1
|
Li Z, Liu Y, Liu F, Sun G, Zhang X, Jing J. Bioorthogonal click chemistry and aptamer-targeting enables highly selective fluorescence labeling of exosomal glycosylated EpCAM for super resolved imaging. Anal Chim Acta 2025; 1339:343623. [PMID: 39832878 DOI: 10.1016/j.aca.2025.343623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells. Such understanding may provide valuable insights into the mechanisms underlying various diseases and potential treatment strategies. (94) RESULTS: This work focus on the selective labeling and fluorescent imaging of glycosylated EpCAM on tumor-derived exosomes using bioorthogonal click chemistry and aptamer-targeting strategies. To commence, exosomes with EpCAM overexpression, EpCAM N-glycosylation mutation, EpCAM silencing, or wildtype, were obtained by genetic manipulation. Subsequently, the glycosylation of exosomal EpCAM was directly visualized by capitalizing on the intramolecular fluorescence resonance energy transfer (FRET) that takes place between fluorescent EpCAM aptamers and fluorescent tags bound to glycans. As a result, this approach demonstrated its efficacy in investigating both the existence and the glycosylation state of exosomal EpCAM. Importantly, we proceeded to observe the uptake of tumor-derived exosomes by their recipient cells. It was then remarkably found that the expression and glycosylation levels of EpCAM in the co-cultured exosomes have a significant and substantial impact on the migratory ability of the recipient immune cells. (139) SIGNIFICANCE: We set up a novel labeling strategy for exosomal glycosylated EpCAM. This approach enabled us to realize the direct observation of exosomal EpCAM and its glycosylation with high spatial resolution. Based on this method, we find a significant role that the expression and the glycosylation of exosomal EpCAM in recipient cell adhesion. (52).
Collapse
Affiliation(s)
- Zichun Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yifan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Feiran Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guochen Sun
- Department of Neurosurgery, The First Medical Center, PLA General Hospital, Beijing, 100853, PR China.
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Jing Jing
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
2
|
Zhang L, Wei X. The Lego hypothesis of tissue morphogenesis: stereotypic organization of parallel orientational cell adhesions for epithelial self-assembly. Biol Rev Camb Philos Soc 2025; 100:445-460. [PMID: 39308450 PMCID: PMC11718597 DOI: 10.1111/brv.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
How tissues develop distinct structures remains poorly understood. We propose herein the Lego hypothesis of tissue morphogenesis, which states that during tissue morphogenesis, the topographical properties of cell surface adhesion molecules can be dynamically altered and polarised by regulating the spatiotemporal expression and localization of orientational cell adhesion (OCA) molecules cell-autonomously and non-cell-autonomously, thus modulating cells into unique Lego pieces for self-assembling into distinct cytoarchitectures. This concept can be exemplified by epithelial morphogenesis, in which cells are coalesced into a sheet by many types of adhesions. Among them, parallel OCAs (pOCAs) at the lateral cell membranes are essential for configuring cells in parallel. Major pOCAs include Na+/K+-ATPase-mediated adhesions, Crumbs-mediated adhesions, tight junctions, adherens junctions, and desmosomes. These pOCAs align in stereotypical orders along the apical-to-basal axis, and their absolute positioning is also regulated. Such spatial organization of pOCAs underlies proper epithelial morphogenesis. Thus, a key open question about tissue morphogenesis is how to regulate OCAs to make compatible adhesive cellular Lego pieces for tissue construction.
Collapse
Affiliation(s)
- Lili Zhang
- Department of PsychologyDalian Medical University9 Lvshun South Road WestDalian116044Liaoning ProvinceChina
| | - Xiangyun Wei
- Departments of Ophthalmology and Microbiology & Molecular GeneticsUniversity of Pittsburgh1622 Locust StreetPittsburgh15219PAUSA
| |
Collapse
|
3
|
Hada A, Xiao Z. Ligands for Intestinal Intraepithelial T Lymphocytes in Health and Disease. Pathogens 2025; 14:109. [PMID: 40005486 PMCID: PMC11858322 DOI: 10.3390/pathogens14020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The intestinal tract is constantly exposed to a diverse mixture of luminal antigens, such as those derived from commensals, dietary substances, and potential pathogens. It also serves as a primary route of entry for pathogens. At the forefront of this intestinal defense is a single layer of epithelial cells that forms a critical barrier between the gastrointestinal (GI) lumen and the underlying host tissue. The intestinal intraepithelial T lymphocytes (T-IELs), one of the most abundant lymphocyte populations in the body, play a crucial role in actively surveilling and maintaining the integrity of this barrier by tolerating non-harmful factors such as commensal microbiota and dietary components, promoting epithelial turnover and renewal while also defending against pathogens. This immune balance is maintained through interactions between ligands in the GI microenvironment and receptors on T-IELs. This review provides a detailed examination of the ligands present in the intestinal epithelia and the corresponding receptors expressed on T-IELs, including T cell receptors (TCRs) and non-TCRs, as well as how these ligand-receptor interactions influence T-IEL functions under both steady-state and pathological conditions. By understanding these engagements, we aim to shed light on the mechanisms that govern T-IEL activities within the GI microenvironment. This knowledge may help in developing strategies to target GI ligands and modulate T-IEL receptor expression, offering precise approaches for treating intestinal disorders.
Collapse
Affiliation(s)
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
4
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion factor CDHR2 impairs basolateral junctional complexes in transporting epithelia. Mol Biol Cell 2024; 35:br21. [PMID: 39292922 PMCID: PMC11617098 DOI: 10.1091/mbc.e24-03-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/28/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and thus maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. To begin to test this idea, we examined cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, reduced key components from tight and adherens junctions, impaired barrier function, and increased the motility of single cells within established monolayers. These results support the hypothesis that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to promote epithelial functions.
Collapse
Affiliation(s)
- Caroline S. Cencer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kianna L. Robinson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
5
|
Ouahed JD, Griffith A, Collen LV, Snapper SB. Breaking Down Barriers: Epithelial Contributors to Monogenic IBD Pathogenesis. Inflamm Bowel Dis 2024; 30:1189-1206. [PMID: 38280053 PMCID: PMC11519031 DOI: 10.1093/ibd/izad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Indexed: 01/29/2024]
Abstract
Monogenic causes of inflammatory bowel diseases (IBD) are increasingly being discovered. To date, much attention has been placed in those resulting from inborn errors of immunity. Therapeutic efforts have been largely focused on offering personalized immune modulation or curative bone marrow transplant for patients with IBD and underlying immune disorders. To date, less emphasis has been placed on monogenic causes of IBD that pertain to impairment of the intestinal epithelial barrier. Here, we provide a comprehensive review of monogenic causes of IBD that result in impaired intestinal epithelial barrier that are categorized into 6 important functions: (1) epithelial cell organization, (2) epithelial cell intrinsic functions, (3) epithelial cell apoptosis and necroptosis, (4) complement activation, (5) epithelial cell signaling, and (6) control of RNA degradation products. We illustrate how impairment of any of these categories can result in IBD. This work reviews the current understanding of the genes involved in maintaining the intestinal barrier, the inheritance patterns that result in dysfunction, features of IBD resulting from these disorders, and pertinent translational work in this field.
Collapse
Affiliation(s)
- Jodie D Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra Griffith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren V Collen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Han D, Yang H, Li J, Zhang C, Ye L, Dong J, Zhang C, Guo R, Xin J. Macleaya cordata extract improves growth performance, immune responses and anti-inflammatory capacity in neonatal piglets. Vet Microbiol 2024; 293:110090. [PMID: 38636177 DOI: 10.1016/j.vetmic.2024.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/26/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Macleaya cordata was a kind of traditional herbal medicine, which may a potential substitute for antibiotics. However, the effects of Macleaya cordata on neonatal piglets have rarely been reported. In this study, three groups were designed, including normal saline (Control group, CON), 8 mg/mL Macleaya cordata extract (MCE group, MCE) and 5 mg/mL Chlortetracycline Hydrochloride (CCH group, CCH), to investigate the effects of MCE on growth performance, blood parameters, inflammatory cytokines, regenerating islet-derived 3 gamma (REG3γ) expression and the transcriptomes of neonatal piglets. The results showed that, compared with the control group, MCE significantly increased the average daily gain (p < 0.01); spleen index (p < 0.05) contents of IL-10, TGF-β, IgG in serum and sIgA in the ileum mucus of neonatal piglets at 7 d and 21 d (p < 0.01). The diarrhoea incidence and serum TNF-α and IFN-γ contents of neonatal piglets at 7 d and 21 d were significantly decreased (p < 0.01). In addition, MCE significantly increased the mRNA expression of TGF-β, IL-10, and REG3γ (p < 0.01) and significantly decreased the mRNA expression of IL-33, TNF-α and IFN-γ in the ileal mucosa of neonatal piglets at 21 d (p < 0.01). The differentially expressed genes and the signal pathways, related to cytokine generation and regulation, immunoregulation and inflammation were identified. In conclusion, MCE can significantly improve growth performance, reduce diarrhoea incidence, relieve inflammation, improve immune function, and improve disease resistance in neonatal piglets. MCE can be used as a potential substitute for antibiotics in neonatal piglets.
Collapse
Affiliation(s)
- Diangang Han
- Yunnan Agricultural University, Kunming 650201, China; Technology Center of Kunming Customs, Kunming 650200, China
| | - Hongqing Yang
- Yunnan Agricultural University, Kunming 650201, China
| | - Jing Li
- Technology Center of Kunming Customs, Kunming 650200, China
| | - Chong Zhang
- Technology Center of Kunming Customs, Kunming 650200, China
| | - Lingling Ye
- Technology Center of Kunming Customs, Kunming 650200, China
| | - Jun Dong
- Technology Center of Kunming Customs, Kunming 650200, China
| | | | - Rongfu Guo
- Yunnan Agricultural University, Kunming 650201, China
| | - Jige Xin
- Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
7
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
8
|
Read J, Reid AT, Thomson C, Plit M, Mejia R, Knight DA, Lize M, El Kasmi K, Grainge CL, Stahl H, Schuliga M. Alveolar epithelial cells of lung fibrosis patients are susceptible to severe virus-induced injury. Clin Sci (Lond) 2024; 138:537-554. [PMID: 38577922 DOI: 10.1042/cs20240220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1β were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.
Collapse
Affiliation(s)
- Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew T Reid
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Claire Thomson
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- Saint Vincent's Hospital, Sydney, NSW, Australia
| | | | - Ross Mejia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Muriel Lize
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
- John Hunter Hospital, Newcastle, NSW, Australia
| | - Heiko Stahl
- Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
9
|
Cencer CS, Robinson KL, Tyska MJ. Loss of intermicrovillar adhesion impairs basolateral junctional complexes in transporting epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585733. [PMID: 38562895 PMCID: PMC10983982 DOI: 10.1101/2024.03.19.585733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into the luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and in turn maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. Here, we sought to test this idea using cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, led to loss of key components from tight and adherens junctions, and impaired barrier function and wound healing. These results indicate that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to support the physiological functions of transporting epithelia.
Collapse
|
10
|
Rickman OJ, Guignard E, Chabanon T, Bertoldi G, Auberson M, Hummler E. Tmprss2 maintains epithelial barrier integrity and transepithelial sodium transport. Life Sci Alliance 2024; 7:e202302304. [PMID: 38171596 PMCID: PMC10765116 DOI: 10.26508/lsa.202302304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The mouse cortical collecting duct cell line presents a tight epithelium with regulated ion and water transport. The epithelial sodium channel (ENaC) is localized in the apical membrane and constitutes the rate-limiting step for sodium entry, thereby enabling transepithelial transport of sodium ions. The membrane-bound serine protease Tmprss2 is co-expressed with the alpha subunit of ENaC. αENaC gene expression followed the Tmprss2 expression, and the absence of Tmprss2 resulted not only in down-regulation of αENaC gene and protein expression but also in abolished transepithelial sodium transport. In addition, RNA-sequencing analyses unveiled drastic down-regulation of the membrane-bound protease CAP3/St14, the epithelial adhesion molecule EpCAM, and the tight junction proteins claudin-7 and claudin-3 as also confirmed by immunohistochemistry. In summary, our data clearly demonstrate a dual role of Tmprss2 in maintaining not only ENaC-mediated transepithelial but also EpCAM/claudin-7-mediated paracellular barrier; the tight epithelium of the mouse renal mCCD cells becomes leaky. Our working model proposes that Tmprss2 acts via CAP3/St14 on EpCAM/claudin-7 tight junction complexes and through regulating transcription of αENaC on ENaC-mediated sodium transport.
Collapse
Affiliation(s)
- Olivia J Rickman
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Emma Guignard
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Thomas Chabanon
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanni Bertoldi
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Muriel Auberson
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Edith Hummler
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Yang Y, Li G, Zhong Y, Xu Q, Chen BJ, Lin YT, Chapkin R, Cai JJ. Gene knockout inference with variational graph autoencoder learning single-cell gene regulatory networks. Nucleic Acids Res 2023; 51:6578-6592. [PMID: 37246643 PMCID: PMC10359630 DOI: 10.1093/nar/gkad450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023] Open
Abstract
In this paper, we introduce Gene Knockout Inference (GenKI), a virtual knockout (KO) tool for gene function prediction using single-cell RNA sequencing (scRNA-seq) data in the absence of KO samples when only wild-type (WT) samples are available. Without using any information from real KO samples, GenKI is designed to capture shifting patterns in gene regulation caused by the KO perturbation in an unsupervised manner and provide a robust and scalable framework for gene function studies. To achieve this goal, GenKI adapts a variational graph autoencoder (VGAE) model to learn latent representations of genes and interactions between genes from the input WT scRNA-seq data and a derived single-cell gene regulatory network (scGRN). The virtual KO data is then generated by computationally removing all edges of the KO gene-the gene to be knocked out for functional study-from the scGRN. The differences between WT and virtual KO data are discerned by using their corresponding latent parameters derived from the trained VGAE model. Our simulations show that GenKI accurately approximates the perturbation profiles upon gene KO and outperforms the state-of-the-art under a series of evaluation conditions. Using publicly available scRNA-seq data sets, we demonstrate that GenKI recapitulates discoveries of real-animal KO experiments and accurately predicts cell type-specific functions of KO genes. Thus, GenKI provides an in-silico alternative to KO experiments that may partially replace the need for genetically modified animals or other genetically perturbed systems.
Collapse
Affiliation(s)
- Yongjian Yang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Guanxun Li
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Yan Zhong
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Qian Xu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Bo-Jia Chen
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Robert S Chapkin
- Program in Integrative & Complex Diseases, Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - James J Cai
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Muto H, Honda T, Tanaka T, Yokoyama S, Yamamoto K, Ito T, Imai N, Ishizu Y, Maeda K, Ishikawa T, Adachi S, Sato C, Tsuji NM, Ishigami M, Fujishiro M, Kawashima H. Proteomic Analysis Reveals Changes in Tight Junctions in the Small Intestinal Epithelium of Mice Fed a High-Fat Diet. Nutrients 2023; 15:1473. [PMID: 36986203 PMCID: PMC10056729 DOI: 10.3390/nu15061473] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The impact of a high-fat diet (HFD) on intestinal permeability has been well established. When bacteria and their metabolites from the intestinal tract flow into the portal vein, inflammation in the liver is triggered. However, the exact mechanism behind the development of a leaky gut caused by an HFD is unclear. In this study, we investigated the mechanism underlying the leaky gut related to an HFD. C57BL/6J mice were fed an HFD or control diet for 24 weeks, and their small intestine epithelial cells (IECs) were analyzed using deep quantitative proteomics. A significant increase in fat accumulation in the liver and a trend toward increased intestinal permeability were observed in the HFD group compared to the control group. Proteomics analysis of the upper small intestine epithelial cells identified 3684 proteins, of which 1032 were differentially expressed proteins (DEPs). Functional analysis of DEPs showed significant enrichment of proteins related to endocytosis, protein transport, and tight junctions (TJ). Expression of Cldn7 was inversely correlated with intestinal barrier function and strongly correlated with that of Epcam. This study will make important foundational contributions by providing a comprehensive depiction of protein expression in IECs affected by HFD, including an indication that the Epcam/Cldn7 complex plays a role in leaky gut.
Collapse
Affiliation(s)
- Hisanori Muto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Taku Tanaka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinya Yokoyama
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoji Ishizu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Maeda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shungo Adachi
- Biological Systems Control Team, Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Chikara Sato
- School of Integrative and Global Majors (SIGMA), Tsukuba University, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Biological Science Course, Graduate School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuou-ku, Sagamihara 252-5258, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8560, Japan
| | - Noriko M. Tsuji
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamimachi, Itabashi, Tokyo 173-8610, Japan
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8560, Japan
- Microbiology and Immunology, School of Dentistry at Matsudo, Nihon University, 22-870-1 Sakae-cho-nishi, Tokyo 271-8587, Japan
- Department of Food Science, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
13
|
Higashi T, Saito AC, Fukazawa Y, Furuse M, Higashi AY, Ono M, Chiba H. EpCAM proteolysis and release of complexed claudin-7 repair and maintain the tight junction barrier. J Cell Biol 2022; 222:213688. [PMID: 36378161 PMCID: PMC9671161 DOI: 10.1083/jcb.202204079] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
TJs maintain the epithelial barrier by regulating paracellular permeability. Since TJs are under dynamically fluctuating intercellular tension, cells must continuously survey and repair any damage. However, the underlying mechanisms allowing cells to sense TJ damage and repair the barrier are not yet fully understood. Here, we showed that proteinases play an important role in the maintenance of the epithelial barrier. At TJ break sites, EpCAM-claudin-7 complexes on the basolateral membrane become accessible to apical membrane-anchored serine proteinases (MASPs) and the MASPs cleave EpCAM. Biochemical data and imaging analysis suggest that claudin-7 released from EpCAM contributes to the rapid repair of damaged TJs. Knockout (KO) of MASPs drastically reduced barrier function and live-imaging of TJ permeability showed that MASPs-KO cells exhibited increased size, duration, and frequency of leaks. Together, our results reveal a novel mechanism of TJ maintenance through the localized proteolysis of EpCAM at TJ leaks, and provide a better understanding of the dynamic regulation of epithelial permeability.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan,Correspondence to Tomohito Higashi:
| | - Akira C. Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Masahiro Ono
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
14
|
Liu Y, Wang Y, Sun S, Chen Z, Xiang S, Ding Z, Huang Z, Zhang B. Understanding the versatile roles and applications of EpCAM in cancers: from bench to bedside. Exp Hematol Oncol 2022; 11:97. [PMID: 36369033 PMCID: PMC9650829 DOI: 10.1186/s40164-022-00352-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) functions not only in physiological processes but also participates in the development and progression of cancer. In recent decades, extensive efforts have been made to decipher the role of EpCAM in cancers. Great advances have been achieved in elucidating its structure, molecular functions, pathophysiological mechanisms, and clinical applications. Beyond its well-recognized role as a biomarker of cancer stem cells (CSCs) or circulating tumor cells (CTCs), EpCAM exhibits novel and promising value in targeted therapy. At the same time, the roles of EpCAM in cancer progression are found to be highly context-dependent and even contradictory in some cases. The versatile functional modules of EpCAM and its communication with other signaling pathways complicate the study of this molecule. In this review, we start from the structure of EpCAM and focus on communication with other signaling pathways. The impacts on the biology of cancers and the up-to-date clinical applications of EpCAM are also introduced and summarized, aiming to shed light on the translational prospects of EpCAM.
Collapse
Affiliation(s)
- Yiyang Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufei Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Sun
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyu Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeyang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
15
|
Ngalim SH, Yusoff N, Johnson RR, Abdul Razak SR, Chen X, Hobbs JK, Lee YY. A review on mechanobiology of cell adhesion networks in different stages of sporadic colorectal cancer to explain its tumorigenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:63-72. [PMID: 36116549 DOI: 10.1016/j.pbiomolbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sporadic colorectal cancer (CRC) is strongly linked to extraneous factors, like poor diet and lifestyle, but not to inherent factors like familial genetics. The changes at the epigenomics and signalling pathways are known across the sporadic CRC stages. The catch is that temporal information of the onset, the feedback loop, and the crosstalk of signalling and noise are still unclear. This makes it challenging to diagnose and treat colon cancer effectively with no relapse. Various microbial cells and native cells of the colon, contribute to sporadic CRC development. These cells secrete autocrine and paracrine for their bioenergetics and communications with other cell types. Imbalances of the biochemicals affect the epithelial lining of colon. One side of this epithelial lining is interfacing the dense colon tissue, while the other side is exposed to microbiota and excrement from the lumen. Hence, the epithelial lining is prone to tumorigenesis due to the influence of both biochemical and mechanical cues from its complex surrounding. The role of physical transformations in tumorigenesis have been limitedly discussed. In this context, cellular and tissue structures, and force transductions are heavily regulated by cell adhesion networks. These networks include cell anchoring mechanism to the surrounding, cell structural integrity mechanism, and cell effector molecules. This review will focus on the progression of the sporadic CRC stages that are governed by the underlaying cell adhesion networks within the epithelial cells. Additionally, current and potential technologies and therapeutics that target cell adhesion networks for treatments of sporadic CRC will be incorporated.
Collapse
Affiliation(s)
- Siti Hawa Ngalim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia.
| | - Norwahida Yusoff
- School of Mechanical Engineering, Universiti Sains Malaysia (USM) Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Rayzel Renitha Johnson
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Siti Razila Abdul Razak
- Advanced Medical and Dental Institute, Universiti Sains Malaysia (USM) Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Xinyue Chen
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, United Kingdom
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia (USM) Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
16
|
Lei Z, Chen L, Hu Q, Yang Y, Tong F, Li K, Lin T, Nie Y, Rong H, Yu S, Song Q, Guo J. Ginsenoside Rb1 improves intestinal aging via regulating the expression of sirtuins in the intestinal epithelium and modulating the gut microbiota of mice. Front Pharmacol 2022; 13:991597. [PMID: 36238549 PMCID: PMC9552198 DOI: 10.3389/fphar.2022.991597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal aging seriously affects the absorption of nutrients of the aged people. Ginsenoside Rb1 (GRb1) which has multiple functions on treating gastrointestinal disorders is one of the important ingredients from Ginseng, the famous herb in tradition Chinese medicine. However, it is still unclear if GRb1 could improve intestinal aging. To investigate the function and mechanism of GRb1 on improving intestinal aging, GRb1 was administrated to 104-week-old C57BL/6 mice for 6 weeks. The jejunum, colon and feces were collected for morphology, histology, gene expression and gut microbiota tests using H&E staining, X-gal staining, qPCR, Western blot, immunofluorescence staining, and 16S rDNA sequencing technologies. The numbers of cells reduced and the accumulation of senescent cells increased in the intestinal crypts of old mice, and administration of GRb1 could reverse them. The protein levels of CLDN 2, 3, 7, and 15 were all decreased in the jejunum of old mice, and administration of GRb1 could significantly increase them. The expression levels of Tert, Lgr5, mKi67, and c-Myc were all significantly reduced in the small intestines of old mice, and GRb1 significantly increased them at transcriptional or posttranscriptional levels. The protein levels of SIRT1, SIRT3, and SIRT6 were all reduced in the jejunum of old mice, and GRb1 could increase the protein levels of them. The 16S rDNA sequencing results demonstrated the dysbiosis of the gut microbiota of old mice, and GRb1 changed the composition and functions of the gut microbiota in the old mice. In conclusion, GRb1 could improve the intestinal aging via regulating the expression of Sirtuins family and modulating the gut microbiota in the aged mice.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Keying Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, , Jiao Guo,
| |
Collapse
|
17
|
Szabo R, Ward JM, Artunc F, Bugge TH. EPCAM and TROP2 share role in claudin stabilization and development of intestinal and extraintestinal epithelia in mice. Biol Open 2022; 11:275770. [PMID: 35730316 PMCID: PMC9294608 DOI: 10.1242/bio.059403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
EPCAM (Epithelial Cell Adhesion Molecule) is a transmembrane glycoprotein expressed on the surface of most epithelial and epithelium-derived tumor cells and reported to regulate stability of epithelial tight junction proteins, claudins. Despite its widespread expression, loss of EPCAM function has so far only been reported to prominently affect intestinal development, resulting in severe early onset enteropathy associated with impaired growth and decreased survival in both humans and mice. In this study, we show that the critical role of EPCAM is not limited to intestinal tissues and that it shares its essential function with its only known homolog, TROP2 (Trophoblast cell surface antigen 2). EPCAM-deficient mice show significant growth retardation and die within four weeks after birth. In addition to changes in small and large intestines, loss of EPCAM results in hyperkeratosis in skin and forestomach, hair follicle atrophy leading to alopecia, nephron hypoplasia in kidney, proteinuria, and altered production of digestive enzymes by pancreas. Expression of TROP2 partially, but not completely, overlaps with EPCAM in a number developing epithelia. Although loss of TROP2 had no gross impact on mouse development and survival, TROP2 deficiency generally compounded developmental defects observed in EPCAM-deficient mice, led to about 60% decrease in embryonic viability, and further shortened postnatal lifespan of born pups. Importantly, TROP2 was able to compensate for the loss of EPCAM in stabilizing claudin-7 expression and cell membrane localization in tissues that co-express both proteins. These findings identify overlapping functions of EPCAM and TROP2 as regulators of epithelial development in both intestinal and extraintestinal tissues.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Germany
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Lenárt S, Lenárt P, Knopfová L, Kotasová H, Pelková V, Sedláková V, Vacek O, Pokludová J, Čan V, Šmarda J, Souček K, Hampl A, Beneš P. TACSTD2 upregulation is an early reaction to lung infection. Sci Rep 2022; 12:9583. [PMID: 35688908 PMCID: PMC9185727 DOI: 10.1038/s41598-022-13637-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
TACSTD2 encodes a transmembrane glycoprotein Trop2 commonly overexpressed in carcinomas. While the Trop2 protein was discovered already in 1981 and first antibody–drug conjugate targeting Trop2 were recently approved for cancer therapy, the physiological role of Trop2 is still not fully understood. In this article, we show that TACSTD2/Trop2 expression is evolutionarily conserved in lungs of various vertebrates. By analysis of publicly available transcriptomic data we demonstrate that TACSTD2 level consistently increases in lungs infected with miscellaneous, but mainly viral pathogens. Single cell and subpopulation based transcriptomic data revealed that the major source of TACSTD2 transcript are lung epithelial cells and their progenitors and that TACSTD2 is induced directly in lung epithelial cells following infection. Increase in TACSTD2 expression may represent a mechanism to maintain/restore epithelial barrier function and contribute to regeneration process in infected/damaged lungs.
Collapse
Affiliation(s)
- Sára Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Peter Lenárt
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,Faculty of Science, Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic.,Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Hana Kotasová
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Vladimír Čan
- Department of Surgery, University Hospital Brno, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Karel Souček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Aleš Hampl
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
19
|
Kan S, Grainge C, Nichol K, Reid A, Knight D, Sun Y, Bartlett N, Liang M. TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. Int J Pharm 2022; 617:121586. [PMID: 35181464 DOI: 10.1016/j.ijpharm.2022.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based delivery is a strategy for increasing the therapeutic window of inhaled immunomodulatory drugs that have inflammatory activity. TLR7 agonists are a class of immunomodulators that have been considered for the treatment of virus-induced respiratory diseases. However, due to high immune-stimulatory activity, TLR7 agonists, delivered via direct exposure, generally have a narrow therapeutic window. To address this, we have developed lipid/polymer hybrid nanoparticles (NPs) conjugated with anti-EpCAM monoclonal antibody for targeted delivery of TLR7 agonist (CL264) to airway epithelial cells (AECs)2 - the primary site of respiratory virus infection. These airway epithelial targeting nanoparticles (AEC-NPs)3 showed safety and biocompatibility, and approximately two-fold increased cellular uptake compared to non-targeting NPs. Upon cell entry, AEC-NPs were able to deliver CL264 to cytoplasm and endosomes where TLR7 is located. CL264 delivered by AEC-NPs significantly increased innate immune response through expression of IFN-β, IFN-λ 2/3 and IFN-stimulated genes and suppressed more than 92% of viral load at 48 hours post-infection compared to the drug alone and non-targeting NPs. In conclusion, AEC-NPs exhibited increased cellular uptake leading to enhanced innate immune activation and suppression of viral replication. These findings support the use of AEC-targeting approach for delivering drugs with a narrow therapeutic window.
Collapse
Affiliation(s)
- Stanislav Kan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Christopher Grainge
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew Reid
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl Knight
- Department of Anaesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, P. R. China
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
20
|
Pan M, Kohlbauer V, Blancke Soares A, Schinke H, Huang Y, Kranz G, Quadt T, Hachmeister M, Gires O. Interactome analysis reveals endocytosis and membrane recycling of EpCAM during differentiation of embryonic stem cells and carcinoma cells. iScience 2021; 24:103179. [PMID: 34693227 PMCID: PMC8517208 DOI: 10.1016/j.isci.2021.103179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022] Open
Abstract
Transmembrane epithelial cell adhesion molecule (EpCAM) is expressed in epithelia, carcinoma, teratoma, and embryonic stem cells (ESCs). EpCAM displays spatiotemporal patterning during embryogenesis, tissue morphogenesis, cell differentiation, and epithelial-to-mesenchymal transition (EMT) in carcinomas. Potential interactors of EpCAM were identified in murine F9 teratoma cells using a stable isotope labeling with amino acids in cell culture-based proteomic approach (n = 77, enrichment factor >3, p value ≤ 0.05). Kyoto Encyclopedia of Genes and Genomes and gene ontology terms revealed interactions with regulators of endosomal trafficking and membrane recycling, which were further validated for Rab5, Rab7, and Rab11. Endocytosis and membrane recycling of EpCAM were confirmed in mF9 cells, E14TG2α ESC, and Kyse30 carcinoma cells. Reduction of EpCAM during mesodermal differentiation and TGFβ-induced EMT correlated with enhanced endocytosis and block or reduction of recycling in ESCs and esophageal carcinoma cells. Hence, endocytosis and membrane recycling are means of regulation of EpCAM protein levels during differentiation of ESC and EMT induction in carcinoma cells.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, China
| | - Vera Kohlbauer
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Alexandra Blancke Soares
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Tanja Quadt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Hachmeister
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
21
|
Zhan Y, Ward SC, Fiel MI, Teruya-Feldstein J, McKay EM, Dekio F. EpCam is required for maintaining the integrity of the biliary epithelium. Liver Int 2021; 41:2132-2138. [PMID: 33786975 DOI: 10.1111/liv.14891] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Tufting enteropathy (TE) is a rare congenital disorder often caused by mutations in the gene encoding epithelial cell adhesion molecule (EpCam). The disease leads to diarrhoea, intestinal failure and dependence on total parenteral nutrition (TPN). These patients often have liver impairments, but the pathology and mechanism of the damage are not well understood. We evaluated liver biopsies from TE patients to understand the pathophysiology. METHODS We identified three patients with TE who underwent liver biopsy. Two normal controls and 45 patients on TPN secondary to short gut syndrome were selected for comparison (five were age- and TPN duration matched to the TE patients). RESULTS We found that all TE patients showed a complete loss of EpCam expression in enterocytes and biliary epithelial cells, while the normal and TPN groups show basolateral expression. Histologically TE patients showed ductopenia, which was not seen in control groups. E-cadherin and β-catenin are normally located along the lateral membrane of biliary epithelial cells. However, they were relocated to the apical membrane in TE patients, indicating a defect in the apical-basal polarity of cholangiocytes. We examined hepatic reparative cells and found near absence of hepatic progenitor cells and intermediate hepatobiliary cells with mild reactive ductular cells in TE patients. CONCLUSION Our findings show that TE is associated with disrupted polarity of cholangiocyte and ductopenia. We demonstrate for the first time a role of EpCam in the maintenance of integrity of biliary epithelium. We also provided evidence for a disrupted development of hepatic reparative cells.
Collapse
Affiliation(s)
- Yougen Zhan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen C Ward
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Isabel Fiel
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Teruya-Feldstein
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eileen M McKay
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Fumiko Dekio
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Determining the expression levels of circulating tumour cell markers in canine mammary tumours. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Detection of the circulating tumour cells (CTC) in dogs with a mammary tumour is a useful tool to reveal the micrometastases long before metastases are recognised clinically. The aim of this study was to evaluate the association of the epidermal growth factor receptor (EGFR), claudin 7 (CLND7) and epithelial cell adhesion molecule (EPCAM) with the clinical indices and to reveal the diagnostic importance of these biomarkers in canine mammary tumours (CMTs). Peripheral blood (PB) samples were collected from 45 bitches (group MT) which had single mass with malignant epithelial tumours and 9 healthy bitches (group H). Real time PCR (rt-PCR) was performed to determine the expression levels of EGFR, CLDN7, and EPCAM. Mean values of EGFR and CLDN7 expressions were significantly higher in group MT compared to group H (P < 0.01 and P < 0.001, respectively). The expression level of CLDN7 was positively correlated with EGFR and EPCAM (P < 0.001 and P < 0.05, respectively). The EPCAM expression was associated with increased tumour size (P < 0.05) and EPCAM tended to decrease in the presence of skin ulceration on tumour (P = 0.05). Furthermore, expression levels of EGFR in intact dogs were significantly higher compared to spayed dogs in group MT (P < 0.01). The EGFR expression was significantly higher in the presence of metastases (P < 0.05). Also, increased EGFR was determined in grade 2 compared to grade 1 (P < 0.05). In conclusion, these results show that EGFR, CLDN7, EPCAM markers are measureable in PB and they may provide valuable information about the clinical pathophysiology of CMT.
Collapse
|
23
|
Popova OP, Kuznetsova AV, Bogomazova SY, Ivanov AA. Claudins as biomarkers of differential diagnosis and prognosis of tumors. J Cancer Res Clin Oncol 2021; 147:2803-2817. [PMID: 34241653 DOI: 10.1007/s00432-021-03725-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Claudins are a superfamily of transmembrane proteins, the optimal expression and localization of which are important for the normal physiological function of the epithelium and any imbalance may have pathological consequences. Not only insufficient but also excessive production of claudins in cancer cells, as well as their aberrant localization, equally manifest the formation of a malignant phenotype. Many works are distinguished by contradictory data, which demonstrate the action of the same claudins both in the role of tumor-growth suppressors and promoters in the same cancers. The most important possible causes of significant discrepancies in the results of the works are a considerable variability of sampling and the absence of a consistent approach both to the assessment of the immune reactivity of claudins and to the differential analysis of their subcellular localization. Combined, these drawbacks hinder the histological assessment of the link between claudins and tumor progression. In particular, ambiguous expression of claudins in breast cancer subtypes, revealed by various authors in immunohistochemical analysis, not only fails to facilitate the identification of the claudin-low molecular subtype but rather complicates these efforts. Research into the role of claudins in carcinogenesis has undoubtedly confirmed the potential value of this class of proteins as significant biomarkers in some cancer types; however, the immunohistochemical approach to the assessment of claudins still has limitations, needs standardization, and, to date, has not reached a diagnostic or a prognostic value.
Collapse
Affiliation(s)
- Olga P Popova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia
| | - Alla V Kuznetsova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia
| | - Svetlana Yu Bogomazova
- Department of Pathology, National Medical Research Treatment and Rehabilitation Centre, Ministry of Health of the Russian Federation, Ivankovskoe shosse, 3, Moscow, 125367, Russia
| | - Alexey A Ivanov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, 20, Bld 1, Delegatskaya Street, Moscow, 127473, Russia.
| |
Collapse
|
24
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
25
|
Elevation of Plasminogen Activator Inhibitor-1 promotes differentiation of Cancer Stem-like Cell state by Hepatitis C Virus infection. J Virol 2021; 95:JVI.02057-20. [PMID: 33627392 PMCID: PMC8139667 DOI: 10.1128/jvi.02057-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a critical factor that regulates protein synthesis and degradation. The increased PAI-1 levels are detectable in the serum of patients with chronic hepatitis C virus (HCV) liver disease. The differentiation state and motility of HCV-induced cancer stem-like cells (CSC) play a major role in severe liver disease progression. However, the role of PAI-1 in the pathological process of chronic liver diseases remains unknown. In this study, we determined how PAI-1 affects the differentiation of CSC state in hepatocytes upon HCV infection. We found that HCV infection induced the expression of PAI-1 while decreasing miR-30c expression in Huh7.5.1 cells. Similar results were obtained from isolated hepatocytes from humanized liver mice after HCV infection. Moreover, decreased miR-30c expression in HCV-infected hepatocytes was associated with the increased levels of PAI-1 mRNA and protein. Notably, the increased PAI-1 levels resulted in the activation of Protein Kinase B/AKT, a major mediator of cell proliferation, in HCV-infected hepatocytes along with the increased expression of CSC markers such as Human Differentiated Protein (CD) 133, Epithelial cell adhesion molecule (EpCAM), Octamer 4 (Oct4), Nanog, Cyclin D1, and MYC. Moreover, blockade of PAI-1 activity by miR-30c mimic and anti-PAI-1 mAb abrogated the AKT activation with decreased expression of CSC markers. Our findings suggest that HCV infection induces the CSC state via PAI-1-mediated AKT activation in hepatocytes. It implicates that the manipulation of PAI-1 activity could provide potential therapeutics to prevent the development of HCV-associated chronic liver diseases.IMPORTANCEThe progression of chronic liver disease by HCV infection is considered a major risk factor for hepatocellular carcinoma (HCC), one of the major causes of death from cancer. Recent studies have demonstrated that increased CSC properties in HCV-infected hepatocytes are associated with the progression of HCC. Since proteins and miRNAs production by HCV-infected hepatocytes can play various roles in physiological processes, investigating these factors can potentially lead to new therapeutic targets. However, the mechanism of HCV associated progression of hepatocytes to CSC remains unclear. Here we identify the roles of PAI-1 and miR-30c in the progression of CSC during HCV infection in hepatocytes. Our data shows that increased secretion of PAI-1 following HCV infection promotes this CSC state and activation of AKT. We report that the inhibition of PAI-1 by miR-30c mimic reduces HCV associated CSC properties in hepatocytes. Taken together, targeting this interaction of secreted PAI-1 and miR-30c in HCV-infected hepatocytes may provide a potential therapeutic intervention against the progression to chronic liver diseases and HCC.
Collapse
|
26
|
Polak ME, Singh H. Tolerogenic and immunogenic states of Langerhans cells are orchestrated by epidermal signals acting on a core maturation gene module. Bioessays 2021; 43:e2000182. [PMID: 33645739 DOI: 10.1002/bies.202000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Langerhans cells (LCs), residing in the epidermis, are able to induce potent immunogenic responses and also to mediate immune tolerance. We propose that tolerogenic and immunogenic responses of LCs are directed by signaling from the epidermis and involve counter-acting gene circuits that are coupled to a core maturation gene module. We base our analysis on recent genetic and genomic findings facilitating the understanding of the molecular mechanisms controlling these divergent immune functions. Comparing gene regulatory network (GRN) analyses of various types of dendritic cells (DCs) including LCs we integrate signaling-dependent (TGFβ, EpCAM, β-Catenin) and transcription factor (IRF4, IRF1, NFκB) regulated gene circuits that appear to orchestrate the distinctive LC functional states. Our model proposes, that while epidermal signaling in the steady-state promotes LC tolerogenic function, the disruption of cell-cell contacts coupled with inflammatory signaling induces LC immunogenic programing. The conceptual framework emphasizes the sensing of discrete epidermal and inflammatory cues by resident LCs in dictating their genomic programing and cell state dynamics.
Collapse
Affiliation(s)
- Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton, UK.,Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
27
|
Romani C, Capoferri D, Grillo E, Silvestri M, Corsini M, Zanotti L, Todeschini P, Ravaggi A, Bignotti E, Odicino F, Sartori E, Calza S, Mitola S. The Claudin-Low Subtype of High-Grade Serous Ovarian Carcinoma Exhibits Stem Cell Features. Cancers (Basel) 2021; 13:906. [PMID: 33671478 PMCID: PMC7926503 DOI: 10.3390/cancers13040906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/06/2023] Open
Abstract
Claudin-low cancer (CL) represents a rare and biologically aggressive variant of epithelial tumor. Here, we identified a claudin-low molecular profile of ovarian high-grade serous carcinoma (HGSOC), which exhibits the main characteristics of the homonym breast cancer subtype, including low epithelial differentiation and high mesenchymal signature. Hierarchical clustering and a centroid based algorithm applied to cell line collection expression dataset labeled 6 HGSOC cell lines as CL. These have a high energy metabolism and are enriched in CD44+/CD24- mesenchymal stem-like cells expressing low levels of cell-cell adhesion molecules (claudins and E-Cadherin) and high levels of epithelial-to-mesenchymal transition (EMT) induction transcription factors (Zeb1, Snai2, Twist1 and Twist2). Accordingly, the centroid base algorithm applied to large retrospective collections of primary HGSOC samples reveals a tumor subgroup with transcriptional features consistent with the CL profile, and reaffirms EMT as the dominant biological pathway functioning in CL-HGSOC. HGSOC patients carrying CL profiles have a worse overall survival when compared to others, likely to be attributed to its undifferentiated/stem component. These observations highlight the lack of a molecular diagnostic in the management of HGSOC and suggest a potential prognostic utility of this molecular subtyping.
Collapse
Affiliation(s)
- Chiara Romani
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Davide Capoferri
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
| | - Marco Silvestri
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
- Biomarkers Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
| | - Laura Zanotti
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Paola Todeschini
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
| | - Antonella Ravaggi
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology University of Brescia, 25123 Brescia, Italy
| | - Eliana Bignotti
- Angelo Nocivelli Institute of Molecular Medicine, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (D.C.); (L.Z.); (P.T.); (A.R.); (E.B.)
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology University of Brescia, 25123 Brescia, Italy
| | - Enrico Sartori
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, 25123 Brescia, Italy; (F.O.); (E.S.)
- Department of Clinical and Experimental Sciences, Division of Obstetrics and Gynecology University of Brescia, 25123 Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
- BDbiomed, Big & Open Data Innovation Laboratory, University of Brescia, 25123 Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.G.); (M.S.); (M.C.)
| |
Collapse
|
28
|
Ouchi T, Morimura S, Dow LE, Miyoshi H, Udey MC. EpCAM (CD326) Regulates Intestinal Epithelial Integrity and Stem Cells via Rho-Associated Kinase. Cells 2021; 10:256. [PMID: 33525555 PMCID: PMC7912093 DOI: 10.3390/cells10020256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
Humans with biallelic inactivating mutations in Epithelial Cell Adhesion Molecule (EpCAM) develop congenital tufting enteropathy (CTE). To gain mechanistic insights regarding EpCAM function in this disorder, we prepared intestinal epithelial cell (IEC) organoids and spheroids. IEC organoids and spheroids were generated from ROSA-CreERT2 EpCAMfl/fl mice. Proliferation, tight junctions, cell polarity and epithelial integrity were assessed in tamoxifen-induced EpCAM-deficient organoids via confocal immunofluorescence microscopy and Western blotting. Olfm4-expressing stem cells were assessed in IEC cells in vitro and in vivo via fluorescence in situ hybridization. To determine if existing drugs could ameliorate effects of EpCAM deficiency in IEC cells, a variety of pharmacologic inhibitors were screened. Deletion of EpCAM resulted in increased apoptosis and attenuated growth of organoids and spheroids. Selected claudins were destabilized and epithelial integrity was severely compromised. Epithelial integrity was improved by treatment with Rho-associated coiled-coil kinase (ROCK) inhibitors without restoration of claudin expression. Correspondingly, enhanced phosphorylation of myosin light chain, a serine/threonine ROCK substrate, was observed in EpCAM-deficient organoids. Strikingly, frequencies of Olfm4-expressing stem cells in EpCAM-deficient IEC cells in vitro and in vivo were decreased. Treatment with ROCK inhibitors increased numbers of stem cells in EpCAM-deficient organoids and spheroids. Thus, EpCAM regulates intestinal epithelial homeostasis via a signaling pathway that includes ROCK.
Collapse
Affiliation(s)
- Takeshi Ouchi
- Department of Dermatology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-0016, Japan;
| | - Sohshi Morimura
- Department of Dermatology, Faculty of Medicine, International University of Health and Welfare, Narita-shi, Chiba 286-8520, Japan
| | - Lukas E. Dow
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Hiroyuki Miyoshi
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Mark C. Udey
- Dermatology Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
29
|
Nam DE, Seong HC, Hahn YS. Plasminogen Activator Inhibitor-1 and Oncogenesis in the Liver Disease. JOURNAL OF CELLULAR SIGNALING 2021; 2:221-227. [PMID: 34671766 PMCID: PMC8525887 DOI: 10.33696/signaling.2.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer mortality worldwide. Chronic hepatic inflammation and fibrosis play a critical role in the development of HCC. Liver fibrosis develops as a result of response to injury such that a persistent and excessive wound healing response induces extracellular matrix (ECM) deposition leading to HCC. PAI-1 is a fibrinolysis inhibitor involved in regulating protein degradation and homeostasis while assisting wound healing. PAI-1 presents increased levels in various diseases such as fibrosis, cancer, obesity and metabolic syndrome. Moreover, PAI-1 has been extensively studied for developing potential therapies against fibrosis. In the present review, we summarize how PAI-1 affects oncogenesis during liver disease progression based on the recently published literatures. Although there are controversies regarding the role of PAI-1 and approaches to treatment, this review suggests that proper manipulation of PAI-1 activity could provide a novel therapeutic option on the development of chronic liver disease via modulation of cancer stem-like cells (CSCs) differentiation.
Collapse
Affiliation(s)
- Da-eun Nam
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, USA
| | - Hae Chang Seong
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, USA
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, USA
- Correspondence should be addressed to Young S. Hahn;
| |
Collapse
|
30
|
Murakami N, Mori T, Machida R, Kodaira T, Ito Y, Shikama N, Konishi K, Matsumoto Y, Murakami Y, Nakamura N, Yamashita H, Yorozu A, Yoshimura M, Inoue K, Nozaki M, Ishikura S, Itami J, Nishimura Y, Kagami Y. Prognostic Value of Epithelial Cell Adhesion Molecules in T1-2N0M0 Glottic Cancer. Laryngoscope 2020; 131:1522-1527. [PMID: 33369763 DOI: 10.1002/lary.29348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVE This is an ancillary study of a multi-institutional randomized non-inferiority phase III trial of accelerated fractionation (AF) versus standard fractionation (SF) radiation therapy for T1-2N0M0 glottic cancer (JCOG0701). Biopsy specimens of tumors from the patients enrolled in the JCOG0701 are collected and the association between clinical outcomes and histopathologic features such as expression of epithelial cell adhesion molecule (EpCAM), p53, and p16 were investigated. METHODS Five slices of undyed slides from biopsy specimens were sent to the National Cancer Center Hospital and all the specimens were assessed for the expression of EpCAM, p53, and p16. The primary objective was to investigate the association between 3-year progression-free survival (PFS) and expression of EpCAM, p53, and p16. RESULTS A total of 88 out of 370 patients were enrolled in this ancillary study. The 3-year PFS for tumors with strong expression of EpCAM was 70.6% (95% CI 43.1%-86.6%), while that of tumors without strong expression of EpCAM was 77.5% (95% CI 65.9%-85.5%) with no remarkable difference between groups (P = .67). Likewise, there was no significant difference in 3-year PFS between tumors regardless of p53 or p16 status. However, in a subgroup analysis for 17 patients with a strong expression of EpCAM, AF showed better 3-year PFS than SF (100% vs 54.5%, P = .07). CONCLUSIONS From the current study, it could not be concluded that EpCAM, p16, and p53 were prognostic factors for early-stage glottic cancer after primary radiation therapy. AF might be an appropriate fractionation for tumors with a strong expression of EpCAM. LEVEL OF EVIDENCE 3 Laryngoscope, 131:1522-1527, 2021.
Collapse
Affiliation(s)
- Naoya Murakami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Ryunosuke Machida
- Japan Clinical Oncology Group Data Center/Operations Office, National Cancer Center Hospital, Tokyo, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshinori Ito
- Division of Radiation Oncology, Department of Radiology, Showa University School of Medicine, Tokyo, Japan
| | - Naoto Shikama
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Koji Konishi
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yasuo Matsumoto
- Department of Radiation Oncology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Nakamura
- Department of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Kashiwa, Japan
| | | | - Atsunori Yorozu
- Department of Radiation Oncology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Inoue
- Division of Radiation Therapy, Tochigi Cancer Center, Utsunomiya, Japan
| | - Miwako Nozaki
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Satoshi Ishikura
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasumasa Nishimura
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yoshikazu Kagami
- Division of Radiation Oncology, Department of Radiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Das B, Sivagnanam M. Congenital Tufting Enteropathy: Biology, Pathogenesis and Mechanisms. J Clin Med 2020; 10:E19. [PMID: 33374714 PMCID: PMC7793535 DOI: 10.3390/jcm10010019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
Congenital tufting enteropathy (CTE) is an autosomal recessive disease of infancy that causes severe intestinal failure with electrolyte imbalances and impaired growth. CTE is typically diagnosed by its characteristic histological features, including villous atrophy, crypt hyperplasia and focal epithelial tufts consisting of densely packed enterocytes. Mutations in the EPCAM and SPINT2 genes have been identified as the etiology for this disease. The significant morbidity and mortality and lack of direct treatments for CTE patients demand a better understanding of disease pathophysiology. Here, the latest knowledge of CTE biology is systematically reviewed, including clinical aspects, disease genetics, and research model systems. Particular focus is paid to the pathogenesis of CTE and predicted mechanisms of the disease as these would provide insight for future therapeutic options. The contribution of intestinal homeostasis, including the role of intestinal cell differentiation, defective enterocytes, disrupted barrier and cell-cell junction, and cell-matrix adhesion, is vividly described here (see Graphical Abstract). Moreover, based on the known dynamics of EpCAM signaling, potential mechanistic pathways are highlighted that may contribute to the pathogenesis of CTE due to either loss of EpCAM function or EpCAM mutation. Although not fully elucidated, these pathways provide an improved understanding of this devastating disease.
Collapse
Affiliation(s)
- Barun Das
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Mamata Sivagnanam
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
32
|
Kim SR, Shin K, Park JM, Lee HH, Song KY, Lee SH, Kim B, Kim SY, Seo J, Kim JO, Roh SY, Kim IH. Clinical Significance of CLDN18.2 Expression in Metastatic Diffuse-Type Gastric Cancer. J Gastric Cancer 2020; 20:408-420. [PMID: 33425442 PMCID: PMC7781747 DOI: 10.5230/jgc.2020.20.e33] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Isoform 2 of tight junction protein claudin-18 (CLDN18.2) is a potential target for gastric cancer treatment. A treatment targeting CLDN18.2 has shown promising results in gastric cancer. We investigated the clinical significance of CLDN18.2 and other cell-adherens junction molecules (Rho GTPase-activating protein [RhoGAP] and E-cadherin) in metastatic diffuse-type gastric cancer (mDGC). Materials and Methods We evaluated CLDN18.2, RhoGAP, and E-cadherin expression using two-plex immunofluorescence and quantitative data analysis of H-scores of 77 consecutive mDGC patients who received first-line platinum-based chemotherapy between March 2015 and February 2017. Results CLDN18.2 and E-cadherin expression was significantly lower in patients with peritoneal metastasis (PM) than those without PM at the time of diagnosis (P=0.010 and 0.013, respectively), whereas it was significantly higher in patients who never developed PM from diagnosis to death than in those who did (P=0.001 and 0.003, respectively). Meanwhile, CLDN18.2 and E-cadherin expression levels were significantly higher in patients with bone metastasis than in those without bone metastasis (P=0.010 and 0.001, respectively). Moreover, we identified a positive correlation between the expression of CLDN18.2 and E-cadherin (P<0.001), RhoGAP and CLDN18.2 (P=0.004), and RhoGAP and E-cadherin (P=0.001). Conversely, CLDN18.2, RhoGAP, and E-cadherin expression was not associated with chemotherapy response and survival. Conclusions CLDN18.2 expression was reduced in patients with PM but significantly intact in those with bone metastasis. Furthermore, CLDN18.2 expression was positively correlated with other adherens junction molecules, which is clinically associated with mDGC and PM pathogenesis.
Collapse
Affiliation(s)
- Seo Ree Kim
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kabsoo Shin
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Myung Park
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Han Hong Lee
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea,
| | - Kyo Yong Song
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea,
| | - Sung Hak Lee
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Clinical Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bohyun Kim
- Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Junyoung Seo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Oh Kim
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang-Young Roh
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Gastric Cancer Centre, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Chen G, Yang Y, Liu W, Huang L, Yang L, Lei Y, Wu H, Lei Z, Guo J. EpCAM is essential for maintenance of the small intestinal epithelium architecture via regulation of the expression and localization of proteins that compose adherens junctions. Int J Mol Med 2020; 47:621-632. [PMID: 33416101 PMCID: PMC7797445 DOI: 10.3892/ijmm.2020.4815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is highly expressed in mammalian intestines, and is essential for maintaining the homeostasis of the intestinal epithelium. EpCAM protein is localized at tight junctions and the basolateral membrane of the intestinal epithelium, where it interacts with many cell adhesion molecules. To explore the molecular functions of EpCAM in regulating adherens junctions in the intestinal epithelium, EpCAM knockout embryos and newborn pups were analyzed. Hematoxylin and eosin staining was used to assess the histology of the duodenum, jejunum, ileum and colon from wild-type and EpCAM−/− mice at E18.5, P0 and P3. The expression and localization of adherens junction-associated genes and genes that encode the proteins that participate in the assembly of adherens junctions were measured at the mRNA and protein levels using qPCR, western blot analysis and immunofluorescence staining. The results showed that although there was no significant damage to the intestines of EpCAM−/− mice at E18.5 and P0, they were significantly damaged at P3 in mutant mice. The expression of adherens junction-associated genes in EpCAM mutant mice was normal at the mRNA level from E18.5 to P3, but their protein levels were gradually reduced and mislocalized from E18.5 to P3. The expression of nectin 1, which can regulate the assembly and adhesion activity of E-cadherin, was also gradually reduced at both the mRNA and protein levels in the intestinal epithelium of EpCAM mutant mice from E18.5 to P3. In summary, the loss of EpCAM may cause the reduction and mislocalization of proteins that compose adherens junctions partly via the downregulation of nectin 1 in the intestines.
Collapse
Affiliation(s)
- Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, P.R. China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine and Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China and Institute of Chinese Medicine, Guangdong Pharmaceutical University and Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
34
|
Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183503. [PMID: 33189716 DOI: 10.1016/j.bbamem.2020.183503] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an essential step in cancer progression. Epithelial cells possess several types of cell-cell junctions, and tight junctions are known to play important roles in maintaining the epithelial program. EMT is characterized by a loss of epithelial markers, including E-cadherin and tight junction proteins. Somewhat surprisingly, the evidence is accumulating that upregulated expression of tight junction proteins plays an important role in the EMT of cancer cells. Tight junctions have distinct tissue-specific and cancer-specific regulatory mechanisms, enabling them to play different roles in EMT. Tight junctions and related signaling pathways are attractive targets for cancer treatments; signal transduction inhibitors and monoclonal antibodies for tight junction proteins may be used to suppress EMT, invasion, and metastasis. Here we review the role of bicellular and tricellular tight junction proteins during EMT. Further investigation of regulatory mechanisms of tight junctions during EMT in cancer cells will inform the development of biomarkers for predicting prognosis as well as novel therapies.
Collapse
|
35
|
Claudin 1 inhibits cell migration and increases intercellular adhesion in triple-negative breast cancer cell line. Mol Biol Rep 2020; 47:7643-7653. [PMID: 32979166 DOI: 10.1007/s11033-020-05835-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Triple-negative "claudin 1 low" subtype represents around 15% of breast cancer and displays poor prognosis. The loss of claudin 1 is correlated with increased invasiveness and higher recurrence of the disease. Claudin 1 constitutes the backbone of the tight junction and is involved in cell-cell adhesion and migration processes. However, studies showed a controversial role of claudin 1 in cell migration. In this study, we aimed to clarify the effect of claudin 1 on migration of mesenchymal triple-negative breast cancer cells (TNBC). We reported that transient over expression of claudin 1 in MDA-MB-231 and Hs578T "claudin 1 low" TNBC cells inhibited cell migration using wound healing and transwell migration assays. In order to investigate more specifically the involvement of claudin 1, we generated stable MDA-MB-231 clones overexpressing claudin 1. Interestingly, the level of claudin 1 was correlated to the inhibition of cell migration and to the increase of cell-cell aggregation associated with enhanced formation of β-catenin adherens junction and occludin tight junction. Finally, we reported for the first time the key role of claudin 1 in the inhibition of cell migration process associated with the disappearance of stress fibers. These data suggest that re-expression of claudin 1 could be a promising strategy for regulating the migration of TNBC which no longer express claudin 1.
Collapse
|
36
|
Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review. Biochim Biophys Acta Rev Cancer 2020; 1874:188436. [PMID: 32976980 DOI: 10.1016/j.bbcan.2020.188436] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
EpCAM has long been known as a cell surface protein highly expressed in carcinomas. It has since become one of the key cancer biomarkers. Despite its high fame, its actual role in cancer development is still controversial. Beyond a flurry of correlative studies, which point either to a positive or a negative link with tumour progression, there has been surprisingly few studies on the actual cellular mechanisms of EpCAM and on their functional consequences. Clearly, EpCAM plays multiple important roles, in cell proliferation as well as in cell adhesion and migration. The two latter functions, directly relevant for metastasis, are the focus of this review. We attempt here to bring together the available experimental data to build a global coherent view of EpCAM functions. We also include in this overview EpCAM2/Trop2, the close relative of EpCAM. At the core of EpCAM (and EpCAM2/Trop2) function stands the ability to repress contractility of the actomyosin cell cortex. This activity appears to involve direct inhibition by EpCAM of members of the novel PKC family and of a specific downstream PKD-Erk cascade. We will discuss how this activity can result in a variety of adhesive and migratory phenotypes, thus potentially explaining at least part of the apparent inconsistencies between different studies. The picture remains fragmented, and we will highlight some of the conflicting evidence and the many unsolved issues, starting with the controversy around its original description as a cell-cell adhesion molecule.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France.
| | - Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France; Department of Biology, McGill University, Montreal, QC H3A1B1, Canada
| |
Collapse
|
37
|
Fagotto F. EpCAM as Modulator of Tissue Plasticity. Cells 2020; 9:E2128. [PMID: 32961790 PMCID: PMC7563481 DOI: 10.3390/cells9092128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
The Epithelial Cell Adhesion Molecule or EpCAM is a well-known marker highly expressed in carcinomas and showing a strong correlation with poor cancer prognosis. While its name relates to its proposed function as a cell adhesion molecule, EpCAM has been shown to have various signalling functions. In particular, it has been identified as an important positive regulator of cell adhesion and migration, playing an essential role in embryonic morphogenesis as well as intestinal homeostasis. This activity is not due to its putative adhesive function, but rather to its ability to repress myosin contractility by impinging on a PKC signalling cascade. This mechanism confers EpCAM the unique property of favouring tissue plasticity. I review here the currently available data, comment on possible connections with other properties of EpCAM, and discuss the potential significance in the context of cancer invasion.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, 34293 Montpellier, France
| |
Collapse
|
38
|
Nakato G, Morimura S, Lu M, Feng X, Wu C, Udey MC. Amelioration of Congenital Tufting Enteropathy in EpCAM (TROP1)-Deficient Mice via Heterotopic Expression of TROP2 in Intestinal Epithelial Cells. Cells 2020; 9:cells9081847. [PMID: 32781650 PMCID: PMC7465201 DOI: 10.3390/cells9081847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
TROP1 (EpCAM) and TROP2 are homologous cell surface proteins that are widely expressed, and often co-expressed, in developing and adult epithelia. Various functions have been ascribed to EpCAM and TROP2, but responsible mechanisms are incompletely characterized and functional equivalence has not been examined. Adult intestinal epithelial cells (IEC) express high levels of EpCAM, while TROP2 is not expressed. EpCAM deficiency causes congenital tufting enteropathy (CTE) in humans and a corresponding lethal condition in mice. We expressed TROP2 and EpCAM in the IEC of EpCAM-deficient mice utilizing a villin promoter to assess EpCAM and TROP2 function. Expression of EpCAM or TROP2 in the IEC of EpCAM knockout mice prevented CTE. TROP2 rescue (T2R) mice were smaller than controls, while EpCAM rescue (EpR) mice were not. Abnormalities were observed in the diameters and histology of T2R small intestine, and Paneth and stem cell markers were decreased. T2R mice also exhibited enlarged mesenteric lymph nodes, enhanced permeability to 4 kDa FITC-dextran and increased sensitivity to detergent-induced colitis, consistent with compromised barrier function. Studies of IEC organoids and spheroids revealed that stem cell function was also compromised in T2R mice. We conclude that EpCAM and TROP2 exhibit functional redundancy, but they are not equivalent.
Collapse
Affiliation(s)
- Gaku Nakato
- Intestinal Microbiota Project, Intestinal Ecosystem Regulation Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki-shi, Kanagawa 210-0821, Japan
- Correspondence: ; Tel.: +81-44-280-2214
| | - Sohshi Morimura
- Department of Dermatology, International University of Health and Welfare, Narita-shi, Chiba 286-8520, Japan;
| | - Michael Lu
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Xu Feng
- Retired from National Cancer Institute, Bethesda, MD 20892, USA;
| | - Chuanjin Wu
- Laboratory of Immune Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Mark C. Udey
- Dermatology Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
39
|
Gaber A, Lenarčič B, Pavšič M. Current View on EpCAM Structural Biology. Cells 2020; 9:cells9061361. [PMID: 32486423 PMCID: PMC7349879 DOI: 10.3390/cells9061361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
EpCAM, a carcinoma cell-surface marker protein and a therapeutic target, has been primarily addressed as a cell adhesion molecule. With regard to recent discoveries of its role in signaling with implications in cell proliferation and differentiation, and findings contradicting a direct role in mediating adhesion contacts, we provide a comprehensive and updated overview on the available structural data on EpCAM and interpret it in the light of recent reports on its function. First, we describe the structure of extracellular part of EpCAM, both as a subunit and part of a cis-dimer which, according to several experimental observations, represents a biologically relevant oligomeric state. Next, we provide a thorough evaluation of reports on EpCAM as a homophilic cell adhesion molecule with a structure-based explanation why direct EpCAM participation in cell–cell contacts is highly unlikely. Finally, we review the signaling aspect of EpCAM with focus on accessibility of signaling-associated cleavage sites.
Collapse
Affiliation(s)
- Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.G.); (B.L.)
- Correspondence: ; Tel.: +386-1-479-8550
| |
Collapse
|
40
|
Mitochondrial bioenergetics, uncoupling protein-2 activity, and reactive oxygen species production in the small intestine of a TNBS-induced colitis rat model. Mol Cell Biochem 2020; 470:87-98. [PMID: 32394310 DOI: 10.1007/s11010-020-03749-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
Abstract
Inflammatory bowel disease (IBD) is often associated with a decrease in energy-dependent nutrient uptake across the jejunum that serves as the main site for absorption in the small intestine. This association has prompted us to investigate the bioenergetics underlying the alterations in jejunal absorption in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in rats. We have found that mitochondrial oxygen consumption did not change in state 2 and state 3 respirations but showed an increase in state 4 respiration indicating a decrease in the respiratory control ratio of jejunal mitochondria during the peak of inflammation. This decrease in the coupling state was found to be guanosine diphosphate-sensitive, hence, implicating the involvement of uncoupling protein-2 (UCP2). Furthermore, the study has reported that the production of reactive oxygen species (ROS), known to be activators of UCP2, correlated negatively with UCP2 activity. Thus, we suggest that ROS production in the jejunum might be activating UCP2 which has an antioxidant activity, and that uncoupling of the mitochondria decreases the efficiency of energy production, leading to a decrease in energy-dependent nutrient absorption. Hence, this study is the first to account for an involvement of energy production and a role for UCP2 in the absorptive abnormalities of the small intestine in animal models of colitis.
Collapse
|
41
|
Wu CJ, Lu M, Feng X, Nakato G, Udey MC. Matriptase Cleaves EpCAM and TROP2 in Keratinocytes, Destabilizing Both Proteins and Associated Claudins. Cells 2020; 9:cells9041027. [PMID: 32326212 PMCID: PMC7226414 DOI: 10.3390/cells9041027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
The homologs EpCAM and TROP2, which both interact with claudin-1 and claudin-7, are frequently coexpressed in epithelia including skin. Intestine uniquely expresses high levels of EpCAM but not TROP2. We previously identified EpCAM as a substrate of the membrane-anchored protease matriptase and linked HAI-2, matriptase, EpCAM and claudin-7 in a pathway that is pivotal for intestinal epithelial cells (IEC) homeostasis. Herein, we reveal that TROP2 is also a matriptase substrate. Matriptase cleaved TROP2 when purified recombinant proteins were mixed in vitro. TROP2, like EpCAM, was also cleaved after co-transfection of matriptase in 293T cells. Neither EpCAM nor TROP2 cleavage was promoted by protease-disabled matriptase or matriptase that harbored the ichthyosis-associated G827R mutation. We confirmed that EpCAM and TROP2 are both expressed in skin and detected cleavage of these proteins in human keratinocytes (HaCaT cells) after the physiologic inhibition of matriptase by HAI proteins was relieved by siRNA knockdown. Knockdown of EpCAM or TROP2 individually had only small effects on claudin-1 and claudin-7 levels, whereas elimination of both markedly diminished claudin levels. HAI-1 knockdown promoted EpCAM and TROP2 cleavage accompanied by reductions in claudins, whereas HAI-2 knockdown had little impact. Double knockdown of HAI-1 and HAI-2 induced nearly complete cleavage of EpCAM and TROP2 and drastic reductions of claudins. These effects were eliminated by concurrent matriptase knockdown. Decreases in claudin levels were also diminished by the lysosomal inhibitor chloroquine and cleaved EpCAM/TROP2 fragments accumulated preferentially. We demonstrate that TROP2 and EpCAM exhibit redundancies with regard to regulation of claudin metabolism and that an HAI, matriptase, EpCAM and claudin pathway analogous to what we described in IECs exists in keratinocytes. This study may offer insights into the mechanistic basis for matriptase dysregulation-induced ichthyosis.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Laboratory of Immune Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA
- Correspondence: (C.-J.W.); (M.C.U.); Tel.: +1-301-760-7452 (C.-J.W.); +1-314-454-8547 (M.C.U.)
| | - Michael Lu
- Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Xu Feng
- Retired from National Cancer Institute, Bethesda, MD 20892, USA;
| | - Gaku Nakato
- Kanagawa Institute of Industrial Science and Technology, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan;
| | - Mark C. Udey
- Dermatology Division, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Correspondence: (C.-J.W.); (M.C.U.); Tel.: +1-301-760-7452 (C.-J.W.); +1-314-454-8547 (M.C.U.)
| |
Collapse
|
42
|
Holt-Danborg L, Vodopiutz J, Nonboe AW, De Laffolie J, Skovbjerg S, Wolters VM, Müller T, Hetzer B, Querfurt A, Zimmer KP, Jensen JK, Entenmann A, Heinz-Erian P, Vogel LK, Janecke AR. SPINT2 (HAI-2) missense variants identified in congenital sodium diarrhea/tufting enteropathy affect the ability of HAI-2 to inhibit prostasin but not matriptase. Hum Mol Genet 2020; 28:828-841. [PMID: 30445423 DOI: 10.1093/hmg/ddy394] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
The syndromic form of congenital sodium diarrhea (SCSD) is caused by bi-allelic mutations in SPINT2, which encodes a Kunitz-type serine protease inhibitor (HAI-2). We report three novel SCSD patients, two novel SPINT2 mutations and review published cases. The most common findings in SCSD patients were choanal atresia (20/34) and keratitis of infantile onset (26/34). Characteristic epithelial tufts on intestinal histology were reported in 13/34 patients. Of 13 different SPINT2 variants identified in SCSD, 4 are missense variants and localize to the second Kunitz domain (KD2) of HAI-2. HAI-2 has been implicated in the regulation of the activities of several serine proteases including prostasin and matriptase, which are both important for epithelial barrier formation. No patient with bi-allelic stop mutations was identified, suggesting that at least one SPINT2 allele encoding a protein with residual HAI-2 function is necessary for survival. We show that the SCSD-associated HAI-2 variants p.Phe161Val, p.Tyr163Cys and p.Gly168Ser all display decreased ability to inhibit prostasin-catalyzed cleavage. However, the SCSD-associated HAI-2 variants inhibited matriptase as efficiently as the wild-type HAI-2. Homology modeling indicated limited solvent exposure of the mutated amino acids, suggesting that they induce misfolding of KD2. This suggests that prostasin needs to engage with an exosite motif located on KD2 in addition to the binding loop (Cys47/Arg48) located on the first Kunitz domain in order to inhibit prostasin. In conclusion our data suggests that SCSD is caused by lack of inhibition of prostasin or a similar protease in the secretory pathway or on the plasma membrane.
Collapse
Affiliation(s)
- Lasse Holt-Danborg
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna
| | - Annika W Nonboe
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Jan De Laffolie
- Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen, Germany
| | - Signe Skovbjerg
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Victorien M Wolters
- Department of Pediatric Gastroenterology, WKZ/ UMC Utrecht, Utrecht, The Netherlands
| | - Thomas Müller
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Benjamin Hetzer
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Querfurt
- Gesundheit Nord gGmbH, Klinikverbund Bremen, Klinik für Kinder und Jugendmedizin, Professor-Hess-Kinderklinik, Klinikum Bremen-Mitte, Bremen, Germany
| | - Klaus-Peter Zimmer
- Abteilung Allgemeine Pädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Justus-Liebig-Universität, Gießen, Germany
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andreas Entenmann
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Heinz-Erian
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Lotte K Vogel
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark
| | - Andreas R Janecke
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Austria.,Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Mohtar MA, Syafruddin SE, Nasir SN, Yew LT. Revisiting the Roles of Pro-Metastatic EpCAM in Cancer. Biomolecules 2020; 10:biom10020255. [PMID: 32046162 PMCID: PMC7072682 DOI: 10.3390/biom10020255] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a cell surface protein that was discovered as a tumour marker of epithelial origins nearly four decades ago. EpCAM is expressed at basal levels in the basolateral membrane of normal epithelial cells. However, EpCAM expression is upregulated in solid epithelial cancers and stem cells. EpCAM can also be found in disseminated tumour cells and circulating tumour cells. Various OMICs studies have demonstrated that EpCAM plays roles in several key biological processes such as cell adhesion, migration, proliferation and differentiation. Additionally, EpCAM can be detected in the bodily fluid of cancer patients suggesting that EpCAM is a pathophysiologically relevant anti-tumour target as well as being utilized as a diagnostic/prognostic agent for a variety of cancers. This review will focus on the structure-features of EpCAM protein and discuss recent evidence on the pathological and physiological roles of EpCAM in modulating cell adhesion and signalling pathways in cancers as well as deliberating the clinical implication of EpCAM as a therapeutic target.
Collapse
|
44
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
45
|
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M. Claudin-1, A Double-Edged Sword in Cancer. Int J Mol Sci 2020; 21:569. [PMID: 31952355 PMCID: PMC7013445 DOI: 10.3390/ijms21020569] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Najeeb Syed
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sabah Nisar
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Muzafar A. Macha
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony Akobeng
- Department of Pediatric Gastroenterology, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| |
Collapse
|
46
|
Das B, Okamoto K, Rabalais J, Kozan PA, Marchelletta RR, McGeough MD, Durali N, Go M, Barrett KE, Das S, Sivagnanam M. Enteroids expressing a disease-associated mutant of EpCAM are a model for congenital tufting enteropathy. Am J Physiol Gastrointest Liver Physiol 2019; 317:G580-G591. [PMID: 31433211 PMCID: PMC6879886 DOI: 10.1152/ajpgi.00098.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Congenital tufting enteropathy (CTE) is an autosomal recessive disease characterized by severe intestinal failure in infancy and mutations in the epithelial cell adhesion molecule (EPCAM) gene. Previous studies of CTE in mice expressing mutant EpCAM show neonatal lethality. Hence, to study the cellular, molecular, and physiological alterations that result from EpCAM mutation, a tamoxifen-inducible mutant EpCAM enteroid model has been generated. The presence of mutant EpCAM in the model was confirmed at both mRNA and protein levels. Immunofluorescence microscopy demonstrated the reduced expression of mutant EpCAM. Mutant enteroids had reduced budding potential as well as significantly decreased mRNA expression for epithelial lineage markers (Mucin 2, lysozyme, sucrase-isomaltase), proliferation marker Ki67, and secretory pathway transcription factors (Atoh1, Hnf1b). Significantly decreased numbers of Paneth and goblet cells were confirmed by staining. These findings were correlated with intestinal tissue from CTE patients and the mutant mice model that had significantly fewer Paneth and goblet cells than in healthy counterparts. FITC-dextran studies demonstrated significantly impaired barrier function in monolayers derived from mutant enteroids compared with control monolayers. In conclusion, we have established an ex vivo CTE model. The role of EpCAM in the budding potential, differentiation, and barrier function of enteroids is noted. Our study establishes new facets of EpCAM biology that will aid in understanding the pathophysiology of CTE and role of EpCAM in health and disease.NEW & NOTEWORTHY Here, we develop a novel ex vivo enteroid model for congenital tufting enteropathy (CTE) based on epithelial cell adhesion molecule (EPCAM) gene mutations found in patients. With this model we demonstrate the role of EpCAM in maintaining the functional homeostasis of the intestinal epithelium, including differentiation, proliferation, and barrier integrity. This study further establishes a new direction in EpCAM biology that will help in understanding the detailed pathophysiology of CTE and role of EpCAM.
Collapse
Affiliation(s)
- Barun Das
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kevin Okamoto
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - John Rabalais
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Philip A. Kozan
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | | | - Matthew D. McGeough
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Nassim Durali
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Maria Go
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California
| | - Kim E. Barrett
- 2Department of Medicine, University of California, San Diego, La Jolla, California
| | - Soumita Das
- 3Department of Pathology, University of California, San Diego, La Jolla, California
| | - Mamata Sivagnanam
- 1Department of Pediatrics, University of California, San Diego, La Jolla, California,4Rady Children’s Hospital, San Diego, California
| |
Collapse
|
47
|
Dottermusch M, Krüger S, Behrens HM, Halske C, Röcken C. Expression of the potential therapeutic target claudin-18.2 is frequently decreased in gastric cancer: results from a large Caucasian cohort study. Virchows Arch 2019; 475:563-571. [PMID: 31332522 PMCID: PMC6861347 DOI: 10.1007/s00428-019-02624-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
Gastric cancer (GC) is frequently diagnosed and treated in advanced tumour stages with poor prognosis. Recent studies have identified isoform 2 of the tight junction protein claudin-18 (CLDN18.2) as a promising target in GC therapy. In this study, we aimed to outline the expression of CLDN18.2 and its correlation with clinico-pathological patient characteristics in a large and well-characterized cohort of GC patients. The expression of CLDN18.2 was studied in 481 GCs by immunohistochemistry on whole tissue sections. Immunostained GCs were evaluated using the histoscore (H-score) and subsequently divided into two groups: tumours showing any or no expression. CLDN18.2 expression was investigated for correlation with various clinico-pathological patient characteristics, including survival. CLDN18.2 expression was found in 203 GCs (42.2%). Of these tumours, 71 (14.8%) showed solely weak immunostaining. CLDN18.2 expression correlated with mucin phenotype, EBV status, the integrin αvβ5, the EpCAM extracellular domain EpEX, and lysozyme. We found no correlation with survival, Laurén phenotype, or any other clinico-pathological patient characteristic. In conclusion, we demonstrate frequently decreased expression of CLDN18.2 in a GC cohort of appropriate size. Correlating CLDN18.2 expression with clinico-pathological patient characteristics reveals new linkages to αvβ5, EpEX, and lysozyme, which may pave the way for further investigations regarding the role of tight junction proteins in GC progression. Though CLDN18.2 continues to pose an attractive target candidate, we conclude that a rather low overall expression rate challenges its significance in advanced GC therapy and indicates the need for further investigations across different populations.
Collapse
Affiliation(s)
- Matthias Dottermusch
- Department of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany
| | - Hans-Michael Behrens
- Department of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany
| | - Christine Halske
- Department of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Arnold-Heller-Str. 3, Haus 14, 24105, Kiel, Germany.
| |
Collapse
|
48
|
Mori Y, Akita K, Ojima K, Iwamoto S, Yamashita T, Morii E, Nakada H. Trophoblast cell surface antigen 2 (Trop-2) phosphorylation by protein kinase C α/δ (PKCα/δ) enhances cell motility. J Biol Chem 2019; 294:11513-11524. [PMID: 31177095 DOI: 10.1074/jbc.ra119.008084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
Dysfunction of tight junctions is a critical step during the initial stage of tumor progression. Trophoblast cell surface antigen 2 (Trop-2) belongs to the family of tumor-associated calcium signal transducer (TACSTD) and is required for the stability of claudin-7 and claudin-1, which are often dysregulated or lost in carcinogenesis. Here, we investigated the effects of Trop-2 phosphorylation on cell motility. Analyses using HCT116 cells expressing WT Trop-2 (HCT116/WT) or Trop-2 alanine-substituted at Ser-303 (HCT116/S303A) or Ser-322 (HCT116/S322A) revealed that Trop-2 is phosphorylated at Ser-322. Furthermore, coimmunoprecipitation and Transwell assays indicated that Trop-2 S322A interacted with claudin-7 the strongest, and a phosphomimetic variant, Trop-2 S322E, the weakest and that HCT116/S322E cells have the highest motility and HCT116/S322A cells the lowest. All cell lines had similar levels of claudin-7 mRNA, but levels of claudin-7 protein were markedly decreased in the HCT116/S322E cells, suggesting posttranscriptional control of claudin-7. Moreover, claudin-7 was clearly localized to cell-cell borders in HCT116/S322A cells but was diffusely distributed on the membrane and partially localized in the cytoplasm of HCT116/S322E and HCT116/WT cells. These observations suggested that Trop-2 phosphorylation plays a role in the decrease or mislocalization of claudin-7. Using protein kinase C (PKC) inhibitors and PKC-specific siRNAs, we found that PKCα and PKCδ are responsible for Trop-2 phosphorylation. Of note, chemical PKC inhibition and PKCα- and PKCδ-specific siRNAs reduced motility. In summary, our findings provide evidence that Trop-2 is phosphorylated at Ser-322 by PKCα/δ and that this phosphorylation enhances cell motility and decreases claudin-7 localization to cellular borders.
Collapse
Affiliation(s)
- Yugo Mori
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kaoru Akita
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kazuki Ojima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shungo Iwamoto
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Tomoko Yamashita
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroshi Nakada
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
49
|
Abstract
Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Pancreas Section, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
50
|
A Polyamidoamine Dendrimer-Based Electrochemical Immunosensor for Label-Free Determination of Epithelial Cell Adhesion Molecule- Expressing Cancer Cells. SENSORS 2019; 19:s19081879. [PMID: 31010258 PMCID: PMC6515256 DOI: 10.3390/s19081879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022]
Abstract
A new electrochemical immunosensor for cancer cell detection based on a specific interaction between the metastasis-related antigen of epithelial cell adhesion molecule (EpCAM) on the cell membrane and its monoclonal antibody (Anti-EpCAM) immobilized on a gold electrode has been developed. The amino-terminated polyamidoamine dendrimer (G6 PAMAM) was first covalently attached to the 3-mercaptopropionic acid (MPA)-functionalized gold electrode to obtain a thin film, and then completely carboxylated by succinic anhydride (SA). Next, the Anti-EpCAM was covalently bound with the G6 PAMAM to obtain a stable recognition layer. In the presence of the EpCAM expressing hepatocellular carcinomas cell line of HepG2, the specific immune recognition (Anti-EpCAM/EpCAM) led to an obvious change of the electron transfer ability. The properties of the layer-by-layer assembly process was examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The final determination of HepG2 cells was performed in the presence of the reversible [Fe(CN)6]3−/4− redox couple using impedance technique. Based on the advantages of PAMAM nanomaterial and immune reaction, a linear response to HepG2 cells ranging from 1 × 104 to 1 × 106 cells mL−1 with a calculated detection limit of 2.1 × 103 cells mL−1 was obtained. We expect this method can provide a potential tool for cancer cell monitoring and protein expression analysis.
Collapse
|