1
|
Mochi JA, Jani J, Shah S, Pappachan A. Leishmania donovani adenylosuccinate synthetase requires IMP for dimerization and organization of the active site. FEBS Lett 2025; 599:381-399. [PMID: 39462612 DOI: 10.1002/1873-3468.15040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024]
Abstract
Adenylosuccinate synthetase (AdSS), which catalyses the GTP-dependent conversion of inosine monophosphate (IMP) and aspartic acid to succinyl-AMP, plays a major role in purine biosynthesis. In some bacterial AdSS, it is implicated that IMP binding is important to organize the active site, but in certain plant AdSS, GTP performs this role. Here, we report that in Leishmania donovani AdSS, IMP binding favoured dimerization, induced greater conformational change and improved the protein stability more than GTP binding. IMP binding, which resulted in a network of hydrogen bonds, stabilized the conformation of active site loops and brought the switch loop to a closed conformation, which then facilitated GTP binding. Our results provide a basis for designing better inhibitors of leishmanial AdSS.
Collapse
Affiliation(s)
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Smit Shah
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
2
|
Azevedo LG, Sosa E, de Queiroz ATL, Barral A, Wheeler RJ, Nicolás MF, Farias LP, Do Porto DF, Ramos PIP. High-throughput prioritization of target proteins for development of new antileishmanial compounds. Int J Parasitol Drugs Drug Resist 2024; 25:100538. [PMID: 38669848 PMCID: PMC11068527 DOI: 10.1016/j.ijpddr.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Leishmaniasis, a vector-borne disease, is caused by the infection of Leishmania spp., obligate intracellular protozoan parasites. Presently, human vaccines are unavailable, and the primary treatment relies heavily on systemic drugs, often presenting with suboptimal formulations and substantial toxicity, making new drugs a high priority for LMIC countries burdened by the disease, but a low priority in the agenda of most pharmaceutical companies due to unattractive profit margins. New ways to accelerate the discovery of new, or the repositioning of existing drugs, are needed. To address this challenge, our study aimed to identify potential protein targets shared among clinically-relevant Leishmania species. We employed a subtractive proteomics and comparative genomics approach, integrating high-throughput multi-omics data to classify these targets based on different druggability metrics. This effort resulted in the ranking of 6502 ortholog groups of protein targets across 14 pathogenic Leishmania species. Among the top 20 highly ranked groups, metabolic processes known to be attractive drug targets, including the ubiquitination pathway, aminoacyl-tRNA synthetases, and purine synthesis, were rediscovered. Additionally, we unveiled novel promising targets such as the nicotinate phosphoribosyltransferase enzyme and dihydrolipoamide succinyltransferases. These groups exhibited appealing druggability features, including less than 40% sequence identity to the human host proteome, predicted essentiality, structural classification as highly druggable or druggable, and expression levels above the 50th percentile in the amastigote form. The resources presented in this work also represent a comprehensive collection of integrated data regarding trypanosomatid biology.
Collapse
Affiliation(s)
- Lucas G Azevedo
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Ezequiel Sosa
- Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Artur T L de Queiroz
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| | - Aldina Barral
- Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | - Richard J Wheeler
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| | - Leonardo P Farias
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil; Laboratório de Medicina e Saúde Pública de Precisão (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil.
| | | | - Pablo Ivan P Ramos
- Center for Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz Bahia), Salvador, Bahia, Brazil; Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.
| |
Collapse
|
3
|
Barazorda-Ccahuana HL, Cárcamo-Rodriguez EG, Centeno-Lopez AE, Galdino AS, Machado-de-Ávila RA, Giunchetti RC, Coelho EAF, Chávez-Fumagalli MA. Targeting with Structural Analogs of Natural Products the Purine Salvage Pathway in Leishmania (Leishmania) infantum by Computer-Aided Drug-Design Approaches. Trop Med Infect Dis 2024; 9:41. [PMID: 38393130 PMCID: PMC10891554 DOI: 10.3390/tropicalmed9020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Visceral Leishmaniasis (VL) has a high death rate, with 500,000 new cases and 50,000 deaths occurring annually. Despite the development of novel strategies and technologies, there is no adequate treatment for the disease. Therefore, the purpose of this study is to find structural analogs of natural products as potential novel drugs to treat VL. We selected structural analogs from natural products that have shown antileishmanial activities, and that may impede the purine salvage pathway using computer-aided drug-design (CADD) approaches. For these, we started with the vastly studied target in the pathway, the adenine phosphoribosyl transferase (APRT) protein, which alone is non-essential for the survival of the parasite. Keeping this in mind, we search for a substance that can bind to multiple targets throughout the pathway. Computational techniques were used to study the purine salvage pathway from Leishmania infantum, and molecular dynamic simulations were used to gather information on the interactions between ligands and proteins. Because of its low homology to human proteins and its essential role in the purine salvage pathway proteins network interaction, the findings further highlight the significance of adenylosuccinate lyase protein (ADL) as a therapeutic target. An analog of the alkaloid Skimmianine, N,N-diethyl-4-methoxy-1-benzofuran-6-carboxamide, demonstrated a good binding affinity to APRT and ADL targets, no expected toxicity, and potential for oral route administration. This study indicates that the compound may have antileishmanial activity, which was granted in vitro and in vivo experiments to settle this finding in the future.
Collapse
Affiliation(s)
- Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Eymi Gladys Cárcamo-Rodriguez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Angela Emperatriz Centeno-Lopez
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, MG, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador 40015-970, BA, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| |
Collapse
|
4
|
Zhu Y, Zhang S, Yu J. ZmAdSS1 encodes adenylosuccinate synthetase and plays a critical role in maize seed development and the accumulation of nutrients. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111644. [PMID: 36806609 DOI: 10.1016/j.plantsci.2023.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Adenylosuccinate synthetase (AdSS, EC.6.3.4.4) is a key enzyme in the de novo synthesis of purine nucleotides in organisms. Its downstream product AMP plays a critical role in the process of energy metabolism, which can affect the content of ADP and ATP. However, impacts of its loss-of-function on plant metabolism and development has been relatively poorly reported. Here, we report the identification and analysis of a maize yu18 mutant obtained by mutagenesis with ethylmethane sulfonate (EMS). The yu18 is a lethal-seed mutant. Map-based cloning and allelic testing confirmed that yu18 encodes adenylosuccinate synthetase and was named ZmAdSS1. ZmAdSS1 is constitutively expressed. In the yu18 mutant, the activity of the ZmAdSS1 enzyme was decreased, which caused AMP content reduced 33.62%. The yu18 mutation significantly suppressed endoreduplication and disrupted nutrient accumulation, resulting in lower starch and protein contents that are responsible for seed filling. Further transcriptome and metabolome analysis revealed dramatic alterations in the carbohydrate metabolic pathway and amino acid metabolic pathway in yu18 kernels. Our findings demonstrate that ZmAdSS1 participates in the synthesis of AMP and affects endosperm development and nutrient accumulation in maize seeds.
Collapse
Affiliation(s)
- Yaxi Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| | - Shuaisong Zhang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, PR China.
| | - Jingjuan Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
5
|
Inosine triphosphate pyrophosphatase from Trypanosoma brucei cleanses cytosolic pools from deaminated nucleotides. Sci Rep 2022; 12:6408. [PMID: 35436992 PMCID: PMC9016069 DOI: 10.1038/s41598-022-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractInosine triphosphate pyrophosphatases (ITPases) are ubiquitous house-cleaning enzymes that specifically recognize deaminated purine nucleotides and catalyze their hydrolytic cleavage. In this work, we have characterized the Trypanosoma brucei ITPase ortholog (TbITPA). Recombinant TbITPA efficiently hydrolyzes (deoxy)ITP and XTP nucleotides into their respective monophosphate form. Immunolocalization analysis performed in bloodstream forms suggests that the primary role of TbITPA is the exclusion of deaminated purines from the cytosolic nucleoside triphosphate pools. Even though ITPA-knockout bloodstream parasites are viable, they are more sensitive to inhibition of IMP dehydrogenase with mycophenolic acid, likely due to an expansion of IMP, the ITP precursor. On the other hand, TbITPA can also hydrolyze the activated form of the antiviral ribavirin although in this case, the absence of ITPase activity in the cell confers protection against this nucleoside analog. This unexpected phenotype is dependant on purine availability and can be explained by the fact that ribavirin monophosphate, the reaction product generated by TbITPA, is a potent inhibitor of trypanosomal IMP dehydrogenase and GMP reductase. In summary, the present study constitutes the first report on a protozoan inosine triphosphate pyrophosphatase involved in the removal of harmful deaminated nucleotides from the cytosolic pool.
Collapse
|
6
|
Wei FR, Gao CH, Wang JY, Yang YT, Shi F, Zheng B. Label-Free Quantitative Proteomic Analysis of Three Strains of Viscerotropic Leishmania Isolated from Patients with Different Epidemiological Types of Visceral Leishmaniasis in China. Acta Parasitol 2021; 66:1366-1386. [PMID: 34019278 DOI: 10.1007/s11686-021-00387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND There are three epidemiological types of visceral leishmaniasis in China, which are caused by Leishmania strains belonging to the L. donovani complex. The mechanisms underlying their differences in the population affected, disease latency, and animal host, etc., remain unclear. We investigated the protein abundance differences among Leishmania strains isolated from three types of visceral leishmaniasis endemic areas in China. METHODS Promastigotes of the three Leishmania strains were cultured to the log phase and harvested. The protein tryptic digests were analyzed with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS), followed by label-free quantitative analysis. The MS experiment was performed on a Q Exactive mass spectrometer. Raw spectra were quantitatively analyzed with the MaxQuant software (ver 1.3.0.5) and matched with the reference database. Differentially expressed proteins were analyzed using the bioinformatics method. The MS analysis was repeated three times for each sample. RESULTS A total of 5012 proteins were identified across the KS-2, JIASHI-5 and SC6 strains in at least 2 of the three samples replicate. Of them, 1758 were identified to be differentially expressed at least between 2 strains, including 349 with known names. These differentially expressed proteins with known names are involved in biological functions such as energy and lipid metabolic process, nucleotide acid metabolic process, amino acid metabolic process, response to stress, cell membrane/cytoskeleton, cell cycle and proliferation, biological adhesion and proteolysis, localization and transport, regulation of the biological process, and signal transduction. CONCLUSION The differentially expressed proteins and their related biological functions may shed light on the pathogenicity of Leishmania and targets for the development of vaccines and medicines.
Collapse
Affiliation(s)
- Fu-Rong Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Chun-Hua Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Jun-Yun Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| | - Yue-Tao Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Feng Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China
| | - Bin Zheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Health, Shanghai, 200025, China.
| |
Collapse
|
7
|
Comparative phosphoproteomic analysis unravels MAPK1 regulated phosphoproteins in Leishmania donovani. J Proteomics 2021; 240:104189. [PMID: 33757882 DOI: 10.1016/j.jprot.2021.104189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Mitogen Activated Protein Kinase1 (MAPK1) of Leishmania donovani functions as key regulators of various cellular activities, which seem to be imperative for parasite survival, infectivity, drug resistance and post-translational modification of chaperones/co-chaperones. However, very less is known about LdMAPK1 target proteins. With recent advancements in proteomics, we aimed to identify phosphoproteins which were differentially expressed in LdMAPK1 overexpressing (Dd8++/++) and single replacement mutants (Dd8+/) as compared to wild type (Dd8+/+) parasites, utilizing LC-MS/MS approach. An in-depth label-free phospoproteomic analysis revealed that modulation of LdMAPK1 expression significantly modulates expression levels of miscellaneous phosphoproteins which may act as its targets/substrates. Out of 1974 quantified phosphoproteins in parasite, 140 were significantly differentially expressed in MAPK1 overexpressing and single replacement mutants. These differentially expressed phosphoproteins are majorly associated with metabolism, signal transduction, replication, transcription, translation, transporters and cytoskeleton/motor proteins, hence suggested that MAPK1 may act in concert to modulate global biological processes. The study further implicated possible role of LdMAPK1 in regulation and management of stress machinery in parasite through post translational modifications. Precisely, comparative phosphoproteomics study has elucidated significant role of LdMAPK1 in regulating various pathways contributing in parasite biology with relevance to future drug development. SIGNIFICANCE: MAPKinase1, the downstream kinase of MAPK signal transduction pathway, has drawn much attention as potential therapeutic drug target due to their indispensable role in survival and infectivity of Leishmania donovani. However, limited information is available about its downstream effector proteins/signaling networks. Utilizing label free LC-MS/MS analysis, phosphoproteome of LdMAPK1 over-expressing (Dd8++/++) and LdMAPK1 single replacement mutants (Dd8+/-) with wild type (Dd8+/+) parasites was compared and identified 140 LdMAPK1 modulated phosphoproteins, mainly involved in pathways like signal transduction, metabolism, transcriptional, translational, post-translational modification and regulation of heat shock proteins. Interestingly, LdMAPK1 interacts directly with only six phosphoproteins i.e. casein kinase, casein kinase II, HSP83/HSP90, LACK, protein kinase and serine/threonine protein kinase. Thus, the study elucidates significant role of LdMAPK1 in Leishmania biology which may drive drug-discovery efforts against visceral leishmaniasis.
Collapse
|
8
|
Pandey SC, Kumar A, Samant M. Genetically modified live attenuated vaccine: A potential strategy to combat visceral leishmaniasis. Parasite Immunol 2020; 42:e12732. [PMID: 32418227 DOI: 10.1111/pim.12732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
Visceral leishmaniasis (VL) is caused by a protozoan parasite Leishmania donovani mainly influencing the population of tropical and subtropical regions across the globe. The arsenal of drugs available is limited, and prolonged use of such drugs makes parasite to become resistant. Therefore, it is very imperative to develop a safe, cost-effective and inexpensive vaccine against VL. Although in recent years, many strategies have been pursued by researchers, so far only some of the vaccine candidates reached for clinical trial and more than half of them are still in pipeline. There is now a broad consent among Leishmania researchers that the perseverance of parasite is very essential for eliciting a protective immune response and may perhaps be attained by live attenuated parasite vaccination. For making a live attenuated parasite, it is very essential to ensure that the parasite is deficient of virulence and should further study genetically modified parasites to perceive the mechanism of pathogenesis. So it is believed that in the near future, a complete understanding of the Leishmania genome will explore clear strategies to discover a novel vaccine. This review describes the need for a genetically modified live attenuated vaccine against VL, and obstacles associated with its development.
Collapse
Affiliation(s)
- Satish Chandra Pandey
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India.,Department of Biotechnology, Kumaun University, Nainital, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India
| | - Mukesh Samant
- Cell and Molecular biology laboratory, Department of Zoology, Kumaun University, Almora, India
| |
Collapse
|
9
|
Bora N, Jha AN. In silico Metabolic Pathway Analysis Identifying Target Against Leishmaniasis - A Kinetic Modeling Approach. Front Genet 2020; 11:179. [PMID: 32211028 PMCID: PMC7068213 DOI: 10.3389/fgene.2020.00179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/14/2020] [Indexed: 01/14/2023] Open
Abstract
The protozoan Leishmania donovani, from trypanosomatids family is a deadly human pathogen responsible for causing Visceral Leishmaniasis. Unavailability of proper treatment in the developing countries has served as a major threat to the people. The absence of vaccines has made treatment possibilities to rely solely over chemotherapy. Also, reduced drug efficacy due to emerging resistant strains magnifies the threat. Despite years of formulations for an effective drug therapy, complexity of the disease is also unfortunately increasing. Absence of potential drug targets has worsened the scenario. Therefore exploring new therapeutic approach is a priority for the scientific community to combat the disease. One of the most reliable ways to alter the adversities of the infection is finding new biological targets for designing potential drugs. An era of computational biology allows identifying targets, assisting experimental studies. It includes sorting the parasite’s metabolic pathways that pins out proteins essential for its survival. We have directed our study towards a computational methodology for determining targets against L. donovani from the “purine salvage” pathway. This is a mainstay pathway towards the maintenance of purine amounts in the parasitic pool of nutrients proving to be mandatory for its survival. This study represents an integration of metabolic pathway and Protein-Protein Interactions analysis. It consists of incorporating the available experimental data to the theoretical methods with a prospective to develop a kinetic model of Purine salvage pathway. Simulation data revealed the time course mechanism of the enzymes involved in the synthesis of the metabolites. Modeling of the metabolic pathway helped in marking of crucial enzymes. Additionally, the PPI analysis of the pathway assisted in building a static interaction network for the proteins. Topological analysis of the PPI network through centrality measures (MCC and Closeness) detected targets found common with Dynamic Modeling. Therefore our analysis reveals the enzymes ADSL (Adenylosuccinate lyase) and IMPDH (Inosine-5′-monophosphate dehydrogenase) to be important having a central role in the modeled network based on PPI and kinetic modeling techniques. Further the available three dimensional structure of the enzyme “ADSL” aided towards the search for potential inhibitors against the protein. Hence, the study presented the significance of integrating methods to identify key proteins which might be putative targets against the treatment of Visceral Leishmaniasis and their potential inhibitors.
Collapse
Affiliation(s)
- Nikita Bora
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
10
|
Zhang SF, Chen Y, Xie ZX, Zhang H, Lin L, Wang DZ. Unraveling the molecular mechanism of the response to changing ambient phosphorus in the dinoflagellate Alexandrium catenella with quantitative proteomics. J Proteomics 2019; 196:141-149. [PMID: 30414514 DOI: 10.1016/j.jprot.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Phosphorus (P) is a key macronutrient limiting cell growth and bloom formation of marine dinoflagellates. Physiological responses to changing ambient P have been investigated in dinoflagellates; however, the molecular mechanisms behind these responses remain limited. Here, we compared the protein expression profiles of a marine dinoflagellate Alexandrium catenella grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions using an iTRAQ-based quantitative proteomic approach. P deficiency inhibited cell growth and enhanced alkaline phosphatase activity (APA) but had no effect on photosynthetic efficiency. After P resupply, the P-deficient cells recovered growth rapidly and APA decreased. Proteins involved in sphingolipid metabolism, organic P utilization, starch and sucrose metabolism, and photosynthesis were up-regulated in the P-deficient cells, while proteins associated with protein synthesis, nutrient assimilation and energy metabolism were down-regulated. The responses of the P-deficient A. catenella to the resupply of organic and inorganic P presented significant differences: more biological processes were enhanced in the organic P-resupplied cells than those in the inorganic P-resupplied cells; A. catenella might directly utilize G-6-P for nucleic acid synthesis through the pentose phosphate pathway. Our results indicate that A. catenella has evolved diverse adaptive strategies to ambient P deficiency and specific mechanisms to utilize dissolved organic P, which might be an important reason resulting in A. catenella bloom in the low inorganic P environment. BIOLOGICAL SIGNIFICANCE: The ability of marine dinoflagellates to utilize different phosphorus (P) species and adapt to ambient P deficiency determines their success in the ocean. In this study, we investigated the response mechanisms of a dinoflagellate Alexandrium catenella to ambient P deficiency, and resupply of inorganic- and organic-P at the proteome level. Our results indicated that A. catenella initiated multiple adaptive strategies to ambient P deficiency, e.g. utilizing nonphospholipids and glycosphingolipids instead of phospholipids, enhancing expression of acid phosphatase to utilize organic P, and reallocating intracellular energy. Proteome responses of the P-deficient A. catenella to resupply of inorganic- and organic-P differed significantly, indicating different utilization pathways of inorganic and organic P, A. catenella might directly utilize low molecular weight organic P, such as G-6-P as both P and carbon sources.
Collapse
Affiliation(s)
- Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ying Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
Bora N, Nath Jha A. An integrative approach using systems biology, mutational analysis with molecular dynamics simulation to challenge the functionality of a target protein. Chem Biol Drug Des 2019; 93:1050-1060. [PMID: 30891955 DOI: 10.1111/cbdd.13502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/08/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023]
Abstract
Visceral leishmaniasis affects millions of people worldwide in areas where Leishmania donovani is endemic. The protozoan species serves a greater threat as it has gradually evolved drug resistance whereby requiring newer approaches to treat the infection. State-of-art techniques are mostly directed toward finding better targets extracted from the available proteome data. In light of recent computational advancements, we ascertain and validate one such target, adenylosuccinate lyase (ADSL) by implementation of in-silico methods which led to the identification of critical amino acid residues that affects its functional attributes. Our target selection was based on comprehensive topological analysis of a knowledge-based protein-protein interaction network. Subsequently, mutations were incorporated and the dynamic behavior of mutated and native proteins was traced using MD simulations for a total time span of 600 ns. Comparative analysis of the native and mutated structures exhibited perceptible changes in the ligand-bound catalytic region with respect to time. The unfavorable changes in the orientations of specific catalytic residues, His118 and His196, induced by generated mutations reduce the enzyme specificity. In summary, this integrative approach is able to select a target against pathogen, identify crucial residues, and challenge its functionality through the selected mutations.
Collapse
Affiliation(s)
- Nikita Bora
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Anupam Nath Jha
- Computational Biophysics Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
12
|
Carter CJ. Autism genes and the leukocyte transcriptome in autistic toddlers relate to pathogen interactomes, infection and the immune system. A role for excess neurotrophic sAPPα and reduced antimicrobial Aβ. Neurochem Int 2019; 126:36-58. [PMID: 30862493 DOI: 10.1016/j.neuint.2019.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Prenatal and early childhood infections have been implicated in autism. Many autism susceptibility genes (206 Autworks genes) are localised in the immune system and are related to immune/infection pathways. They are enriched in the host/pathogen interactomes of 18 separate microbes (bacteria/viruses and fungi) and to the genes regulated by bacterial toxins, mycotoxins and Toll-like receptor ligands. This enrichment was also observed for misregulated genes from a microarray study of leukocytes from autistic toddlers. The upregulated genes from this leukocyte study also matched the expression profiles in response to numerous infectious agents from the Broad Institute molecular signatures database. They also matched genes related to sudden infant death syndrome and autism comorbid conditions (autoimmune disease, systemic lupus erythematosus, diabetes, epilepsy and cardiomyopathy) as well as to estrogen and thyrotropin responses and to those upregulated by different types of stressors including oxidative stress, hypoxia, endoplasmic reticulum stress, ultraviolet radiation or 2,4-dinitrofluorobenzene, a hapten used to develop allergic skin reactions in animal models. The oxidative/integrated stress response is also upregulated in the autism brain and may contribute to myelination problems. There was also a marked similarity between the expression signatures of autism and Alzheimer's disease, and 44 shared autism/Alzheimer's disease genes are almost exclusively expressed in the blood-brain barrier. However, in contrast to Alzheimer's disease, levels of the antimicrobial peptide beta-amyloid are decreased and the levels of the neurotrophic/myelinotrophic soluble APP alpha are increased in autism, together with an increased activity of α-secretase. sAPPα induces an increase in glutamatergic and a decrease in GABA-ergic synapses creating and excitatory/inhibitory imbalance that has also been observed in autism. A literature survey showed that multiple autism genes converge on APP processing and that many are able to increase sAPPalpha at the expense of beta-amyloid production. A genetically programmed tilt of this axis towards an overproduction of neurotrophic/gliotrophic sAPPalpha and underproduction of antimicrobial beta-amyloid may explain the brain overgrowth and myelination dysfunction, as well as the involvement of pathogens in autism.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, 41C Marina, Saint Leonard's on Sea, TN38 0BU, East Sussex, UK.
| |
Collapse
|
13
|
Feng M, Yin H, Peng H, Lu G, Liu Z, Dang Z. iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1758-1767. [PMID: 30061077 DOI: 10.1016/j.envpol.2018.07.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, Guangxi, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
14
|
Jardim A, Hardie DB, Boitz J, Borchers CH. Proteomic Profiling of Leishmania donovani Promastigote Subcellular Organelles. J Proteome Res 2018; 17:1194-1215. [PMID: 29332401 DOI: 10.1021/acs.jproteome.7b00817] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate a greater understanding of the biological processes in the medically important Leishmania donovani parasite, a combination of differential and density-gradient ultracentrifugation techniques were used to achieve a comprehensive subcellular fractionation of the promastigote stage. An in-depth label-free proteomic LC-MS/MS analysis of the density gradients resulted in the identification of ∼50% of the Leishmania proteome (3883 proteins detected), which included ∼645 integral membrane proteins and 1737 uncharacterized proteins. Clustering and subcellular localization of proteins was based on a subset of training Leishmania proteins with known subcellular localizations that had been determined using biochemical, confocal microscopy, or immunoelectron microscopy approaches. This subcellular map will be a valuable resource that will help dissect the cell biology and metabolic processes associated with specific organelles of Leishmania and related kinetoplastids.
Collapse
Affiliation(s)
- Armando Jardim
- Institute of Parasitology, Macdonald Campus, McGill University , 21111 Lakeshore Road, Saine-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Darryl B Hardie
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Christoph H Borchers
- University of Victoria -Genome British Columbia Proteomics Centre , #3101-4464 Markham Street, Vancouver Island Technology Park, Victoria, British Columbia V8Z7X8, Canada.,Department of Biochemistry and Biophysics, University of North Carolina , 120 Mason Farm Road, Campus Box 7260 Third Floor, Genetic Medicine Building, Chapel Hill, North Carolina 27599, United States.,Department of Biochemistry and Microbiology, University of Victoria , Petch Building, Room 270d, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada.,Proteomics Centre, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University , 3755 Côte Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
15
|
Wang ZQ, Liu RD, Sun GG, Song YY, Jiang P, Zhang X, Cui J. Proteomic Analysis of Trichinella spiralis Adult Worm Excretory-Secretory Proteins Recognized by Sera of Patients with Early Trichinellosis. Front Microbiol 2017; 8:986. [PMID: 28620363 PMCID: PMC5449722 DOI: 10.3389/fmicb.2017.00986] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/16/2017] [Indexed: 11/28/2022] Open
Abstract
The most commonly used serodiagnostic antigens for trichinellosis are the excretory-secretory (ES) antigens from T. spiralis muscle larvae (ML), but the specific antibodies against the ML ES antigens are usually negative during early stage of Trichinella infection. The recent studies demonstrated that T. spiralis adult worm (AW) antigens were recognized by mouse or swine infection sera on Western blot as early as 7–15 days post-infection (dpi), the AW antigens might contain the early diagnostic markers for trichinellosis. The purpose of this study was to screen early diagnostic antigens in T. spiralis AW ES proteins recognized by sera of early patients with trichinellosis. T. spiralis AW were collected at 72 h post-infection (hpi), and their ES antigens were analyzed by SDS-PAGE and Western blot. Our results showed that 5 protein bands (55, 48–50, 45, 44, and 36 kDa) were recognized by sera of early patients with trichinellosis collected at 19 dpi, and were subjected to shotgun LC–MS/MS and bioinformatics analyses. A total of 185 proteins were identified from T. spiralis protein database, of which 116 (67.2%) proteins had molecular weights of 30∼60 kDa, and 125 (67.6%) proteins with pI 4–7. Bioinformatic analyses showed that the identified proteins have a wide diversity of biological functions (binding of nucleotides, proteins, ions, carbohydrates, and lipids; hydrolase, transferase, and oxidoreductase, etc.). Several enzymes (e.g., adult-specific DNase II, serine protease and serine protease inhibitor) could be the invasion-related proteins and early diagnostic markers for trichinellosis. Moreover, recombinant T. spiralis serine protease (rTsSP-ZH68) was expressed in E. coli and its antigenicity was analyzed by Western blot with the early infection sera. The rTsSP-ZH68 was recognized by sera of infected mice at 8–10 dpi and sera of early patients with trichinellosis at 19 dpi. T. spiralis AW proteins identified in this study, especially serine protease, are the promising early diagnostic antigens and vaccine candidates for trichinellosis.
Collapse
Affiliation(s)
- Zhong Q Wang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Ruo D Liu
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Ge G Sun
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Yan Y Song
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
16
|
Chitty JL, Blake KL, Blundell RD, Koh YQAE, Thompson M, Robertson AAB, Butler MS, Cooper MA, Kappler U, Williams SJ, Kobe B, Fraser JA. Cryptococcus neoformans ADS lyase is an enzyme essential for virulence whose crystal structure reveals features exploitable in antifungal drug design. J Biol Chem 2017; 292:11829-11839. [PMID: 28559277 DOI: 10.1074/jbc.m117.787994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/03/2017] [Indexed: 01/09/2023] Open
Abstract
There is significant clinical need for new antifungal agents to manage infections with pathogenic species such as Cryptococcus neoformans Because the purine biosynthesis pathway is essential for many metabolic processes, such as synthesis of DNA and RNA and energy generation, it may represent a potential target for developing new antifungals. Within this pathway, the bifunctional enzyme adenylosuccinate (ADS) lyase plays a role in the formation of the key intermediates inosine monophosphate and AMP involved in the synthesis of ATP and GTP, prompting us to investigate ADS lyase in C. neoformans. Here, we report that ADE13 encodes ADS lyase in C. neoformans. We found that an ade13Δ mutant is an adenine auxotroph and is unable to successfully cause infections in a murine model of virulence. Plate assays revealed that production of a number of virulence factors essential for dissemination and survival of C. neoformans in a host environment was compromised even with the addition of exogenous adenine. Purified recombinant C. neoformans ADS lyase shows catalytic activity similar to its human counterpart, and its crystal structure, the first fungal ADS lyase structure determined, shows a high degree of structural similarity to that of human ADS lyase. Two potentially important amino acid differences are identified in the C. neoformans crystal structure, in particular a threonine residue that may serve as an additional point of binding for a fungal enzyme-specific inhibitor. Besides serving as an antimicrobial target, C. neoformans ADS lyase inhibitors may also serve as potential therapeutics for metabolic disease; rather than disrupt ADS lyase, compounds that improve the stability the enzyme may be used to treat ADS lyase deficiency disease.
Collapse
Affiliation(s)
- Jessica L Chitty
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Kirsten L Blake
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Ross D Blundell
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Y Q Andre E Koh
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Merinda Thompson
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072
| | - Avril A B Robertson
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Matthew A Cooper
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Centre for Metals in Biology, University of Queensland, St. Lucia, Queensland 4072
| | - Simon J Williams
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Research School of Biology, Australian National University, Acton, Australian Capital Territory 2601 Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, Queensland 4072.
| |
Collapse
|
17
|
Mittra B, Laranjeira-Silva MF, Miguel DC, Perrone Bezerra de Menezes J, Andrews NW. The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence. J Biol Chem 2017; 292:12324-12338. [PMID: 28550086 DOI: 10.1074/jbc.m116.772624] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/25/2017] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815
| | | | - Danilo Ciccone Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815
| | | | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815.
| |
Collapse
|
18
|
Galina L, Dalberto PF, Borges Martinelli LK, Roth CD, Michel Pinto AF, Villela AD, Bizarro CV, Machado P, Saraiva Macedo Timmers LF, Norberto de Souza O, Marcelino de Carvalho Filho E, Basso LA, Santos DS. Biochemical, thermodynamic and structural studies of recombinant homotetrameric adenylosuccinate lyase fromLeishmania braziliensis. RSC Adv 2017. [DOI: 10.1039/c7ra10526f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional and structural data suggested that His197and Ser322residues play a role inLbASL catalysis.
Collapse
|
19
|
Boitz JM, Jardim A, Ullman B. GMP reductase and genetic uncoupling of adenylate and guanylate metabolism in Leishmania donovani parasites. Mol Biochem Parasitol 2016; 208:74-83. [PMID: 27343371 DOI: 10.1016/j.molbiopara.2016.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/26/2022]
Abstract
Purine acquisition is an essential nutritional process for Leishmania. Although purine salvage into adenylate nucleotides has been investigated in detail, little attention has been focused on the guanylate branch of the purine pathway. To characterize guanylate nucleotide metabolism in Leishmania and create a cell culture model in which the pathways for adenylate and guanylate nucleotide synthesis can be genetically uncoupled for functional studies in intact cells, we created and characterized null mutants of L. donovani that were deficient in either GMP reductase alone (Δgmpr) or in both GMP reductase and its paralog IMP dehydrogenase (Δgmpr/Δimpdh). Whereas wild type parasites were capable of utilizing virtually any purine nucleobase/nucleoside, the Δgmpr and Δgmpr/Δimpdh null lines exhibited highly restricted growth phenotypes. The Δgmpr single mutant could not grow in xanthine, guanine, or their corresponding nucleosides, while no purine on its own could support the growth of Δgmpr/Δimpdh cells. Permissive growth conditions for the Δgmpr/Δimpdh necessitated both xanthine, guanine, or the corresponding nucleosides, and additionally, a second purine that could serve as a source for adenylate nucleotide synthesis. Interestingly, GMPR, like its paralog IMPDH, is compartmentalized to the leishmanial glycosome, a process mediated by its COOH-terminal peroxisomal targeting signal. The restricted growth phenotypes displayed by the L. donovani Δgmpr and Δgmpr/Δimpdh null mutants confirms the importance of GMPR in the purine interconversion processes of this parasite.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Mail Code L224, Portland, OR 97239, USA.
| |
Collapse
|
20
|
Martin JL, Yates PA, Boitz JM, Koop DR, Fulwiler AL, Cassera MB, Ullman B, Carter NS. A role for adenine nucleotides in the sensing mechanism to purine starvation in Leishmania donovani. Mol Microbiol 2016; 101:299-313. [PMID: 27062185 DOI: 10.1111/mmi.13390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 01/25/2023]
Abstract
Purine salvage by Leishmania is an obligatory nutritional process that impacts both cell viability and growth. Previously, we have demonstrated that the removal of purines in culture provokes significant metabolic changes that enable Leishmania to survive prolonged periods of purine starvation. In order to understand how Leishmania sense and respond to changes in their purine environment, we have exploited several purine pathway mutants, some in which adenine and guanine nucleotide metabolism is uncoupled. While wild type parasites grow in any one of a variety of naturally occurring purines, the proliferation of these purine pathway mutants requires specific types or combinations of exogenous purines. By culturing purine pathway mutants in high levels of extracellular purines that are either permissive or non-permissive for growth and monitoring for previously defined markers of the adaptive response to purine starvation, we determined that adaptation arises from a surveillance of intracellular purine nucleotide pools rather than from a direct sensing of the extracellular purine content of the environment. Specifically, our data suggest that perturbation of intracellular adenine-containing nucleotide pools provides a crucial signal for inducing the metabolic changes necessary for the long-term survival of Leishmania in a purine-scarce environment.
Collapse
Affiliation(s)
- Jessica L Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Phillip A Yates
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Dennis R Koop
- Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Audrey L Fulwiler
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Maria Belen Cassera
- Department of Biochemistry and Virginia Tech Center for Drug Discovery, M/C 0308, Virginia, Tech, Blacksburg, VA, 24061, USA
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Nicola S Carter
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| |
Collapse
|
21
|
Smith S, Boitz J, Chidambaram ES, Chatterjee A, Ait-Tihyaty M, Ullman B, Jardim A. The cystathionine-β-synthase domains on the guanosine 5''-monophosphate reductase and inosine 5'-monophosphate dehydrogenase enzymes from Leishmania regulate enzymatic activity in response to guanylate and adenylate nucleotide levels. Mol Microbiol 2016; 100:824-40. [PMID: 26853689 DOI: 10.1111/mmi.13352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2016] [Indexed: 01/24/2023]
Abstract
The Leishmania guanosine 5'-monophosphate reductase (GMPR) and inosine 5'-monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine-β-synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH-dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10-fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.
Collapse
Affiliation(s)
- Sabrina Smith
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jan Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Ehzilan Subramanian Chidambaram
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Abhishek Chatterjee
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Maria Ait-Tihyaty
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Buddy Ullman
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Armando Jardim
- Institute of Parasitology and Centre for Host-Parasite Interactions, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
22
|
Mittra B, Laranjeira-Silva MF, Perrone Bezerra de Menezes J, Jensen J, Michailowsky V, Andrews NW. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence. PLoS Pathog 2016; 12:e1005340. [PMID: 26741360 PMCID: PMC4704735 DOI: 10.1371/journal.ppat.1005340] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/22/2015] [Indexed: 11/20/2022] Open
Abstract
Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. Leishmaniasis is a serious parasitic disease that affects 12 million people worldwide, with clinical manifestations ranging from self-healing cutaneous lesions to deadly visceralizing disease. A vaccine is not available, and new and less toxic drugs against this protozoan parasite are urgently needed. Following introduction into vertebrate hosts during a sand fly blood meal, Leishmania parasites undergo extensive changes in morphology and metabolism that are critical for adaptation to life inside host macrophages and replication as amastigotes. Earlier studies identified major events that occur during amastigote differentiation, but the signaling mechanism initiating this process remained poorly understood. Previously we demonstrated a novel role for the reactive oxygen species (ROS) H2O2 in initiating amastigote differentiation, a process proposed to be dependent on iron availability inside the parasite’s mitochondria. In this study we identify LMIT1, a Leishmania transmembrane protein that functions as a mitochondrial iron transporter and is conserved in other trypanosomatid protozoan parasites. Reduced LMIT1 expression impairs mitochondrial function in the infective amastigote stage, abolishing parasite virulence. Our findings identify LMIT1 as a promising new drug target, and support the conclusion that iron-dependent ROS signals generated in the mitochondria regulate differentiation of virulent Leishmania amastigotes.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | | | - Juliana Perrone Bezerra de Menezes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, Candeal, Salvador, Bahia, Brazil
| | - Jennifer Jensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir Michailowsky
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Faculdade de Medicina, Setor Parasitologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Li Q, Leija C, Rijo-Ferreira F, Chen J, Cestari I, Stuart K, Tu BP, Phillips MA. GMP synthase is essential for viability and infectivity of Trypanosoma brucei despite a redundant purine salvage pathway. Mol Microbiol 2015; 97:1006-20. [PMID: 26043892 DOI: 10.1111/mmi.13083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 12/28/2022]
Abstract
The causative agent of human African trypanosomiasis, Trypanosoma brucei, lacks de novo purine biosynthesis and depends on purine salvage from the host. The purine salvage pathway is redundant and contains two routes to guanosine-5'-monophosphate (GMP) formation: conversion from xanthosine-5'-monophosphate (XMP) by GMP synthase (GMPS) or direct salvage of guanine by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). We show recombinant T. brucei GMPS efficiently catalyzes GMP formation. Genetic knockout of GMPS in bloodstream parasites led to depletion of guanine nucleotide pools and was lethal. Growth of gmps null cells was only rescued by supraphysiological guanine concentrations (100 μM) or by expression of an extrachromosomal copy of GMPS. Hypoxanthine was a competitive inhibitor of guanine rescue, consistent with a common uptake/metabolic conversion mechanism. In mice, gmps null parasites were unable to establish an infection demonstrating that GMPS is essential for virulence and that plasma guanine is insufficient to support parasite purine requirements. These data validate GMPS as a potential therapeutic target for treatment of human African trypanosomiasis. The ability to strategically inhibit key metabolic enzymes in the purine pathway unexpectedly bypasses its functional redundancy by exploiting both the nature of pathway flux and the limited nutrient environment of the parasite's extracellular niche.
Collapse
Affiliation(s)
- Qiong Li
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, TX, 75390-9041, USA
| | - Christopher Leija
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, TX, 75390-9041, USA
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, TX, 75390-9041, USA.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jun Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, TX, 75390-9041, USA
| | - Igor Cestari
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109-5219, USA
| | - Kenneth Stuart
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA, 98109-5219, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, TX, 75390-9041, USA
| | - Margaret A Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd, Dallas, TX, 75390-9041, USA
| |
Collapse
|
24
|
Waugh B, Ghosh A, Bhattacharyya D, Ghoshal N, Banerjee R. In silico work flow for scaffold hopping in Leishmania. BMC Res Notes 2014; 7:802. [PMID: 25399834 PMCID: PMC4247209 DOI: 10.1186/1756-0500-7-802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/29/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Leishmaniasis,a broad spectrum of diseases caused by several sister species of protozoa belonging to family trypanosomatidae and genus leishmania , generally affects poorer sections of the populace in third world countries. With the emergence of strains resistant to traditional therapies and the high cost of second line drugs which generally have severe side effects, it becomes imperative to continue the search for alternative drugs to combat the disease. In this work, the leishmanial genomes and the human genome have been compared to identify proteins unique to the parasite and whose structures (or those of close homologues) are available in the Protein Data Bank. Subsequent to the prioritization of these proteins (based on their essentiality, virulence factor etc.), inhibitors have been identified for a subset of these prospective drug targets by means of an exhaustive literature survey. A set of three dimensional protein-ligand complexes have been assembled from the list of leishmanial drug targets by culling structures from the Protein Data Bank or by means of template based homology modeling followed by ligand docking with the GOLD software. Based on these complexes several structure based pharmacophores have been designed and used to search for alternative inhibitors in the ZINC database. RESULT This process led to a list of prospective compounds which could serve as potential antileishmanials. These small molecules were also used to search the Drug Bank to identify prospective lead compounds already in use as approved drugs. Interestingly, paromomycin which is currently being used as an antileishmanial drug spontaneously appeared in the list, probably giving added confidence to the 'scaffold hopping' computational procedures adopted in this work. CONCLUSIONS The report thus provides the basis to experimentally verify several lead compounds for their predicted antileishmanial activity and includes several useful data bases of prospective drug targets in leishmania, their inhibitors and protein--inhibitor three dimensional complexes.
Collapse
Affiliation(s)
- Barnali Waugh
- />Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector - 1, Block – AF, Bidhannagar, Kolkata, 700064 India
| | - Ambarnil Ghosh
- />Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector - 1, Block – AF, Bidhannagar, Kolkata, 700064 India
| | - Dhananjay Bhattacharyya
- />Computer Science Division, Saha Institute of Nuclear Physics, Sector-1, Block AF, Biddhannagar, Kolkata, 700064 India
| | - Nanda Ghoshal
- />Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032 India
| | - Rahul Banerjee
- />Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector - 1, Block – AF, Bidhannagar, Kolkata, 700064 India
| |
Collapse
|
25
|
Chhajer R, Ali N. Genetically modified organisms and visceral leishmaniasis. Front Immunol 2014; 5:213. [PMID: 24860575 PMCID: PMC4030198 DOI: 10.3389/fimmu.2014.00213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Vaccination is the most effective method of preventing infectious diseases. Since the eradication of small pox in 1976, many other potentially life compromising if not threatening diseases have been dealt with subsequently. This event was a major leap not only in the scientific world already burdened with many diseases but also in the mindset of the common man who became more receptive to novel treatment options. Among the many protozoan diseases, the leishmaniases have emerged as one of the largest parasite killers of the world, second only to malaria. There are three types of leishmaniasis namely cutaneous (CL), mucocutaneous (ML), and visceral (VL), caused by a group of more than 20 species of Leishmania parasites. Visceral leishmaniasis, also known as kala-azar is the most severe form and almost fatal if untreated. Since the first attempts at leishmanization, we have killed parasite vaccines, subunit protein, or DNA vaccines, and now we have live recombinant carrier vaccines and live attenuated parasite vaccines under various stages of development. Although some research has shown promising results, many more potential genes need to be evaluated as live attenuated vaccine candidates. This mini-review attempts to summarize the success and failures of genetically modified organisms used in vaccination against some of major parasitic diseases for their application in leishmaniasis.
Collapse
Affiliation(s)
- Rudra Chhajer
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology , Kolkata , India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology , Kolkata , India
| |
Collapse
|
26
|
Banerjee S, Agrawal MJ, Mishra D, Sharan S, Balaram H, Savithri HS, Murthy MRN. Structural and kinetic studies on adenylosuccinate lyase from Mycobacterium smegmatis and Mycobacterium tuberculosis provide new insights on the catalytic residues of the enzyme. FEBS J 2014; 281:1642-58. [PMID: 24479855 DOI: 10.1111/febs.12730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 11/28/2022]
Abstract
UNLABELLED Adenylosuccinate lyase (ASL), an enzyme involved in purine biosynthesis, has been recognized as a drug target against microbial infections. In the present study, ASL from Mycobacterium smegmatis (MsASL) and Mycobacterium tuberculosis (MtbASL) were cloned, purified and crystallized. The X-ray crystal structure of MsASL was determined at a resolution of 2.16 Å. It is the first report of an apo-ASL structure with a partially ordered active site C3 loop. Diffracting crystals of MtbASL could not be obtained and a model for its structure was derived using MsASL as a template. These structures suggest that His149 and either Lys285 or Ser279 of MsASL are the residues most likely to function as the catalytic acid and base, respectively. Most of the active site residues were found to be conserved, with the exception of Ser148 and Gly319 of MsASL. Ser148 is structurally equivalent to a threonine in most other ASLs. Gly319 is replaced by an arginine residue in most ASLs. The two enzymes were catalytically much less active compared to ASLs from other organisms. Arg319Gly substitution and reduced flexibility of the C3 loop might account for the low catalytic activity of mycobacterial ASLs. The low activity is consistent with the slow growth rate of Mycobacteria and their high GC containing genomes, as well as their dependence on other salvage pathways for the supply of purine nucleotides. STRUCTURED DIGITAL ABSTRACT purB and purB bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Sanchari Banerjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Boitz JM, Ullman B. Adenine and adenosine salvage in Leishmania donovani. Mol Biochem Parasitol 2013; 190:51-5. [PMID: 23845934 DOI: 10.1016/j.molbiopara.2013.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 11/28/2022]
Abstract
6-aminopurine metabolism in Leishmania is unique among trypanosomatid pathogens since this genus expresses two distinct routes for adenine salvage: adenine phosphoribosyltransferase (APRT) and adenine deaminase (AAH). To evaluate the relative contributions of APRT and AAH, adenine salvage was evaluated in Δaprt, Δaah, and Δaprt/Δaah null mutants of L. donovani. The data confirm that AAH plays the dominant role in adenine metabolism in L. donovani, although either enzyme alone is sufficient for salvage. Adenosine salvage was also evaluated in a cohort of null mutants. Adenosine is also primarily converted to hypoxanthine, either intracellularly or extracellularly, but can also be phosphorylated to the nucleotide level by adenosine kinase when the predominant pathways are genetically or pharmacologically blocked. These data provide genetic verification for the relative contributions of 6-aminopurine metabolizing pathways in L. donovani and demonstrate that all of the pathways can function under appropriate conditions of genetic or pharmacologic perturbation.
Collapse
Affiliation(s)
- Jan M Boitz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|