1
|
Tang Y, Liu R, Zhu J, He Q, Pan C, Zhou Z, Sun J, Li F, Zhang L, Shi Y, Yao J, Jiang D, Chen C. Positive Feedback Regulation between KLF5 and XPO1 Promotes Cell Cycle Progression of Basal like Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412096. [PMID: 39888288 PMCID: PMC12021099 DOI: 10.1002/advs.202412096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Basal-like breast cancer (BLBC), overlapping with the subgroup of estrogen receptor (ER), progesterone receptor (PR), and HER2 triple-negative breast cancer, has the worst prognosis and limited therapeutics. The XPO1 gene encodes nuclear export protein 1, a promising anticancer target which mediates nucleus-cytoplasm transport of nuclear export signal containing proteins such as tumor suppressor RB1 and some RNAs. Despite drugs targeting XPO1 are used in clinical, the regulation of XPO1 expression and functional mechanism is poorly understood, especially in BLBC. This study finds that KLF5 is a transcription factor of XPO1, which increases RB1 nuclear export and cell proliferation in BLBC cells. Furthermore, XPO1 interacts with the RNA-binding protein PTBP1 to export FOXO1 mRNA to cytoplasm and thus activates the FOXO1-KLF5 axis as a feedback. This work demonstrates that XPO1 inhibitor KPT-330 in combination with CDK4/6 inhibitor additively suppressed BLBC tumor growth in vivo. These results reveal a novel positive feedback regulation loop between KLF5 and XPO1 and provide a novel treatment strategy for BLBC.
Collapse
Affiliation(s)
- Yu Tang
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
| | - Rui Liu
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
| | - Jing Zhu
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Qian He
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Chenglong Pan
- Department of PathologyThe First Affiliated Hospital of Kunming Medical UniversityKunming650032China
| | - Zhongmei Zhou
- School of Continuing EducationKunming Medical UniversityKunming650021China
| | - Jian Sun
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
| | - Fubing Li
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Longlong Zhang
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| | - Yujie Shi
- Department of PathologyHenan Provincial People's HospitalZhengzhou UniversityZhengzhou450003China
| | - Jing Yao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Institute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunming650201China
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer HospitalThe Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunming650118China
- Yunnan Key Laboratory of Breast Cancer Precision MedicineInstitute of Biomedical EngineeringKunming Medical UniversityKunming650000China
| |
Collapse
|
2
|
Kong Y, Lan T, Wang L, Gong C, Lv W, Zhang H, Zhou C, Sun X, Liu W, Huang H, Weng X, Cai C, Peng W, Zhang M, Jiang D, Yang C, Liu X, Rao Y, Chen C. BRD4-specific PROTAC inhibits basal-like breast cancer partially through downregulating KLF5 expression. Oncogene 2024; 43:2914-2926. [PMID: 39164524 PMCID: PMC11420083 DOI: 10.1038/s41388-024-03121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
Interest in the use of proteolysis-targeting chimeras (PROTACs) in cancer therapy has increased in recent years. Targeting bromodomain and extra terminal domain (BET) proteins, especially bromodomain-containing protein 4 (BRD4), has shown inhibitory effects on basal-like breast cancer (BLBC). However, the bioavailability of BRD4 PROTACs is restricted by their non-selective biodegradability and low tumor-targeting ability. We demonstrated that 6b (BRD4 PROTAC) suppresses BLBC cell growth by targeting BRD4, but not BRD2 and BRD3, for cereblon (CRBN)-mediated ubiquitination and proteasomal degradation. Compound 6b also inhibited expression of Krüppel-like factor 5 (KLF5) transcription factor, a key oncoprotein in BLBC, controlled by BRD4-mediated super-enhancers. Moreover, 6b inhibited HCC1806 tumor growth in a xenograft mouse model. The combination of 6b and KLF5 inhibitors showed additive effects on BLBC. These results suggest that BRD4-specific PROTAC can effectively inhibit BLBC by downregulating KLF5, and that 6b has potential as a novel therapeutic drug for BLBC.
Collapse
Grants
- This study was supported in part by grants National Key Research and Development Program of China (2020YFA0112300 to Chen, C. 2020YFE0202200, 2021YFA1300200 to Rao, Y.), The National Nature Science Foundation of China (U2102203 and 81830087 to Chen, C., 81402206, 82273216 and 81773149 to Kong, Y., 82125034 to Rao, Y.), Biomedical Projects of Yunnan Key Science and Technology Program (202302AA310046),Yunnan Fundamental Research Projects (202101AS070050), and Yunnan Revitalization Talent Support Program (Yunling Shcolar Project to CC). Yunnan (Kunming) Academician Expert Workstation (grant No. YSZJGZZ-2020025 to CC). Shenzhen Science and Technology program (RCYX20221008092911040 to Kong, Y.), Shenzhen Municipal Government of China (JCYJ20210324103603011 to Kong, Y.), Shenzhen Planned Projects for Post-doctors Stand out Research Funds to Kong, Y., Guangdong Basic and Applied Basic Research Foundation (2022A1515220051 to Kong, Y.).
Collapse
Affiliation(s)
- Yanjie Kong
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Tianlong Lan
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Luzhen Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chen Gong
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenxin Lv
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chengang Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiuyun Sun
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Haihui Huang
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xin Weng
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Chang Cai
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenfeng Peng
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Meng Zhang
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xia Liu
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- The Third Affiliated Hospital, Kunming Medical University, Kunming, China.
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Hu J, Xin F, Liu W, Gong Z, Zhang Y, Liu S. Downregulation of KLF5 by EBER1 via the ERK signaling pathway in EBV-positive nasopharyngeal carcinoma cells: implications for latent EBV infection. J Gen Virol 2024; 105. [PMID: 38747699 DOI: 10.1099/jgv.0.001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) carcinogenesis and malignant transformation are intimately associated with Epstein-Barr virus (EBV) infection. A zinc-fingered transcription factor known as Krüppel-like factor 5 (KLF5) has been shown to be aberrantly expressed in a number of cancer types. However, little is known about the regulatory pathways and roles of KLF5 in EBV-positive NPC. Our study found that KLF5 expression was significantly lower in EBV-positive NPC than in EBV-negative NPC. Further investigation revealed that EBER1, which is encoded by EBV, down-regulates KLF5 via the extracellular signal-regulated kinase (ERK) signalling pathway. This down-regulation of KLF5 by EBER1 contributes to maintaining latent EBV infection in NPC. Furthermore, we uncovered the biological roles of KLF5 in NPC cells. Specifically, KLF5 may influence the cell cycle, prevent apoptosis, and encourage cell migration and proliferation - all of which have a generally pro-cancer impact. In conclusion, these findings offer novel strategies for EBV-positive NPC patients' antitumour treatment.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| | - Fangjie Xin
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, PR China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, 255036, PR China
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, 266555, PR China
| |
Collapse
|
4
|
Sinha UK, Lin DC. A novel role of master regulator transcription factor in anti-tumor immunity and cancer immunotherapy. Theranostics 2023; 13:1823-1825. [PMID: 37064876 PMCID: PMC10091883 DOI: 10.7150/thno.83486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 04/18/2023] Open
Abstract
Gene expression network in cancer cells is orchestrated by a small number of master regulator transcription factors (MRTFs), which play a prominent role in regulating cancer intrinsic hallmarks, such as sustaining proliferative signaling, evading growth suppressors, resisting cell death, etc. A new study reports a new role of one MRTF, KLF5, in regulating tumor microenvironment in an extrinsic manner. These findings not only reveal novel mechanistic underpinnings of tumor evasion from immune destruction but also broaden our understanding of the transcriptional deregulation in cancer biology.
Collapse
Affiliation(s)
- Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| |
Collapse
|
5
|
Wu Q, Liu Z, Gao Z, Luo Y, Li F, Yang C, Wang T, Meng X, Chen H, Li J, Kong Y, Dong C, Sun S, Chen C. KLF5 inhibition potentiates anti-PD1 efficacy by enhancing CD8 + T-cell-dependent antitumor immunity. Theranostics 2023; 13:1381-1400. [PMID: 36923542 PMCID: PMC10008740 DOI: 10.7150/thno.82182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Immune checkpoint blockers (ICBs) are revolutionized therapeutic strategies for cancer, but most patients with solid neoplasms remain resistant to ICBs, partly because of the difficulty in reversing the highly immunosuppressive tumor microenvironment (TME). Exploring the strategies for tumor immunotherapy is highly dependent on the discovery of molecular mechanisms of tumor immune escape and potential therapeutic target. Krüppel-like Factor 5 (KLF5) is a cell-intrinsic oncogene to promote tumorigenesis. However, the cell-extrinsic effects of KLF5 on suppressing the immune response to cancer remain unclear. Methods: We analyzed the immunosuppressive role of KLF5 in mice models transplanted with KLF5-deleted/overexpressing tumor cells. We performed RNA sequencing, immunohistochemistry, western blotting, real time-PCR, ELISA, luciferase assay, chromatin immunoprecipitation (ChIP), and flow cytometry to demonstrate the effects of KLF5 on CD8+ T cell infiltration and related molecular mechanism. Single-cell RNA sequencing and spatial transcriptomics analysis were applied to further decipher the association between KLF5 expression and infiltrating immune cells. The efficacy of KLF5/COX2 inhibitors combined with anti-programmed cell death protein 1 (anti-PD1) therapy were explored in pre-clinical models. Finally, a gene-expression signature depending on KLF5/COX2 axis and associated immune markers was created to predict patient survival. Results: KLF5 inactivation decelerated basal-like breast tumor growth in a CD8+ T-cell-dependent manner. Transcriptomic profiling revealed that KLF5 loss in tumors increases the number and activated function of T lymphocytes. Mechanistically, KLF5 binds to the promoter of the COX2 gene and promotes COX2 transcription; subsequently, KLF5 deficiency decreases prostaglandin E2 (PGE2) release from tumor cells by reducing COX2 expression. Inhibition of the KLF5/COX2 axis increases the number and functionality of intratumoral antitumor T cells to synergize the antitumorigenic effects of anti-PD1 therapy. Analysis of patient datasets at single-cell and spatial resolution shows that low expression of KLF5 is associated with an immune-supportive TME. Finally, we generate a KLF5/COX2-associated immune score (KC-IS) to predict patient survival. Conclusions: Our results identified a novel mechanism responsible for KLF5-mediated immunosuppression in TME, and targeting the KLF5/COX2/PGE2 axis is a critical immunotherapy sensitizer.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhou Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhijie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - ChuanYu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tiantian Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China
| | - Xiangyu Meng
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haijun Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanjie Kong
- Pathology department, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| |
Collapse
|
6
|
Wu Y, Hu Y, Tang L, Yin S, Lv L, Zhou P. Targeting CXCR4 to suppress glioma-initiating cells and chemoresistance in glioma. Cell Biol Int 2022; 46:1519-1529. [PMID: 35731168 DOI: 10.1002/cbin.11836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/09/2022] [Accepted: 05/07/2022] [Indexed: 02/05/2023]
Abstract
Glioma initiating cells (GICs), also known as glioma stem cells, display the capacity to recapitulate the functional diversity within the tumor. Despite the great progress achieved over the last decades, defining the key molecular regulators of GICs has represented a major obstacle in this field. In our study, data from The Cancer Genome Atlas database illustrated a relationship between C-X-C motif chemokine receptor 4 (CXCR4) expression and the survival of glioma patients. Mechanistically, we further indicated that CXCR4 mediated the upregulation of Kruppel like factor 5 (KLF5), a zinc-finger-containing transcription factor, to facilitate the proliferation of GICs. What's more, CXCR4 also enhanced the chemoresistance through KLF5/Bcl2-like 12 (BCl2L12) in glioma. The elevated expression of KLF5 and BCL2L12 induced by CXCR4 was dependent on phosphoinositide 3-kinases (PI3K)/serine/threonine kinase (AKT) signaling. Importantly, combined application of temozolomide and a CXCR4 inhibitor efficiently reversed CXCR4 mediated drugs resistance and improved anticancer effects in vivo. Collectively, our findings confirmed that CXCR4 promoted GICs proliferation via the KLF5/BCL2L12 dependent pathway, which may enrich the understanding of GICs and help drive the design of efficacious therapeutic strategies.
Collapse
Affiliation(s)
- Yao Wu
- Department of Neurosurgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yu Hu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lingli Tang
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Senlin Yin
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Liang Lv
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Peizhi Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Bennett C, Carroll C, Wright C, Awad B, Park JM, Farmer M, Brown E(B, Heatherly A, Woodard S. Breast Cancer Genomics: Primary and Most Common Metastases. Cancers (Basel) 2022; 14:3046. [PMID: 35804819 PMCID: PMC9265113 DOI: 10.3390/cancers14133046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Specific genomic alterations have been found in primary breast cancer involving driver mutations that result in tumorigenesis. Metastatic breast cancer, which is uncommon at the time of disease onset, variably impacts patients throughout the course of their disease. Both the molecular profiles and diverse genomic pathways vary in the development and progression of metastatic breast cancer. From the most common metastatic site (bone), to the rare sites such as orbital, gynecologic, or pancreatic metastases, different levels of gene expression indicate the potential involvement of numerous genes in the development and spread of breast cancer. Knowledge of these alterations can, not only help predict future disease, but also lead to advancement in breast cancer treatments. This review discusses the somatic landscape of breast primary and metastatic tumors.
Collapse
Affiliation(s)
- Caroline Bennett
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Caleb Carroll
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Cooper Wright
- Birmingham Marnix E. Heersink School of Medicine, The University of Alabama, 1670 University Blvd, Birmingham, AL 35233, USA; (C.B.); (C.C.); (C.W.)
| | - Barbara Awad
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA;
| | - Jeong Mi Park
- Department of Radiology, The University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249, USA;
| | - Meagan Farmer
- Department of Genetics, Marnix E. Heersink School of Medicine, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA; (M.F.); (A.H.)
| | - Elizabeth (Bryce) Brown
- Laboratory Genetics Counselor, UAB Medical Genomics Laboratory, Kaul Human Genetics Building, 720 20th Street South, Suite 332, Birmingham, AL 35294, USA;
| | - Alexis Heatherly
- Department of Genetics, Marnix E. Heersink School of Medicine, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA; (M.F.); (A.H.)
| | - Stefanie Woodard
- Department of Radiology, The University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249, USA;
| |
Collapse
|
8
|
Jiang D, Qiu T, Peng J, Li S, Tala, Ren W, Yang C, Wen Y, Chen CH, Sun J, Wu Y, Liu R, Zhou J, Wu K, Liu W, Mao X, Zhou Z, Chen C. YB-1 is a positive regulator of KLF5 transcription factor in basal-like breast cancer. Cell Death Differ 2022; 29:1283-1295. [PMID: 35022570 PMCID: PMC9177637 DOI: 10.1038/s41418-021-00920-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Y-box binding protein 1 (YB-1) is a well-known oncogene highly expressed in various cancers, including basal-like breast cancer (BLBC). Beyond its role as a transcription factor, YB-1 is newly defined as an epigenetic regulator involving RNA 5-methylcytosine. However, its specific targets and pro-cancer functions are poorly defined. Here, based on clinical database, we demonstrate a positive correlation between Kruppel-like factor 5 (KLF5) and YB-1 expression in breast cancer patients, but a negative correlation with that of Dachshund homolog 1 (DACH1). Mechanistically, YB-1 enhances KLF5 expression not only through transcriptional activation that can be inhibited by DACH1, but also by stabilizing KLF5 mRNA in a RNA 5-methylcytosine modification-dependent manner. Additionally, ribosomal S6 kinase 2 (RSK2) mediated YB-1 phosphorylation at Ser102 promotes YB-1/KLF5 transcriptional complex formation, which co-regulates the expression of BLBC specific genes, Keratin 16 (KRT16) and lymphocyte antigen 6 family member D (Ly6D), to promote cancer cell proliferation. The RSK inhibitor, LJH685, suppressed BLBC cell tumourigenesis in vivo by disturbing YB-1-KLF5 axis. Our data suggest that YB-1 positively regulates KLF5 at multiple levels to promote BLBC progression. The novel RSK2-YB-1-KLF5-KRT16/Ly6D axis provides candidate diagnostic markers and therapeutic targets for BLBC.
Collapse
Affiliation(s)
- Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China
| | - Ting Qiu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China
| | - Junjiang Peng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tala
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenlong Ren
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, China University of Science and Technology, Hefei, Anhui, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chuan-Huizi Chen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China
| | - Yingying Wu
- The First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Rong Liu
- The First Affiliated Hospital, Peking University, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Kunming College of Lifesciences, University of Chinese Academy Sciences, Kunming, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
9
|
Expression and Prognosis Value of the KLF Family Members in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6571272. [PMID: 35345512 PMCID: PMC8957442 DOI: 10.1155/2022/6571272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Krüppel-like factors (KLFs) are some kind of transcriptional regulator that regulates a broad range of cellular functions and has been linked to the development of certain malignancies. KLF expression patterns and prognostic values in colorectal cancer (CRC) have, however, been investigated rarely. To investigate the differential expression, predictive value, and gene mutations of KLFs in CRC patients, we used various online analytic tools, including ONCOMINE, TCGA, cBioPortal, and the TIMER database. KLF2-6, KLF8-10, KLF12-15, and KLF17 mRNA expression levels were dramatically downregulated in CRC tissues, but KLF1, KLF7, and KLF16 mRNA expression levels were significantly elevated in CRC tissues. According to the findings of Cox regression analysis, upregulation of KLF3, KLF5, and KLF6 and downregulation of KLF15 were linked with a better prognosis in CRC. For functional enrichment, our findings revealed that KLF members are involved in a variety of cancer-related biological processes. In colon cancer and rectal cancer, KLFs were also shown to be associated with a variety of immune cells. The findings of this research reveal that KLF family members' mRNA expression levels are possible prognostic indicators for patients with CRC.
Collapse
|
10
|
Zapf AM, Grimm PR, Al-Qusairi L, Delpire E, Welling PA. Low Salt Delivery Triggers Autocrine Release of Prostaglandin E2 From the Aldosterone-Sensitive Distal Nephron in Familial Hyperkalemic Hypertension Mice. Front Physiol 2022; 12:787323. [PMID: 35069250 PMCID: PMC8770744 DOI: 10.3389/fphys.2021.787323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Aberrant activation of with-no-lysine kinase (WNK)-STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) kinase signaling in the distal convoluted tubule (DCT) causes unbridled activation of the thiazide-sensitive sodium chloride cotransporter (NCC), leading to familial hyperkalemic hypertension (FHHt) in humans. Studies in FHHt mice engineered to constitutively activate SPAK specifically in the DCT (CA-SPAK mice) revealed maladaptive remodeling of the aldosterone sensitive distal nephron (ASDN), characterized by decrease in the potassium excretory channel, renal outer medullary potassium (ROMK), and epithelial sodium channel (ENaC), that contributes to the hyperkalemia. The mechanisms by which NCC activation in DCT promotes remodeling of connecting tubule (CNT) are unknown, but paracrine communication and reduced salt delivery to the ASDN have been suspected. Here, we explore the involvement of prostaglandin E2 (PGE2). We found that PGE2 and the terminal PGE2 synthase, mPGES1, are increased in kidney cortex of CA-SPAK mice, compared to control or SPAK KO mice. Hydrochlorothiazide (HCTZ) reduced PGE2 to control levels, indicating increased PGE2 synthesis is dependent on increased NCC activity. Immunolocalization studies revealed mPGES1 is selectively increased in the CNT of CA-SPAK mice, implicating low salt-delivery to ASDN as the trigger. Salt titration studies in an in vitro ASDN cell model, mouse CCD cell (mCCD-CL1), confirmed PGE2 synthesis is activated by low salt, and revealed that response is paralleled by induction of mPGES1 gene expression. Finally, inhibition of the PGE2 receptor, EP1, in CA-SPAK mice partially restored potassium homeostasis as it partially rescued ROMK protein abundance, but not ENaC. Together, these data indicate low sodium delivery to the ASDN activates PGE2 synthesis and this inhibits ROMK through autocrine activation of the EP1 receptor. These findings provide new insights into the mechanism by which activation of sodium transport in the DCT causes remodeling of the ASDN.
Collapse
Affiliation(s)
- Ava M Zapf
- Molecular Medicine, Graduate Program in Life Sciences, University of Maryland Medical School, Baltimore, MD, United States
| | - Paul R Grimm
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lama Al-Qusairi
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Paul A Welling
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Physiology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
11
|
Sun L, Zhou X, Li Y, Chen W, Wu S, Zhang B, Yao J, Xu A. KLF5 regulates epithelial-mesenchymal transition of liver cancer cells in the context of p53 loss through miR-192 targeting of ZEB2. Cell Adh Migr 2021; 14:182-194. [PMID: 32965165 PMCID: PMC7553557 DOI: 10.1080/19336918.2020.1826216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) can both promote and suppress cell migration, but the underlying mechanisms have not been elucidated. In this study, we show that the function of KLF5 in epithelial-mesenchymal transition (EMT) and migration of liver cancer cells depends on the status of the cellular tumor antigen p53 (p53). Furthermore, zinc finger E-box-binding homeobox 2 (ZEB2) is the main regulator of KLF5 in EMT in liver cancer cells in the context of p53 loss. Most importantly, the regulation of ZEB2 by p53 and KLF5 is indirect and that miR-192 mediates this regulation. Finally, we find that in invasive liver cancer, KLF5 is absent in the context of p53 loss or mutation.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Xiaona Zhou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Wei Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Shanna Wu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Jingyi Yao
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University , Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
12
|
Wang H, Shi Y, Chen CH, Wen Y, Zhou Z, Yang C, Sun J, Du G, Wu J, Mao X, Liu R, Chen C. KLF5-induced lncRNA IGFL2-AS1 promotes basal-like breast cancer cell growth and survival by upregulating the expression of IGFL1. Cancer Lett 2021; 515:49-62. [PMID: 34052325 DOI: 10.1016/j.canlet.2021.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Basal-like breast cancer (BLBC) is the most malignant subtype of breast cancer and has a poor prognosis. Kruppel-like factor 5 (KLF5) is an oncogenic transcription factor in BLBCs. The mechanism by which KLF5 promotes BLBC by regulating the transcription of lncRNAs has not been fully elucidated. In this study, we discovered that lncRNA IGFL2-AS1 is a downstream target gene of KLF5 and that IGFL2-AS1 mediates the pro-proliferation and pro-survival functions of KLF5. Additionally, we demonstrated that IGFL2-AS1 functions by upregulating the transcription of its neighboring gene IGFL1 via two independent mechanisms. On the one hand, nuclear IGFL2-AS1 promotes the formation of a KLF5/TEAD4 transcriptional complex at the IGFL1 gene enhancer. On the other hand, cytoplasmic IGFL2-AS1 inhibits the expression of miR4795-3p, which targets the IGFL1 gene. TNFα induces the expression of IGFL2-AS1 and IGFL1 through KLF5. Taken together, the results of this study indicate that IGFL2-AS1 and IGFL1 may serve as new therapeutic targets for BLBCs.
Collapse
Affiliation(s)
- Haixia Wang
- School of Life Science, University of Science & Technology of China, Hefei, 230027, Anhui, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Chuan-Huizi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jian Sun
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guangshi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jiao Wu
- Department of the Second Medical Oncology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650118, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; Translational Cancer Research Center, Peking University First Hospital, Beijing, 100034, China.
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
13
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Kim S, Lee ES, Lee EJ, Jung JY, Lee SB, Lee HJ, Kim J, Kim HJ, Lee JW, Son BH, Gong G, Ahn SH, Chang S. Targeted eicosanoids profiling reveals a prostaglandin reprogramming in breast Cancer by microRNA-155. J Exp Clin Cancer Res 2021; 40:43. [PMID: 33494773 PMCID: PMC7831268 DOI: 10.1186/s13046-021-01839-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract Background Prostaglandin is one of the key metabolites for inflammation-related carcinogenesis. Despite the microRNA-155 is implicated in various types of cancers, it’s function in prostaglandin metabolism is largely unknown. Methods A targeted profiling of eicosanoids including prostaglandin, leukotriene and thromboxanes was performed in miR-155 deficient breast tumors and cancer cells. The molecular mechanism of miR-155-mediated prostaglandin reprogramming was investigated in primary and cancer cell lines, by analyzing key enzymes responsible for the prostaglandin production. Results We found miR-155-deficient breast tumors, plasma of tumor-bearing mouse and cancer cells show altered prostaglandin level, especially for the prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Subsequent analysis in primary cancer cells, 20 triple-negative breast cancer (TNBC) specimens and breast cancer cell lines with miR-155 knockdown consistently showed a positive correlation between miR-155 level and PGE2/PGD2 ratio. Mechanistically, we reveal the miR-155 reprograms the prostaglandin metabolism by up-regulating PGE2-producing enzymes PTGES/PTGES2 while down-regulating PGD2-producing enzyme PTGDS. Further, we show the up-regulation of PTGES2 is driven by miR-155-cMYC axis, whereas PTGES is transactivated by miR-155-KLF4. Thus, miR-155 hires dual-regulatory mode for the metabolic enzyme expression to reprogram the PGE2/PGD2 balance. Lastly, we show the miR-155-driven cellular proliferation is restored by the siRNA of PTGES1/2, of which expression also significantly correlates with breast cancer patients’ survival. Conclusions Considering clinical trials targeting PGE2 production largely have focused on the inhibition of Cox1 or Cox2 that showed cardiac toxicity, our data suggest an alternative way for suppressing PGE2 production via the inhibition of miR-155. As the antagomiR of miR-155 (MRG-106) underwent a phase-1 clinical trial, its effect should be considered and analyzed in prostaglandin metabolism in tumor. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01839-4.
Collapse
Affiliation(s)
- Sinae Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Sung Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun Ji Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sae Byul Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jisun Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hee Jeong Kim
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jong Won Lee
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Byung Ho Son
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sei-Hyun Ahn
- Division of Breast Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
15
|
Wei W, Wang Y, Li M, Yang M. Water-soluble fraction of particulate matter <2.5 μm promoted lung epithelia cells apoptosis by regulating the expression of caveolin-1 and Krüppel-like factor 5. J Appl Toxicol 2020; 41:410-420. [PMID: 33090513 DOI: 10.1002/jat.4052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Ambient fine particulate matter of <2.5 μm (PM2.5) has been linked to morbidity and mortality from respiratory and cardiovascular diseases. Lung epithelial cells bear the brunt of PM2.5 exposure. In the present study, we found that exposure of A549 cells to the water-soluble fraction of PM2.5 (WS-PM2.5) promoted the expression and internalization of caveolin-1. Caveolin-1 knockdown restrained the endocytosis of WS-PM2.5. In addition, WS-PM2.5 accumulation in the cells induced the phosphorylation of serine/threonine protein kinase B (AKT) and nuclear factor κ-light-chain enhancer of activated B cells (NFκB), as well as the expression of Krüppel-like factor 5 (KLF5). Inhibiting activation of AKT and NFκB also partly reduced WS-PM2.5 concentration in cells, but KLF5 knockdown did not affect the intracellular accumulation of WS-PM2.5. KLF5 knockdown suppressed cytochrome P450 family 1 subfamily A member 1 (CYP1A1) expression and activated caspase 3. Luciferase reporter assay and chromatin immunoprecipitation assay showed that KLF5 positively regulated the transcription of KLF5. These results suggested that caveolin-1 was required for the endocytosis of WS-PM2.5. Intracellular accumulation of WS-PM2.5 activated AKT and NFκB, which facilitated WS-PM2.5 endocytosis. WS-PM2.5 accumulation also induced KLF5 expression, increasing the transcriptional expression of CYP1A1, which contributed to activate caspase 3.
Collapse
Affiliation(s)
- Wei Wei
- Shandong provincial Eco-environment Monitoring Center, Jinan, China
| | - Yuan Wang
- Department of Neurology, Shandong provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Min Li
- Department of Cardiology, Shandong provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Yang
- Department of Ultrasound, Shandong provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Li Y, Kong R, Chen H, Zhao Z, Li L, Li J, Hu J, Zhang G, Pan S, Wang Y, Wang G, Chen H, Sun B. Overexpression of KLF5 is associated with poor survival and G1/S progression in pancreatic cancer. Aging (Albany NY) 2020; 11:5035-5057. [PMID: 31327760 PMCID: PMC6682527 DOI: 10.18632/aging.102096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Despite improvements in surgical procedures and comprehensive therapies, pancreatic cancer remains one of the most aggressive and deadly human malignancies. It is therefore necessary to determine which cellular mediators associate with prognosis in pancreatic cancer so as to improve the treatment of this disease. In the present study, mRNA array and immunohistochemical analyses showed that KLF5 is highly expressed in tissue samples from three short-surviving patients with pancreatic cancer. Survival analysis using data from The Cancer Genome Atlas showed that patients highly expressing KLF5 exhibited shorter overall and tumor-free survival times. Mechanistically, KLF5 promoted expression of E2F1, cyclin D1 and Rad51, while inhibiting expression of p16 in pancreatic cancer cells. Finally, flow cytometric analyses verified that KLF5 promotes G1/S progression of the cell cycle in pancreatic cancer cells. Collectively, these findings demonstrate that KLF5 is an important prognostic biomarker in pancreatic cancer patients, and they shed light on the molecular mechanism by which KLF5 stimulates cell cycle progression in pancreatic cancer.
Collapse
Affiliation(s)
- Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Jiating Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Guangquan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Shangha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| |
Collapse
|
17
|
Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed Pharmacother 2019; 123:109778. [PMID: 31855735 DOI: 10.1016/j.biopha.2019.109778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has accounted for the leading cause of cancer-related mortality among women worldwide. Although the progress in its diagnosis and treatment has come at a remarkable pace during the past several decades, there are still a wide array of problems regarding its progression, metastasis and treatment resistance that have not yet been fully clarified. Recently, an increasing number of studies have revealed that some members of Krüppel-like factors(KLFs) are significantly associated with cell proliferation, apoptosis, metastasis, cancer stem cell regulation and prognostic and predictive value for patients in breast cancer, indicating their promising prognostic and predictive potential for breast cancer survival and outcome. In this review, we will summarize our current knowledge of the functions, regulations and clinical relevance of KLFs in breast cancer.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Wu Y, Qin J, Li F, Yang C, Li Z, Zhou Z, Zhang H, Li Y, Wang X, Liu R, Tao Q, Chen W, Chen C. USP3 promotes breast cancer cell proliferation by deubiquitinating KLF5. J Biol Chem 2019; 294:17837-17847. [PMID: 31624151 DOI: 10.1074/jbc.ra119.009102] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factor 5 (KLF5) transcription factor is highly expressed in basal type breast cancer and promotes breast cancer cell proliferation, survival, migration, and tumorigenesis. KLF5 protein stability is regulated by ubiquitination. In this study, ubiquitin-specific protease 3 (USP3) was identified as a new KLF5 deubiquitinase by genome-wide siRNA library screening. We demonstrated that USP3 interacts with KLF5 and stabilizes KLF5 via deubiquitination. USP3 knockdown inhibits breast cancer cell proliferation in vitro and tumorigenesis in vivo, which can be partially rescued by ectopic expression of KLF5. Furthermore, we observed a positive correlation between USP3 and KLF5 protein expression levels in human breast cancer samples. These findings suggest that USP3 is a new KLF5 deubiquitinase and that USP3 may represent a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yingying Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of the Chinese Academy of Sciences, Beijing 101407, China.,First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Chuanyu Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhen Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunxi Li
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Xinye Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir Y. K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong 518172, China
| | - Wenlin Chen
- Department of Breast Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China .,Kunming Institute of Zoology-Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Stem Cell and Reproductive Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Flaherty RL, Falcinelli M, Flint MS. Stress and drug resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:773-786. [PMID: 35582576 PMCID: PMC8992509 DOI: 10.20517/cdr.2019.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/16/2019] [Accepted: 05/29/2019] [Indexed: 06/15/2023]
Abstract
Patients diagnosed with cancer often undergo considerable psychological distress, and the induction of the psychological stress response has been linked with a poor response to chemotherapy. The psychological stress response is mediated by fluctuations of the hormones glucocorticoids (GCs) and catecholamines. Binding to their respective receptors, GCs and the catecholamines adrenaline/noradrenaline are responsible for signalling a wide range of processes involved in cell survival, cell cycle and immune function. Synthetic GCs are also often prescribed as co-medication alongside chemotherapy, and increasing evidence suggests that GCs may induce chemoresistance in multiple cancer types. In this review, we bring together evidence linking psychological stress hormone signalling with resistance to chemo- and immune therapies, as well as mechanistic evidence regarding the effects of exogenous stress hormones on the efficacy of chemotherapies.
Collapse
Affiliation(s)
- Renée L. Flaherty
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - Marta Falcinelli
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton, BN2 4GJ, UK
| | - Melanie S. Flint
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton, BN2 4GJ, UK
| |
Collapse
|
20
|
Feng FM, Zhang L. Analysis of KLF5 expression and its prognostic significance in gastric cancer based on Oncomine and Kaplan-Meier Plotter. Shijie Huaren Xiaohua Zazhi 2019; 27:734-741. [DOI: 10.11569/wcjd.v27.i12.734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy of the digestive system. Most patients with advanced GC have a poor prognosis and lack of prognostic predictors.
AIM To analyze the expression of Kruppel-like factor 5 (KLF5) in GC and its correlation with patient prognosis by using Oncomie and Kaplan-Meier Plotter databases.
METHODS The data sets of KLF5 gene expression in Oncomie and Kaplan-Meier Plotter databases were collected. The differential expression of KLF5 gene in GC tissues was deeply mined. According to the median expression level of KLF5, the patients were divided into a high-expression group and low-expression group. Survival curves were drawn and log-rank test was used to compare the overall survival and disease-free survival of the two groups. Meanwhile, the clinical data of 41 patients with GC treated at our hospital were retrospectively analyzed. The expression of KLF5 in the 41 patients with GC was detected by immunohistochemistry, and the relationship between the expression of KLF5 and the clinicopathological characteristics of patients was analyzed.
RESULTS A total of 424 studies on KLF5 gene expression were collected in Oncomine database, of which 35 showed differential expression of KLF5 in normal vs cancer tissues. Compared with normal tissues, 8 datasets showed that KLF5 was highly expressed in cancer tissues and 27 datasets showed low expression in cancer tissues. Cluster analysis showed that KLF5 was co-expressed with 20 genes such as ST14 and TMEM125 (co-down-regulated or up-regulated), suggesting that these co-expressed genes might be functionally related. The differential expression of KLF5 gene in GC tissues was analyzed by using 10 data sets of KLF5 expression chips from Oncomine database. Four of them indicated that the expression level of KLF5 in GC tissues was significantly increased. In the Kaplan-Meier Plotter database, two related gene chips were used to analyze the relationship between the expression of KLF5 and the prognosis of GC patients. The long-rank test showed that the overall survival and disease-free survival of patients with high expression of KLF5 were less than those of patients with low expression (P < 0.05). Immunohistochemical analysis showed that 29 (70.7%) of 41 patients with GC were KLF5 positive. There was no significant correlation between KLF5 positive expression and clinicopathological features such as gender, age, tumor stage, or tumor grade (P > 0.05).
CONCLUSION The high expression of KLF5 in GC is associated with a poor prognosis, although the expression of KLF5 is not related to the clinicopathological characteristics of GC patients.
Collapse
Affiliation(s)
- Fu-Mei Feng
- Department of Gastrointestinal Surgery, Tianjin Baodi District People's Hospital, Tianjin 301800, China
| | - Lei Zhang
- Department of Gastrointestinal Surgery, Tianjin Baodi District People's Hospital, Tianjin 301800, China
| |
Collapse
|
21
|
Chen CH, Yang N, Zhang Y, Ding J, Zhang W, Liu R, Liu W, Chen C. Inhibition of super enhancer downregulates the expression of KLF5 in basal-like breast cancers. Int J Biol Sci 2019; 15:1733-1742. [PMID: 31360115 PMCID: PMC6643226 DOI: 10.7150/ijbs.35138] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
The transcription factor KLF5 (Krüpple-like factor 5) is highly expressed in basal-like breast cancer (BLBC), which promotes cell proliferation, survival, migration and stemness, serving as a potential therapeutic target. In the current study, a super-enhancer (SE) was identified to be located downstream of the KLF5 gene in BLBC cell lines, HCC1806 and HCC1937. JQ-1, a BRD4 inhibitor, inhibits the expression and activity of KLF5 in both HCC1806 and HCC1937 cells in a time- and dose-dependent manner. Compound 870, an in-house BRD4 inhibitor, exhibited higher potency than JQ-1 to inhibit KLF5 and BLBC growth by arresting cells in G1 phase. Additionally, THZ1, a CDK7 inhibitor, also inhibits KLF5 and BLBC growth in a similar manner. Our findings suggested that KLF5 is regulated by SE, and modulation of SE could be an effective therapeutic strategy for treating BLBC.
Collapse
Affiliation(s)
- Chuan-Huizi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Nong Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Yongchang Zhang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Jiancheng Ding
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Wenjuan Zhang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Wen Liu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing, 100101, China.,Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China, 510095
| |
Collapse
|
22
|
Liu R, Shi P, Zhou Z, Zhang H, Li W, Zhang H, Chen C. Krüpple-like factor 5 is essential for mammary gland development and tumorigenesis. J Pathol 2018; 246:497-507. [PMID: 30101462 DOI: 10.1002/path.5153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/26/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
Abstract
Krüpple-like factor 5 (KLF5) is required for the development of the embryo and multiple organs, such as the lung and intestine. KLF5 plays a pro-proliferative and oncogenic role in several carcinomas, including breast cancer. However, its role in normal mammary gland development and oncogenesis has not been elucidated in vivo. In this study, we used mammary gland-specific Klf5 conditional knockout mice derived by mating Klf5-LoxP and MMTV-Cre mice. The genetic ablation of Klf5 suppresses mammary gland ductal elongation and lobuloalveolar formation. Klf5 deficiency inhibits mammary epithelial cell proliferation, survival, and stem cell maintenance. Klf5 promotes mammary stemness, at least partially, by directly promoting the transcription of Slug. Finally, Klf5 depletion suppressed PyMT-induced mammary gland tumor cell stemness, tumor initiation, and growth in vivo. Slug also mediated these functions of Klf5 in vivo. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, PR China
| | - Peiguo Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| | - Wei Li
- Department of Urology, First People's Hospital of Yunnan Province, Kunming, PR China
| | - Hong Zhang
- Department of Nuclear Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, PR China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China
| |
Collapse
|
23
|
Jia L, Shi Y, Wen Y, Li W, Feng J, Chen C. The roles of TNFAIP2 in cancers and infectious diseases. J Cell Mol Med 2018; 22:5188-5195. [PMID: 30145807 PMCID: PMC6201362 DOI: 10.1111/jcmm.13822] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 12/30/2022] Open
Abstract
TNFα‐induced protein 2 (TNFAIP2) is a primary response gene of TNFα. TNFAIP2 is highly expressed in immune cells and the urinary bladder. The expression of TNFAIP2 is regulated by multiple transcription factors and signalling pathways, including NF‐κB, KLF5 and retinoic acid. Physiologically, TNFAIP2 appears to be a multiple functional mediator not only for inflammation, angiogenesis and tunneling nanotube (TNT) formation but also as a regulator of cell proliferation and migration. The expression of TNFAIP2 is frequently abnormal in human cancers and in infectious diseases. Due to its significant functions in cell proliferation, angiogenesis, migration and invasion, TNFAIP2 could be a potential diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Lin Jia
- Department of Biology, Yuxi Normal University, Yuxi, China
| | - Yundong Shi
- Department of Biology, Yuxi Normal University, Yuxi, China
| | - Yi Wen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wei Li
- Department of Urology of the First People's Hospital of Yunnan Province, Kunming, China.,Medical College of Kunming University of Science and Technology, Kunming, China
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
24
|
Gong T, Cui L, Wang H, Wang H, Han N. Knockdown of KLF5 suppresses hypoxia-induced resistance to cisplatin in NSCLC cells by regulating HIF-1α-dependent glycolysis through inactivation of the PI3K/Akt/mTOR pathway. J Transl Med 2018; 16:164. [PMID: 29898734 PMCID: PMC6000925 DOI: 10.1186/s12967-018-1543-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxia-mediated chemoresistance has been regarded as an important obstacle in the development of cancer treatment. Knockdown of krüppel-like factor 5 (KLF5) was reported to inhibit hypoxia-induced cell survival and promote cell apoptosis in non-small cell lung cancer (NSCLC) cells via direct regulation of hypoxia inducible factor-1α (HIF-1α) expression. However, the roles of KLF5 in the development of hypoxia-induced cisplatin (DDP) resistance and its underlying mechanism in NSCLC cells remain to be further elucidated. METHODS Western blot was performed to determine the protein levels of KLF5, P-glycoprotein (P-gp) and HIF-1α in treated NSCLC cells. Cell survival was examined by MTT assay. The effect of KLF5 knockdown on hypoxia-induced glycolysis was assessed by measuring glucose consumption and lactate production. The effect of KLF5 knockdown on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway was analyzed by western blot. RESULTS Hypoxia upregulated the expression of KLF5 in NSCLC cells. KLF5 knockdown suppressed hypoxia-induced DDP resistance in NSCLC cells, as demonstrated by the increased cytotoxic effects of DDP and reduced P-gp expression in NSCLC cells in hypoxia. Moreover, KLF5 knockdown inhibited hypoxia-induced HIF-1α expression and glycolysis, and KLF5 knockdown suppressed hypoxia-induced DDP resistance by inhibiting HIF-1α-dependent glycolysis in NSCLC cells. Furthermore, KLF5 knockdown suppressed hypoxia-induced activation of the PI3K/Akt/mTOR pathway in NSCLC cells and KLF5 overexpression promoted hypoxia-induced DDP resistance in NSCLC cells through activation of the PI3K/Akt/mTOR pathway. CONCLUSIONS KLF5 knockdown could suppress hypoxia-induced DDP resistance, and its mechanism may be due to the inhibition of HIF-1α-dependent glycolysis via inactivation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Tianxiao Gong
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Liuqing Cui
- College of Bioengineering, Henan University of Technology, Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| | - Haili Wang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Haoxun Wang
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| | - Na Han
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Zhengzhou, 450014, People's Republic of China
| |
Collapse
|
25
|
Discovery of novel mifepristone derivatives via suppressing KLF5 expression for the treatment of triple-negative breast cancer. Eur J Med Chem 2018; 146:354-367. [PMID: 29407962 DOI: 10.1016/j.ejmech.2018.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is one of the most malignant breast cancers currently with a lack of targeted therapeutic drugs. Accumulating evidence supports that KLF5 represents a novel therapeutic target for the treatment of basal TNBC. Our previous studies revealed that mifepristone is capable of suppressing TNBC cell proliferation and promoting cancer cell apoptosis by inhibiting KLF5 expression. Nevertheless, its anticancer efficacy is only modest with high dose. Moreover, its main metabolite N-desmethyl mifepristone with the removal of one methyl moiety results in a significant loss of antiproliferative activity, indicating an important pharmacophore domain around this methyl moiety. To improve the pharmacokinetic properties including metabolic stability and enhance the anticancer activities, a focused compound library by altering this sensitive metabolic region of mifepristone has been designed and synthesized for scaffold repurposing and structural optimization. Compound 17 (FZU-00,004) has been identified with an attractive anticancer profile against TNBC via suppressing KLF5 expression.
Collapse
|
26
|
Yang T, Chen M, Yang X, Zhang X, Zhang Z, Sun Y, Xu B, Hua J, He Z, Song Z. Down-regulation of KLF5 in cancer-associated fibroblasts inhibit gastric cancer cells progression by CCL5/CCR5 axis. Cancer Biol Ther 2017; 18:806-815. [PMID: 28934010 DOI: 10.1080/15384047.2017.1373219] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
It was well known that cancer-associated fibroblasts (CAFs) were an essential factor in tumor progression. However, the actual mechanism of stromal fibroblasts activation and tumor promoting effects remain unclear. Here, we showed that KLF5 expression was more frequently observed in gastric cancer-associated fibroblasts compared with normal mucosal fibroblasts. Moreover, KLF5 expression in tumor stroma was closely associated with clinicopathological features such as tumor size, invasion depth, cell grade and lymph node metastasis, as well as poor prognosis in patients with gastric cancer. In addition, we further demonstrated that KLF5-regulating CAFs affect gastric cancer cells progression by CCL5 secretion and activation of CCR5. Taken together, we concluded that KLF5 expression in gastric cancer-associated fibroblasts contribute to poor survival and promote cancer cells progression by activation of CCL5/CCR5 axis, which suggesting that KLF5 in CAFs might be considered as a promising target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Tingsong Yang
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Min Chen
- b Department of Pathology , Dahua Hospital, No. 901, Old Humin Road, Xuhui District, Shanghai , China
| | - Xiaohu Yang
- c Department of Anesthesiology , Shanghai East Hospital Affiliated Tongji University , No. 150, JiMo Road, Shanghai , China
| | - Xiaobing Zhang
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Zhou Zhang
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Yingying Sun
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Bin Xu
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Jie Hua
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Zhigang He
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| | - Zhenshun Song
- a Department of General Surgery , Shanghai Tenth Peoples' Hospital affiliated Tongji University , No. 301, Middle Yanchang Road, Shanghai , China
| |
Collapse
|
27
|
Zhou W, Song F, Wu Q, Liu R, Wang L, Liu C, Peng Y, Mao S, Feng J, Chen C. miR-217 inhibits triple-negative breast cancer cell growth, migration, and invasion through targeting KLF5. PLoS One 2017; 12:e0176395. [PMID: 28437471 PMCID: PMC5402967 DOI: 10.1371/journal.pone.0176395] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive breast cancers without effective targeted therapies. Numerous studies have implied that KLF5 plays an important roles in TNBC. How is KLF5 regulated by microRNAs has not been well studied. Here, we demonstrated that miR-217 down-regulates the expression of KLF5 and KLF5's downstream target gene FGF-BP and Cyclin D1 in TNBC cell lines HCC1806 and HCC1937. Consequently, miR-217 suppresses TNBC cell growth, migration, and invasion. MiR-217 suppresses TNBC, at least partially, through down-regulating the KLF5 expression. These results suggest that the miR-217-KLF5 axis might serve as a potential target for treatment of TNBC.
Collapse
Affiliation(s)
- Wenhui Zhou
- Third Clinical College, Southern Medical University, Guangdong Province, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan Province, Kunming, China
| | - Fangfang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan Province, Kunming, China
- Department of Laboratory Medicine & Central Laboratory, Jinzhou Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Qiuju Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan Province, Kunming, China
- Department of Laboratory Medicine & Central Laboratory, Jinzhou Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan Province, Kunming, China
| | - Lulu Wang
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Cuicui Liu
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - You Peng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Shuqin Mao
- Hubei University of Medicine Affiliated Taihe Hospital, Hubei Province, Shiyan, China
| | - Jing Feng
- Third Clinical College, Southern Medical University, Guangdong Province, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- * E-mail: (CC);
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan Province, Kunming, China
- * E-mail: (CC);
| |
Collapse
|
28
|
Li Z, Dong J, Zou T, Du C, Li S, Chen C, Liu R, Wang K. Dexamethasone induces docetaxel and cisplatin resistance partially through up-regulating Krüppel-like factor 5 in triple-negative breast cancer. Oncotarget 2017; 8:11555-11565. [PMID: 28030791 PMCID: PMC5355285 DOI: 10.18632/oncotarget.14135] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Dexamethasone (Dex), a glucocorticoid (GC), is used as a pretreatment drug in cancer patients undergoing chemotherapy. Dex functions by binding to the glucocorticoid receptor (GR) to prevent allergic reactions and severe chemotherapeutic side effects such as nausea and vomiting. However, the mechanisms by which Dex causes chemoresistance remain unknown. METHODS We used docetaxel and cisplatin to treat triple-negative breast cancer (TNBC) cells with or without Dex and assessed cell proliferation using a sulforhodamine B colorimetric (SRB) assay. Additionally, Western blotting was employed to measure Krüppel-like factor 5 (KLF5), GR and several apoptosis-related proteins. To determine how the GR regulates KLF5, we used qRT-PCR, luciferase reporter assays and ChIP assays. Finally, we detected the involvement of Dex in TNBC chemotherapeutic resistance using HCC1806 xenograft model in vivo. RESULTS In this study, we demonstrated that Dex induces docetaxel and cisplatin resistance in TNBC cells in vitro and in vivo. Dex up-regulates pro-survival transcription factor KLF5 expression at both mRNA and protein levels dependent on GR. Importantly, Dex failed to promote cancer cell survival and tumor growth when KLF5 induction was blocked. CONCLUSIONS We conclude that KLF5 is a Dex-induced gene that contributes to Dex-mediated drug chemoresistance, providing a potential novel target for TNBC treatment.
Collapse
Affiliation(s)
- Zhen Li
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming Digestive Disease Treatment Engineering Technology Center, Kunming, Yunnan 650032, China
| | - Jian Dong
- Department of Oncology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Tianning Zou
- Department of Breast Surgery, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Chengzhi Du
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Siyuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, Institute of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
- Kunming Digestive Disease Treatment Engineering Technology Center, Kunming, Yunnan 650032, China
| |
Collapse
|
29
|
Ramanan M, Pilli V, Aradhyam G, Doble M. Transcriptional regulation of microsomal prostaglandin E synthase 1 by the proto-oncogene, c-myc, in the pathogenesis of inflammation and cancer. Biochem Biophys Res Commun 2017; 482:556-562. [DOI: 10.1016/j.bbrc.2016.11.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/12/2016] [Indexed: 12/21/2022]
|
30
|
Bradford JR, Cox A, Bernard P, Camp NJ. Consensus Analysis of Whole Transcriptome Profiles from Two Breast Cancer Patient Cohorts Reveals Long Non-Coding RNAs Associated with Intrinsic Subtype and the Tumour Microenvironment. PLoS One 2016; 11:e0163238. [PMID: 27685983 PMCID: PMC5042460 DOI: 10.1371/journal.pone.0163238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of cellular processes and diseases such as cancer; however, their functions remain poorly characterised. Several studies have demonstrated that lncRNAs are typically disease and tumour subtype specific, particularly in breast cancer where lncRNA expression alone is sufficient to discriminate samples based on hormone status and molecular intrinsic subtype. However, little attempt has been made to assess the reproducibility of lncRNA signatures across more than one dataset. In this work, we derive consensus lncRNA signatures indicative of breast cancer subtype based on two clinical RNA-Seq datasets: the Utah Breast Cancer Study and The Cancer Genome Atlas, through integration of differential expression and hypothesis-free clustering analyses. The most consistent signature is associated with breast cancers of the basal-like subtype, leading us to generate a putative set of six lncRNA basal-like breast cancer markers, at least two of which may have a role in cis-regulation of known poor prognosis markers. Through in silico functional characterization of individual signatures and integration of expression data from pre-clinical cancer models, we discover that discordance between signatures derived from different clinical cohorts can arise from the strong influence of non-cancerous cells in tumour samples. As a consequence, we identify nine lncRNAs putatively associated with breast cancer associated fibroblasts, or the immune response. Overall, our study establishes the confounding effects of tumour purity on lncRNA signature derivation, and generates several novel hypotheses on the role of lncRNAs in basal-like breast cancers and the tumour microenvironment.
Collapse
Affiliation(s)
- James R. Bradford
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Philip Bernard
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States
| | - Nicola J. Camp
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
31
|
Han N, Chen Z, Zhang Q. Expression of KLF5 in odontoblastic differentiation of dental pulp cells during in vitro odontoblastic induction and in vivo dental repair. Int Endod J 2016; 50:676-684. [PMID: 27334851 DOI: 10.1111/iej.12672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/21/2016] [Indexed: 02/04/2023]
Abstract
AIM To identify whether Krüppel-like factor 5 (KLF5) was involved in odontoblastic differentiation during reparative dentine formation. METHODOLOGY Human Dental pulp cells (DPCs) were isolated from healthy human dental pulp tissue and induced for odontoblastic differentiation. Alizarin Red staining, alkaline phosphatase (ALPase) activity, quantitative real-time PCR and Western Blot were performed to evaluate in vitro odontoblastic differentiation. The expression profile of KLF5 during the in vitro odontoblastic differentiation was determined by quantitative real-time PCR and Western Blot. Knock-down of KLF5 by lentivirus-mediated shRNA was performed to determine the function of KLF5 in odontoblastic differentiation. After direct pulp capping with MTA, the maxillary first molar segments dissected from male Wistar rats were prepared for histology analysis and immunohistochemistry staining. RESULTS Odontoblastic differentiation was confirmed by significantly increased alkaline phosphatase (ALP; P = 0.004) activity and upregulated odontoblastic differentiation-related genes including dentine sialophosphoprotein (DSPP; P = 0.004) and dentine matrix protein-1 (DMP-1; P = <0.001). The expression of KLF5 was significantly upregulated during odontoblastic differentiation of in vitro cultured DPCs (P = 0.0002). KLF5 knock-down impaired odontoblastic differentiation. After direct pulp capping, dentine bridge-like calcified tissues were formed under the perforation sites. KLF5 was expressed in odontoblast-like cells and DPCs beneath the perforation sites during reparative dentine formation. CONCLUSIONS KLF5 might be involved in the process of odontoblastic differentiation during reparative dentine formation.
Collapse
Affiliation(s)
- N Han
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Chen
- Department of Conservative Dentistry, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, China
| | - Q Zhang
- Department of Endodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
32
|
Ge F, Chen W, Qin J, Zhou Z, Liu R, Liu L, Tan J, Zou T, Li H, Ren G, Chen C. Ataxin-3 like (ATXN3L), a member of the Josephin family of deubiquitinating enzymes, promotes breast cancer proliferation by deubiquitinating Krüppel-like factor 5 (KLF5). Oncotarget 2016; 6:21369-78. [PMID: 26079537 PMCID: PMC4673271 DOI: 10.18632/oncotarget.4128] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022] Open
Abstract
The Krüppel-like factor 5 (KLF5) has been suggested to promote breast cell proliferation, survival and tumorigenesis. KLF5 protein degradation is increased by several E3 ubiquitin ligases, including WWP1 and SCFFbw7, through the ubiquitin-proteasome pathway. However, the deubiquitinase (DUB) of KLF5 has not been demonstrated. In this study, we identified ATXN3L as a KLF5 DUB by genome-wide siRNA screening. ATXN3L directly binds to KLF5, decreasing its ubiquitination and thus degradation. Functionally, knockdown of ATXN3L inhibits breast cancer cell proliferation partially through KLF5. These findings reveal a previously unrecognized role of ATXN3L in the regulation of KLF5 stability in breast cancer. ATXN3L might be a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Fei Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenlin Chen
- Department of Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Linlin Liu
- Laboratory for Conservation and Utilization of Bioresource, Yunnan University, Kunming, China
| | - Jing Tan
- Department of Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tianning Zou
- Department of Breast Surgery, The 3rd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyuan Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
33
|
Nie Z, Wang C, Zhou Z, Chen C, Liu R, Wang D. Transforming growth factor-beta increases breast cancer stem cell population partially through upregulating PMEPA1 expression. Acta Biochim Biophys Sin (Shanghai) 2016; 48:194-201. [PMID: 26758191 DOI: 10.1093/abbs/gmv130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/21/2015] [Indexed: 01/01/2023] Open
Abstract
The prostate transmembrane protein, androgen-induced 1 (PMEPA1) has been previously shown to promote solid malignancies in a variety of cancers, but the role and mechanisms of PMEPA1 in breast cancer has not been fully addressed. Here, we found that PMEPA1 was upregulated in breast cancer cell lines as well as in a set of clinical invasive breast ductal carcinomas. Interestingly, depletion of PMEPA1 decreased breast cancer stem cell (CSC)-enriched populations, while ectopic overexpression of PMEPA1 increased breast CSC-enriched populations. Furthermore, transforming growth factor-β (TGF-β) treatment was also found to upregulate PMEPA1 expression and the CSC-enriched populations in triple-negative breast cancer cell lines. TGF-β-induced PMEPA1 expression partially contributed to TGF-β-induced breast CSC maintenance. These findings suggest that TGF-β-PMEPA1 axis might provide new diagnosis and therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Zhi Nie
- Pharmaceutical College of Kunming Medical University, Kunming 650500, China Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Dianhua Wang
- Pharmaceutical College of Kunming Medical University, Kunming 650500, China
| |
Collapse
|
34
|
Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, Liu R, Chen C. BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 2015; 6:8471. [PMID: 26419610 PMCID: PMC4598844 DOI: 10.1038/ncomms9471] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
The transcription factor KLF5 is highly expressed in basal-like breast cancer and promotes breast cancer cell proliferation, survival, migration and tumour growth. Here we show that, in breast cancer cells, KLF5 is stabilized by the deubiquitinase (DUB) BAP1. With a genome-wide siRNA library screen of DUBs, we identify BAP1 as a bona fide KLF5 DUB. BAP1 interacts directly with KLF5 and stabilizes KLF5 via deubiquitination. KLF5 is in the BAP1/HCF-1 complex, and this newly identified complex promotes cell cycle progression partially by inhibiting p27 gene expression. Furthermore, BAP1 knockdown inhibits tumorigenicity and lung metastasis, which can be rescued partially by ectopic expression of KLF5. Collectively, our findings not only identify BAP1 as the DUB for KLF5, but also reveal a critical mechanism that regulates KLF5 expression in breast cancer. Our findings indicate that BAP1 could be a potential therapeutic target for breast and other cancers. The zinc finger-containing transcription factor KLF5 drives cell proliferation and migration. Here, the authors show that the debuquitinase BAP1 directly stabilizes KLF5, thus promoting basal-like breast cancer cell-cycle progression and metastasis.
Collapse
Affiliation(s)
- Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Wenlin Chen
- Department of Breast Surgery, Breast Cancer Clinical Research Center, Cancer Hospital, Kunming Medical University, Kunming, Yunnan 650031, China
| | - Chunyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Graduate School of the Chinese Academy of Sciences, Beijing 100039, China.,Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Guangzhe Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ming Shao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dingyun You
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Zhixiang Fan
- Kunming Medical University, Kunming, Yunnan 650031, China
| | - Houjun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Collaborative Innovation Center for Cancer Medicine, Kunming, Yunnan 650223, China
| |
Collapse
|
35
|
KLF5 promotes breast cancer proliferation, migration and invasion in part by upregulating the transcription of TNFAIP2. Oncogene 2015; 35:2040-51. [PMID: 26189798 DOI: 10.1038/onc.2015.263] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 05/17/2015] [Accepted: 06/05/2015] [Indexed: 12/31/2022]
Abstract
The Kruppel-like factor 5 (KLF5) transcription factor is highly expressed in high-grade and basal-like breast cancers. However, the mechanism by which KLF5 promotes cell migration and invasion is still not completely understood. In this study, we demonstrate that TNFAIP2, a tumor necrosis factor-α (TNFα)-induced gene, is a direct KLF5 target gene. The expression of TNFAIP2 is highly correlated with the expression of KLF5 in breast cancers. The manipulation of KLF5 expression positively alters TNFAIP2 expression levels. KLF5 directly binds to the TNFAIP2 gene promoter and activates its transcription. Functionally, KLF5 promotes cancer cell proliferation, migration and invasion in part through TNFAIP2. TNFAIP2 interacts with the two small GTPases Rac1 and Cdc42, thereby increasing their activities to change actin cytoskeleton and cell morphology. These findings collectively suggest that TNFAIP2 is a direct KLF5 target gene, and both KLF5 and TNFAIP2 promote breast cancer cell proliferation, migration and invasion through Rac1 and Cdc42.
Collapse
|
36
|
Wang C, Nie Z, Zhou Z, Zhang H, Liu R, Wu J, Qin J, Ma Y, Chen L, Li S, Chen W, Li F, Shi P, Wu Y, Shen J, Chen C. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1. Oncotarget 2015; 6:17685-97. [PMID: 25970772 PMCID: PMC4627338 DOI: 10.18632/oncotarget.3779] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/10/2015] [Indexed: 01/01/2023] Open
Abstract
Growing evidence suggests that YAP/TAZ are mediators of the Hippo pathway and promote breast cancer. However, the roles of YAP/TAZ transcription factor partners TEADs in breast cancer remain unclear. Here we found that TEAD4 was expressed in breast cancer cell lines, especially in triple negative breast cancers (TNBC) cell lines. TEAD4 binds to KLF5. Knockdown of either TEAD4 or KLF5 in HCC1937 and HCC1806 cells induced the expression of CDK inhibitor p27. Depletion of either TEAD4 or KLF5 activated the p27 gene promoter and increased the p27 mRNA levels. Depletion of p27 partially prevents growth inhibition caused by TEAD4 and KLF5 knockdown. TEAD4 overexpression stimulated proliferation in vitro and tumor growth in mice, while stable knockdown of TEAD4 inhibited proliferation in vitro and tumor growth in mice. Thus TEAD4 and KLF5, in collaboration, promoted TNBC cell proliferation and tumor growth in part by inhibiting p27 gene transcription. TEAD4 is a potential target and biomarker for the development of novel therapeutics for breast cancer.
Collapse
Affiliation(s)
- Chunyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of The Chinese Academy of Sciences, Beijing, China
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhi Nie
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhongmei Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hailin Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of The Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry, Kunming Medical University, Kunming, Yunnan, China
| | - Junying Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of The Chinese Academy of Sciences, Beijing, China
| | - Yun Ma
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Liang Chen
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shumo Li
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenlin Chen
- Cancer Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Fubing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of The Chinese Academy of Sciences, Beijing, China
| | - Peiguo Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of The Chinese Academy of Sciences, Beijing, China
| | - Yingying Wu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jian Shen
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
37
|
Lappas M. KLF5 regulates infection- and inflammation-induced pro-labour mediators in human myometrium. Reproduction 2015; 149:413-24. [DOI: 10.1530/rep-14-0597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factor Kruppel-like factor 5 (KLF5) has been shown to associate with nuclear factor kappa B (NFκB) to regulate genes involved in inflammation. However, there are no studies on the expression and regulation of KLF5 in the processes of human labour and delivery. Thus, the aims of this study were to determine the effect of i) human labour on KLF5 expression in both foetal membranes and myometrium; ii) the pro-inflammatory cytokine interleukin 1 beta (IL1β), bacterial product flagellin and the viral dsRNA analogue poly(I:C) on KLF5 expression and iii) KLF5 knockdown by siRNA in human myometrial primary cells on pro-inflammatory and pro-labour mediators. In foetal membranes, there was no effect of term or preterm labour on KLF5 expression. In myometrium, the term labour was associated with an increase in nuclear KLF5 protein expression. Moreover, KLF5 expression was also increased in myometrial cells treated with IL1β, flagellin or poly(IC), likely factors contributing to preterm birth. KLF5 silencing in myometrial cells significantly decreased IL1β-induced cytokine expression (IL6 and IL8 mRNA expression and release), COX2 mRNA expression, and subsequent release of prostaglandins PGE2 and PGF2α. KLF5 silencing also significantly reduced flagellin- and poly(I:C)-induced IL6 and IL8 mRNA expression. Lastly, IL1β-, flagellin- and poly(I:C)-stimulated NFκB transcriptional activity was significantly suppressed in KLF5-knockout myometrial cells. In conclusion, this study describes novel data in which KLF5 is increased in labouring myometrium, and KLF5 silencing decreased inflammation- and infection-induced pro-labour mediators.
Collapse
|
38
|
Abstract
PURPOSE Krüppel-like factor 15 (KLF15) is a transcription factor that is involved in various biological processes, including cellular proliferation, differentiation and death. In addition, KLF15 has recently been implicated in the development of several human malignancies, including breast cancer. In vitro breast cancer studies have pointed at a putative role in the regulation of cell proliferation. As yet, however, KLF15 expression analyses in primary human breast cancers have not been reported. Here, we set out to investigate the clinical and biological significance of KLF15 expression in human breast cancers. METHODS KLF15 expression was evaluated by immunohistochemistry in 54 primary invasive ductal breast carcinomas, and its status was correlated with various clinicopathological parameters. We also assessed KLF15 expression in vitro in 4 breast cancer-derived cell lines using Western blotting, and examined the effects of exogenous KLF15 expression on cell cycle progression using flow cytometry. Concomitant (changes in) p21, p27 and TOPO2A expression levels were examined using real-time RT-PCR and immunocytochemistry, respectively. RESULTS In ~90% of the primary breast carcinoma tissues tested, KLF15 was found to be expressed and localized in either the cytoplasm, the nucleus or both. Predominant nuclear immunoreactivity was found to be associated with clinicopathological factors predicting a better clinical outcome (i.e., ER positive, HER2 negative, low grade, low Ki-67 expression). The breast cancer-derived cell lines tested showed a low KLF15 expression with a predominant cytoplasmic localization. Subsequent exogenous KLF15 over-expression resulted in a predominant nuclear localization and a concomitant decreased cellular proliferation and an arrest at the G0/G1 phase of the cell cycle. In addition, we found that nuclear KLF15 expression results in up-regulation of p21, a pivotal suppressor of the G1 to S phase transition of the cell cycle. CONCLUSIONS Our results indicate that nuclear KLF15 expression suppresses breast cancer cell proliferation at least partially through p21 up-regulation and subsequent cell cycle arrest. This is a first study addressing the role of KLF15 in breast cancer development.
Collapse
|
39
|
El Mansouri FE, Nebbaki SS, Kapoor M, Afif H, Martel-Pelletier J, Pelletier JP, Benderdour M, Fahmi H. Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1β-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes. Arthritis Res Ther 2014; 16:R113. [PMID: 24886859 PMCID: PMC4060543 DOI: 10.1186/ar4564] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/30/2014] [Indexed: 02/07/2023] Open
Abstract
Introduction Microsomal prostaglandin E synthase 1 (mPGES-1) catalyzes the terminal step in the biosynthesis of PGE2, a critical mediator in the pathophysiology of osteoarthritis (OA). Histone methylation plays an important role in epigenetic gene regulation. In this study, we investigated the roles of histone H3 lysine 9 (H3K9) methylation in interleukin 1β (IL-1β)-induced mPGES-1 expression in human chondrocytes. Methods Chondrocytes were stimulated with IL-1β, and the expression of mPGES-1 mRNA was evaluated using real-time RT-PCR. H3K9 methylation and the recruitment of the histone demethylase lysine-specific demethylase 1 (LSD1) to the mPGES-1 promoter were evaluated using chromatin immunoprecipitation assays. The role of LSD1 was further evaluated using the pharmacological inhibitors tranylcypromine and pargyline and small interfering RNA (siRNA)-mediated gene silencing. The LSD1 level in cartilage was determined by RT-PCR and immunohistochemistry. Results The induction of mPGES-1 expression by IL-1β correlated with decreased levels of mono- and dimethylated H3K9 at the mPGES-1 promoter. These changes were concomitant with the recruitment of the histone demethylase LSD1. Treatment with tranylcypromine and pargyline, which are potent inhibitors of LSD1, prevented IL-1β-induced H3K9 demethylation at the mPGES-1 promoter and expression of mPGES-1. Consistently, LSD1 gene silencing with siRNA prevented IL-1β-induced H3K9 demethylation and mPGES-1 expression, suggesting that LSD1 mediates IL-1β-induced mPGES-1 expression via H3K9 demethylation. We show that the level of LSD1 was elevated in OA compared to normal cartilage. Conclusion These results indicate that H3K9 demethylation by LSD1 contributes to IL-1β-induced mPGES-1 expression and suggest that this pathway could be a potential target for pharmacological intervention in the treatment of OA and possibly other arthritic conditions.
Collapse
|