1
|
Johnson N, Qi B, Wen J, Du B, Banerjee S. KLHL24 associated cardiomyopathy: Gene function to clinical management. Gene 2025; 939:149185. [PMID: 39708934 DOI: 10.1016/j.gene.2024.149185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/26/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND KLHL24 (Kelch-like protein 24) is a significant component of the ubiquitin-proteasome system (UPS), involved in regulating protein turnover through targeted ubiquitination and degradation. Germline mutations in KLHL24 gene have been known to cause Epidermolysis Bullosa Simplex characterized by skin fragility but has recently been found to cause Cardiomyopathy. MAIN BODY Various cardiomyopathies, including hypertrophic cardiomyopathy and dilated cardiomyopathy, leading to abnormal protein degradation and affecting the stability and function of essential cardiac proteins which finally results into structural and functional abnormalities in cardiac muscle. In this review, in order to understand the disease association of germline mutations of KLHL24, we summarize all the studies performed with KLHL24 gene including studies from 2016 when KLHL24 was first identified to be associated with epidermolysis bullosa simplex till the recent studies in 2024 by using keywords such as KLHL24 gene, hypertrophic cardiomyopathy, dilated cardiomyopathy and epidermolysis bullosa simplex. Furthermore, we explored the proposed molecular mechanisms and pathophysiologies of KLHL24 associated diseases. Patients with KLHL24 mutations were usually presented with variable clinical symptoms. The main clinical presentations have been cutaneous lesions, cardiac symptoms associated with cardiomyopathies and there have been reports of skeletal muscle weakness and neurological symptoms as well. Current treatments focus on managing clinical symptoms and preventing complications through medications, lifestyle changes, and surgical interventions. In addition, researches have also been conducted cell culture based in vitro studies for reducing the clinical symptoms of KLHL24 associated diseases. However, currently there are no specific clinical trials going on regarding the therapeutic strategies among patients with KLHL24 mutations. Understanding the role of KLHL24 in cardiomyopathies is very important for developing targeted diagnostic approach with therapeutic strategies. CONCLUSION This review emphasizes the importance of KLHL24 mutations as a newly recognized cause of cardiomyopathy, paving the way for improved clinical diagnosis, targeted therapies, and ultimately, for better patient outcomes.
Collapse
Affiliation(s)
- Neil Johnson
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China; Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Baiyu Qi
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Norman Bethune Health Science Center, Changchun, China
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
2
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Ramagoma RB, Makgoo L, Mbita Z. KLHL20 and its role in cell homeostasis: A new perspective and therapeutic potential. Life Sci 2024; 357:123041. [PMID: 39233199 DOI: 10.1016/j.lfs.2024.123041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.
Collapse
Affiliation(s)
- Rolivhuwa Bishop Ramagoma
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Lilian Makgoo
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Zukile Mbita
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa.
| |
Collapse
|
4
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Timms RT, Mena EL, Leng Y, Li MZ, Tchasovnikarova IA, Koren I, Elledge SJ. Defining E3 ligase-substrate relationships through multiplex CRISPR screening. Nat Cell Biol 2023; 25:1535-1545. [PMID: 37735597 PMCID: PMC10567573 DOI: 10.1038/s41556-023-01229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
Specificity within the ubiquitin-proteasome system is primarily achieved through E3 ubiquitin ligases, but for many E3s their substrates-and in particular the molecular features (degrons) that they recognize-remain largely unknown. Current approaches for assigning E3s to their cognate substrates are tedious and low throughput. Here we developed a multiplex CRISPR screening platform to assign E3 ligases to their cognate substrates at scale. A proof-of-principle multiplex screen successfully performed ~100 CRISPR screens in a single experiment, refining known C-degron pathways and identifying an additional pathway through which Cul2FEM1B targets C-terminal proline. Further, by identifying substrates for Cul1FBXO38, Cul2APPBP2, Cul3GAN, Cul3KLHL8, Cul3KLHL9/13 and Cul3KLHL15, we demonstrate that the approach is compatible with pools of full-length protein substrates of varying stabilities and, when combined with site-saturation mutagenesis, can assign E3 ligases to their cognate degron motifs. Thus, multiplex CRISPR screening will accelerate our understanding of how specificity is achieved within the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Richard T Timms
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elijah L Mena
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Iva A Tchasovnikarova
- Wellcome/CRUK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
6
|
Zhang Z, Sie B, Chang A, Leng Y, Nardone C, Timms RT, Elledge SJ. Elucidation of E3 ubiquitin ligase specificity through proteome-wide internal degron mapping. Mol Cell 2023; 83:3377-3392.e6. [PMID: 37738965 PMCID: PMC10594193 DOI: 10.1016/j.molcel.2023.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
The ubiquitin-proteasome system plays a critical role in biology by regulating protein degradation. Despite their importance, precise recognition specificity is known for a few of the 600 E3s. Here, we establish a two-pronged strategy for identifying and mapping critical residues of internal degrons on a proteome-scale in HEK-293T cells. We employ global protein stability profiling combined with machine learning to identify 15,800 peptides likely to contain sequence-dependent degrons. We combine this with scanning mutagenesis to define critical residues for over 5,000 predicted degrons. Focusing on Cullin-RING ligase degrons, we generated mutational fingerprints for 219 degrons and developed DegronID, a computational algorithm enabling the clustering of degron peptides with similar motifs. CRISPR analysis enabled the discovery of E3-degron pairs, of which we uncovered 16 pairs that revealed extensive degron variability and structural determinants. We provide the visualization of these data on the public DegronID data browser as a resource for future exploration.
Collapse
Affiliation(s)
- Zhiqian Zhang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brandon Sie
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aiquan Chang
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yumei Leng
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Richard T Timms
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Kido J, Egami K, Misumi Y, Sugawara K, Tsuchida N, Matsumoto N, Ueda M, Nakamura K. X-linked intellectual disability related to a novel variant of KLHL15. Hum Genome Var 2023; 10:21. [PMID: 37452054 PMCID: PMC10349042 DOI: 10.1038/s41439-023-00248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 07/18/2023] Open
Abstract
Kelch-like (KLHL) 15, localized on chromosome Xp22.11, was recently identified as an X-linked intellectual disability gene. Herein, we report a case of a male patient with a novel nonsense variant, c.736 C > T p.(Arg246*), in KLHL15, who presented with impaired intelligence, short stature, frequent hypoglycemia, and periodic fever. Patients with nonsense variants in KLHL15 may develop intellectual disabilities, minor skeletal anomalies, and facial dysmorphisms.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan.
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | | | - Yohei Misumi
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Kumamoto University Hospital, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Maeoka Y, Cornelius RJ, McCormick JA. Cullin 3 and Blood Pressure Regulation: Insights From Familial Hyperkalemic Hypertension. Hypertension 2023; 80:912-923. [PMID: 36861484 PMCID: PMC10133098 DOI: 10.1161/hypertensionaha.123.20525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The study of rare monogenic forms of hypertension has led to the elucidation of important physiological pathways controlling blood pressure. Mutations in several genes cause familial hyperkalemic hypertension (also known as Gordon syndrome or pseudohypoaldosteronism type II). The most severe form of familial hyperkalemic hypertension is caused by mutations in CUL3, encoding CUL3 (Cullin 3)-a scaffold protein in an E3 ubiquitin ligase complex that tags substrates for proteasomal degradation. In the kidney, CUL3 mutations cause accumulation of the substrate WNK (with-no-lysine [K]) kinase and ultimately hyperactivation of the renal NaCl cotransporter-the target of the first-line antihypertensive thiazide diuretics. The precise mechanisms by which mutant CUL3 causes WNK kinase accumulation have been unclear, but several functional defects are likely to contribute. The hypertension seen in familial hyperkalemic hypertension also results from effects exerted by mutant CUL3 on several pathways in vascular smooth muscle and endothelium that modulate vascular tone. This review summarizes the mechanisms by which wild type and mutant CUL3 modulate blood pressure through effects on the kidney and vasculature, potential effects in the central nervous system and heart, and future directions for investigation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR
| |
Collapse
|
9
|
Fu AB, Xiang SF, He QJ, Ying MD. Kelch-like proteins in the gastrointestinal tumors. Acta Pharmacol Sin 2023; 44:931-939. [PMID: 36266566 PMCID: PMC10104798 DOI: 10.1038/s41401-022-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Gastrointestinal tumors have become a worldwide health problem with high morbidity and poor clinical outcomes. Chemotherapy and surgery, the main treatment methods, are still far from meeting the treatment needs of patients, and targeted therapy is in urgent need of development. Recently, emerging evidence suggests that kelch-like (KLHL) proteins play essential roles in maintaining proteostasis and are involved in the progression of various cancers, functioning as adaptors in the E3 ligase complex and promoting the specific degradation of substrates. Therefore, KLHL proteins should be taken into consideration for targeted therapy strategy discovery. This review summarizes the current knowledge of KLHL proteins in gastrointestinal tumors and discusses the potential of KLHL proteins as potential drug targets and prognostic biomarkers.
Collapse
Affiliation(s)
- An-Bo Fu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, 310002, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Sen-Feng Xiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Caswell RC, Baptista J, Cairns LM, Wilson K, Stewart H. Clinical findings and structural analysis involving a patient with a novel KLHL15 variant. Eur J Med Genet 2023; 66:104768. [PMID: 37059329 DOI: 10.1016/j.ejmg.2023.104768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
A de novo novel variant of uncertain significance p. (Arg532del) in the KLHL15 gene was identified by trio exome analysis in a child with global developmental delay, coarse facial features, repetitive behaviour, increased fatigability, poor feeding and gastro-oesophageal reflux. Comparative modelling and structural analysis were performed to gain insight into the effects of the variant on KLHL15 protein structure and function, with a view to aiding variant classification. The p. (Arg532del) variant affects a highly conserved residue within one of the Kelch repeats of the KLHL15 protein. This residue contributes to the stability of loop regions at the substrate binding surface of the protein; comparative modelling of the variant protein predicts altered topology at this surface, including at residue Tyr552, which is known to be important for substrate binding. We propose that it is highly probable that the p. (Arg532del) variant has a deleterious impact on KLHL15 structure, leading to a reduced level of protein function in vivo.
Collapse
Affiliation(s)
- Richard C Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, EX2 5DW, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Health, University of Plymouth, UK
| | - Lauren M Cairns
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7HE, UK; Royal Berkshire Hospital, Royal Berkshire NHS Foundation Trust, Reading, RG1 5AN, UK
| | - Kate Wilson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7HE, UK; Genes Australia, 298 Gilchrist Ave, Herston QLD, 4006, Australia
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7HE, UK.
| |
Collapse
|
11
|
Targeted degradation via direct 26S proteasome recruitment. Nat Chem Biol 2023; 19:55-63. [PMID: 36577875 PMCID: PMC9797404 DOI: 10.1038/s41589-022-01218-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/25/2022] [Indexed: 12/29/2022]
Abstract
Engineered destruction of target proteins by recruitment to the cell's degradation machinery has emerged as a promising strategy in drug discovery. The majority of molecules that facilitate targeted degradation do so via a select number of ubiquitin ligases, restricting this therapeutic approach to tissue types that express the requisite ligase. Here, we describe a new strategy of targeted protein degradation through direct substrate recruitment to the 26S proteasome. The proteolytic complex is essential and abundantly expressed in all cells; however, proteasomal ligands remain scarce. We identify potent peptidic macrocycles that bind directly to the 26S proteasome subunit PSMD2, with a 2.5-Å-resolution cryo-electron microscopy complex structure revealing a binding site near the 26S pore. Conjugation of this macrocycle to a potent BRD4 ligand enabled generation of chimeric molecules that effectively degrade BRD4 in cells, thus demonstrating that degradation via direct proteasomal recruitment is a viable strategy for targeted protein degradation.
Collapse
|
12
|
Ye G, Wang J, Yang W, Li J, Ye M, Jin X. The roles of KLHL family members in human cancers. Am J Cancer Res 2022; 12:5105-5139. [PMID: 36504893 PMCID: PMC9729911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
The Kelch-like (KLHL) family members consist of three domains: bric-a-brac, tramtrack, broad complex/poxvirus and zinc finger domain, BACK domain and Kelch domain, which combine and interact with Cullin3 to form an E3 ubiquitin ligase. Research has indicated that KLHL family members ubiquitinate target substrates to regulate physiological and pathological processes, including tumorigenesis and progression. KLHL19, a member of the KLHL family, is associated with tumorigenesis and drug resistance. However, the regulation and cross talks of other KLHL family members, which also play roles in cancer, are still unclear. Our review mainly explores studies concerning the roles of other KLHL family members in tumor-related regulation to provide novel insights into KLHL family members.
Collapse
Affiliation(s)
- Ganghui Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Wang
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Weili Yang
- Yinzhou People’s Hospital of Medical School, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo UniversityNingbo 315020, Zhejiang, P. R. China,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
13
|
Wu J, Fang S, Lu KT, Kumar G, Reho JJ, Brozoski DT, Otanwa AJ, Hu C, Nair AR, Wackman KK, Agbor LN, Grobe JL, Sigmund CD. Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac017. [PMID: 35493997 PMCID: PMC9045850 DOI: 10.1093/function/zqac017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/13/2023]
Abstract
Human hypertension caused by in-frame deletion of CULLIN3 exon-9 (Cul3∆9) is driven by renal and vascular mechanisms. We bred conditionally activatable Cul3∆9 transgenic mice with tamoxifen-inducible Tie2-CREERT2 mice to test the importance of endothelial Cul3. The resultant mice (E-Cul3∆9) trended towards elevated nighttime blood pressure (BP) correlated with increased nighttime activity, but displayed no difference in daytime BP or activity. Male and female E-Cul3∆9 mice together exhibited a decline in endothelial-dependent relaxation in carotid artery. Male but not female E-Cul3∆9 mice displayed severe endothelial dysfunction in cerebral basilar artery. There was no impairment in mesenteric artery and no difference in smooth muscle function, suggesting the effects of Cul3∆9 are arterial bed-specific and sex-dependent. Expression of Cul3∆9 in primary mouse aortic endothelial cells decreased endogenous Cul3 protein, phosphorylated (S1177) endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Protein phosphatase (PP) 2A, a known Cul3 substrate, dephosphorylates eNOS. Cul3∆9-induced impairment of eNOS activity was rescued by a selective PP2A inhibitor okadaic acid, but not by a PP1 inhibitor tautomycetin. Because NO deficiency contributes to salt-induced hypertension, we tested the salt-sensitivity of E-Cul3∆9 mice. While both male and female E-Cul3∆9 mice developed salt-induced hypertension and renal injury, the pressor effect of salt was greater in female mutants. The increased salt-sensitivity in female E-Cul3∆9 mice was associated with decreased renovascular relaxation and impaired natriuresis in response to a sodium load. Thus, CUL3 mutations in the endothelium may contribute to human hypertension in part through decreased endothelial NO bioavailability, renovascular dysfunction, and increased salt-sensitivity of BP.
Collapse
Affiliation(s)
- Jing Wu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Shi Fang
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA,Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Ko-Ting Lu
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Gaurav Kumar
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - John J Reho
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Daniel T Brozoski
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Adokole J Otanwa
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Chunyan Hu
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Kelsey K Wackman
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, 52242 Iowa, USA
| | - Justin L Grobe
- Deparment of Physiology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226 Wisconsin, USA
| | | |
Collapse
|
14
|
Zhang C, Zhou B, Gu F, Liu H, Wu H, Yao F, Zheng H, Fu H, Chong W, Cai S, Huang M, Ma X, Guo Z, Li T, Deng W, Zheng M, Ji Q, Zhao Y, Ma Y, Wang QE, Tang TS, Guo C. Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell 2022; 82:1297-1312.e8. [DOI: 10.1016/j.molcel.2022.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
|
15
|
Song J, Merrill RA, Usachev AY, Strack S. The X-linked intellectual disability gene product and E3 ubiquitin ligase KLHL15 degrades doublecortin proteins to constrain neuronal dendritogenesis. J Biol Chem 2020; 296:100082. [PMID: 33199366 PMCID: PMC7948412 DOI: 10.1074/jbc.ra120.016210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Proper brain development and function requires finely controlled mechanisms for protein turnover, and disruption of genes involved in proteostasis is a common cause of neurodevelopmental disorders. Kelch-like 15 (KLHL15) is a substrate adaptor for cullin3-containing E3 ubiquitin ligases, and KLHL15 gene mutations were recently described as a cause of severe X-linked intellectual disability. Here, we used a bioinformatics approach to identify a family of neuronal microtubule-associated proteins as KLHL15 substrates, which are themselves critical for early brain development. We biochemically validated doublecortin (DCX), also an X-linked disease protein, and doublecortin-like kinase 1 and 2 as bona fide KLHL15 interactors and mapped KLHL15 interaction regions to their tandem DCX domains. Shared with two previously identified KLHL15 substrates, a FRY tripeptide at the C-terminal edge of the second DCX domain is necessary for KLHL15-mediated ubiquitination of DCX and doublecortin-like kinase 1 and 2 and subsequent proteasomal degradation. Conversely, silencing endogenous KLHL15 markedly stabilizes these DCX domain-containing proteins and prolongs their half-life. Functionally, overexpression of KLHL15 in the presence of WT DCX reduces dendritic complexity of cultured hippocampal neurons, whereas neurons expressing FRY-mutant DCX are resistant to KLHL15. Collectively, our findings highlight the critical importance of the E3 ubiquitin ligase adaptor KLHL15 in proteostasis of neuronal microtubule-associated proteins and identify a regulatory network important for development of the mammalian nervous system.
Collapse
Affiliation(s)
- Jianing Song
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Andrew Y Usachev
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and the Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The goal of this review is to evaluate recent advances in understanding the pivotal roles of Cullin-3 (CUL3) in blood pressure regulation with a focus on its actions in the kidney and blood vessels. RECENT FINDINGS Cul3-based ubiquitin ligase regulates renal electrolyte transport, vascular tone, and redox homeostasis by facilitating the normal turnover of (1) with-no-lysine kinases in the distal nephron, (2) RhoA and phosphodiesterase 5 in the vascular smooth muscle, and (3) nuclear factor E2-related factor 2 in antioxidant responses. CUL3 mutations identified in familial hyperkalemic hypertension (FHHt) yield a mutant protein lacking exon 9 (CUL3∆9) which displays dual gain and loss of function. CUL3∆9 acts in a dominant manner to impair CUL3-mediated substrate ubiquitylation and degradation. The consequent accumulation of substrates and overactivation of downstream signaling cause FHHt through increased sodium reabsorption, enhanced vasoconstriction, and decreased vasodilation. CUL3 ubiquitin ligase maintains normal cardiovascular and renal physiology through posttranslational modification of key substrates which regulate blood pressure. Interference with CUL3 disturbs these key downstream pathways. Further understanding the spatial and temporal specificity of how CUL3 functions in these pathways is necessary to identify novel therapeutic targets for hypertension.
Collapse
|
17
|
Kelch-like proteins: Physiological functions and relationships with diseases. Pharmacol Res 2019; 148:104404. [DOI: 10.1016/j.phrs.2019.104404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
|
18
|
Merrill RA, Song J, Kephart RA, Klomp AJ, Noack CE, Strack S. A robust and economical pulse-chase protocol to measure the turnover of HaloTag fusion proteins. J Biol Chem 2019; 294:16164-16171. [PMID: 31511325 DOI: 10.1074/jbc.ra119.010596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/25/2019] [Indexed: 11/06/2022] Open
Abstract
The self-labeling protein HaloTag has been used extensively to determine the localization and turnover of proteins of interest at the single-cell level. To this end, halogen-substituted alkanes attached to diverse fluorophores are commercially available that allow specific, irreversible labeling of HaloTag fusion proteins; however, measurement of protein of interest half-life by pulse-chase of HaloTag ligands is not widely employed because residual unbound ligand continues to label newly synthesized HaloTag fusions even after extensive washing. Excess unlabeled HaloTag ligand can be used as a blocker of undesired labeling, but this is not economical. In this study, we screened several inexpensive, low-molecular-weight haloalkanes as blocking agents in pulse-chase labeling experiments with the cell-permeable tetramethylrhodamine HaloTag ligand. We identified 7-bromoheptanol as a high-affinity, low-toxicity HaloTag-blocking agent that permits protein turnover measurements at both the cell population (by blotting) and single-cell (by imaging) levels. We show that the HaloTag pulse-chase approach is a nontoxic alternative to inhibition of protein synthesis with cycloheximide and extend protein turnover assays to long-lived proteins.
Collapse
Affiliation(s)
- Ronald A Merrill
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Jianing Song
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Rikki A Kephart
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Annette J Klomp
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Claire E Noack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
19
|
Moshal KS, Roder K, Kabakov AY, Werdich AA, Yi-Eng Chiang D, Turan NN, Xie A, Kim TY, Cooper LL, Lu Y, Zhong M, Li W, Terentyev D, Choi BR, Karma A, MacRae CA, Koren G. LITAF (Lipopolysaccharide-Induced Tumor Necrosis Factor) Regulates Cardiac L-Type Calcium Channels by Modulating NEDD (Neural Precursor Cell Expressed Developmentally Downregulated Protein) 4-1 Ubiquitin Ligase. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:407-420. [PMID: 31462068 PMCID: PMC6750970 DOI: 10.1161/circgen.119.002641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND The turnover of cardiac ion channels underlying action potential duration is regulated by ubiquitination. Genome-wide association studies of QT interval identified several single-nucleotide polymorphisms located in or near genes involved in protein ubiquitination. A genetic variant upstream of LITAF (lipopolysaccharide-induced tumor necrosis factor) gene prompted us to determine its role in modulating cardiac excitation. METHODS Optical mapping was performed in zebrafish hearts to determine Ca2+ transients. Live-cell confocal calcium imaging was performed on adult rabbit cardiomyocytes to determine intracellular Ca2+handling. L-type calcium channel (LTCC) current (ICa,L) was measured using whole-cell recording. To study the effect of LITAF on Cav1.2 (L-type voltage-gated calcium channel 1.2) channel expression, surface biotinylation, and Westerns were performed. LITAF interactions were studied using coimmunoprecipitation and in situ proximity ligation assay. RESULTS LITAF knockdown in zebrafish resulted in a robust increase in calcium transients. Overexpressed LITAF in 3-week-old rabbit cardiomyocytes resulted in a decrease in ICa,L and Cavα1c abundance, whereas LITAF knockdown increased ICa,L and Cavα1c protein. LITAF-overexpressing decreases calcium transients in adult rabbit cardiomyocytes, which was associated with lower Cavα1c levels. In tsA201 cells, overexpressed LITAF downregulated total and surface pools of Cavα1c via increased Cavα1c ubiquitination and its subsequent lysosomal degradation. We observed colocalization between LITAF and LTCC in tsA201 and cardiomyocytes. In tsA201, NEDD (neural precursor cell expressed developmentally downregulated protein) 4-1, but not its catalytically inactive form NEDD4-1-C867A, increased Cavα1c ubiquitination. Cavα1c ubiquitination was further increased by coexpressed LITAF and NEDD4-1 but not NEDD4-1-C867A. NEDD4-1 knockdown abolished the negative effect of LITAF on ICa,L and Cavα1c levels in 3-week-old rabbit cardiomyocytes. Computer simulations demonstrated that a decrease of ICa,L current associated with LITAF overexpression simultaneously shortened action potential duration and decreased calcium transients in rabbit cardiomyocytes. CONCLUSIONS LITAF acts as an adaptor protein promoting NEDD4-1-mediated ubiquitination and subsequent degradation of LTCC, thereby controlling LTCC membrane levels and function and thus cardiac excitation.
Collapse
Affiliation(s)
- Karni S. Moshal
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Karim Roder
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Anatoli Y. Kabakov
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Andreas A. Werdich
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - David Yi-Eng Chiang
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Nilüfer N. Turan
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - An Xie
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | | | - Yichun Lu
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Mingwang Zhong
- Physics Dept & Center for Interdisciplinary Research in Complex Systems, Northeastern Univ, Boston, MA
| | - Weiyan Li
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Dmitry Terentyev
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| | - Alain Karma
- Physics Dept & Center for Interdisciplinary Research in Complex Systems, Northeastern Univ, Boston, MA
| | - Calum A. MacRae
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Dept of Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown Univ, Providence, RI
| |
Collapse
|
20
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
21
|
Jiang Y, Su S, Zhang Y, Qian J, Liu P. Control of mTOR signaling by ubiquitin. Oncogene 2019; 38:3989-4001. [PMID: 30705402 PMCID: PMC6621562 DOI: 10.1038/s41388-019-0713-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
The evolutionarily conserved mTOR signaling pathway plays essential roles in cell growth, proliferation, metabolism and responses to cellular stresses. Hyperactivation of the mTOR signaling is observed in virtually all solid tumors and has been an attractive drug target. In addition to changes at genetic levels, aberrant activation of the mTOR signaling is also a result from dysregulated posttranslational modifications on key pathway members, such as phosphorylation that has been extensively studied. Emerging evidence also supports a critical role for ubiquitin-mediated modifications in dynamically regulating the mTOR signaling pathway, while a comprehensive review for relevant studies is missing. In this review, we will summarize characterized ubiquitination events on major mTOR signaling components, their modifying E3 ubiquitin ligases, deubiquitinases and corresponding pathophysiological functions. We will also reveal methodologies that have been used to identify E3 ligases or DUBs to facilitate the search for yet-to-be discovered ubiquitin-mediated regulatory mechanisms in mTOR signaling. We hope that our review and perspectives provide rationales and strategies to target ubiquitination for inhibiting mTOR signaling to treat human diseases.
Collapse
Affiliation(s)
- Yao Jiang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yanqiong Zhang
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayi Qian
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
O'Connor CM, Hoffa MT, Taylor SE, Avelar RA, Narla G. Protein phosphatase 2A Aα regulates Aβ protein expression and stability. J Biol Chem 2019; 294:5923-5934. [PMID: 30796164 PMCID: PMC6463732 DOI: 10.1074/jbc.ra119.007593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) represses many oncogenic signaling pathways and is an important tumor suppressor. PP2A comprises three distinct subunits and forms through a highly regulated biogenesis process, with the scaffolding A subunit existing as two highly related isoforms, Aα and Aβ. PP2A's tumor-suppressive functions have been intensely studied, and PP2A inactivation has been shown to be a prerequisite for tumor formation. Interestingly, although partial loss of the Aα isoform is growth promoting, complete Aα loss has no transformative properties. Additionally, in cancer patients, Aα is found to be inactivated in a haploinsufficient manner. Using both cellular and in vivo systems, colorectal and endometrial cancer cell lines, and biochemical and cellular assays, here we examined why the complete loss of Aα does not promote tumorigenesis. CRISPR/Cas9-mediated homozygous Aα deletion resulted in decreased colony formation and tumor growth across multiple cell lines. Protein expression analysis of PP2A family members revealed that the Aα deletion markedly up-regulates Aβ protein expression by increasing Aβ protein stability. Aβ knockdown in control and Aα knockout cell lines indicated that Aβ is necessary for cell survival in the Aα knockout cells. In the setting of Aα deficiency, co-immunoprecipitation analysis revealed increased binding of specific PP2A regulatory subunits to Aβ, and knockdown of these regulatory subunits restored colony-forming ability. Taken together, our results uncover a mechanism by which PP2A Aα regulates Aβ protein stability and activity and suggests why homozygous loss of Aα is rarely seen in cancer patients.
Collapse
Affiliation(s)
- Caitlin M O'Connor
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Matthew T Hoffa
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Rita A Avelar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Goutham Narla
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
23
|
Vriend J, Tate RB. Differential Expression of Genes for Ubiquitin Ligases in Medulloblastoma Subtypes. THE CEREBELLUM 2019; 18:469-488. [PMID: 30810905 DOI: 10.1007/s12311-019-1009-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using publically available datasets on gene expression in medulloblastoma (MB) subtypes, we selected genes for ubiquitin ligases and identified statistically those that best predicted each of the four major MB subgroups as separate disease entities. We identify a gene coding for an ubiquitin ligase, ZNRF3, whose overexpression alone can predict the WNT subgroup for 100% in the Pfister dataset. For the SHH subgroup, we identify a gene for a regulatory subunit of the protein phosphatase 2A (PP2A), PPP2R2C, as the major predictor among the E3 ligases genes. The ubiquitin and ubiquitin-like conjugation database (UUCD) lists PPP2R2C as coding for a Cullin Ring ubiquitin ligase adaptor. For group 3 MBs, the best ubiquitin ligase predictor was PPP2R2B, a gene which codes for another regulatory subunit of the PP2A holoenzyme. For group 4, the best E3 gene predictors were MID2, ZBTB18, and PPP2R2A, which codes for a third PP2A regulatory subunit. Heatmap analysis of the E3 gene data shows that expression of ten genes for ubiquitin ligases can be used to classify MBs into the four major consensus subgroups. This was illustrated by analysis of gene expression of ubiquitin ligases of the Pfister dataset and confirmed in the dataset of Cavalli. We conclude that genes for ubiquitin ligases can be used as genetic markers for MB subtypes and that the proteins coded for by these genes should be investigated as subtype specific therapeutic targets for MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Rm134, BMSB, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Robert B Tate
- Department of Community Health Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
24
|
Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2017; 1869:11-28. [PMID: 29128526 DOI: 10.1016/j.bbcan.2017.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
Cullin 3-RING ligases (CRL3) play pivotal roles in the regulation of various physiological and pathological processes, including neoplastic events. The substrate adaptors of CRL3 typically contain a BTB domain that mediates the interaction between Cullin 3 and target substrates to promote their ubiquitination and subsequent degradation. The biological implications of CRL3 adaptor proteins have been well described where they have been found to play a role as either an oncogene, tumor suppressor, or can mediate either of these effects in a context-dependent manner. Among the extensively studied CRL3-based E3 ligases, the role of the adaptor protein SPOP (speckle type BTB/POZ protein) in tumorigenesis appears to be tissue or cellular context dependent. Specifically, SPOP acts as a tumor suppressor via destabilizing downstream oncoproteins in many malignancies, especially in prostate cancer. However, SPOP has largely an oncogenic role in kidney cancer. Keap1, another well-characterized CRL3 adaptor protein, likely serves as a tumor suppressor within diverse malignancies, mainly due to its specific turnover of its downstream oncogenic substrate, NRF2 (nuclear factor erythroid 2-related factor 2). In accordance with the physiological role the various CRL3 adaptors exhibit, several pharmacological agents have been developed to disrupt its E3 ligase activity, therefore blocking its potential oncogenic activity to mitigate tumorigenesis.
Collapse
|
25
|
Booker MA, DeLong A. Atypical Protein Phosphatase 2A Gene Families Do Not Expand via Paleopolyploidization. PLANT PHYSIOLOGY 2017; 173:1283-1300. [PMID: 28034953 PMCID: PMC5291013 DOI: 10.1104/pp.16.01768] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Protein phosphatase 2A (PP2A) presents unique opportunities for analyzing molecular mechanisms of functional divergence between gene family members. The canonical PP2A holoenzyme regulates multiple eukaryotic signaling pathways by dephosphorylating target proteins and contains a catalytic (C) subunit, a structural/scaffolding (A) subunit, and a regulatory (B) subunit. Genes encoding PP2A subunits have expanded into multigene families in both flowering plants and mammals, and the extent to which different isoform functions may overlap is not clearly understood. To gain insight into the diversification of PP2A subunits, we used phylogenetic analyses to reconstruct the evolutionary histories of PP2A gene families in Arabidopsis (Arabidopsis thaliana). Genes encoding PP2A subunits in mammals represent ancient lineages that expanded early in vertebrate evolution, while flowering plant PP2A subunit lineages evolved much more recently. Despite this temporal difference, our data indicate that the expansion of PP2A subunit gene families in both flowering plants and animals was driven by whole-genome duplications followed by nonrandom gene loss. Selection analysis suggests that the expansion of one B subunit gene family (B56/PPP2R5) was driven by functional diversification rather than by the maintenance of gene dosage. We also observed reduced expansion rates in three distinct B subunit subclades. One of these subclades plays a highly conserved role in cell division, while the distribution of a second subclade suggests a specialized function in supporting beneficial microbial associations. Thus, while whole-genome duplications have driven the expansion and diversification of most PP2A gene families, members of functionally specialized subclades quickly revert to singleton status after duplication events.
Collapse
Affiliation(s)
- Matthew A Booker
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Alison DeLong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
26
|
Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes. Neuropharmacology 2016; 108:382-93. [DOI: 10.1016/j.neuropharm.2016.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022]
|
27
|
Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection. Nat Commun 2016; 7:12628. [PMID: 27561354 PMCID: PMC5007465 DOI: 10.1038/ncomms12628] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/19/2016] [Indexed: 12/16/2022] Open
Abstract
Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity.
Collapse
|
28
|
Schumann M, Hofmann A, Krutzke SK, Hilger AC, Marsch F, Stienen D, Gembruch U, Ludwig M, Merz WM, Reutter H. Array-based molecular karyotyping in fetuses with isolated brain malformations identifies disease-causing CNVs. J Neurodev Disord 2016; 8:11. [PMID: 27087860 PMCID: PMC4832534 DOI: 10.1186/s11689-016-9144-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/15/2016] [Indexed: 11/21/2022] Open
Abstract
Background The overall birth prevalence for congenital malformations of the central nervous system (CNS) among Europeans may be as high as 1 in 100 live births. The etiological factors remain largely unknown. The aim of this study was to detect causative copy number variations (CNVs) in fetuses of terminated pregnancies with prenatally detected isolated brain malformations. Methods Array-based molecular karyotyping was performed in a cohort of 35 terminated fetuses with isolated CNS malformations. Identified putative disease-causing CNVs were confirmed using quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification. Results Based on their de novo occurrence and/or their established association with congenital brain malformations, we detected five disease-causing CNVs in four fetuses involving chromosomal regions 6p25.1-6p25.3 (FOXC1), 6q27, 16p12.3, Xp22.2-Xp22.32 (MID1), and Xp22.32-Xp22.33. Furthermore, we detected a probably disease-causing CNV involving chromosomal region 3p26.3 in one fetus, and in addition, we detected 12 CNVs in nine fetuses of unknown clinical significance. All CNVs except for two were absent in 1307 healthy in-house controls (frequency <0.0008). Each of the two CNVs present in in-house controls was present only once (frequency = 0.0008). Furthermore, our data suggests the involvement of CNTN6 and KLHL15 in the etiology of agenesis of the corpus callosum, the involvement of RASD1 and PTPRD in Dandy-Walker malformation, and the involvement of ERMARD in ventriculomegaly. Conclusions Our study suggests that CNVs play an important role in the etiology of isolated brain malformations.
Collapse
Affiliation(s)
- Madita Schumann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany ; Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | - Alina C Hilger
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Florian Marsch
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Ulrich Gembruch
- Department of Obstetrics and Prenatal Medicine, University of Bonn Medical School, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Waltraut M Merz
- Department of Obstetrics and Prenatal Medicine, University of Bonn Medical School, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany ; Department of Neonatology and Pediatric Intensive Care & Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| |
Collapse
|
29
|
Zhang X, Damacharla D, Ma D, Qi Y, Tagett R, Draghici S, Kowluru A, Yi Z. Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic β-cells. Mol Cell Endocrinol 2016; 424:1-11. [PMID: 26780722 PMCID: PMC4779412 DOI: 10.1016/j.mce.2016.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is one of the major serine/threonine phosphatases. We hypothesize that PP2A regulates signaling cascades in pancreatic β-cells in the context of glucose-stimulated insulin secretion (GSIS). Using co-immunoprecipitation (co-IP) and tandem mass spectrometry, we globally identified the protein interaction partners of the PP2A catalytic subunit (PP2Ac) in insulin-secreting pancreatic β-cells. Among the 514 identified PP2Ac interaction partners, 476 were novel. This represents the first global view of PP2Ac protein-protein interactions caused by hyperglycemic conditions. Additionally, numerous PP2Ac partners were found involved in a variety of signaling pathways in the β-cell function, such as insulin secretion. Our data suggest that PP2A interacts with various signaling proteins necessary for physiological insulin secretion as well as signaling proteins known to regulate cell dysfunction and apoptosis in the pancreatic β-cells.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Divyasri Damacharla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Danjun Ma
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Yue Qi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Rebecca Tagett
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Sorin Draghici
- Department of Computer Science, College of Engineering, Wayne State University, Detroit, MI, USA
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA; β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI, 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
30
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
31
|
Hu H, Haas SA, Chelly J, Van Esch H, Raynaud M, de Brouwer APM, Weinert S, Froyen G, Frints SGM, Laumonnier F, Zemojtel T, Love MI, Richard H, Emde AK, Bienek M, Jensen C, Hambrock M, Fischer U, Langnick C, Feldkamp M, Wissink-Lindhout W, Lebrun N, Castelnau L, Rucci J, Montjean R, Dorseuil O, Billuart P, Stuhlmann T, Shaw M, Corbett MA, Gardner A, Willis-Owen S, Tan C, Friend KL, Belet S, van Roozendaal KEP, Jimenez-Pocquet M, Moizard MP, Ronce N, Sun R, O'Keeffe S, Chenna R, van Bömmel A, Göke J, Hackett A, Field M, Christie L, Boyle J, Haan E, Nelson J, Turner G, Baynam G, Gillessen-Kaesbach G, Müller U, Steinberger D, Budny B, Badura-Stronka M, Latos-Bieleńska A, Ousager LB, Wieacker P, Rodríguez Criado G, Bondeson ML, Annerén G, Dufke A, Cohen M, Van Maldergem L, Vincent-Delorme C, Echenne B, Simon-Bouy B, Kleefstra T, Willemsen M, Fryns JP, Devriendt K, Ullmann R, Vingron M, Wrogemann K, Wienker TF, Tzschach A, van Bokhoven H, Gecz J, Jentsch TJ, Chen W, Ropers HH, Kalscheuer VM. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry 2016; 21:133-48. [PMID: 25644381 PMCID: PMC5414091 DOI: 10.1038/mp.2014.193] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/17/2014] [Accepted: 12/08/2014] [Indexed: 12/27/2022]
Abstract
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
Collapse
Affiliation(s)
- H Hu
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - J Chelly
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - H Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - M Raynaud
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - A P M de Brouwer
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - S Weinert
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - G Froyen
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium,Human Genome Laboratory, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | - S G M Frints
- Department of Clinical Genetics, Maastricht University Medical Center, azM, Maastricht, The Netherlands,School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - F Laumonnier
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France
| | - T Zemojtel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M I Love
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H Richard
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A-K Emde
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Bienek
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - C Jensen
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Hambrock
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - U Fischer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - C Langnick
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - M Feldkamp
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - W Wissink-Lindhout
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - N Lebrun
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - L Castelnau
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - J Rucci
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - R Montjean
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - O Dorseuil
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - P Billuart
- University Paris Descartes, Paris, France,Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut National de la Santé et de la Recherche Médicale Unité 1016, Institut Cochin, Paris, France
| | - T Stuhlmann
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - M Shaw
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - M A Corbett
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - A Gardner
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - S Willis-Owen
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,National Heart and Lung Institute, Imperial College London, London, UK
| | - C Tan
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia
| | - K L Friend
- SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - S Belet
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium,Human Genome Laboratory, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | - K E P van Roozendaal
- Department of Clinical Genetics, Maastricht University Medical Center, azM, Maastricht, The Netherlands,School for Oncology and Developmental Biology, GROW, Maastricht University, Maastricht, The Netherlands
| | - M Jimenez-Pocquet
- Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - M-P Moizard
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - N Ronce
- Inserm U930 ‘Imaging and Brain', Tours, France,University François-Rabelais, Tours, France,Centre Hospitalier Régional Universitaire, Service de Génétique, Tours, France
| | - R Sun
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S O'Keeffe
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - R Chenna
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - J Göke
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Hackett
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - M Field
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - L Christie
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - J Boyle
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - E Haan
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - J Nelson
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia
| | - G Turner
- Genetics of Learning and Disability Service, Hunter Genetics, Waratah, NSW, Australia
| | - G Baynam
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA, Australia,School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia,Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia,Telethon Kids Institute, Perth, WA, Australia
| | | | - U Müller
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - D Steinberger
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany,bio.logis Center for Human Genetics, Frankfurt a. M., Germany
| | - B Budny
- Chair and Department of Endocrinology, Metabolism and Internal Diseases, Ponzan University of Medical Sciences, Poznan, Poland
| | - M Badura-Stronka
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - A Latos-Bieleńska
- Chair and Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - L B Ousager
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - P Wieacker
- Institut für Humangenetik, Universitätsklinikum Münster, Muenster, Germany
| | | | - M-L Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - G Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - A Dufke
- Institut für Medizinische Genetik und Angewandte Genomik, Tübingen, Germany
| | - M Cohen
- Kinderzentrum München, München, Germany
| | - L Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - C Vincent-Delorme
- Service de Génétique, Hôpital Jeanne de Flandre CHRU de Lilles, Lille, France
| | - B Echenne
- Service de Neuro-Pédiatrie, CHU Montpellier, Montpellier, France
| | - B Simon-Bouy
- Laboratoire SESEP, Centre hospitalier de Versailles, Le Chesnay, France
| | - T Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - M Willemsen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J-P Fryns
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - K Devriendt
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - R Ullmann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - K Wrogemann
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - T F Wienker
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Tzschach
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - H van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J Gecz
- School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA, Australia,Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - T J Jentsch
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany,Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - W Chen
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - H-H Ropers
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - V M Kalscheuer
- Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany,Max Planck Institute for Molecular Genetics, Ihnestrasse 73, Berlin 14195, Germany. E-mail:
| |
Collapse
|
32
|
Ibeawuchi SRC, Agbor LN, Quelle FW, Sigmund CD. Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors. J Biol Chem 2015; 290:19208-17. [PMID: 26100637 DOI: 10.1074/jbc.m115.645358] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Indexed: 11/06/2022] Open
Abstract
Cullin-Ring ubiquitin ligases regulate protein turnover by promoting the ubiquitination of substrate proteins, targeting them for proteasomal degradation. It has been shown previously that mutations in Cullin3 (Cul3) causing deletion of 57 amino acids encoded by exon 9 (Cul3Δ9) cause hypertension. Moreover, RhoA activity contributes to vascular constriction and hypertension. We show that ubiquitination and degradation of RhoA is dependent on Cul3 in HEK293T cells in which Cul3 expression is ablated by either siRNA or by CRISPR-Cas9 genome editing. The latter was used to generate a Cul3-null cell line (HEK293T(Cul3KO)). When expressed in these cells, Cul3Δ9 supported reduced ubiquitin ligase activity toward RhoA compared with equivalent levels of wild-type Cul3 (Cul3WT). Consistent with its reduced activity, binding of Cul3Δ9 to the E3 ubiquitin ligase Rbx1 and neddylation of Cul3Δ9 were impaired significantly compared with Cul3WT. Conversely, Cul3Δ9 bound to substrate adaptor proteins more efficiently than Cul3WT. Cul3Δ9 also forms unstable dimers with Cul3WT, disrupting dimers of Cul3WT complexes that are required for efficient ubiquitination of some substrates. Indeed, coexpression of Cul3WT and Cul3Δ9 in HEK293T(Cul3KO) cells resulted in a decrease in the active form of Cul3WT. We conclude that Cul3Δ9-associated ubiquitin ligase activity toward RhoA is impaired and suggest that Cul3Δ9 mutations may act dominantly by sequestering substrate adaptors and disrupting Cul3WT complexes.
Collapse
Affiliation(s)
| | - Larry N Agbor
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Frederick W Quelle
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Curt D Sigmund
- From the Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
33
|
Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu SJ, Sashindranath M, Medcalf RL, Johnston LA, Hovens CM, Jones NC, O'Brien TJ. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 2015; 138:1297-313. [PMID: 25771151 DOI: 10.1093/brain/awv053] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/10/2015] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury is a common and serious neurodegenerative condition that lacks a pharmaceutical intervention to improve long-term outcome. Hyperphosphorylated tau is implicated in some of the consequences of traumatic brain injury and is a potential pharmacological target. Protein phosphatase 2A is a heterotrimeric protein that regulates key signalling pathways, and protein phosphatase 2A heterotrimers consisting of the PR55 B-subunit represent the major tau phosphatase in the brain. Here we investigated whether traumatic brain injury in rats and humans would induce changes in protein phosphatase 2A and phosphorylated tau, and whether treatment with sodium selenate-a potent PR55 activator-would reduce phosphorylated tau and improve traumatic brain injury outcomes in rats. Ninety young adult male Long-Evans rats were administered either a fluid percussion injury or sham-injury. A proportion of rats were killed at 2, 24, and 72 h post-injury to assess acute changes in protein phosphatase 2A and tau. Other rats were given either sodium selenate or saline-vehicle treatment that was continuously administered via subcutaneous osmotic pump for 12 weeks. Serial magnetic resonance imaging was acquired prior to, and at 1, 4, and 12 weeks post-injury to assess evolving structural brain damage and axonal injury. Behavioural impairments were assessed at 12 weeks post-injury. The results showed that traumatic brain injury in rats acutely reduced PR55 expression and protein phosphatase 2A activity, and increased the expression of phosphorylated tau and the ratio of phosphorylated tau to total tau. Similar findings were seen in post-mortem brain samples from acute human traumatic brain injury patients, although many did not reach statistical significance. Continuous sodium selenate treatment for 12 weeks after sham or fluid percussion injury in rats increased protein phosphatase 2A activity and PR55 expression, and reduced the ratio of phosphorylated tau to total tau, attenuated brain damage, and improved behavioural outcomes in rats given a fluid percussion injury. Notably, total tau levels were decreased in rats 12 weeks after fluid percussion injury, and several other factors, including the use of anaesthetic, the length of recovery time, and that some brain injury and behavioural dysfunction still occurred in rats treated with sodium selenate must be considered in the interpretation of this study. However, taken together these data suggest protein phosphatase 2A and hyperphosphorylated tau may be involved in the neurodegenerative cascade of traumatic brain injury, and support the potential use of sodium selenate as a novel traumatic brain injury therapy.
Collapse
Affiliation(s)
- Sandy R Shultz
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - David K Wright
- 2 Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ping Zheng
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Ryan Stuchbery
- 3 Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Shi-Jie Liu
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Maithili Sashindranath
- 4 Australian Centre for Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Robert L Medcalf
- 4 Australian Centre for Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Leigh A Johnston
- 5 Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christopher M Hovens
- 3 Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Nigel C Jones
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Terence J O'Brien
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
34
|
Ge X, Kwok PY, Shieh JTC. Prioritizing genes for X-linked diseases using population exome data. Hum Mol Genet 2014; 24:599-608. [PMID: 25217573 DOI: 10.1093/hmg/ddu473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many new disease genes can be identified through high-throughput sequencing. Yet, variant interpretation for the large amounts of genomic data remains a challenge given variation of uncertain significance and genes that lack disease annotation. As clinically significant disease genes may be subject to negative selection, we developed a prediction method that measures paucity of non-synonymous variation in the human population to infer gene-based pathogenicity. Integrating human exome data of over 6000 individuals from the NHLBI Exome Sequencing Project, we tested the utility of the prediction method based on the ratio of non-synonymous to synonymous substitution rates (dN/dS) on X-chromosome genes. A low dN/dS ratio characterized genes associated with childhood disease and outcome. Furthermore, we identify new candidates for diseases with early mortality and demonstrate intragenic localized patterns of variants that suggest pathogenic hotspots. Our results suggest that intrahuman substitution analysis is a valuable tool to help prioritize novel disease genes in sequence interpretation.
Collapse
Affiliation(s)
- Xiaoyan Ge
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA Department of Dermatology, University of California San Francisco, San Francisco, CA 94143, USA and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph T C Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
35
|
Mignon-Ravix C, Cacciagli P, Choucair N, Popovici C, Missirian C, Milh M, Mégarbané A, Busa T, Julia S, Girard N, Badens C, Sigaudy S, Philip N, Villard L. Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes. Am J Med Genet A 2014; 164A:1991-7. [PMID: 24817631 DOI: 10.1002/ajmg.a.36602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
High-resolution array comparative genomic hybridization (a-CGH) enables the detection of intragenic rearrangements, such as single exon deletion or duplication. This approach can lead to the identification of new disease genes. We report on the analysis of 54 male patients presenting with intellectual deficiency (ID) and a family history suggesting X-linked (XL) inheritance or maternal skewed X-chromosome inactivation (XCI), using a home-made X-chromosome-specific microarray covering the whole human X-chromosome at high resolution. The majority of patients had whole genome array-CGH prior to the selection and we did not include large rearrangements such as MECP2 and FMR1 duplications. We identified four rearrangements considered as causative or potentially pathogenic, corresponding to a detection rate of 8%. Two CNVs affected known XLID genes and were therefore considered as causative (IL1RAPL1 and OPHN1 intragenic deletions). Two new CNVs were considered as potentially pathogenic as they affected interesting candidates for ID. The first CNV is a deletion of the first exon of the TRPC5 gene, encoding a cation channel implicated in dendrite growth and patterning, in a child presenting with ID and an autism spectrum disorder (ASD). The second CNV is a partial deletion of KLHL15, in a patient with severe ID, epilepsy, and anomalies of cortical development. In both cases, in spite of strong arguments for clinical relevance, we were not able at this stage to confirm pathogenicity of the mutations, and the causality of the variants identified in XLID remains to be confirmed.
Collapse
Affiliation(s)
- Cécile Mignon-Ravix
- Inserm, UMR_S 910, Marseille, France; Aix Marseille Université, GMGF, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Patananan AN, Capri J, Whitelegge JP, Clarke SG. Non-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae. J Biol Chem 2014; 289:16936-53. [PMID: 24764295 DOI: 10.1074/jbc.m114.564385] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharomyces cerevisiae. Therefore, we used biochemical approaches to elucidate how proteins containing isoaspartyl residues are metabolized in this organism. Surprisingly, the level of isoaspartyl residues in yeast proteins (50-300 pmol of isoaspartyl residues/mg of protein extract) is comparable with organisms with protein-l-isoaspartyl (d-aspartyl) O-methyltransferase, suggesting a novel regulatory pathway. Interfering with common protein quality control mechanisms by mutating and inhibiting the proteasomal and autophagic pathways in vivo did not increase isoaspartyl residue levels compared with wild type or uninhibited cells. However, the inhibition of metalloproteases in in vitro aging experiments by EDTA resulted in an ∼3-fold increase in the level of isoaspartyl-containing peptides. Characterization by mass spectrometry of these peptides identified several proteins involved in metabolism as targets of isoaspartyl damage. Further analysis of these peptides revealed that many have an N-terminal isoaspartyl site and originate from proteins with short half-lives. These results suggest that one or more metalloproteases participate in limiting isoaspartyl formation by robust proteolysis.
Collapse
Affiliation(s)
- Alexander N Patananan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| | - Joseph Capri
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Julian P Whitelegge
- the Pasarow Mass Spectrometry Laboratory, Neuropsychiatric Institute-Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute and
| |
Collapse
|