1
|
Yang Y, Cathelin S, Liu ACH, Subedi A, Maher A, Hosseini M, Manikoth Ayyathan D, Vanner R, Chan SM. TET2 deficiency increases the competitive advantage of hematopoietic stem and progenitor cells through upregulation of thrombopoietin receptor signaling. Nat Commun 2025; 16:2384. [PMID: 40064887 PMCID: PMC11894142 DOI: 10.1038/s41467-025-57614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Ten-Eleven Translocation-2 (TET2) mutations drive the expansion of mutant hematopoietic stem cells (HSCs) in clonal hematopoiesis (CH). However, the precise mechanisms by which TET2 mutations confer a competitive advantage to HSCs remain unclear. Here, through an epigenetic drug screen, we discover that inhibition of disruptor of telomeric silencing 1-like (DOT1L), a H3K79 methyltransferase, selectively reduces the fitness of Tet2 knockout (Tet2KO) hematopoietic stem and progenitor cells (HSPCs). Mechanistically, we find that TET2 deficiency increases H3K79 dimethylation and expression of Mpl, which encodes the thrombopoietin receptor (TPO-R). Correspondingly, TET2 deficiency is associated with a higher proportion of primitive Mpl-expressing (Mpl+) cells in the HSC compartment. Importantly, inhibition of Mpl expression or the signaling downstream of TPO-R is sufficient to reduce the competitive advantage of murine and human TET2-deficient HSPCs. Our findings demonstrate a critical role for aberrant TPO-R signaling in TET2 mutation-driven CH and uncover potential therapeutic strategies against this condition.
Collapse
Affiliation(s)
- Yitong Yang
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Severine Cathelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Alex C H Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Amit Subedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Abdula Maher
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | | | - Robert Vanner
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Steven M Chan
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada.
| |
Collapse
|
2
|
He J, Zhang F, Wu B, Yu W. ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA. Cells 2024; 14:9. [PMID: 39791710 PMCID: PMC11719756 DOI: 10.3390/cells14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
CD24, a highly sialylated glycosyl-phosphatidyl-inositol (GPI) cell surface protein that interacts with sialic acid-binding immunoglobulin-like lectins (Siglecs), serves as an innate immune checkpoint and plays a crucial role in inflammatory diseases and tumor progression. Recently, cytoplasmic CD24 has been observed in samples from patients with cancer. However, whether sialylation governs the subcellular localization of CD24 in cancer remains unclear, and the impact of CD24 expression and localization on the clinical prognosis of cancer remains controversial. Here, we performed a systematic pan-cancer analysis of the gene expression levels and clinical correlation of CD24. Our analysis revealed that CD24 was highly expressed in breast tumor tissues and tumor cells, significantly shortening patient survival time. However, this correlation was not evident in other types of cancer. Additionally, a correlation analysis of CD24 levels with sialyltransferases (STs) revealed that ST8SIA6 is the key ST affecting CD24 sialylation. Further investigation demonstrated that ST8SIA6 directly modified CD24, promoting its localization to the cell membrane. Taken together, these findings elucidate, for the first time, the mechanisms by which ST8SIA6 regulates CD24 subcellular localization, providing new insights into the biological functions and applications of CD24.
Collapse
Affiliation(s)
- Jinxia He
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.H.); (F.Z.); (B.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fengchao Zhang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.H.); (F.Z.); (B.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Baihai Wu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.H.); (F.Z.); (B.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (J.H.); (F.Z.); (B.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
4
|
Hashimoto N, Ito S, Harazono A, Tsuchida A, Mouri Y, Yamamoto A, Okajima T, Ohmi Y, Furukawa K, Kudo Y, Kawasaki N, Furukawa K. Bidirectional signals generated by Siglec-7 and its crucial ligand tri-sialylated T to escape of cancer cells from immune surveillance. iScience 2024; 27:111139. [PMID: 39507251 PMCID: PMC11539641 DOI: 10.1016/j.isci.2024.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Siglec-7, an inhibitory receptor expressed on natural killer (NK) cells, recognizes sialic acid-containing glycans. However, the ligand glycan structures of Siglec-7 and its carrier proteins have not been comprehensively investigated. Here, we identified four sialyltransferases that are used for the synthesis of ligand glycans of Siglec-7 and two ligand O-glycan-carrier proteins, PODXL and MUC13, using a colon cancer line. Upon binding of these ligand glycans, Siglec-7-expressing immune cells showed reduced cytotoxic activity, whereas cancer cells expressing ligand glycans underwent signal activation, leading to enhanced invasion activity. To clarify the structure of the ligand glycan, podoplanin (PDPN) identified as a Siglec-7 ligand-carrier protein, was transfected into HEK293T cells using sialyltransferase cDNAs. Mass spectrometry of the products revealed a ligand glycan, tri-sialylated T antigen. These results indicate that Siglec-7 interaction with its ligand generates bidirectional signals in NK and cancer cells, leading to the efficient escape of cancers from host immune surveillance.
Collapse
Affiliation(s)
- Noboru Hashimoto
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
- Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Shizuka Ito
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Akira Harazono
- Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa 210-9501, Japan
| | - Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, Itabashi 173-0003, Japan
| | - Yasuhiro Mouri
- Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Akihito Yamamoto
- Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Tetsuya Okajima
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
| | - Yuhsuke Ohmi
- Clinical Engineering, Chubu University College of Life and Health Science, Aichi 487-8501, Japan
| | - Keiko Furukawa
- Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi 487-8501, Japan
| | - Yasusei Kudo
- Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Nana Kawasaki
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Koichi Furukawa
- Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya 466-0065, Japan
- Biomedical Sciences, Chubu University College of Life and Health Sciences, Aichi 487-8501, Japan
| |
Collapse
|
5
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Hatanaka R, Hane M, Hayakawa K, Morishita S, Ohno S, Yamaguchi Y, Wu D, Kitajima K, Sato C. Identification of a buried β-strand as a novel disease-related motif in the human polysialyltransferases. J Biol Chem 2024; 300:105564. [PMID: 38103644 PMCID: PMC10828065 DOI: 10.1016/j.jbc.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried β-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried β-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.
Collapse
Affiliation(s)
- Rina Hatanaka
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masaya Hane
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kaito Hayakawa
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sayo Morishita
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shiho Ohno
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Di Wu
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chihiro Sato
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
7
|
Huang Q, Chen C, Chen W, Cai C, Xing H, Li J, Li M, Ma S. Cell type- and region-specific translatomes in an MPTP mouse model of Parkinson's disease. Neurobiol Dis 2023; 180:106105. [PMID: 36977454 DOI: 10.1016/j.nbd.2023.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by the progressive loss of nigrostriatal dopaminergic neurons (DANs), involving the dysregulation of both neurons and glial cells. Cell type- and region-specific gene expression profiles can provide an effective source for revealing the mechanisms of PD. In this study, we adopted the RiboTag approach to obtain cell type (DAN, microglia, astrocytes)- and brain region (substantia nigra, caudate-putamen)-specific translatomes at an early stage in an MPTP-induced mouse model of PD. Through DAN-specific translatome analysis, the glycosphingolipid biosynthetic process was identified as a significantly downregulated pathway in the MPTP-treated mice. ST8Sia6, a key downregulated gene related to glycosphingolipid biosynthesis, was confirmed to be downregulated in nigral DANs from postmortem brains of patients with PD. Specific expression of ST8Sia6 in DANs exerts anti-inflammatory and neuroprotective effects in MPTP-treated mice. Through cell type (microglia vs. astrocyte) and brain region (substantia nigra vs. caudate-putamen) comparisons, nigral microglia showed the most intense immune responses. Microglia and astrocytes in the substantia nigra showed similar levels of activation in interferon-related pathways and interferon gamma (IFNG) was identified as the top upstream regulator in both cell types. This work highlights that the glycosphingolipid metabolism pathway in the DAN is involved in neuroinflammation and neurodegeneration in an MPTP mouse model of PD and provides a new data source for elucidating the pathogenesis of PD.
Collapse
|
8
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
9
|
Hatanaka R, Araki E, Hane M, Go S, Wu D, Kitajima K, Sato C. The α2,8-sialyltransferase 6 (St8sia6) localizes in the ER and enhances the anchorage-independent cell growth in cancer. Biochem Biophys Res Commun 2022; 608:52-58. [PMID: 35390672 DOI: 10.1016/j.bbrc.2022.03.146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 01/06/2023]
Abstract
Sialylation, the final stage of post-translational modification of proteins, is achieved in the Golgi apparatus and is related to the malignant phenotype of cancer. Disialylation of ganglioside (GD3) by St8sia1 and polysialylation by St8sia2 and 4 have been shown to be related to malignant phenotypes; however, di/oligosialylation by St8sia6 is still unknown. In this study, we analyzed the malignant phenotype of St8sia6 and found that upregulation of St8sia6 in melanoma B16 cells increased anchorage-independent cell growth, which was not due to sialic acid cleavage by a sialidase. Moreover, unlike other sialyltransferases, St8sia6 localized to the endoplasmic reticulum (ER). We found that the localization to the Golgi apparatus could be regulated by swapping experiments using St8sia2; however, the malignant phenotype did not change. These data demonstrate that the enhancement of anchorage-independent cell growth by St8sia6 is not due to its localization of ER, but is due to the expression of the protein itself.
Collapse
Affiliation(s)
- Rina Hatanaka
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Erino Araki
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shiori Go
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Di Wu
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan; Integrated Glyco-Biomedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
10
|
Ko CY, Chu TH, Hsu CC, Chen HP, Huang SC, Chang CL, Tzou SJ, Chen TY, Lin CC, Shih PC, Lin CH, Chang CF, Lee YK. Bioinformatics Analyses Identify the Therapeutic Potential of ST8SIA6 for Colon Cancer. J Pers Med 2022; 12:jpm12030401. [PMID: 35330401 PMCID: PMC8953768 DOI: 10.3390/jpm12030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Sialylation of glycoproteins is modified by distinct sialyltransferases such as ST3Gal, ST6Gal, ST6GalNAc, or ST8SIA with α2,3-, α2,6-, or α2,8-linkages. Alteration of these sialyltransferases causing aberrant sialylation is associated with the progression of colon cancer. However, among the ST8- sialyltransferases, the role of ST8SIA6 in colon cancer remains poorly understood. In this study, we explored the involvement of ST8SIA6 in colon cancer using multiple gene databases. The relationship between ST8SIA6 expression and tumor stages/grades was investigated by UALCAN analysis, and Kaplan–Meier Plotter analysis was used to analyze the expression of ST8SIA6 on the survival outcome of colon cancer patients. Moreover, the biological functions of ST8SIA6 in colon cancer were explored using LinkedOmics and cancer cell metabolism gene DB. Finally, TIMER and TISMO analyses were used to delineate ST8SIA6 levels in tumor immunity and immunotherapy responses, respectively. ST8SIA6 downregulation was associated with an advanced stage and poorly differentiated grade; however, ST8SIA6 expression did not affect the survival outcomes in patients with colon cancer. Gene ontology analysis suggested that ST8SIA6 participates in cell surface adhesion, angiogenesis, and membrane vesicle trafficking. In addition, ST8SIA6 levels affected immunocyte infiltration and immunotherapy responses in colon cancer. Collectively, these results suggest that ST8SIA6 may serve as a novel therapeutic target towards personalized medicine for colon cancer.
Collapse
Affiliation(s)
- Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-C.H.); (C.-L.C.); (S.-J.T.)
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (P.-C.S.); (C.-H.L.)
| | - Hsin-Pao Chen
- Department of Surgery, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Shih-Chung Huang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-C.H.); (C.-L.C.); (S.-J.T.)
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Division of Cardiology, Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chen-Lin Chang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-C.H.); (C.-L.C.); (S.-J.T.)
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Shiow-Jyu Tzou
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (S.-C.H.); (C.-L.C.); (S.-J.T.)
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Department of Nursing, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Tung-Yuan Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Chia-Chen Lin
- Clinical Pathology Department, Chi Mei Medical Center, Tainan 71004, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Chun Shih
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (P.-C.S.); (C.-H.L.)
| | - Chung-Hsien Lin
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (P.-C.S.); (C.-H.L.)
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (P.-C.S.); (C.-H.L.)
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (C.-F.C.); (Y.-K.L.); Tel.: +886-6-235-3535 (ext. 5796) (C.-F.C.); +886-7-749-6751 (ext. 726201) (Y.-K.L.)
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
- Correspondence: (C.-F.C.); (Y.-K.L.); Tel.: +886-6-235-3535 (ext. 5796) (C.-F.C.); +886-7-749-6751 (ext. 726201) (Y.-K.L.)
| |
Collapse
|
11
|
Villanueva-Cabello TM, Gutiérrez-Valenzuela LD, Salinas-Marín R, López-Guerrero DV, Martínez-Duncker I. Polysialic Acid in the Immune System. Front Immunol 2022; 12:823637. [PMID: 35222358 PMCID: PMC8873093 DOI: 10.3389/fimmu.2021.823637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023] Open
Abstract
Polysialic acid (polySia) is a highly regulated polymer of sialic acid (Sia) with such potent biophysical characteristics that when expressed drastically influences the interaction properties of cells. Although much of what is known of polySia in mammals has been elucidated from the study of its role in the central nervous system (CNS), polySia is also expressed in other tissues, including the immune system where it presents dynamic changes during differentiation, maturation, and activation of different types of immune cells of the innate and adaptive response, being involved in key regulatory mechanisms. At least six polySia protein carriers (CCR7, ESL-1, NCAM, NRP2, ST8Sia 2, and ST8Sia 4) are expressed in different types of immune cells, but there is still much to be explored in regard not only to the regulatory mechanisms that determine their expression and the structure of polySia chains but also to the identification of the cis- and trans- ligands of polySia that establish signaling networks. This review summarizes the current knowledge on polySia in the immune system, addressing its biosynthesis, its tools for identification and structural characterization, and its functional roles and therapeutic implications.
Collapse
Affiliation(s)
- Tania M. Villanueva-Cabello
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lya D. Gutiérrez-Valenzuela
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Iván Martínez-Duncker,
| |
Collapse
|
12
|
Araki E, Hane M, Hatanaka R, Kimura R, Tsuda K, Konishi M, Komura N, Ando H, Kitajima K, Sato C. Analysis of biochemical features of ST8 α-N-acetyl-neuraminide α2,8-sialyltransferase (St8sia) 5 isoforms. Glycoconj J 2022; 39:291-302. [PMID: 34982351 DOI: 10.1007/s10719-021-10034-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
Gangliosides are important components of the membrane and are involved in many biological activities. St8sia5 is an α2,8-sialyltransferase involved in ganglioside synthesis, and has three isoforms. In this study, we analyzed the features of three isoforms, St8sia5-S, -M, and -L that had not been analyzed, and found that only St8sia5-L was localized in the Golgi, while the majority of St8sia5-M and -S were localized in the ER. The localization of Golgi of St8sia5 depended on the stem region. In addition, the incorporation of exogenous GD3 was upregulated only in St8sia5-L expressing cells. Taken together, the localization of St8sia5 is important for the activity of the enzyme.
Collapse
Affiliation(s)
- Erino Araki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaya Hane
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Rina Hatanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Kana Tsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Miku Konishi
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Hiromune Ando
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Ken Kitajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
- Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chihiro Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
- Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
13
|
Sim L, Thompson N, Geissner A, Withers SG, Wakarchuk WW. Mammalian sialyltransferases allow efficient E. coli-based production of mucin-type O-glycoproteins but can also transfer Kdo. Glycobiology 2021; 32:429-440. [PMID: 34939113 DOI: 10.1093/glycob/cwab130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 11/13/2022] Open
Abstract
The prospect of producing human-like glycoproteins in bacteria is becoming attractive as an alternative to already-established but costly mammalian cell expression systems. We previously described an E. coli expression platform that uses a dual-plasmid approach to produce simple mucin type O-glycoproteins: one plasmid encoding the target protein and another the O-glycosylation machinery. Here, we expand the capabilities of our platform to carry out sialylation and demonstrate the high-yielding production of human interferon α2b and human growth hormone bearing mono- and disialylated T-antigen glycans. This is achieved through engineering an E. coli strain to produce CMP-Neu5Ac and introducing various α-2,3- and α-2,6 mammalian or bacterial sialyltransferases into our O-glycosylation operons. We further demonstrate that mammalian sialyltransferases, including porcine ST3Gal1, human ST6GalNAc2, and human ST6GalNAc4, are very effective in vivo and outperform some of the bacterial sialyltransferases tested, including Campylobacter jejuni Cst-I and Cst-II. In the process we came upon a way of modifying T-Antigen with Kdo, using a previously uncharacterised Kdo-transferase activity of porcine ST3Gal1. Ultimately, the heterologous expression of mammalian sialyltransferases in E. coli shows promise for the further development of bacterial systems in therapeutic glycoprotein production.
Collapse
Affiliation(s)
- Lyann Sim
- Department of Chemistry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z1
| | - Nicole Thompson
- Department of Biological Sciences, University of Alberta, T6G 2E9
| | - Andreas Geissner
- Department of Chemistry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z1
| | - Stephen G Withers
- Department of Chemistry and Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z1
| | | |
Collapse
|
14
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Rosenstock P, Kaufmann T. Sialic Acids and Their Influence on Human NK Cell Function. Cells 2021; 10:263. [PMID: 33572710 PMCID: PMC7911748 DOI: 10.3390/cells10020263] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.
Collapse
Affiliation(s)
- Philip Rosenstock
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Hollystr. 1, D-06114 Halle/Saale, Germany;
| | | |
Collapse
|
16
|
Belmonte PJ, Shapiro MJ, Rajcula MJ, McCue SA, Shapiro VS. Cutting Edge: ST8Sia6-Generated α-2,8-Disialic Acids Mitigate Hyperglycemia in Multiple Low-Dose Streptozotocin-Induced Diabetes. THE JOURNAL OF IMMUNOLOGY 2020; 204:3071-3076. [PMID: 32350083 DOI: 10.4049/jimmunol.2000023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022]
Abstract
The immune system contains a series of checks and balances that maintain tolerance and prevent autoimmunity. Sialic acid-binding Ig-type lectins (Siglecs) are cell surface receptors found on immune cells and inhibit inflammation by recruiting protein tyrosine phosphatases to ITIMs. Islet-resident macrophages express Siglec-E, and Siglec-E expression decreases on islet-resident macrophages as insulitis progresses in the NOD mouse. The sialyltransferase ST8Sia6 generates α-2,8-disialic acids that are ligands for Siglec-E in vivo. We hypothesized that engaging Siglec-E through ST8Sia6-generated ligands may inhibit the development of immune-mediated diabetes. Constitutive overexpression of ST8Sia6 in pancreatic β cells mitigated hyperglycemia in the multiple low-dose streptozotocin model of diabetes, demonstrating that engagement of this immune receptor facilitates tolerance in the setting of inflammation and autoimmune disease.
Collapse
|
17
|
Identification of the complete coding cDNAs and expression analysis of B4GALT1, LALBA, ST3GAL5, ST6GAL1 in the colostrum and milk of the Garganica and Maltese goat breeds to reveal possible implications for oligosaccharide biosynthesis. BMC Vet Res 2019; 15:457. [PMID: 31852463 PMCID: PMC6921551 DOI: 10.1186/s12917-019-2206-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Milk sialylated oligosaccharides (SOS) play crucial roles in many biological processes. The most abundant free SOS in goat’s milk are 3’sialyllactose (3′-SL), 6’sialyllactose (6′-SL) and disialyllactose (DSL). The production of these molecules is determined genetically by the expression of glycosyltransferases and by the availability of nucleotide sugar substrates, but the precise mechanisms regulating the differential patterns of milk oligosaccharides are not known. We aimed to identify the complete cDNAs of candidate genes implicated in SOS biosynthesis (B4GALT1, LALBA, ST3GAL5, ST6GAL1) and to analyse their expression during lactation in the Garganica and Maltese goat breeds. Moreover, we analysed the colostrum and milk contents of 3′-SL, 6′-SL and disialyllactose (DSL) and the possible correlations between expressed genes and SOS. Results We identified the complete coding cDNAs of B4GALT1 (HQ700335.1), ST3GAL5 (KF055858.2), and ST6GAL1 (HQ709167.1), the single nucleotide polymorphism (SNPs) of these genes and 2 splicing variants of the ST6GAL1 cDNA. RT-qPCR analysis showed that LALBA and ST6GAL1 were the genes with the highest and lowest expression in both breeds, respectively. The interaction effects of the breeds and sampling times were associated with higher levels of B4GALT1 and ST3GAL5 gene expression in Garganica than in Maltese goats at kidding. B4GALT1, LALBA, and ST3GAL5 gene expression changed from kidding to 60 and 120 days in Maltese goats, while in Garganica goats, a difference was observed only for the LALBA gene. Breed and lactation effects were also found for SOS contents. Positive correlations of B4GALT1, LALBA, ST3GAL5, and ST6GAL1 with 3′-SL/6′SL and DSL were found. Conclusions The genetic effect on the oligosaccharide content of milk was previously highlighted in bovines, and this study is the first to investigate this effect in two goat breeds (Garganica and Maltese) during lactation. The genetic variability of candidate genes involved in SOS biosynthesis highlights their potential role in affecting gene expression and ultimately biological function. The investigation of gene regulatory regions as well as the examination of other sialyltransferase genes will be needed to identify the genetic pattern leading to a higher SOS content in the autochtonous Garganica breed and to protect it using a focused breeding strategy.
Collapse
|
18
|
Lin CY, Lai HL, Chen HM, Siew JJ, Hsiao CT, Chang HC, Liao KS, Tsai SC, Wu CY, Kitajima K, Sato C, Khoo KH, Chern Y. Functional roles of ST8SIA3-mediated sialylation of striatal dopamine D 2 and adenosine A 2A receptors. Transl Psychiatry 2019; 9:209. [PMID: 31455764 PMCID: PMC6712005 DOI: 10.1038/s41398-019-0529-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023] Open
Abstract
Sialic acids are typically added to the end of glycoconjugates by sialyltransferases. Among the six ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferases (ST8SIA) existing in adult brains, ST8SIA2 is a schizophrenia-associated gene. However, the in vivo substrates and physiological functions of most sialyltransferases are currently unknown. The ST8SIA3 is enriched in the striatum. Here, we showed that ablation of St8sia3 in mice (St8sia3-KO) led to fewer disialylated and trisialylated terminal glycotopes in the striatum of St8sia3-KO mice. Moreover, the apparent sizes of several striatum-enriched G-protein-coupled receptors (GPCRs) (including the adenosine A2A receptor (A2AR) and dopamine D1/D2 receptors (D1R and D2R)) were smaller in St8sia3-KO mice than in WT mice. A sialidase treatment removed the differences in the sizes of these molecules between St8sia3-KO and WT mice, confirming the involvement of sialylation. Expression of ST8SIA3 in the striatum of St8sia3-KO mice using adeno-associated viruses normalized the sizes of these proteins, demonstrating a direct role of ST8SIA3. The lack of ST8SIA3-mediated sialylation altered the distribution of these proteins in lipid rafts and the interaction between D2R and A2AR. Locomotor activity assays revealed altered pharmacological responses of St8sia3-KO mice to drugs targeting these receptors and verified that a greater population of D2R formed heteromers with A2AR in the striatum of St8sia3-KO mice. Since the A2AR-D2R heteromer is an important drug target for several basal ganglia diseases (such as schizophrenia and Parkinson's disease), the present study not only reveals a crucial role for ST8SIA3 in striatal functions but also provides a new drug target for basal ganglia-related diseases.
Collapse
Affiliation(s)
- Chien-Yu Lin
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsing-Lin Lai
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jian-Jing Siew
- 0000 0001 2287 1366grid.28665.3fInstitute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 0425 5914grid.260770.4Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Cheng-Te Hsiao
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hua-Chien Chang
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuo-Shiang Liao
- 0000 0001 2287 1366grid.28665.3fGenomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shih-Chieh Tsai
- grid.36020.37Department of Research and Development, National Laboratory Animal Center, National Applied Research Laboratories, Taipei and Tainan, Taipei, Taiwan
| | - Chung-Yi Wu
- 0000 0001 2287 1366grid.28665.3fGenomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ken Kitajima
- 0000 0001 0943 978Xgrid.27476.30Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-860 Japan
| | - Chihiro Sato
- 0000 0001 0943 978Xgrid.27476.30Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-860 Japan
| | - Kay-Hooi Khoo
- 0000 0001 2287 1366grid.28665.3fInstitute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
19
|
Li F, Ding J. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell 2019; 10:550-565. [PMID: 30478534 PMCID: PMC6626595 DOI: 10.1007/s13238-018-0597-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.
Collapse
Affiliation(s)
- Fenjie Li
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junjun Ding
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
20
|
Venkatakrishnan V, Padra JT, Sundh H, Sundell K, Jin C, Langeland M, Carlberg H, Vidakovic A, Lundh T, Karlsson NG, Lindén SK. Exploring the Arctic Charr Intestinal Glycome: Evidence of Increased N-Glycolylneuraminic Acid Levels and Changed Host-Pathogen Interactions in Response to Inflammation. J Proteome Res 2019; 18:1760-1773. [PMID: 30848132 DOI: 10.1021/acs.jproteome.8b00973] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Disease outbreaks are a limiting factor for the sustainable development of the aquaculture industry. The intestinal tract is covered by a mucus layer mainly comprised by highly glycosylated proteins called mucins. Mucins regulate pathogen adhesion, growth, and virulence, and the glycans are vital for these functions. We analyzed intestinal mucin O-glycans on mucins from control and full-fat extruded soy-bean-fed (known to cause enteritis) Arctic charr using liquid chromatography-tandem mass spectrometry. In total, 56 glycans were identified on Arctic charr intestinal mucins, with a high prevalence of core-5-type and sialylated O-glycans. Disialic-acid-epitope-containing structures including NeuAcα2,8NeuAc, NeuAc(Gc)α2,8NeuGc(Ac), and NeuGcα2,8NeuGc were the hallmark of Arctic charr intestinal mucin glycosylation. Arctic charr fed with soy bean meal diet had lower (i) number of structures detected, (ii) interindividual variation, and (iii) N-glycolylneuraminic-acid-containing glycans compared with control Arctic charr. Furthermore, Aeromonas salmonicida grew less in response to mucins from inflamed Arctic charr than from the control group. The Arctic charr glycan repertoire differed from that of Atlantic salmon. In conclusion, the loss of N-glycolylneuraminic acid may be a biomarker for inflammation in Arctic char, and inflammation-induced glycosylation changes affect host-pathogen interactions.
Collapse
Affiliation(s)
- Vignesh Venkatakrishnan
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg 40530 , Sweden
| | - János T Padra
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg 40530 , Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences , University of Gothenburg , Gothenburg 40530 , Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences , University of Gothenburg , Gothenburg 40530 , Sweden
| | - Chunsheng Jin
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg 40530 , Sweden
| | - Markus Langeland
- Department of Animal Nutrition and Management , Swedish University of Agricultural Science , Uppsala 75007 , Sweden
| | - Hanna Carlberg
- Department of Wildlife, Fish, and Environmental Studies , Swedish University of Agricultural Science , Umeå 90736 , Sweden
| | - Aleksander Vidakovic
- Department of Animal Nutrition and Management , Swedish University of Agricultural Science , Uppsala 75007 , Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management , Swedish University of Agricultural Science , Uppsala 75007 , Sweden
| | - Niclas G Karlsson
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg 40530 , Sweden
| | - Sara K Lindén
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy , University of Gothenburg , Gothenburg 40530 , Sweden
| |
Collapse
|
21
|
Novel Zebrafish Mono-α2,8-sialyltransferase (ST8Sia VIII): An Evolutionary Perspective of α2,8-Sialylation. Int J Mol Sci 2019; 20:ijms20030622. [PMID: 30709055 PMCID: PMC6387029 DOI: 10.3390/ijms20030622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
The mammalian mono-α2,8-sialyltransferase ST8Sia VI has been shown to catalyze the transfer of a unique sialic acid residues onto core 1 O-glycans leading to the formation of di-sialylated O-glycosylproteins and to a lesser extent to diSia motifs onto glycolipids like GD1a. Previous studies also reported the identification of an orthologue of the ST8SIA6 gene in the zebrafish genome. Trying to get insights into the biosynthesis and function of the oligo-sialylated glycoproteins during zebrafish development, we cloned and studied this fish α2,8-sialyltransferase homologue. In situ hybridization experiments demonstrate that expression of this gene is always detectable during zebrafish development both in the central nervous system and in non-neuronal tissues. Intriguingly, using biochemical approaches and the newly developed in vitro MicroPlate Sialyltransferase Assay (MPSA), we found that the zebrafish recombinant enzyme does not synthetize diSia motifs on glycoproteins or glycolipids as the human homologue does. Using comparative genomics and molecular phylogeny approaches, we show in this work that the human ST8Sia VI orthologue has disappeared in the ray-finned fish and that the homologue described in fish correspond to a new subfamily of α2,8-sialyltransferase named ST8Sia VIII that was not maintained in Chondrichtyes and Sarcopterygii.
Collapse
|
22
|
Darula Z, Pap Á, Medzihradszky KF. Extended Sialylated O-Glycan Repertoire of Human Urinary Glycoproteins Discovered and Characterized Using Electron-Transfer/Higher-Energy Collision Dissociation. J Proteome Res 2018; 18:280-291. [PMID: 30407017 DOI: 10.1021/acs.jproteome.8b00587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A relatively novel activation technique, electron-transfer/higher-energy collision dissociation (EThcD) was used in the LC-MS/MS analysis of tryptic glycopeptides enriched with wheat germ agglutinin from human urine samples. We focused on the characterization of mucin-type O-glycopeptides. EThcD in a single spectrum provided information on both the peptide modified and the glycan carried. Unexpectedly, glycan oxonium ions indicated the presence of O-acetyl, and even O-diacetyl-sialic acids. B and Y fragment ions revealed that (i) in core 1 structures the Gal residue featured the O-acetyl-sialic acid, when there was only one in the glycan; (ii) several glycopeptides featured core 1 glycans with disialic acids, in certain instances O-acetylated; (iii) the disialic acid was linked to the GalNAc residue whatever the degree of O-acetylation; (iv) core 2 isomers with a single O-acetyl-sialic acid were chromatographically resolved. Glycan fragmentation also helped to decipher additional core 2 oligosaccharides: a LacdiNAc-like structure, glycans carrying sialyl LewisX/A at different stages of O-acetylation, and blood antigens. A sialo core 3 structure was also identified. We believe this is the first study when such structures were characterized from a very complex mixture and were linked not only to a specific protein, but also the sites of modifications have been determined.
Collapse
Affiliation(s)
- Zsuzsanna Darula
- Biological Research Centre of the Hungarian Academy of Sciences , Temesvari krt. 62. , H-6726 Szeged , Hungary
| | - Ádám Pap
- Biological Research Centre of the Hungarian Academy of Sciences , Temesvari krt. 62. , H-6726 Szeged , Hungary.,Doctoral School in Biology, Faculty of Science and Informatics , University of Szeged , Kozep fasor 52. , H-6726 Szeged , Hungary
| | - Katalin F Medzihradszky
- Biological Research Centre of the Hungarian Academy of Sciences , Temesvari krt. 62. , H-6726 Szeged , Hungary
| |
Collapse
|
23
|
Yamakawa N, Vanbeselaere J, Chang LY, Yu SY, Ducrocq L, Harduin-Lepers A, Kurata J, Aoki-Kinoshita KF, Sato C, Khoo KH, Kitajima K, Guerardel Y. Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns. Nat Commun 2018; 9:4647. [PMID: 30405127 PMCID: PMC6220181 DOI: 10.1038/s41467-018-06950-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
The emergence of zebrafish Danio rerio as a versatile model organism provides the unique opportunity to monitor the functions of glycosylation throughout vertebrate embryogenesis, providing insights into human diseases caused by glycosylation defects. Using a combination of chemical modifications, enzymatic digestion and mass spectrometry analyses, we establish here the precise glycomic profiles of eight individual zebrafish organs and demonstrate that the protein glycosylation and glycosphingolipid expression patterns exhibits exquisite specificity. Concomitant expression screening of a wide array of enzymes involved in the synthesis and transfer of sialic acids shows that the presence of organ-specific sialylation motifs correlates with the localized activity of the corresponding glycan biosynthesis pathways. These findings provide a basis for the rational design of zebrafish lines expressing desired glycosylation profiles.
Collapse
Affiliation(s)
- Nao Yamakawa
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.,Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Jorick Vanbeselaere
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Lan-Yi Chang
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.,Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Shin-Yi Yu
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Lucie Ducrocq
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France
| | - Junichi Kurata
- Faculty of Science and Engineering, Soka University, Hachioji, Tokyo, 192-8577, Japan
| | | | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | - Yann Guerardel
- Université de Lille, CNRS, UMR 8576 - UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000, Lille, France.
| |
Collapse
|
24
|
Pearce OMT, Läubli H. Sialic acids in cancer biology and immunity. Glycobiology 2015; 26:111-28. [DOI: 10.1093/glycob/cwv097] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
|
25
|
Rollenhagen M, Buettner FFR, Reismann M, Jirmo AC, Grove M, Behrens GMN, Gerardy-Schahn R, Hanisch FG, Mühlenhoff M. Polysialic acid on neuropilin-2 is exclusively synthesized by the polysialyltransferase ST8SiaIV and attached to mucin-type o-glycans located between the b2 and c domain. J Biol Chem 2013; 288:22880-92. [PMID: 23801331 DOI: 10.1074/jbc.m113.463927] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-2 (NRP2) is well known as a co-receptor for class 3 semaphorins and vascular endothelial growth factors, involved in axon guidance and angiogenesis. Moreover, NRP2 was shown to promote chemotactic migration of human monocyte-derived dendritic cells (DCs) toward the chemokine CCL21, a function that relies on the presence of polysialic acid (polySia). In vertebrates, this posttranslational modification is predominantly found on the neural cell adhesion molecule (NCAM), where it is synthesized on N-glycans by either of the two polysialyltransferases, ST8SiaII or ST8SiaIV. In contrast to NCAM, little is known on the biosynthesis of polySia on NRP2. Here we identified the polySia attachment sites and demonstrate that NRP2 is recognized only by ST8SiaIV. Although polySia-NRP2 was found on bone marrow-derived DCs from wild-type and St8sia2(-/-) mice, polySia was completely lost in DCs from St8sia4(-/-) mice despite normal NRP2 expression. In COS-7 cells, co-expression of NRP2 with ST8SiaIV but not ST8SiaII resulted in the formation of polySia-NRP2, highlighting distinct acceptor specificities of the two polysialyltransferases. Notably, ST8SiaIV synthesized polySia selectively on a NRP2 glycoform that was characterized by the presence of sialylated core 1 and core 2 O-glycans. Based on a comprehensive site-directed mutagenesis study, we localized the polySia attachment sites to an O-glycan cluster located in the linker region between b2 and c domain. Combined alanine exchange of Thr-607, -613, -614, -615, -619, and -624 efficiently blocked polysialylation. Restoration of single sites only partially rescued polysialylation, suggesting that within this cluster, polySia is attached to more than one site.
Collapse
Affiliation(s)
- Manuela Rollenhagen
- Institute of Cellular Chemistry, Medical School Hannover, Hannover 30623, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang SH, Tsai CM, Lin KI, Khoo KH. Advanced mass spectrometry and chemical analyses reveal the presence of terminal disialyl motif on mouse B-cell glycoproteins. Glycobiology 2013; 23:677-89. [PMID: 23363740 DOI: 10.1093/glycob/cwt008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The occurrence of a terminal disialyl motif on mammalian O-glycans is increasingly being identified through recent mass spectrometry (MS)-based glycomic profiling. In most cases, it is carried on simple core 1 structures in which both the galactose and N-acetyl galactosamine can be disialylated. In contrast, a disialyl motif on N-glycans is less readily revealed by MS mapping, since additional MS/MS analysis is required to determine the distribution of the various sialic acids on typically multisialylated complex type N-glycans. In our MS-based glycomic screening, we found that a mouse B lymphoma cell line, BCL1, ranks among those that have the highest amount of disialyl motif on its O-glycans, including those carried on CD45. More intriguingly, detailed chemical and MS/MS analyses unambiguously showed that the Neu5Gcα2-8Neu5Gc disialyl motif is also present on the N-glycans and that it can be carried on the termini of polylactosaminoglycan chains, which can be further sulfated on the proximal GlcNAc, occurring alongside other monosialylated sulfated LacNAc termini. Upon silencing the expression of mouse α2,8-sialyltransferase VI (ST8Sia VI), the overall disialyl content decreases significantly, but more so for that on the N-glycans than the O-glycans. ST8Sia VI was further shown to be the most significantly upregulated ST8Sia during plasma cell differentiation, which coincides with increasing content of the disialyl motif. Increasing terminal disialylation without leading to polysialylation may thus have important biological consequences awaiting further investigation. Likewise, the expression of mono- and disialylated sulfated LacNAc may constitute novel recognition codes modulating B-cell activation and differentiation.
Collapse
Affiliation(s)
- Shui-Hua Wang
- Institute of Biochemical Sciences, National Taiwan University
| | | | | | | |
Collapse
|
27
|
Takashima S, Matsumoto T, Tsujimoto M, Tsuji S. Effects of amino acid substitutions in the sialylmotifs on molecular expression and enzymatic activities of α2,8-sialyltransferases ST8Sia-I and ST8Sia-VI. Glycobiology 2013; 23:603-12. [PMID: 23315426 DOI: 10.1093/glycob/cwt002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse sialyltransferases are grouped into four families according to the type of carbohydrate linkage they synthesize: β-galactoside α2,3-sialyltransferases (ST3Gal-I-VI), β-galactoside α2,6-sialyltransferases (ST6Gal-I and ST6Gal-II), N-acetylgalactosamine α2,6-sialyltransferases (ST6GalNAc-I-VI) and α2,8-sialyltransferases (ST8Sia-I-VI). These sialyltransferases feature a type II transmembrane topology and contain highly conserved motifs termed sialylmotifs L, S, III and VS. Sialylmotifs L and S are involved in substrate binding, whereas sialylmotifs III and VS are involved in catalytic activity. In addition to the conventional sialylmotifs, family and subfamily specific sequence motifs have been proposed. In this study, we analyzed the properties and functions of sialylmotifs in characterizing the enzymatic activity of mouse ST8Sia-I and ST8Sia-VI, both of which are α2,8-sialyltransferases involved in the synthesis of either ganglioside GD3 or disialic acid structures on O-glycans, respectively. The ST8Sia-VI-based chimeric enzymes, whose sialylmotif L sequences were replaced with those of ST8Sia-I and ST8Sia-IV (polysialic acid synthetase), were still active toward O-glycans. However, ST8Sia-VI-based chimeric enzymes lost expression or activity when their sialylmotif L sequences were replaced with those of ST3Gal-I and ST6GalNAc-II, suggesting the existence of an ST8Sia family specific motif in the sialylmotif L. The ST8Sia-I- and ST8Sia-VI-based chimeric enzymes lost enzymatic activity when their sialylmotif S sequences were interchanged. Amino acid substitutions in the sialylmotif S of ST8Sia-I and ST8Sia-VI also affected the enzymatic activity in many cases, indicating the crucial and functional importance of the sialylmotif S in substrate binding, which determines the substrate specificity of sialyltransferase.
Collapse
Affiliation(s)
- Shou Takashima
- Laboratory of Cellular Biochemistry, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
28
|
Weiss GA, Hennet T. The role of milk sialyllactose in intestinal bacterial colonization. Adv Nutr 2012; 3:483S-8S. [PMID: 22585928 PMCID: PMC3649486 DOI: 10.3945/an.111.001651] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Milk oligosaccharides influence the composition of intestinal microbiota and thereby mucosal inflammation. Some of the major milk oligosaccharides are α2,3-sialyllactose (3SL) and α2,6-sialyllactose, which are mainly produced by the sialyltransferases ST3GAL4 and ST6GAL1, respectively. Recently, we showed that mice fed milk deficient in 3SL were more resistant to dextran sulfate sodium-induced colitis. By contrast, the exposure to milk containing or deficient in 3SL had no impact on the development of mucosal leukocyte populations. Milk 3SL mainly affected the colonization of the intestine by clostridial cluster IV bacteria.
Collapse
Affiliation(s)
- G. Adrienne Weiss
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; and,Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland; and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Vanbeselaere J, Chang LY, Harduin-Lepers A, Fabre E, Yamakawa N, Slomianny C, Biot C, Khoo KH, Guerardel Y. Mapping the Expressed Glycome and Glycosyltransferases of Zebrafish Liver Cells as a Relevant Model System for Glycosylation Studies. J Proteome Res 2012; 11:2164-77. [DOI: 10.1021/pr200948j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jorick Vanbeselaere
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Lan-Yi Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Anne Harduin-Lepers
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Emeline Fabre
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Nao Yamakawa
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Christian Slomianny
- INSERM-LPC, U1003,
Université Lille 1, Cité Scientifique, Bât. SN3,
F-59655 Villeneuve d′Ascq Cedex, France
| | - Christophe Biot
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yann Guerardel
- Université Lille Nord de France, Université Lille 1, Unité
de Glycobiologie Structurale et Fonctionnelle, UGSF, F-59650 Villeneuve
d′Ascq, France
- CNRS, UMR 8576, F-59650 Villeneuve d′Ascq, France
| |
Collapse
|
30
|
Rinflerch AR, Burgos VL, Hidalgo AM, Loresi M, Argibay PF. Differential expression of disialic acids in the cerebellum of senile mice. Glycobiology 2011; 22:411-6. [DOI: 10.1093/glycob/cwr161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Affiliation(s)
- Shou Takashima
- The Noguchi institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Shuichi Tsuji
- Institute of Glycoscience, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
32
|
Inoko E, Nishiura Y, Tanaka H, Takahashi T, Furukawa K, Kitajima K, Sato C. Developmental stage-dependent expression of an 2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 2010; 20:916-28. [DOI: 10.1093/glycob/cwq049] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta Gen Subj 2009; 1790:1599-610. [DOI: 10.1016/j.bbagen.2009.07.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|
34
|
Uemura S, Yoshida S, Shishido F, Inokuchi JI. The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 2009; 20:3088-100. [PMID: 19420140 DOI: 10.1091/mbc.e08-12-1219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
GM3 synthase (SAT-I) is the primary glycosyltransferase responsible for the biosynthesis of ganglio-series gangliosides. In this study, we identify three isoforms of mouse SAT-I proteins, named M1-SAT-I, M2-SAT-I, and M3-SAT-I, which possess distinct lengths in their NH(2)-terminal cytoplasmic tails. These isoforms are produced by leaky scanning from mRNA variants of mSAT-Ia and mSAT-Ib. M2-SAT-I and M3-SAT-I were found to be localized in the Golgi apparatus, as expected, whereas M1-SAT-I was exclusively found in the endoplasmic reticulum (ER). Specific multiple arginines (R) arranged in an R-based motif, RRXXXXR necessary for ER targeting, were found in the cytoplasmic tail of M1-SAT-I, and in vivo GM3 biosynthesis by M1-SAT-I was very low because of restricted transport to the Golgi apparatus. In addition, M1-SAT-I and M3-SAT-I had a long half-life relative to M2-SAT-I. This is the first report demonstrating the presence of an ER-targeting R-based motif in the cytoplasmic tail of a protein in the mammalian glycosyltransferase family of enzymes. The system, which produces SAT-I isoforms having distinct characteristics, is likely to be of critical importance for the regulation of GM3 biosynthesis under various pathological and physiological conditions.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | | | | | | |
Collapse
|
35
|
Daskalova SM, Pah AR, Baluch DP, Lopez LC. The Arabidopsis thaliana putative sialyltransferase resides in the Golgi apparatus but lacks the ability to transfer sialic acid. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:284-99. [PMID: 19470101 DOI: 10.1111/j.1438-8677.2008.00138.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A common feature of the animal sialyltransferases (STs) is the presence of four conserved motifs, namely large (L), small (S), very small (VS) and motif III. Although sialic acid (SA) has not been detected in plants, three orthologues containing sequences similar to the ST motifs have been identified in the Arabidopsis thaliana L. database. In this study, we report that the At3g48820 gene (Gene ID: 824043) codes for a Golgi resident protein lacking the ability to transfer SA to asialofetuin or Galbeta1,3GalNAc and Galbeta1,4GlcNAc oligosaccharide acceptors. Restoration of deteriorated motifs S, VS and motif III by constructing chimeric proteins consisting of the 28-308 amino acid region of the A. thalianaAt3g48820 ST-like protein and the 264-393 amino acid region of the Oryza sativa L. AK107493 ST-like protein, or of the 28-240 amino acid region of the At3g48820 protein and the 204-350 amino acid region of the Homo sapiens L. alpha2,3-ST (NP_008858) was not able to recover sialyltransferase activity. Altering the appropriate amino acid regions of the A. thalianaAt3g48820 ST-like protein to those typical for the mammalian motif III (HHYWE) and VS motif (HDADFE) also did not have any effect. Our data, together with previous results, indicate that A. thaliana in particular, and plants in general, do not have transferases for SA. Substrates for the plant ST-like proteins might be compounds involved in secondary metabolism.
Collapse
Affiliation(s)
- S M Daskalova
- The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | | | | | | |
Collapse
|
36
|
Harduin-Lepers A, Petit D, Mollicone R, Delannoy P, Petit JM, Oriol R. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes. BMC Evol Biol 2008; 8:258. [PMID: 18811928 PMCID: PMC2564942 DOI: 10.1186/1471-2148-8-258] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 09/23/2008] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The animal sialyltransferases, which catalyze the transfer of sialic acid to the glycan moiety of glycoconjugates, are subdivided into four families: ST3Gal, ST6Gal, ST6GalNAc and ST8Sia, based on acceptor sugar specificity and glycosidic linkage formed. Despite low overall sequence identity between each sialyltransferase family, all sialyltransferases share four conserved peptide motifs (L, S, III and VS) that serve as hallmarks for the identification of the sialyltransferases. Currently, twenty subfamilies have been described in mammals and birds. Examples of the four sialyltransferase families have also been found in invertebrates. Focusing on the ST8Sia family, we investigated the origin of the three groups of alpha2,8-sialyltransferases demonstrated in vertebrates to carry out poly-, oligo- and mono-alpha2,8-sialylation. RESULTS We identified in the genome of invertebrate deuterostomes, orthologs to the common ancestor for each of the three vertebrate ST8Sia groups and a set of novel genes named ST8Sia EX, not found in vertebrates. All these ST8Sia sequences share a new conserved family-motif, named "C-term" that is involved in protein folding, via an intramolecular disulfide bridge. Interestingly, sequences from Branchiostoma floridae orthologous to the common ancestor of polysialyltransferases possess a polysialyltransferase domain (PSTD) and those orthologous to the common ancestor of oligosialyltransferases possess a new ST8Sia III-specific motif similar to the PSTD. In osteichthyans, we have identified two new subfamilies. In addition, we describe the expression profile of ST8Sia genes in Danio rerio. CONCLUSION Polysialylation appeared early in the deuterostome lineage. The recent release of several deuterostome genome databases and paralogons combined with synteny analysis allowed us to obtain insight into events at the gene level that led to the diversification of the ST8Sia genes, with their corresponding enzymatic activities, in both invertebrates and vertebrates. The initial expansion and subsequent divergence of the ST8Sia genes resulted as a consequence of a series of ancient duplications and translocations in the invertebrate genome long before the emergence of vertebrates. A second subset of ST8sia genes in the vertebrate genome arose from whole genome duplication (WGD) R1 and R2. Subsequent selective ST8Sia gene loss is responsible for the characteristic ST8Sia gene expression pattern observed today in individual species.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | - Daniel Petit
- Laboratoire de Génétique Moléculaire Animale, INRA UMR 1061, Université de Limoges Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Rosella Mollicone
- Unité de Microenvironnement et physiologie de la différenciation, INSERM U602, Université de Paris Sud XI, 16 Avenue Paul Vaillant-Couturier, 94807, Villejuif, France
| | - Philippe Delannoy
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, CNRS, UMR 8576, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq, France
| | - Jean-Michel Petit
- Laboratoire de Génétique Moléculaire Animale, INRA UMR 1061, Université de Limoges Faculté des Sciences et Techniques, 123 avenue Albert Thomas, 87060, Limoges, France
| | - Rafael Oriol
- Unité de Microenvironnement et physiologie de la différenciation, INSERM U602, Université de Paris Sud XI, 16 Avenue Paul Vaillant-Couturier, 94807, Villejuif, France
| |
Collapse
|
37
|
Miyata S, Sato C, Kitajima K. Glycobiology of Polysialic Acids on Sea Urchin Gametes. TRENDS GLYCOSCI GLYC 2007. [DOI: 10.4052/tigg.19.85] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shinji Miyata
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University
| | - Chihiro Sato
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University
| | - Ken Kitajima
- Bioscience and Biotechnology Center and Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
38
|
Asahina S, Sato C, Matsuno M, Matsuda T, Colley K, Kitajima K. Involvement of the alpha2,8-polysialyltransferases II/STX and IV/PST in the biosynthesis of polysialic acid chains on the O-linked glycoproteins in rainbow trout ovary. J Biochem 2006; 140:687-701. [PMID: 17023684 DOI: 10.1093/jb/mvj200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polysialoglycoprotein (PSGP) in salmonid fish egg is a unique glycoprotein bearing alpha2,8-linked polysialic acid (polySia) on its O-linked glycans. Biosynthesis of the polySia chains is developmentally regulated and only occurs at later stage of oogenesis. Two alpha2,8-polysialyltransferases (alpha2,8-polySTs), PST (ST8Sia IV) and STX (ST8Sia II), responsible for the biosynthesis of polySia on N-glycans of glycoproteins, are known in mammals. However, nothing has been known about which alpha2,8-polySTs are involved in the biosynthesis of polySia on O-linked glycans in any glycoproteins. We thus sought to identify cDNA encoding the alpha2,8-polyST involved in polysialylation of PSGP. A clone for PST orthologue, rtPST, and two clones for the STX orthologue, rtSTX-ov and rtSTX-em, were identified in rainbow trout. The deduced amino acid sequence of rtPST shows a high identity (72-77%) to other vertebrate PSTs, while that of rtSTX-ov shows 92% identity with rtSTX-em and a significant identity (63-76%) to other vertebrate STXs. The rtPST exhibited the in vivo alpha2,8-polyST activity, although its in vitro activity was low. However, the rtSTXs showed no in vivo and very low in vitro activities. Interestingly, co-existence of rtPST and rSTX-ov in the reaction mixture synergistically enhanced the alpha2,8-polyST activity. During oogenesis, rtPST was constantly expressed, while the expression of rtSTX-ov was not increased until polySia chain is abundantly biosynthesized in the later stage. rtSTX-em was not expressed in ovary. These results suggest that the enhanced expression of rtSTX-ov under the co-expression with rtPST may be important for the biosynthesis of polySia on O-linked glycans of PSGP.
Collapse
Affiliation(s)
- Shinji Asahina
- Laboratory of Animal Cell Function, Bioscience and Biotechnology Center, Department of Bioengineering Sciences, Nagoya University, Nagoya 464-8601
| | | | | | | | | | | |
Collapse
|
39
|
Avril T, North SJ, Haslam SM, Willison HJ, Crocker PR. Probing the cis interactions of the inhibitory receptor Siglec-7 with alpha2,8-disialylated ligands on natural killer cells and other leukocytes using glycan-specific antibodies and by analysis of alpha2,8-sialyltransferase gene expression. J Leukoc Biol 2006; 80:787-96. [PMID: 16857734 DOI: 10.1189/jlb.1005559] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Siglec-7 is a CD33-related sialic acid-binding Ig-like lectin expressed strongly on NK cells, where it can function as an inhibitory receptor. Its sialic acid-binding activity on NK cells is masked by cis interactions with sialylated glycans, which are likely to be important for regulating the inhibitory function of Siglec-7, which exhibits an unusual preference for alpha2,8-linked disialic acids, a motif found in "b-series" gangliosides and some glycoproteins. To investigate the presence of alpha2,8-linked disialic acids on NK cells, T cells, monocytes, and B cells, we first analyzed their expression of all known alpha2,8-sialyltransferase genes by quantitative PCR. Unlike T cells, B cells, and monocytes, NK cells consistently expressed mRNA encoding ST8Sia VI, which creates alpha2,8-linked disialic acids on O-linked glycans of glycoproteins. All blood leukocytes expressed ST8Sia IV, implicated in polysialic acid synthesis, and NK cells variably expressed high levels of ST8Sia V mRNA required for GT3 expression. Two human IgM antibodies, Ha1 and Pi1, with specificity for the alpha2,8-disialyl motif reacted strongly with NK cells in a sialic acid-dependent manner and less strongly with T cells and monocytes. Antibody-induced clustering of Siglec-7 on NK cells resulted in partial colocalization with anti-Ha1. Finally, MALDI-TOF mass spectrometric analysis of isolated NK cell O-glycans revealed the presence of a peak at mass-to-charge ratio of 1619.4 mass units, corresponding to a putative alpha2,8-disialylated glycan. Together, these results suggest that NK cells are decorated with alpha2,8-disialic acid structures implicated in regulation of cellular activation via interactions with Siglec-7.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Cell Line, Tumor
- Gene Expression Profiling
- Humans
- Killer Cells, Natural/immunology
- Lectins/immunology
- Lectins/metabolism
- Leukocytes/immunology
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Ligands
- Mice
- Polysaccharides/chemistry
- Polysaccharides/immunology
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sensitivity and Specificity
- Sialic Acids/chemistry
- Sialic Acids/metabolism
- Sialyltransferases/biosynthesis
- Sialyltransferases/genetics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
- Stereoisomerism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Tony Avril
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
40
|
Teintenier-Lelièvre M, Julien S, Juliant S, Guerardel Y, Duonor-Cérutti M, Delannoy P, Harduin-Lepers A. Molecular cloning and expression of a human hST8Sia VI (alpha2,8-sialyltransferase) responsible for the synthesis of the diSia motif on O-glycosylproteins. Biochem J 2006; 392:665-74. [PMID: 16120058 PMCID: PMC1316308 DOI: 10.1042/bj20051120] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Based on BLAST analysis of the human and mouse genome databases using the human CMP sialic acid; alpha2,8-sialyltransferase cDNA (hST8Sia I; EC 2.4.99.8), a putative sialyltransferase gene, was identified on human chromosome 10. The genomic organization was found to be similar to that of hST8Sia I and hST8Sia V. Transcriptional expression analysis showed that the newly identified gene was constitutively expressed at low levels in various human tissues and cell lines. We have isolated a full-length cDNA clone from the breast cancer cell line MCF-7 that encoded a type II membrane protein of 398 amino acid residues with the conserved motifs of sialyltransferases. We have established a mammary cell line (MDA-MB-231) stably transfected with the full-length hST8Sia VI and the analysis of sialylated carbohydrate structures expressed at the cell surface clearly indicated the disappearance of Neu5Acalpha2-3-sialylated structures. The transient expression of a truncated soluble form of the enzyme in either COS-7 cells or insect Sf-9 cells led to the production of an active enzyme in which substrate specificity was determined. Detailed substrate specificity analysis of the hST8Sia VI recombinant enzyme in vitro, revealed that this enzyme required the trisaccharide Neu5Acalpha2-3Galbeta1-3GalNAc (where Neu5Ac is N-acetylneuraminic acid and GalNAc is N-acetylgalactosamine) to generate diSia (disialic acid) motifs specifically on O-glycans.
Collapse
Affiliation(s)
- Mélanie Teintenier-Lelièvre
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Sylvain Julien
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Sylvie Juliant
- †Centre de Pharmacologie et de Biotechnologie pour la Santé, CNRS UMR 5160, GDR CNRS 2590, 2352, F-30380 Saint Christol-lès-Alès, France
| | - Yann Guerardel
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Martine Duonor-Cérutti
- †Centre de Pharmacologie et de Biotechnologie pour la Santé, CNRS UMR 5160, GDR CNRS 2590, 2352, F-30380 Saint Christol-lès-Alès, France
| | - Philippe Delannoy
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Anne Harduin-Lepers
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Yasukawa Z, Sato C, Kitajima K. Inflammation-dependent changes in α2,3-, α2,6-, and α2,8-sialic acid glycotopes on serum glycoproteins in mice. Glycobiology 2005; 15:827-37. [PMID: 15858074 DOI: 10.1093/glycob/cwi068] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The expression of acute-phase serum proteins increases in response to inflammatory stimuli. Most of these proteins are glycoproteins that often contain sialic acids (Sia). It is unknown, however, how the expression of Sia in these glycoproteins changes during inflammation. This study demonstrates changes in the alpha2,3-, alpha2,6-, and alpha2,8-Sia glycotopes on serum glycoproteins in response to turpentine oil-induced inflammation, based on lectin- and immunoblot analyses by using sialyl linkage-specific lectins, Maackia amurensis for the alpha2,3-Sia glycotope and Sambucus sieboldiana for the alpha2,6-Sia glycotopes, and monoclonal antibody 2-4B (mAb.2-4B) recognizing the di- and oligomers of the alpha2,8-Neu5Gc residue. There was an increase in a limited number of sialoglycoproteins containing the alpha2,3-, alpha2,6-, or alpha2,8-Sia glycotopes. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of the expression profiles of mRNAs for the known sialyltransferases in mouse liver during inflammation indicated the up-regulated expression of beta-galactoside alpha2,3-sialyltransferases (ST3Gal I and ST3Gal III) and beta-N-acetylgalactosaminide alpha2,6-sialyltransferase (ST6GalNAc VI) as well as beta-galactoside alpha2,6-sialyltransferase (ST6Gal I) mRNAs. Notably, ST3Gal I and III and ST6GalNAc VI are involved in the synthesis of the alpha2,3- and alpha2,6-Sia glycotopes on O-glycan chains and possibly on gangliosides, whereas ST6Gal I is specific for N-glycan chains. These results provide evidence for the inflammation-induced expression of sialyl glycotopes in serum glycoproteins. We demonstrated that inflammation significantly increased the expression of an unknown 32-kDa glycoprotein containing the alpha2,8-Sia glycotope. The mechanism for the increase in glycoprotein in inflamed mouse serum remains to be examined, as mRNA expression for all of the alpha2,8-sialyltransferases (ST8Sia I-VI) was unchanged during inflammation.
Collapse
Affiliation(s)
- Zenta Yasukawa
- Laboratory of Animal Cell Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
42
|
Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R. The animal sialyltransferases and sialyltransferase-related genes: a phylogenetic approach. Glycobiology 2005; 15:805-17. [PMID: 15843597 DOI: 10.1093/glycob/cwi063] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The animal sialyltransferases are Golgi type II transmembrane glycosyltransferases. Twenty distinct sialyltransferases have been identified in both human and murine genomes. These enzymes catalyze transfer of sialic acid from CMP-Neu5Ac to the glycan moiety of glycoconjugates. Despite low overall identities, they share four conserved peptide motifs [L (large), S (small), motif III, and motif VS (very small)] that are hallmarks for sialyltransferase identification. We have identified 155 new putative genes in 25 animal species, and we have exploited two lines of evidence: (1) sequence comparisons and (2) exon-intron organization of the genes. An ortholog to the ancestor present before the split of ST6Gal I and II subfamilies was detected in arthropods. An ortholog to the ancestor present before the split of ST6GalNAc III, IV, V, and VI subfamilies was detected in sea urchin. An ortholog to the ancestor present before the split of ST3Gal I and II subfamilies was detected in ciona, and an ortholog to the ancestor of all the ST8Sia was detected in amphioxus. Therefore, single examples of the four families (ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia) have appeared in invertebrates, earlier than previously thought, whereas the four families were all detected in bony fishes, amphibians, birds, and mammals. As previously hypothesized, sequence similarities among sialyltransferases suggest a common genetic origin, by successive duplications of an ancestral gene, followed by divergent evolution. Finally, we propose predictions on these invertebrates sialyltransferase-related activities that have not previously been demonstrated and that will ultimately need to be substantiated by protein expression and enzymatic activity assays.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Glycobiologie Structurale et Fonctionnelle, UMR CNRS/USTL 8576, Laboratoire de Chimie Biologique, Bâtiment C9, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France. [corrected]
| | | | | | | |
Collapse
|
43
|
Wu W, Air GM. Binding of influenza viruses to sialic acids: reassortant viruses with A/NWS/33 hemagglutinin bind to alpha2,8-linked sialic acid. Virology 2004; 325:340-50. [PMID: 15246273 DOI: 10.1016/j.virol.2004.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
We have examined the specificity of binding of A/NWS/33 hemagglutinin (HA), exploring the effects of fucosylation, changing the Gal-GlcNAc linkage between the second and third sugars, and binding affinity for alpha2,8-linked sialic acid. The HA of A/NWS/33(HA)-Tokyo/67(NA) (NWS-Tok, H1N2) virus binds to 3'-linked sialyllactose with 10-fold higher affinity than 3' sialyllactosamine and 3-fold higher affinity than 6' sialyllactosamine. The P227H mutation in A/NWS/33(P227H)(HA)-A/Memphis/31/98(NA) (NWS-Mem/98, H1N2) results in sevenfold lower affinity for 3' sialyllactose, but binding to 6' sialyllactosamine is unchanged. The apparent switch from 3' to 6' specificity is solely due to a loss of Siaalpha2,3 binding. Fucosylation of the third sugar and changing the linkage between second and third sugars had little effect on binding by NWS-Tok, but marked effects on A/NWS/33(P227H)(HA)-tern/Australia/G70c/75(NA) (NWS-G70c, H1N9) and NWS-Mem/98. NWS-Tok, NWS-G70c, and NWS-Mem/98 bind to alpha2,8-bisialic acid with high affinity. NWS-Mem/98 can also bind to alpha2,8-trisialic acid, but with lower affinity. Together, these data show that alpha2,8-linked sialic acid, fucosylation of the third sugar, and linkage between the second and third sugars could play important roles in allowing efficient virus binding to its host cell. The finding that influenza viruses have the potential to bind to alpha2,8-linked sialic acid is a new influenza virus-receptor interaction pathway.
Collapse
Affiliation(s)
- Wenxin Wu
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
44
|
Abstract
Sialylation is an important carbohydrate modification of glycoconjugates in the deuterostome lineage of animals. By contrast, the evidence for sialylation in protostomes has been scarce and somewhat controversial. In the present study, we characterize a Drosophila sialyltransferase gene, thus providing experimental evidence for the presence of sialylation in protostomes. This gene encodes a functional alpha2-6-sialyltransferase (SiaT) that is closely related to the vertebrate ST6Gal sialyltransferase family, indicating an ancient evolutionary origin for this family. Characterization of recombinant, purified Drosophila SiaT revealed a novel acceptor specificity as it exhibits highest activity toward GalNAcbeta1-4GlcNAc carbohydrate structures at the non-reducing termini of oligosaccharides and glycoprotein glycans. Oligosaccharides are preferred over glycoproteins as acceptors, and no activity toward glycolipid acceptors was detected. Recombinant Drosophila SiaT expressed in cultured insect cells possesses in vivo and in vitro autosialylation activity toward beta-linked GalNAc termini of its own N-linked glycans, thus representing the first example of a sialylated insect glycoconjugate. In situ hybridization revealed that Drosophila SiaT is expressed during embryonic development in a tissue- and stage-specific fashion, with elevated expression in a subset of cells within the central nervous system. The identification of a SiaT in Drosophila provides a new evolutionary perspective for considering the diverse functions of sialylation and, through the powerful genetic tools available in this system, a means of elucidating functions for sialylation in protostomes.
Collapse
Affiliation(s)
- Kate Koles
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
45
|
Matsuhashi H, Horii Y, Kato K. Region-specific and epileptogenic-dependent expression of six subtypes of alpha2,3-sialyltransferase in the adult mouse brain. J Neurochem 2003; 84:53-66. [PMID: 12485401 DOI: 10.1046/j.1471-4159.2003.01257.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sialylated glycoconjugates play important roles in various biological functions. The structures are also observed in brains and it has been proposed that sialylation may affect neural plasticity. To clarify the effects of sialylation in the brain, particular neurons that exhibit sialylation should first be determined. Using in situ hybridization, we performed systematic surveys of the localization of mRNAs encoding the six alpha2,3-sialyltransferases (ST3Gal I-VI) in the adult mouse brain with or without physiological stimulation. First, striking region-specific patterns of expression were observed: While ST3Gal II, III, and V mRNAs were in neuronal cells throughout the brain, ST3Gal I, IV, and VI mRNAs were in restricted brain regions. Next, to assess whether the expression of the six mRNAs can be regulated, we examined the effect of kindling epileptogenesis on the six mRNA levels. Of the six subtypes, upregulation in the ST3Gal IV level in the thalamus was most pronounced; the number of ST3Gal IV-expressing neurons in the anterior thalamic nuclei increased from 2% to 21% in a time-dependent manner during epileptogenesis. Western blot analysis evaluated the increase of the end-products in the thalamus. These findings provide a molecular basis to clarify when and where sialylated glycoconjugates function accompanied by neural plasticity.
Collapse
Affiliation(s)
- Hitomi Matsuhashi
- Division of Structural Cell Biology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | | | | |
Collapse
|
46
|
Takashima S, Tsuji S, Tsujimoto M. Characterization of the second type of human beta-galactoside alpha 2,6-sialyltransferase (ST6Gal II), which sialylates Galbeta 1,4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes. J Biol Chem 2002; 277:45719-28. [PMID: 12235148 DOI: 10.1074/jbc.m206808200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel member of the human beta-galactoside alpha2,6-sialyltransferase (ST6Gal) family, designated ST6Gal II, was identified by BLAST analysis of expressed sequence tags and genomic sequences. The sequence of ST6Gal II encoded a protein of 529 amino acids, and it showed 48.9% amino acid sequence identity with human ST6Gal I. Recombinant ST6Gal II exhibited alpha2,6-sialyltransferase activity toward oligosaccharides that have the Galbeta1,4GlcNAc sequence at the nonreducing end of their carbohydrate groups, but it exhibited relatively low and no activities toward some glycoproteins and glycolipids, respectively. It is concluded that ST6Gal II is an oligosaccharide-specific enzyme compared with ST6Gal I, which exhibits broad substrate specificities, and is mainly involved in the synthesis of sialyloligosaccharides. The expression of the ST6Gal II gene was significantly detected by reverse transcription PCR in small intestine, colon, and fetal brain, whereas the ST6Gal I gene was ubiquitously expressed, and its expression levels were much higher than those of the ST6Gal II gene. The ST6Gal I gene was also expressed in all tumors examined, but no expression was observed for the ST6Gal II gene in these tumors. The ST6Gal II gene is located on chromosome 2 (2q11.2-q12.1), and it spans over 85 kb of human genomic DNA consisting of at least eight exons and shares a similar genomic structure with the ST6Gal I gene. In this paper, we have shown that ST6Gal I, which has been known as the sole member of the ST6Gal family, also has the counterpart enzyme (ST6Gal II) like other sialyltransferases.
Collapse
Affiliation(s)
- Shou Takashima
- Laboratory of Cellular Biochemistry, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|