2015] [Indexed: 02/03/2023] Open
Abstract
Background Resveratrol exerts inhibitory effects on ovarian cancer cells, while its underlying mechanism and critical molecular target(s) have been lesser known. Activations of Wnt, Notch and STAT3 signaling are frequent in ovarian cancers/OCs and supposed to be important for OC formation and progression, while the impacts of resveratrol on these signaling pathways in OC cells remain obscure. Methods In this study, two human ovarian cancer cell lines, OVCAR-3 and CAOV-3, were treated by 120 μM resveratrol and their responses to the treatment and the statuses of Wnt, Notch and STAT3 signaling in them were analyzed by multiple experimental approaches. Selective inhibitors of Wnt, Notch or STAT3 signaling were employed to treat OVCAR-3 and CAOV-3 cells to elucidate the significance of individual signaling pathways for ovarian cancers. Results The results demonstrated distinct inhibitory effects of resveratrol on human ovarian cancer cells in terms of remarkable G1 phase accumulation, increased apoptosis fraction and concurrent suppression of Wnt, Notch and STAT3 signaling as well as their downstream cancer-related gene expression. Treatments with Wnt, Notch or STAT3 selective inhibitor revealed that only AG490, a JAK-specific inhibitor, inhibits OVCAR-3 and CAOV-3 cells in the extent as similar as that of resveratrol. Conclusion Our results suggest the significance of STAT3 activation in the maintenance and survival of ovarian cancer cells. The activated STAT3 signaling is the critical molecular target of resveratrol. Resveratrol would be a promising candidate in the management of ovarian cancers, especially the ones with resistance to conventional therapeutic agents.
Collapse
Affiliation(s)
- Li-Xia Zhong
- Department of Clinical Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, 110042, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian, 116044, China.
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian, 116044, China.
| | - Xiao-Yu Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian, 116044, China.
| | - Ming-Jun Zhong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian, 116044, China.
| | - Xiao-Yan Chen
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian, 116044, China.
| | - Yang Zhang
- Department of Clinical Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, 110042, China.
| |
Collapse
|
49
|
Identification of stage-specific biomarkers in lung adenocarcinoma based on RNA-seq data. Tumour Biol 2015; 36:6391-9. [PMID: 25861020 DOI: 10.1007/s13277-015-3327-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022] Open
Abstract
Tumorigenesis is a multistep process that attributes to the sequential accumulation of abnormal expression in key oncogenes or tumor suppressors. We aimed to identify stage-specific biomarkers to distinguish lung adenocarcinoma (LAC) stages in cancer progression. RNA-sequencing data of LAC and matched adjacent non-cancer tissues were downloaded from the Cancer Genome Atlas, including 29 pairs of samples from LAC at stage I, 14 from LAC at stage II, 13 from LAC at stage III, and 1 from LAC at stage IV. Differentially expressed genes (DEGs) were analyzed for each case at different stages of LAC. DEGs were further annotated based on transcription factor data information, tumor-associated gene database, and protein-protein interaction database. Functional annotation was performed for genes in PPI network by DAVID online tool. Our analysis identified 11 high-frequency DEGs in the stage I, 29 in the stage II, and 90 in the stage III of LAC. Among them, eight genes were significantly correlated with LAC stages and identified as biomarkers in LAC progression. ANGPTL5, C7orf16, EDN3, LOC150622, HOXA11AS, IL1F5, and USH1G significantly distinguished stage III from stages I and II. GJB6 was significantly enriched in the gap junction trafficking pathway, while C7orf16 and EDN3 were enriched in Wnt signaling pathway, cell cycle, and G protein-coupled receptor (GPCR) signaling. Up-regulated GJB6 especially in LAC stage II and down-regulated C7orf16 and EDN3 specifically in stage III were identified as biomarkers for distinguishing cancer stage in tumor progression through dysregulating gap junction, Wnt signaling, and GPCR signaling pathways.
Collapse
|
50
|
Diagnostic value of SFRP1 as a favorable predictive and prognostic biomarker in patients with prostate cancer. PLoS One 2015; 10:e0118276. [PMID: 25719802 PMCID: PMC4342152 DOI: 10.1371/journal.pone.0118276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Abstract
Growing genetic and molecular biological evidence suggests that the disruption of balance between Secreted Frizzled-Related Protein-1 (SFRP1) and β-catenin plays an important role in the initiation and development of multiple cancers. The aim of this study was to examine whether the expression of SFRP1 and β-catenin is associated with the clinical-pathologic features of patients with prostate cancer (PCa), and to evaluate their potential roles as predictive and prognostic biomarkers. In this study, a total of 61 patients with PCa and 10 patients with benign prostatic hyperplasia were included, and we showed that the expression of SFRP1 and β-catenin was correlated with the Gleason score, survival rate and response for endocrine therapy of PCa. The survival rates of PCa patients with low SFRP1 expression (P = 0.016) or high β-catenin expression (P = 0.004) were significantly poorer. A negative correlation (r = -0.275, P = 0.032) between SFRP1 and β-catenin was observed by Chi-square test. Multivariate analysis suggested that SFRP1 (hazard ratio, 0.429; 95% confidence intervals, 0.227–0.812; P = 0.009) may serve as an independent predictive and prognostic factor for PCa. We also showed that the protein and mRNA levels of SFRP1 in androgen-dependent PCa cell line LNCaP were significantly higher than those in androgen-independent PCa cell lines DU145 and PC3. However, the protein level of β-catenin in LNCaP cells was significantly lower than that in DU145 and PC3 cells, and no significant difference of β-catenin mRNA level was observed in LNCaP, DU145 and PC3 cells. Bisulfite sequencing PCR assay revealed significantly lower methylation level of SFRP1 promoter in LNCaP cells than that in DU145 and PC3 cells. Taken together, these findings suggest that SFRP1, which expression inversely correlates with that of β-catenin, is a favorable predictive and prognostic biomarker.
Collapse
|