1
|
Li M, Liu K, Liu M, Zhang H, Yang Y. Uncovering NINJ1 in SLE: Biomarker potential for renal and hematologic manifestations. Clin Chim Acta 2025; 574:120347. [PMID: 40334833 DOI: 10.1016/j.cca.2025.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/24/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex autoimmune disease, with an unclear etiology. This study investigated the clinical relevance of serum NINJ1 levels in SLE and evaluated its potential as a biomarker. METHODS Serum NINJ1 levels were measured in 99 newly diagnosed SLE patients and 43 healthy controls. Associations with clinical features, inflammatory markers, and autoantibodies were analyzed. ROC curve analysis was performed for diagnostic evaluation. RESULTS Serum NINJ1 levels were significantly higher in SLE patients (p < 0.0001) and further elevated in those with lupus nephritis (LN) and thrombocytopenia. Positive correlations with proteinuria, CRP, and NLR were found. ROC analysis showed good diagnostic performance (AUC = 0.83). CONCLUSION Serum NINJ1 is a promising biomarker for SLE, particularly for identifying LN and thrombocytopenia, and may aid in disease stratification and monitoring.
Collapse
Affiliation(s)
- Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Liu
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Meidong Liu
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China; Postdoctoral Research Station of Biology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Yang JY, Luo CH, Wang KB, Tu XY, Xiao YY, Ou YT, Xie YX, Guan CX, Zhong WJ. Unraveling the mechanisms of NINJ1-mediated plasma membrane rupture in lytic cell death and related diseases. Int J Biol Macromol 2025; 309:143165. [PMID: 40239793 DOI: 10.1016/j.ijbiomac.2025.143165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Plasma membrane rupture (PMR), the ultimate event during lytic cell death, releases damage-associated molecular patterns (DAMPs) that trigger inflammation and immune responses in the development of various diseases. Recent years have witnessed significant advances in understanding the PMR mediated by ninjurin1 (NINJ1) in different lytic cell death processes. NINJ1 oligomerizes and ruptures the membrane in pyroptosis and other lytic cell death, participating in the pathogenesis of multiple diseases. Although the membrane-permeabilizing function of NINJ1 is well recognized, the role of NINJ1 in different types of lytic cell death and its impact on multiple disease processes have yet to be fully elucidated. This review summarizes the latest advances in the mechanisms of NINJ1-mediated PMR, discusses the membrane-inducing activity of NINJ1 in different lytic cell death, explains the implications of NINJ1 in lytic cell death-related diseases, and lists the inhibitory strategies for NINJ1. We expect to provide new insights into targeting NINJ1 to suppress lytic cell death for therapeutic benefit, which may become a new strategy to control inflammatory cell lysis-related diseases.
Collapse
Affiliation(s)
- Ji-Yan Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Chen-Hua Luo
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Kun-Bo Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xin-Yu Tu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yun-Ying Xiao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ye-Tong Ou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yan-Xin Xie
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Key Laboratory of the General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China; National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410078, China.
| |
Collapse
|
3
|
Cahill S, Humphries F. Inflammasomopathies: mechanisms and disease signatures. Trends Immunol 2025; 46:372-385. [PMID: 40263090 DOI: 10.1016/j.it.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Inflammasomes form in response to infection, cellular stress, or damage. Gain-of-function (GOF) mutations in inflammasome receptors have been identified as the underlying cause of severe inflammatory diseases, termed 'inflammasomopathies'. Recently, molecular interrogation of these diseases revealed several distinctions at the level of the tissue affected, the inflammatory mediators that drive disease progression, and the contribution of programmed cell death. In this review we discuss key emerging differences across inflammasomopathies and the distinct inflammatory patterns seen in patients. We discuss how programmed cell death influences the progression of inflammasomopathies and the role of plasma membrane rupture. Understanding the molecular disease signatures across inflammasomopathies provides crucial insights into identifying and treating the underlying disease and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Sara Cahill
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Song J, Zhang L, Moon S, Fang A, Wang G, Gheshm N, Loeb SA, Cao P, Wallace JR, Alfajaro MM, Strine MS, Beatty WL, Jamieson AM, Orchard RC, Robinson BA, Nice TJ, Wilen CB, Orvedahl A, Reese TA, Lee S. Norovirus co-opts NINJ1 for selective protein secretion. SCIENCE ADVANCES 2025; 11:eadu7985. [PMID: 40020060 PMCID: PMC11870086 DOI: 10.1126/sciadv.adu7985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Plasma membrane rupture by Ninjurin-1 (NINJ1) executes programmed cell death, releasing large cellular damage-associated molecular patterns (DAMPs). However, the regulation and selectivity of NINJ1-mediated DAMP release remain unexplored. Here, we uncover that murine norovirus (MNoV) strategically co-opts NINJ1 to selectively release the intracellular viral protein NS1, while NINJ1-mediated plasma membrane rupture simultaneously bulk-releases various cellular DAMPs. Host caspase-3 cleaves the precursor NS1/2, leading to NS1 secretion via an unconventional pathway. An unbiased CRISPR screen identifies NINJ1 as an essential factor for NS1 secretion. During infection, NINJ1 is recruited to the viral replication site, where it oligomerizes and forms speckled bodies, directly interacting with NS1. Subsequent mutagenesis studies identify critical amino acid residues of NS1 necessary for its interaction with NINJ1 and selective secretion. Genetic ablation or pharmaceutical inhibition of caspase-3 inhibits oral MNoV infection in mice. This study underscores the co-option of NINJ1 for controlled release of an intracellular viral protein.
Collapse
Affiliation(s)
- Jaewon Song
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Li Zhang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Seokoh Moon
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Ariana Fang
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Newsha Gheshm
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Skylar A. Loeb
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Paul Cao
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Joselynn R. Wallace
- Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Mia Madel Alfajaro
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
| | - Madison S. Strine
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Amanda M. Jamieson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Robert C. Orchard
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bridget A. Robinson
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Timothy J. Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT 06520, USA
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Chen SY, Shyu IL, Chi JT. NINJ1 in Cell Death and Ferroptosis: Implications for Tumor Invasion and Metastasis. Cancers (Basel) 2025; 17:800. [PMID: 40075648 PMCID: PMC11898531 DOI: 10.3390/cancers17050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
NINJ1 was initially recognized for its role in nerve regeneration and cellular adhesion. Subsequent studies have uncovered its participation in cancer progression, where NINJ1 regulates critical steps in tumor metastasis, such as cell migration and invasion. More recently, NINJ1 has emerged as a multifunctional protein mediating plasma membrane rupture (PMR) in several lytic cell death processes, including apoptosis, necroptosis, and pyroptosis. However, its role in ferroptosis-an iron-dependent form of lytic cell death characterized by lipid peroxidation-remained unclear until 2024. Ferroptosis is a tumor suppression mechanism that may be particularly relevant to detached and metastatic cancer cells. This review explores the role of NINJ1 in tumor invasion and metastasis, focusing on its regulation of ferroptosis via a non-canonical mechanism distinct from other cell deaths. We discuss the process of ferroptosis and its implications for cancer invasion and metastasis. Furthermore, we review recent studies highlighting the diverse roles of NINJ1 in ferroptosis regulation, including its canonical function in PMR and its non-canonical function of modulating intracellular levels of glutathione (GSH) and coenzyme A (CoA) via interaction with xCT anti-porter. Given that ferroptosis has been associated with tumor suppression, metastasis, the elimination of treatment-resistant cancer cells, and tumor dormancy, NINJ1's modulation of ferroptosis presents a promising therapeutic target for inhibiting metastasis. Understanding the dual role of NINJ1 in promoting or restraining ferroptosis depending on cellular context could open avenues for novel anti-cancer strategies to enhance ferroptotic vulnerability in metastatic tumors.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ing-Luen Shyu
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim EH, Ha S, Shin E, Choi H, Kim KW, Jeon S, Oh GT, Seok YJ. Ninjurin1 deficiency differentially mitigates colorectal cancer induced by azoxymethane and dextran sulfate sodium in male and female mice. Int J Cancer 2025; 156:826-839. [PMID: 39417611 DOI: 10.1002/ijc.35225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 10/19/2024]
Abstract
This study investigated the role of Ninjurin1 (Ninj1), encoding a small transmembrane protein, in colitis-associated colon tumorigenesis in relation to sex hormones. Male and female wild-type (WT) and Ninj1 knockout (KO) mice were treated with azoxymethane (AOM) and dextran sulfate sodium (DSS), with or without testosterone propionate (TP). At week 2 (acute colitis stage), Ninj1 KO exhibited an alleviation in the colitis symptoms in both male and female mice. The M2 macrophage population increased and CD8+ T cell population decreased only in the female Ninj1 KO than in the female WT AOM/DSS group. In the female AOM/DSS group, TP treatment exacerbated colon shortening in the Ninj1 KO than in the WT. At week 13 (tumorigenesis stage), male Ninj1 KO mice had fewer tumors, but females showed similar tumors. In the WT AOM/DSS group, females had more M2 macrophages and fewer M1 macrophages than males, but this difference was absent in Ninj1 KO mice. In the Ninj1 KO versus WT group, the expression of pro-inflammatory mediators and Ho-1 and CD8+ T cell populations decreased in both female and male Ninj1 KO mice. In the WT group, M2 macrophage populations were increased by AOM/DSS treatment and decreased by TP treatment. However, neither treatment changed the cell populations in the Ninj1 KO group. These results suggest that Ninj1 is involved in colorectal cancer development in a testosterone-dependent manner, which was different in male and female. This highlights the importance of considering sex disparities in understanding Ninj1's role in cancer pathogenesis.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Nayoung Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Soo In Choi
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Jae Young Jang
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Eun Hye Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Sungchan Ha
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea
| | - Eun Shin
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Gyeonggi-do, South Korea
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sejin Jeon
- Department of Vaccine Biothechnology, Andong National University, Andong, South Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Heart-Immune-Brain Network Research Center, Ewha Womans University, Seoul, South Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Zhu L, Xu Y. Multifaceted roles of ninjurin1 in immunity, cell death, and disease. Front Immunol 2025; 16:1519519. [PMID: 39958360 PMCID: PMC11825492 DOI: 10.3389/fimmu.2025.1519519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Ninjurin1 (NINJ1) is initially identified as a nerve injury-induced adhesion molecule that facilitates axon growth. It is initially characterized to promote nerve regeneration and mediate the transendothelial transport of monocytes/macrophages associated with neuroinflammation. Recent evidence indicates that NINJ1 mediates plasma membrane rupture (PMR) in lytic cell death. The absence or inhibition of NINJ1 can delay PMR, thereby mitigating the spread of inflammation resulting from cell lysis and preventing the progression of various cell death-related pathologies, suggesting a conserved regulatory mechanism across these processes. Further research elucidated the structural basis and mechanism of NINJ1-mediated PMR. Although the role of NINJ1 in PMR is established, the identity of its activating factors and its implications in diseases remain to be fully explored. This review synthesizes current knowledge regarding the structural basis and mechanism of NINJ1-mediated PMR and discusses its significance and therapeutic targeting potential in inflammatory diseases, neurological disorders, cancer, and vascular injuries.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yunfei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
- Postdoctoral Research Station of Biology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Xu Y, Zhang E, Wei L, Dai Z, Chen S, Zhou S, Huang Y. NINJ1: A new player in multiple sclerosis pathogenesis and potential therapeutic target. Int Immunopharmacol 2024; 141:113021. [PMID: 39197295 DOI: 10.1016/j.intimp.2024.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelination. Current treatment options for MS focus on immunosuppression, but their efficacy can be limited. Recent studies suggest a potential role for nerve injury-induced protein 1 (NINJ1) in MS pathogenesis. NINJ1, a protein involved in cell death and inflammation, may contribute to the infiltration and activation of inflammatory cells in the CNS, potentially through enhanced blood-brain barrier crossing; enhancing plasma membrane rupture during cell death, leading to the release of inflammatory mediators and further tissue damage. This review explores the emerging evidence for NINJ1's involvement in MS. It discusses how NINJ1 might mediate the migration of immune cells across the blood-brain barrier, exacerbate neuroinflammation, and participate in plasma membrane rupture-related damage. Finally, the review examines potential therapeutic strategies targeting NINJ1 for improved MS management. Abbreviations: MS, Multiple sclerosis; CNS, Central nervous system; BBB, Blood-brain barrier; GSDMD, Gasdermin-D; EAE, Experimental autoimmune encephalitis; HMGB-1, High mobility group box-1 protein; LDH, Lactate dehydrogenase; PMR, Plasma membrane rupture; DMF, Dimethyl fumarate; DUSP1, Dual-specificity phosphatase 1; PAMPs, Pathogen-associated molecular patterns; DAMPs, Danger-associated molecular patterns; PRRs, Pattern recognition receptors; GM-CSF, Granulocyte-macrophage colony stimulating factor; IFN-γ, Interferon gamma; TNF, Tumor necrosis factor; APCs, Antigen-presenting cells; ECs, Endothelial cells; TGF-β, Transforming growth factor-β; PBMCs, Peripheral blood mononuclear cells; FACS, Fluorescence-activated cell sorting; MCP-1, Monocyte chemoattractant protein-1; NLRP3, Pyrin domain-containing 3; TCR, T cell receptor; ROS, Reactive oxygen species; AP-1, Activator protein-1; ANG1, Angiopoietin 1; BMDMs, Bone marrow-derived macrophages; Arp2/3, actin-related protein 2/3; EMT, epithelial-mesenchymal transition; FAK, focal adhesion kinase; LIMK1, LIM domain kinase 1; PAK1, p21-activated kinases 1; Rac1, Ras-related C3 botulinum toxin substrate 1; β-cat, β-caten; MyD88, myeloid differentiation primary response gene 88; TIRAP, Toll/interleukin-1 receptor domain-containing adapter protein; TLR4, Toll-like receptor 4; IRAKs, interleukin-1 receptor-associated kinases; TRAF6, TNF receptor associated factor 6; TAB2/3, TAK1 binding protein 2/3; TAK1, transforming growth factor-β-activated kinase 1; JNK, c-Jun N-terminal kinase; ERK1/2, Extracellular Signal Regulated Kinase 1/2; IKK, inhibitor of kappa B kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa-B; AP-1, activator protein-1; ASC, Apoptosis-associated Speck-like protein containing a CARD; NEK7, NIMA-related kinase 7; NLRP3, Pyrin domain-containing 3; CREB, cAMP response element-binding protein.
Collapse
Affiliation(s)
- Yinbin Xu
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Enhao Zhang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Liangzhe Wei
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Zifeng Dai
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Siqi Chen
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| | - Yi Huang
- Department of Neurosurgery, Ningbo Key Laboratory of Nervous System and Brain Function, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang 315010, China.
| |
Collapse
|
9
|
Wu Z, Xu Z, Pu H, Ding A, Hu J, Lei J, Zeng C, Qiu P, Qin J, Wu X, Li B, Wang X, Lu X. NINJ1 Facilitates Abdominal Aortic Aneurysm Formation via Blocking TLR4-ANXA2 Interaction and Enhancing Macrophage Infiltration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306237. [PMID: 38922800 PMCID: PMC11336960 DOI: 10.1002/advs.202306237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Indexed: 06/28/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a common and potentially life-threatening condition. Chronic aortic inflammation is closely associated with the pathogenesis of AAA. Nerve injury-induced protein 1 (NINJ1) is increasingly acknowledged as a significant regulator of the inflammatory process. However, the precise involvement of NINJ1 in AAA formation remains largely unexplored. The present study finds that the expression level of NINJ1 is elevated, along with the specific expression level in macrophages within human and angiotensin II (Ang II)-induced murine AAA lesions. Furthermore, Ninj1flox/flox and Ninj1flox/floxLyz2-Cre mice on an ApoE-/- background are generated, and macrophage NINJ1 deficiency inhibits AAA formation and reduces macrophage infiltration in mice infused with Ang II. Consistently, in vitro suppressing the expression level of NINJ1 in macrophages significantly restricts macrophage adhesion and migration, while attenuating macrophage pro-inflammatory responses. Bulk RNA-sequencing and pathway analysis uncover that NINJ1 can modulate macrophage infiltration through the TLR4/NF-κB/CCR2 signaling pathway. Protein-protein interaction analysis indicates that NINJ1 can activate TLR4 by competitively binding with ANXA2, an inhibitory interacting protein of TLR4. These findings reveal that NINJ1 can modulate AAA formation by promoting macrophage infiltration and pro-inflammatory responses, highlighting the potential of NINJ1 as a therapeutic target for AAA.
Collapse
Affiliation(s)
- Zhaoyu Wu
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Vascular Center of Shanghai JiaoTong UniversityShanghai200011China
| | - Zhijue Xu
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Hongji Pu
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Ang'ang Ding
- Department of UltrasoundShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jiateng Hu
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jiahao Lei
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Chenlin Zeng
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Peng Qiu
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Vascular Center of Shanghai JiaoTong UniversityShanghai200011China
| | - Jinbao Qin
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Vascular Center of Shanghai JiaoTong UniversityShanghai200011China
| | - Xiaoyu Wu
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Vascular Center of Shanghai JiaoTong UniversityShanghai200011China
| | - Bo Li
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Xin Wang
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Vascular Center of Shanghai JiaoTong UniversityShanghai200011China
| | - Xinwu Lu
- Department of Vascular SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
- Vascular Center of Shanghai JiaoTong UniversityShanghai200011China
| |
Collapse
|
10
|
Peng Z, Xiao H, Tan Y, Zhang X. Spotlight on macrophage pyroptosis: A bibliometric and visual analysis from 2001 to 2023. Heliyon 2024; 10:e31819. [PMID: 38845992 PMCID: PMC11154638 DOI: 10.1016/j.heliyon.2024.e31819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Macrophage pyroptosis plays a significant role in the pathogenesis of various diseases, especially acute lung injury, atherosclerosis, and sepsis. Despite its importance, analysis of the existing literature has been limited. Therefore, we conducted a bibliometric analysis to provide a comprehensive overview of research on macrophage pyroptosis and identify the current research foci and trends in this field. We collected articles related to macrophage pyroptosis published between 2001 and 2022 from the Web of Science Core Collection and PubMed. Citespace, VOSviewer, bibliometrix R package, and Microsoft Excel 2019 were used to analyze co-occurrence relationships and the contribution of countries/regions, institutions, journals, authors, references, and keywords. In total, 1321 papers were included. China and the United States of America published the most articles in this field. TD Kanneganti had the most publications; BT Cookson was the most cited. Although China contributed the most publications, it had a relatively low ratio of multiple-country collaborations (0.132). Among journals, Frontiers in Immunology and Cell Death Disease published the most papers; Nature and the Journal of Immunology were frequently co-cited. Frequently occurring keywords included "inflammation," "NLRP3 inflammasome," "apoptosis," "caspase-1," and "cell death." Moreover, with the advancement of gene editing technology and the integration of clinical applications, novel molecules ("caspases," "GSDMD," "ASC"), programmed cell death topics ("pyroptosis," "ferroptosis," "necrosis"), and clinical applications ("alveolar macrophage," "atherosclerosis," "prognosis") emerged as frontiers. The macrophage pyroptosis field is rapidly evolving and holds promise as a potential target for treating macrophage pyroptosis-related diseases.
Collapse
Affiliation(s)
- Zhimei Peng
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hua Xiao
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, China
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, Shenzhen, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
12
|
Vande Walle L, Lamkanfi M. Drugging the NLRP3 inflammasome: from signalling mechanisms to therapeutic targets. Nat Rev Drug Discov 2024; 23:43-66. [PMID: 38030687 DOI: 10.1038/s41573-023-00822-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Diseases associated with chronic inflammation constitute a major health burden across the world. As central instigators of the inflammatory response to infection and tissue damage, inflammasomes - and the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome in particular - have emerged as key regulators in diverse rheumatic, metabolic and neurodegenerative diseases. Similarly to other inflammasome sensors, NLRP3 assembles a cytosolic innate immune complex that activates the cysteine protease caspase-1, which in turn cleaves gasdermin D (GSDMD) to induce pyroptosis, a regulated mode of lytic cell death. Pyroptosis is highly inflammatory, partly because of the concomitant extracellular release of the inflammasome-dependent cytokines IL-1β and IL-18 along with a myriad of additional danger signals and intracellular antigens. Here, we discuss how NLRP3 and downstream inflammasome effectors such as GSDMD, apoptosis-associated speck-like protein containing a CARD (ASC) and nerve injury-induced protein 1 (NINJ1) have gained significant traction as therapeutic targets. We highlight the recent progress in developing small-molecule and biologic inhibitors that are advancing into the clinic and serving to harness the broad therapeutic potential of modulating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Lieselotte Vande Walle
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Laboratory of Medical Immunology, Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
13
|
Matsuzaka Y, Yashiro R. Unraveling the Immunopathogenesis of Multiple Sclerosis: The Dynamic Dance of Plasmablasts and Pathogenic T Cells. BIOLOGICS 2023; 3:232-252. [DOI: 10.3390/biologics3030013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in the number of patients, and it often occurs in young people, with an average age of onset of around 30 years old, but it can also occur in children and the elderly. It is more common in women than men, with a male-to-female ratio of approximately 1:3. As the immunopathogenesis of MS, a group of B cells called plasmablasts controls encephalomyelitis via IL-10 production. These IL-10-producing B cells, called regulatory B cells, suppress inflammatory responses in experimental mouse models of autoimmune diseases including MS. Since it has been clarified that these regulatory B cells are plasmablasts, it is expected that the artificial control of plasmablast differentiation will lead to the development of new treatments for MS. Among CD8-positive T cells in the peripheral blood, the proportion of PD-1-positive cells is decreased in MS patients compared with healthy controls. The dysfunction of inhibitory receptors expressed on T cells is known to be the core of MS immunopathology and may be the cause of chronic persistent inflammation. The PD-1+ CD8+ T cells may also serve as indicators that reflect the condition of each patient in other immunological neurological diseases such as MS. Th17 cells also regulate the development of various autoimmune diseases, including MS. Thus, the restoration of weakened immune regulatory functions may be a true disease-modifying treatment. So far, steroids and immunosuppressants have been the mainstream for autoimmune diseases, but the problem is that this kills not only pathogenic T cells, but also lymphocytes, which are necessary for the body. From this understanding of the immune regulation of MS, we can expect the development of therapeutic strategies that target only pathogenic immune cells.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryu Yashiro
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
14
|
Hu Y, Zhan F, Wang Y, Wang D, Lu H, Wu C, Xia Y, Meng L, Zhang F, Wang X, Zhou S. The Ninj1/Dusp1 Axis Contributes to Liver Ischemia Reperfusion Injury by Regulating Macrophage Activation and Neutrophil Infiltration. Cell Mol Gastroenterol Hepatol 2023; 15:1071-1084. [PMID: 36731792 PMCID: PMC10036740 DOI: 10.1016/j.jcmgh.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND & AIMS Liver ischemia-reperfusion (IR) injury represents a major risk factor in both partial hepatectomy and liver transplantation. Nerve injury-induced protein 1 (Ninj1) is widely recognized as an adhesion molecule in leukocyte trafficking under inflammatory conditions, but its role in regulating sterile inflammation during liver IR injury remains unclear. METHODS Myeloid Ninj1-deficient mice were generated by bone marrow chimeric models using Ninj1 knockout mice and wild-type mice. In vivo, a liver partial warm ischemia model was applied. Liver injury and hepatic inflammation were investigated. In vitro, primary Kupffer cells (KCs) isolated from Ninj1 knockout and wild-type mice were used to explore the function and mechanism of Ninj1 in modulating KC inflammation upon lipopolysaccharide stimulation. RESULTS Ninj1 deficiency in KCs protected mice against liver IR injury during the later phase of reperfusion, especially in neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. This prompted ischemia-primed KCs to decrease proinflammatory cytokine production. In vitro and in vivo, using small-interfering RNA against dual-specificity phosphatase 1 (DUSP1), we found that Ninj1 deficiency diminished the inflammatory response in KCs and neutrophil infiltration through DUSP1-dependent deactivation of the c-Jun-N-terminal kinase and p38 pathways. Sivelestat, a neutrophil elastase inhibitor, functioned similarly to Ninj1 deficiency, resulting in both mitigated hepatic IR injury in mice and a more rapid recovery of liver function in patients undergoing liver resection. CONCLUSIONS The Ninj1/Dusp1 axis contributes to liver IR injury by regulating the proinflammatory response of KCs, and influences neutrophil infiltration, partly by subsequent regulation of C-X-C motif chemokine ligand 1 (CXCL1) production after IR.
Collapse
Affiliation(s)
- Yuanchang Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Feng Zhan
- Department of Hepatobiliary and Laparoscopic Surgery, The Affiliated Yixing Hospital, Jiangsu University, Yixing, China
| | - Yong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dong Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Hao Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Chen Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yongxiang Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lijuan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xun Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Shun Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
15
|
Yang M, Yang Z, Huang J, Yu W, He X, Yuan M, Han W, Chen W. Optimization of determinant factors associated with the efficiency of experimental autoimmune uveitis induction in C57BL/6 mice. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1274. [PMID: 36618787 PMCID: PMC9816839 DOI: 10.21037/atm-22-2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022]
Abstract
Background Experimental autoimmune uveitis (EAU) is a widely used animal model for uveitis research. The C57BL/6 mouse strain is the most commonly used mouse strain in the research of genetic modification, but C57BL/6 mice are not sufficiently susceptible to EAU induction, partly due to experimental factors. This work aims to optimize relevant factors to improve the efficiency of EAU induction in C57BL/6 mice. Methods To induce EAU, mice were immunized via intraperitoneal injection with pertussis (PTX) and subcutaneous injection with interphotoreceptor retinoid-binding protein peptide 1-20 (IRBP1-20) emulsified with complete Freund's adjuvant (CFA). The severity of inflammation was assessed using several approaches. The relevant experimental factors were evaluated, including methods of emulsification and doses of peptide and PTX. Results Uveitis occurred at 8-12 days after immunization and reached its peak at 18-20 days, while T helper type 17 (Th17) cells peaked earlier at 14-18 days after immunization. Based on clinical and histological scores, 500 µg of IRBP peptide was the optimal dose required to induce EAU. The PTX dose demonstrated no influence on EAU incidence, but potentially affected the severity of uveitis. A single injection of 1,000 ng of PTX induced the most severe EAU and the highest proportion of Th17 cells. Compared to extruded emulsion, sonicated emulsion produced a higher incidence, higher histological score, and a 2-day-earlier onset of EAU. Electron microscopy showed a significantly different microstructure between the 2 emulsions. Conclusions This work optimized the protocols of EAU induction and obtained a high and stable induction rate with severe inflammation in the C57BL/6 mouse strain. Our results facilitate future experimental research involving uveitis.
Collapse
Affiliation(s)
- Ming Yang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zixuan Yang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiani Huang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangshu Yu
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoying He
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minjie Yuan
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Han
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Sorosina M, Peroni S, Mascia E, Santoro S, Osiceanu AM, Ferrè L, Clarelli F, Giordano A, Cannizzaro M, Martinelli Boneschi F, Filippi M, Esposito F. Involvement of NINJ2 Protein in Inflammation and Blood-Brain Barrier Transmigration of Monocytes in Multiple Sclerosis. Genes (Basel) 2022; 13:1946. [PMID: 36360183 PMCID: PMC9690398 DOI: 10.3390/genes13111946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 09/08/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder of the central nervous system (CNS). The migration of immune cells into the CNS is essential for its development, and plasma membrane molecules play an important role in triggering and maintaining the inflammation. We previously identified ninjurin2, a plasma membrane protein encoded by NINJ2 gene, as involved in the occurrence of relapse under Interferon-β treatment in MS patients. The aim of the present study was to investigate the involvement of NINJ2 in inflammatory conditions and in the migration of monocytes through the blood-brain barrier (BBB). We observed that NINJ2 is downregulated in monocytes and in THP-1 cells after stimulation with the pro-inflammatory cytokine LPS, while in hCMEC/D3 cells, which represent a surrogate of the BBB, LPS stimulation increases its expression. We set up a transmigration assay using an hCMEC/D3 transwell-based model, finding a higher transmigration rate of monocytes from MS subjects compared to healthy controls (HCs) in the case of an activated hCMEC/D3 monolayer. Moreover, a positive correlation between NINJ2 expression in monocytes and monocyte migration rate was observed. Overall, our results suggest that ninjurin2 could be involved in the transmigration of immune cells into the CNS in pro-inflammatory conditions. Further experiments are needed to elucidate the exact molecular mechanisms.
Collapse
Affiliation(s)
- Melissa Sorosina
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Peroni
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Silvia Santoro
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ana Maria Osiceanu
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Ferrè
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonino Giordano
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Miryam Cannizzaro
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Filippo Martinelli Boneschi
- Neurology Unit, IRCCS Fondazione Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Massimo Filippi
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Esposito
- Laboratory of Neurological Complex Disorders, Division of Neuroscience, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurology and Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
17
|
Elevated Serum Ninjurin-1 Is Associated with a High Risk of Large Artery Atherosclerotic Acute Ischemic Stroke. Transl Stroke Res 2022:10.1007/s12975-022-01077-6. [PMID: 36205878 DOI: 10.1007/s12975-022-01077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 10/10/2022]
Abstract
Ninjurin-1 is a novel adhesion molecule which is involved in many inflammatory diseases. Functional blockage of Ninjurin-1 has exerted an atheroprotective effect. The aim of the study is to explore the association between serum Ninjurin-1 and the risk of large artery atherosclerotic acute ischemic stroke. From August 2020 through December 2021, patients with large artery atherosclerotic acute ischemic stroke (LAA-AIS) admitted to the First Hospital Affiliated to Soochow University, and age- and sex-matched controls free of ischemic stroke were recruited. Serum Ninj1 was measured with an enzyme-linked immunosorbent assay. Multivariable logistic regression models were used to calculate the odds ratios and 95% confidence intervals of LAA-AIS associated with serum Ninj1 levels, and receiver operating characteristic (ROC) curves were performed to assess the improvement value of Ninj1 for the prediction of LAA-AIS after adding Ninj1 to established risk factors. Of the 110 patients and 110 age- and sex-matched controls free of ischemic stroke enrolled, serum Ninj1 levels in LAA-AIS patients were significantly higher than that in control group (142.70 ng/ml [IQR: 110.41-163.44] vs 101.62 ng/ml [IQR: 86.63-120.86], p < 0.001). In multivariable analysis, Ninj1 levels were expressed as continuous variable and ordinal variable (tertiles), and it turned out that Ninj1 levels were positively associated with increased risk of LAA-AIS, especially in tertile3 compared with tertile1 (adjusted OR = 12.567, 95%CI: 5.148-30.678, p < 0.001), and the adjusted odds OR per 10 ng/ml increment was 1.541, 95%CI: 1.348-1.763, p < 0.001. Furthermore, adding Ninj1 to a multivariate logistic model including conventional risk factors associated LAA-AIS improved the area under ROC curves from 0.787 to 0.874. Elevated circulating levels of Ninj1 were associated with increased risk of LAA-AIS, indicating that serum Ninj1 may act as a predictor independent of established conventional risk factors.
Collapse
|
18
|
Kim MW, Kang JH, Jung HJ, Park SY, Hwang JI, Seong JK, Yoon YS, Oh SH. Deficiency of Ninjurin1 attenuates LPS/D-galactosamine-induced acute liver failure by reducing TNF-α-induced apoptosis in hepatocytes. J Cell Mol Med 2022; 26:5122-5134. [PMID: 36071453 PMCID: PMC9575046 DOI: 10.1111/jcmm.17538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Nerve injury‐induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D‐galactosamine (D‐gal)‐induced acute liver failure (ALF) model. When treated with LPS/D‐gal, conventional Ninj1 knock‐out (KO) mice exhibited a mild inflammatory phenotype as compared with wild‐type (WT) mice. Unexpectedly, myeloid‐specific Ninj1 KO mice showed no attenuation of LPS/D‐gal‐induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF‐α‐induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock‐down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF‐α‐mediated apoptosis. Consistent with in vitro results, hepatocyte‐specific ablation of Ninj1 in mice alleviated LPS/D‐gal‐induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D‐gal‐induced ALF by alleviating TNF‐α/TNFR1‐induced cell death.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Hyun Jin Jung
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Se Yong Park
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, South Korea
| |
Collapse
|
19
|
Hwang SJ, Ahn BJ, Shin MW, Song YS, Choi Y, Oh GT, Kim KW, Lee HJ. miR-125a-5p attenuates macrophage-mediated vascular dysfunction by targeting Ninjurin1. Cell Death Differ 2022; 29:1199-1210. [PMID: 34974535 PMCID: PMC9177769 DOI: 10.1038/s41418-021-00911-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ninjurin1 (Ninj1), an adhesion molecule, regulates macrophage function in hyaloid regression, multiple sclerosis, and atherosclerosis. However, its biological relevance and the mechanism underlying its function in vascular network integrity have not been studied. In this study, we investigated the role of Ninj1 in physiological (postnatal vessel formation) and pathological (endotoxin-mediated inflammation and diabetes) conditions and developed a strategy to regulate Ninj1 using specific micro (mi)RNAs under pathological conditions. Ninj1-deficient mice exhibited decreased hyaloid regression, tip cell formation, retinal vascularized area, recruitment of macrophages, and endothelial apoptosis during postnatal development, resulting in delayed formation of the vascular network. Five putative miRNAs targeting Ninj1 were selected using the miRanda algorithm and comparison of expression patterns. Among them, miR-125a-5p showed a profound inhibitory effect on Ninj1 expression, and miR-125a-5p mimic suppressed the cell-to-cell and cell-to-matrix adhesion of macrophages and expression of pro-inflammatory factors mediated by Ninj1. Furthermore, miR-125a-5p mimic inhibited the recruitment of macrophages into inflamed retinas in endotoxin-induced inflammation and streptozotocin-induced diabetes in vivo. In particular, miR-125a-5p mimic significantly attenuated vascular leakage in diabetic retinopathy. Taken together, these findings suggest that Ninj1 plays a pivotal role in macrophage-mediated vascular integrity and that miR-125a-5p acts as a novel regulator of Ninj1 in the management of inflammatory diseases and diabetic retinopathy.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
- College of Pharmacy, Inje University, 607 Obang-dong, Gimhae, Gyungnam, 621-749, South Korea
| | - Bum Ju Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Min-Wook Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ye-Seul Song
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Youngbin Choi
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, 03760, South Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, South Korea.
| |
Collapse
|
20
|
Demarco B, Danielli S, Fischer FA, Bezbradica JS. How Pyroptosis Contributes to Inflammation and Fibroblast-Macrophage Cross-Talk in Rheumatoid Arthritis. Cells 2022; 11:1307. [PMID: 35455985 PMCID: PMC9028325 DOI: 10.3390/cells11081307] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
About thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication. However, excessive and uncontrolled cell death also contributes to immunopathology in several chronic inflammatory diseases, including arthritis. In this review, we discuss recent findings where pyroptosis contributes to tissue damage and inflammation with a main focus on injury-induced and autoimmune arthritis. We also review novel functions and regulatory mechanisms of the pyroptotic executors gasdermins. Finally, we discuss possible models of how pyroptosis may contribute to the cross-talk between fibroblast and macrophages, and also how this cross-talk may regulate inflammation by modulating inflammasome activation and pyroptosis induction.
Collapse
Affiliation(s)
- Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| | | | | | - Jelena S. Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (S.D.); (F.A.F.)
| |
Collapse
|
21
|
Fang C, Jiao K, Zuo K, Yang X. Elevated plasma Ninjurin-1 levels in atrial fibrillation is associated with atrial remodeling and thromboembolic risk. BMC Cardiovasc Disord 2022; 22:153. [PMID: 35392805 PMCID: PMC8991886 DOI: 10.1186/s12872-022-02593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Nerve injury-induced protein 1 (Ninj1) is elevated in various inflammatory diseases. The soluble form of Ninj1 yield by matrix metalloproteinase cleavage is a secreted protein and inhibits cell adhesion and inflammation. However, the role of plasma Ninj1 in atrial fibrillation (AF) has not been reported. The present study aimed to investigate the correlation between plasma Ninj1 levels and AF. METHODS A total of 96 AF patients [age 66.00 (60.00, 72.00) years, male 56 (58.33%)] and 51 controls without AF [age 65.00 (55.00, 68.00) years, male 21 (41.18%)] were enrolled in this study. Plasma Ninj1 concentrations were detected using enzyme-linked immunosorbent assay. Also, the clinical characteristics, left atrial volume index (LAVI), CHA2DS2-VASc score, and HAS-BLED score were evaluated. RESULTS Plasma Ninj1 levels were significantly higher in patients with AF than in controls (P < 0.001). Plasma Ninj1 levels were positively correlated with LAVI (P = 0.019) and CHA2DS2-VASc score (P = 0.024). Logistic regression analysis confirmed that the Ninj1 plasma levels were associated with AF (P = 0.009). The receiver operating characteristic analysis showed that plasma Ninj1 had a predictive value for AF (P < 0.001). CONCLUSIONS Plasma Ninj1 levels were elevated in patients with AF, associated with left atrial enlargement and thromboembolic risk in AF.
Collapse
Affiliation(s)
- Chen Fang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Kaicheng Jiao
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China
| | - Kun Zuo
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, 8th Gongtinanlu Rd, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
22
|
Hwang SJ, Oh WK, Lee HY, Lee HJ. Preventive effects of cristacarpin on experimentally induced uveitis by targeting NF-κB. Biomed Pharmacother 2021; 145:112474. [PMID: 34864308 DOI: 10.1016/j.biopha.2021.112474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023] Open
Abstract
Cristacarpin is a novel prenylated pterocarpan that reportedly exhibits broad anti-cancer activity by enhancing endoplasmic reticulum stress. However, whether and how cristacarpin affects in-flammatory processes remain largely unknown. In the present study, the anti-inflammatory effect of cristacarpin on lipopolysaccharide (LPS)-induced inflammation was investigated using zebrafish embryos, RAW 264.7 macrophages, and mouse uveitis models. In the non-toxic concentration range (from 20 to 100 μM), cristacarpin suppressed pro-inflammatory mediators such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, while stimulating anti-inflammatory mediators such as IL-4 and IL-10 in LPS-stimulated RAW 264.7 cells and uveitis mouse models. Cristacarpin decreased cell adhesion of macrophages through downregulation of the expression of Ninjurin1 and matrix metalloproteinases. Furthermore, cristacarpin reduced macrophage migration in zebrafish embryos in vivo. Cristacarpin also increased cytosolic levels of inhibitor of nuclear factor-κB and suppressed the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells. Collectively, our results suggest that cristacarpin is a potential therapeutic candidate for developing ocular anti-inflammatory drugs.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea
| | - Won Keun Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, South Korea; Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Hyo-Jong Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
23
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kim Newton
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vishva M Dixit
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nobuhiko Kayagaki
- Physiological Chemistry Department, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
24
|
Wu Z, Zhang W, Yang J. Letter by Wu et al Regarding Article, "Anti-Inflammatory Actions of Soluble Ninjurin-1 Ameliorate Atherosclerosis". Circulation 2021; 143:e919-e920. [PMID: 33970674 DOI: 10.1161/circulationaha.120.053212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhenguo Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan
| | - Wencheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan
| |
Collapse
|
25
|
Jeon S, Oh GT. Response by Jeon and Oh to Letter Regarding Article, "Anti-Inflammatory Actions of Soluble Ninjurin-1 Ameliorate Atherosclerosis". Circulation 2021; 143:e921-e922. [PMID: 33970676 DOI: 10.1161/circulationaha.121.053671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sejin Jeon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
26
|
Hwang SJ, Song YS, Lee HJ. Phaseolin Attenuates Lipopolysaccharide-Induced Inflammation in RAW 264.7 Cells and Zebrafish. Biomedicines 2021; 9:biomedicines9040420. [PMID: 33924583 PMCID: PMC8069760 DOI: 10.3390/biomedicines9040420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.
Collapse
Affiliation(s)
| | | | - Hyo-Jong Lee
- Correspondence: ; Tel.: +82-31-290-7731; Fax: +82-50-4363-2221
| |
Collapse
|
27
|
Liu K, Wang Y, Li H. The Role of Ninjurin1 and Its Impact beyond the Nervous System. Dev Neurosci 2021; 42:159-169. [PMID: 33657559 DOI: 10.1159/000512222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 11/19/2022] Open
Abstract
Ninjurin1 (Ninj1) is a double-transmembrane cell surface protein that could promote nerve regeneration in the process of the peripheral nervous system injury and repairment. Nonetheless, the accurate function of Ninj1 in the central nervous system and outside the nervous system is not completely clear. According to the recent studies, we found that Ninj1 is also aberrantly expressed in various pathophysiological processes in vivo, including inflammation, tumorigenesis, and vascular, bone, and muscle homeostasis. These findings suggest that Ninj1 may play an influential role during these pathophysiological processes. Our review summarizes the diverse roles of Ninj1 in multiple pathophysiological processes inside and outside the nervous system. Ninj1 should be considered as an important and novel therapeutic target in certain diseases, such as inflammatory diseases and ischemic diseases. Our study provided a better understanding of Ninj1 in different pathophysiological processes and thereby provided the theoretical support for further research.
Collapse
Affiliation(s)
- Ke Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongge Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| |
Collapse
|
28
|
Weerasinghe-Mudiyanselage PDE, Kim J, Choi Y, Moon C, Shin T, Ahn M. Ninjurin-1: a biomarker for reflecting the process of neuroinflammation after spinal cord injury. Neural Regen Res 2021; 16:1331-1335. [PMID: 33318413 PMCID: PMC8284292 DOI: 10.4103/1673-5374.301033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Previous studies have shown that Ninjurin-1 participates in cell trafficking and axonal growth following central and peripheral nervous system neuroinflammation. But its precise roles in these processes and involvement in spinal cord injury pathophysiology remain unclear. Western blot assay revealed that Ninjurin-1 levels in rats with spinal cord injury exhibited an upregulation until day 4 post-injury and slightly decreased thereafter compared with sham controls. Immunohistochemistry analysis revealed that Ninjurin-1 immunoreactivity in rats with spinal cord injury sharply increased on days 1 and 4 post-injury and slightly decreased on days 7 and 21 post-injury compared with sham controls. Ninjurin-1 immunostaining was weak in vascular endothelial cells, ependymal cells, and some glial cells in sham controls while it was relatively strong in macrophages, microglia, and reactive astrocytes. These findings suggest that a variety of cells, including vascular endothelial cells, macrophages, and microglia, secrete Ninjurin-1 and they participate in the pathophysiology of compression-induced spinal cord injury. All experimental procedures were approved by the Care and Use of Laboratory Animals of Jeju National University (approval No. 2018-0029) on July 6, 2018.
Collapse
Affiliation(s)
- Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju; Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongtae Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju; Department of Anatomy, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yuna Choi
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Meejung Ahn
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju; Department of Animal Science, College of Life Science, Sangji University, Wonju, Republic of Korea
| |
Collapse
|
29
|
Jeon S, Kim TK, Jeong SJ, Jung IH, Kim N, Lee MN, Sonn SK, Seo S, Jin J, Kweon HY, Kim S, Shim D, Park YM, Lee SH, Kim KW, Cybulsky MI, Shim H, Roh TY, Park WY, Lee HO, Choi JH, Park SH, Oh GT. Anti-Inflammatory Actions of Soluble Ninjurin-1 Ameliorate Atherosclerosis. Circulation 2020; 142:1736-1751. [PMID: 32883094 DOI: 10.1161/circulationaha.120.046907] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.
Collapse
Affiliation(s)
- Sejin Jeon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Tae Kyeong Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (S.-J.J., I.-H.J.)
| | - In-Hyuk Jung
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (S.-J.J., I.-H.J.)
| | - Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Seong-Keun Sonn
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Seungwoon Seo
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Jing Jin
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Sinai Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| | - Dahee Shim
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea (D.S., J.-H.C.)
| | - Young Mi Park
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, Korea (Y.M.P.)
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (S.-H.L.)
| | - Kyu-Won Kim
- College of Pharmacy, Seoul National University, Seoul, Korea (K.-W.K.)
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada (M.I.C.)
| | - Hyunbo Shim
- Departments of Bioinspired Science and Life Science (H.S.), Ewha Womans University, Seoul, Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea (T.-Y.R.)
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea (N.K., W.-Y.P., H.-O.L.).,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea (N.K., W.-Y.P., H.-O.L.)
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea (D.S., J.-H.C.)
| | - Sung Ho Park
- School of Life Sciences, Ulsan National Institute of Science & Technology (UNIST), Ulsan, Korea (S.H.P.)
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences (S.J., T.K.K., M.-N.L., S.-K.S., S.S., J.J., H.Y.K., S.K., G.T.O.), Ewha Womans University, Seoul, Korea
| |
Collapse
|
30
|
Choi H, Bae SJ, Choi G, Lee H, Son T, Kim JG, An S, Lee HS, Seo JH, Kwon HB, Jeon S, Oh GT, Surh YJ, Kim KW. Ninjurin1 deficiency aggravates colitis development by promoting M1 macrophage polarization and inducing microbial imbalance. FASEB J 2020; 34:8702-8720. [PMID: 32385864 DOI: 10.1096/fj.201902753r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022]
Abstract
Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization and dysbiosis contributes to inflammatory bowel disease (IBD) pathogenesis. However, the molecular factors mediating colonic homeostasis are not well characterized. Here, we found that Ninjurin1 (Ninj1) limits colon inflammation by regulating macrophage polarization and microbiota composition under homeostatic conditions and during colitis development. Ninj1 deletion in mice induced hypersusceptibility to colitis, with increased prevalence of colitogenic Prevotellaceae strains and decreased immunoregulatory Lachnospiraceae strains. Upon co-housing (CoH) with WT mice, Ninj1-/- mice showed increased Lachnospiraceae and decreased Prevotellaceae abundance, with subsequent improvement of colitis. Under homeostatic conditions, M1 macrophage frequency was higher in the Ninj1-/- mouse colons than wild-type (WT) mouse colons, which may contribute to increased basal colonic inflammation and microbial imbalance. Following colitis induction, Ninj1 expression was increased in macrophages; meanwhile Ninj1-/- mice showed severe colitis development and impaired recovery, associated with decreased M2 macrophages and escalated microbial imbalance. In vitro, Ninj1 knockdown in mouse and human macrophages activated M1 polarization and restricted M2 polarization. Finally, the transfer of WT macrophages ameliorated severe colitis in Ninj1-/- mice. These findings suggest that Ninj1 mediates colonic homeostasis by modulating M1/M2 macrophage balance and preventing extensive dysbiosis, with implications for IBD prevention and therapy.
Collapse
Affiliation(s)
- Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sung-Jin Bae
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Korea
| | - Garam Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hyunseung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Taekwon Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jeong-Gyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sunho An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hye Shin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Korea
| | - Hyouk-Bum Kwon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sejin Jeon
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Young-Joon Surh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
31
|
Radiation Potentiates Monocyte Infiltration into Tumors by Ninjurin1 Expression in Endothelial Cells. Cells 2020; 9:cells9051086. [PMID: 32353975 PMCID: PMC7291157 DOI: 10.3390/cells9051086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation is a widely used treatment for cancer patients, with over half the cancer patients receiving radiation therapy during their course of treatment. Considerable evidence from both preclinical and clinical studies show that tumor recurrence gets restored following radiotherapy, due to the influx of circulating cells consisting primarily of monocytes. The attachment of monocyte to endothelial cell is the first step of the extravasation process. However, the exact molecules that direct the transmigration of monocyte from the blood vessels to the tumors remain largely unknown. The nerve injury-induced protein 1 (Ninjurin1 or Ninj1) gene, which encodes a homophilic adhesion molecule and cell surface protein, was found to be upregulated in inflammatory lesions, particularly in macrophages/monocytes, neutrophils, and endothelial cells. More recently Ninj1 was reported to be regulated following p53 activation. Considering p53 has been known to be activated by radiation, we wondered whether Ninj1 could be increased in the endothelial cells by radiation and it might contribute to the recruiting of monocytes in the tumor. Here we demonstrate that radiation-mediated up-regulation of Ninj1 in endothelial cell lines such as human umbilical vein endothelial cells (HUVECs), EA.hy926, and immortalized HUVECs. Consistent with this, we found over-expressed Ninj1 in irradiated xenograft tumors, and increased monocyte infiltration into tumors. Radiation-induced Ninj1 was transcriptionally regulated by p53, as confirmed by transfection of p53 siRNA. In addition, Ninj1 over-expression in endothelial cells accelerated monocyte adhesion. Irradiation-induced endothelial cells and monocyte interaction was inhibited by knock-down of Ninj1. Furthermore, over-expressed Ninj1 stimulated MMP-2 and MMP-9 expression in monocyte cell lines, whereas the MMP-2 and MMP-9 expression were attenuated by Ninj1 knock-down in monocytes. Taken together, we provide evidence that Ninj1 is a key molecule that generates an interaction between endothelial cells and monocytes. This result suggests that radiation-mediated Ninj1 expression in endothelial cells could be involved in the post-radiotherapy recurrence mechanism.
Collapse
|
32
|
Jung HJ, Kang JH, Pak S, Lee K, Seong JK, Oh SH. Detrimental Role of Nerve Injury-Induced Protein 1 in Myeloid Cells under Intestinal Inflammatory Conditions. Int J Mol Sci 2020; 21:ijms21020614. [PMID: 31963519 PMCID: PMC7013940 DOI: 10.3390/ijms21020614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/24/2022] Open
Abstract
Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a cell-surface adhesion molecule that regulates cell migration and attachment. This study demonstrates the increase in Ninj1 protein expression during development of intestinal inflammation. Ninj1-deficient mice exhibited significantly attenuated bodyweight loss, shortening of colon length, intestinal inflammation, and lesser pathological lesions than wild-type mice. Although more severe inflammation and serious lesions are observed in wild-type mice than Ninj1-deficient mice, there were no changes in the numbers of infiltrating macrophages in the inflamed tissues obtained from WT and Ninj1-deficient mice. Ninj1 expression results in activation of macrophages, and these activated macrophages secrete more cytokines and chemokines than Ninj1-deficient macrophages. Moreover, mice with conditional deletion of Ninj1 in myeloid cells (Ninj1fl/fl; Lyz-Cre+) alleviated experimental colitis compared with wild-type mice. In summary, we propose that the Ninj1 in myeloid cells play a pivotal function in intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul 03080, Korea;
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ju-Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Korea
| | - Seongwon Pak
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Keunwook Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
| | - Je Kyung Seong
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul 03080, Korea;
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Laboratory of Developmental Biology and Genomics, Research Institute of Veterinary Science, BK21 Plus Program for Veterinary Science, Seoul National University, Seoul 08826, Korea
- Correspondence: (J.K.S.); (S.H.O.)
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon 21936, Korea
- Correspondence: (J.K.S.); (S.H.O.)
| |
Collapse
|
33
|
Minoshima A, Kabara M, Matsuki M, Yoshida Y, Kano K, Tomita Y, Hayasaka T, Horiuchi K, Saito Y, Aonuma T, Nishimura M, Maruyama K, Nakagawa N, Sawada J, Takehara N, Hasebe N, Kawabe JI. Pericyte-Specific Ninjurin1 Deletion Attenuates Vessel Maturation and Blood Flow Recovery in Hind Limb Ischemia. Arterioscler Thromb Vasc Biol 2019; 38:2358-2370. [PMID: 30354207 PMCID: PMC6166707 DOI: 10.1161/atvbaha.118.311375] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Angiogenesis, entire step from endothelial cells (ECs) sprouts to vascular maturation, is a critical response to ischemia. To form functional mature vessels, interactions between ECs and pericytes are essential. Ninj1 (ninjurin1) is an adhesion molecule that contributes to the pathogenesis of neuroinflammation. We recently demonstrated that Ninj1 is expressed in pericytes during angiogenesis. However, the role of Ninj1 in angiogenesis under pathophysiological ischemic conditions has not yet been elucidated. Approach and Results— Ninj1 was detected in microvessels, and its expression was enhanced in ischemic tissues after mouse hindlimb ischemia. Knockdown of Ninj1 was performed by injection of biodegradable microspheres releasing Ninj1-small interfering RNA into muscle tissues. Alternatively, pericyte-specific Ninj1 knockout was induced by tamoxifen treatment of NG2-CreERT/Ninj1-flox mice. Ninj1 knockdown/knockout reduced the formation of blood-circulating functional vessels among total CD31+ microvessels within ischemic tissues and subsequently attenuated color Doppler–assessed blood flow recovery. Ninj1 overexpression enhanced expression of Anpt (angiopoietin) 1, whereas Ninj1 knockdown enhanced the endogenous Anpt1 antagonist, Anpt2 expression in pericytes and inhibited the association of pericytes with ECs and subsequent formation of capillary-like structure, that is, EC tube surrounded with pericytes in 3-dimensional gel culture. Conclusions— Our data demonstrate that Ninj1 is involved in the formation of functional matured vessels through the association between pericytes and ECs, resulting in blood flow recovery from ischemia. These findings further the current our understanding of vascular maturation and may support the development of therapeutics for ischemic diseases.
Collapse
Affiliation(s)
- Akiho Minoshima
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | - Maki Kabara
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan
| | - Motoki Matsuki
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | - Yuri Yoshida
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Department of Vascular Surgery (Y.Y., Y.S.), Asahikawa Medical University, Japan
| | - Kohei Kano
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | - Yui Tomita
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Department of Radiology (Y.T.), Asahikawa Medical University, Japan
| | - Taiki Hayasaka
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | - Kiwamu Horiuchi
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | - Yukihiro Saito
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Department of Vascular Surgery (Y.Y., Y.S.), Asahikawa Medical University, Japan
| | - Tatsuya Aonuma
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | | | | | | | | | - Naofumi Takehara
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | - Naoyuki Hasebe
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan.,Division of Cardiovascular, Respiratory, and Neurology, Department of Medicine (A.M., M.M., K.K., T.H., K.H., T.A., N.T., N.H.), Asahikawa Medical University, Japan
| | - Jun-Ichi Kawabe
- From the Department of Cardiovascular Regeneration and Innovation (A.M., M.K., M.M., Y.Y., K.K., Y.T., T.H., K.H., Y.S., T.A., N.T., N.H., J.-i.K.), Asahikawa Medical University, Japan
| |
Collapse
|
34
|
Ninjurin1 regulates striated muscle growth and differentiation. PLoS One 2019; 14:e0216987. [PMID: 31091274 PMCID: PMC6519837 DOI: 10.1371/journal.pone.0216987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pressure overload due to aortic valve stenosis leads to pathological cardiac hypertrophy and heart failure. Hypertrophy is accompanied by an increase in myocyte surface area, which requires a proportional increase in the number of cell-cell and cell-matrix contacts to withstand enhanced workload. In a proteomic analysis we identified nerve injury-induced protein 1 (Ninjurin1), a 16kDa transmembrane cell-surface protein involved in cell adhesion and nerve repair, to be increased in hypertrophic hearts from patients with aortic stenosis. We hypothesised that Ninjurin1 is involved in myocyte hypertrophy. We analyzed cardiac biopsies from aortic-stenosis patients and control patients undergoing elective heart surgery. We studied cardiac hypertrophy in mice after transverse aortic constriction and angiotensin II infusions, and performed mechanistic analyses in cultured myocytes. We assessed the physiological role of ninjurin1 in zebrafish during heart and skeletal muscle development. Ninjurin1 was increased in hearts of aortic stenosis patients, compared to controls, as well as in hearts from mice with cardiac hypertrophy. Besides the 16kDa Ninjurin1 (Ninjurin1-16) we detected a 24kDa variant of Ninjurin1 (Ninjurin1-24), which was predominantly expressed during myocyte hypertrophy. We disclosed that the higher molecular weight of Ninjurin1-24 was caused by N-glycosylation. Ninjurin1-16 was contained in the cytoplasm of myocytes where it colocalized with stress-fibers. In contrast, Ninjurin1-24 was localized at myocyte membranes. Gain and loss-of-function experiments showed that Ninjurin1-24 plays a role in myocyte hypertrophy and myogenic differentiation in vitro. Reduced levels of ninjurin1 impaired cardiac and skeletal muscle development in zebrafish. We conclude that Ninjurin1 contributes to myocyte growth and differentiation, and that these effects are mainly mediated by N-glycosylated Ninjurin1-24.
Collapse
|
35
|
Bae SJ, Shin MW, Son T, Lee HS, Chae JS, Jeon S, Oh GT, Kim KW. Ninjurin1 positively regulates osteoclast development by enhancing the survival of prefusion osteoclasts. Exp Mol Med 2019; 51:1-16. [PMID: 30700695 PMCID: PMC6353902 DOI: 10.1038/s12276-018-0201-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 01/20/2023] Open
Abstract
Osteoclasts (OCs) are bone-resorbing cells that originate from hematopoietic stem cells and develop through the fusion of mononuclear myeloid precursors. Dysregulation of OC development causes bone disorders such as osteopetrosis, osteoporosis, and rheumatoid arthritis. Although the molecular mechanisms underlying osteoclastogenesis have been well established, the means by which OCs maintain their survival during OC development remain unknown. We found that Ninjurin1 (Ninj1) expression is dynamically regulated during osteoclastogenesis and that Ninj1-/- mice exhibit increased trabecular bone volume owing to impaired OC development. Ninj1 deficiency did not alter OC differentiation, transmigration, fusion, or actin ring formation but increased Caspase-9-dependent intrinsic apoptosis in prefusion OCs (preOCs). Overexpression of Ninj1 enhanced the survival of mouse macrophage/preOC RAW264.7 cells in osteoclastogenic culture, suggesting that Ninj1 is important for the survival of preOCs. Finally, analysis of publicly available microarray data sets revealed a potent correlation between high NINJ1 expression and destructive bone disorders in humans. Our data indicate that Ninj1 plays an important role in bone homeostasis by enhancing the survival of preOCs.
Collapse
Affiliation(s)
- Sung-Jin Bae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, 50612, Korea
| | - Min Wook Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Taekwon Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hye Shin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ji Soo Chae
- Department of Life Sciences and Technology, PerkinElmer, Seoul, 06702, Korea
| | - Sejin Jeon
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea. .,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
36
|
Ninjurin1 Plays a Crucial Role in Pulmonary Fibrosis by Promoting Interaction between Macrophages and Alveolar Epithelial Cells. Sci Rep 2018; 8:17542. [PMID: 30510259 PMCID: PMC6277454 DOI: 10.1038/s41598-018-35997-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/12/2018] [Indexed: 12/14/2022] Open
Abstract
The transmembrane nerve injury-induced protein 1 (Ninjurin1 or Ninj1) is involved in progressing inflammatory diseases. In this study, we aimed to investigate a novel function of Ninj1 in pulmonary fibrosis. We found that the expression of Ninj1 in a patient cohort was upregulated in the lung specimens of idiopathic pulmonary fibrosis patients as well as mice with bleomycin-induced pulmonary fibrosis. In addition, the BLM-injected Ninj1 KO mice exhibited a mild fibrotic phenotype, as compared to WT mice. Therefore, we hypothesized that Ninj1 would play an important role in the development of pulmonary fibrosis. We discovered that Ninj1 expression increased in BLM-treated macrophages and alveolar epithelial cells (AECs). Interestingly, macrophages bound to BLM-treated AECs were activated. However, when Ninj1 expression was suppressed in either of AECs or macrophages, contact-dependent activation of macrophages with AECs was diminished. In addition, introduction of recombinant mouse Ninj11-50 to macrophages triggered an inflammatory response, but did not stimulate Ninj1-deficient macrophages. In conclusion, we propose that Ninj1 may contribute to activation of macrophages by enhancing interaction with AECs having elevated Ninj1 expression due to injury-inducing stimuli. Consequently, Ninj1 may be involved in the development of pulmonary fibrosis by enhancing inflammatory response of macrophages.
Collapse
|
37
|
Hwang SJ, Ahn EY, Park Y, Lee HJ. An aqueous extract of Nomura’s jellyfish ameliorates inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells and a zebrafish model of inflammation. Biomed Pharmacother 2018; 100:583-589. [DOI: 10.1016/j.biopha.2018.01.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
|
38
|
Functional blocking of Ninjurin1 as a strategy for protecting endothelial cells in diabetes mellitus. Clin Sci (Lond) 2018; 132:213-229. [PMID: 29263137 DOI: 10.1042/cs20171273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/10/2017] [Accepted: 12/16/2017] [Indexed: 02/06/2023]
Abstract
Ongoing efforts to remove pathological inflammatory stimuli are crucial for the protection of endothelial cells in diabetes. Nerve injury-induced protein 1 (Ninj1) is an adhesion molecule that not only contributes to inflammation but also regulates the apoptosis of endothelial cells. In the present study, Ninj1 was found highly expressed in endothelial cells in Type 2 diabetic mice and increased in high-glucose (HG) cultured HUVECs. Furthermore, we found that Ninj1 levels are up-regulated in endothelial cells in clinical specimens of diabetic patients when compared with nondiabetic tissues, indicating a biological correlation between Ninj1 and endothelial pathophysiology in diabetic condition. Functional blocking of Ninj1 promoted endothelial tube formation and eNOS phosphorylation in the HG condition. Additionally, blocking Ninj1 inhibited the activation of caspase-3 and increased the Bcl-2/Bax ratio, thus inhibiting HUVECs apoptosis induced by HG. HG-induced ROS overproduction, p38 MAPK and NF-κB activation, and the overexpression of VCAM-1, ICAM-1, MCP-1, and IL-6 genes were ameliorated after Ninj1 was blocked. Using the signaling pathway inhibitor LY294002, we found that Bcl-2 expression and eNOS phosphorylation after Ninj1 blockade were regulated via PI3K/Akt signaling pathway. The in vivo endothelial contents, α-SMA+PECAM-1+ vascular numbers, and blood perfusion in the hindlimb were markedly up-regulated after Ninj1 was blocked. According to our findings, functional blocking of Ninj1 shows protective effects on diabetic endothelial cells both in vitro and in vivo Thus, we consider Ninj1 to be a potential therapeutic target for preventing endothelial dysfunction in diabetes mellitus.
Collapse
|
39
|
Ninjurin 1 has two opposing functions in tumorigenesis in a p53-dependent manner. Proc Natl Acad Sci U S A 2017; 114:11500-11505. [PMID: 29073078 DOI: 10.1073/pnas.1711814114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
WT p53 is critical for tumor suppression, whereas mutant p53 promotes tumor progression. Nerve injury-induced protein 1 (Ninj1) is a target of p53 and forms a feedback loop with p53 by repressing p53 mRNA translation. Here, we show that loss of Ninj1 increased mutant p53 expression and, subsequently, enhanced cell growth and migration in cells carrying a mutant p53. In contrast, loss of Ninj1 inhibited cell growth and migration in cells carrying a WT p53. To explore the biological significance of Ninj1, we generated a cohort of Ninj1-deficient mice and found that Ninj1+/- mice were prone to systemic inflammation and insulitis, but not to spontaneous tumors. We also found that loss of Ninj1 altered the tumor susceptibility in both mutant p53 and p53-null background. Specifically, in a mutant p53(R270H) background, Ninj1 deficiency shortened the lifespan, altered the tumor spectrum, and increased tumor burden, likely via enhanced expression of mutant p53. In a p53-null background, Ninj1 deficiency significantly increased the incidence of T-lymphoblastic lymphoma. Taken together, our data suggest that depending on p53 genetic status, Ninj1 has two opposing functions in tumorigenesis and that the Ninj1-p53 loop may be targeted to manage inflammatory diseases and cancer.
Collapse
|
40
|
Lyck R, Lécuyer MA, Abadier M, Wyss CB, Matti C, Rosito M, Enzmann G, Zeis T, Michel L, García Martín AB, Sallusto F, Gosselet F, Deutsch U, Weiner JA, Schaeren-Wiemers N, Prat A, Engelhardt B. ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the blood-brain barrier. J Cereb Blood Flow Metab 2017; 37:2894-2909. [PMID: 28273717 PMCID: PMC5536797 DOI: 10.1177/0271678x16678639] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to mediate leukocyte migration across the blood-brain barrier (BBB) in multiple sclerosis or experimental autoimmune encephalomyelitis (EAE). Here, we confirmed vascular ALCAM expression in human brain tissue samples in situ and on two different human in vitro BBB models. Antibody-mediated inhibition of ALCAM reduced diapedesis of human CD4+ Th1 but not of Th17 cells across the human BBB in vitro. In accordance to human Th1 cells, mouse Th1 cells showed reduced diapedesis across an ALCAM-/- in vitro BBB model under static but no longer under flow conditions. In contrast to the limited role of ALCAM in T cell extravasation across the BBB, we found a contribution of ALCAM to rolling, adhesion, and diapedesis of human CD14+ monocytes across the human BBB under flow and static conditions. Taken together, our study highlights the potential differences in the CNS expression of ALCAM in mouse and human and supports a prominent role for ALCAM in the multi-step extravasation of monocytes across the BBB.
Collapse
Affiliation(s)
- Ruth Lyck
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Marc-André Lécuyer
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | - Michael Abadier
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christof B Wyss
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Christoph Matti
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Maria Rosito
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Thomas Zeis
- 3 Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laure Michel
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | | | | | | | - Urban Deutsch
- 1 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Joshua A Weiner
- 6 Departments of Biology and Psychiatry, The University of Iowa, Iowa City, IA, USA
| | - Nicole Schaeren-Wiemers
- 3 Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandre Prat
- 2 Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montréal, Québec, Canada
| | | |
Collapse
|
41
|
Bae SJ, Shin MW, Kim RH, Shin D, Son T, Wee HJ, Kim KW. Ninjurin1 Assembles Into a Homomeric Protein Complex Maintained by N-linked Glycosylation. J Cell Biochem 2017; 118:2219-2230. [PMID: 28067406 DOI: 10.1002/jcb.25872] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
Abstract
Ninjurin1 (Ninj1) is a cell surface protein known as a homophilic adhesion molecule. Previous studies have shown a trans-interaction of Ninj1 between immune cells and endothelial cells; however, little is known about Ninj1 modification and structure in the cis-interaction. We showed that Ninj1 assembles into a homomeric complex via a cis-interaction mediated by the intracellular region and N-glycosylation at Asn60 . We identified cis-interaction between Ninj1 proteins using CFP- and YFP-tagged Ninj1 by Förster resonance energy transfer using a confocal microscope and fluorescence-activated cell sorter. We further observed the Ninj1 homomeric complexes composed of two to six monomeric Ninj1 molecules by a formaldehyde cross-linking assay. Co-immunoprecipitation assays with epitope-tagged truncated Ninj1 suggested that the intracellular region encompassing Leu101 -Ala110 participates in Ninj1 homomer assembly. Ninj1 N-glycosylation was characterized by treatment of tunicamycin and substitution of Asn to Gln or Ala. Fluorescence-activated cell sorting-based Förster resonance energy transfer assays further demonstrated that N-glycosylation is indispensable for the Ninj1 cis-interaction, and a formaldehyde cross-linking assay confirmed that interruption of N-glycosylation by Asn substitution disrupted Ninj1 homomeric complex formation. In silico analysis revealed that Ninj1 is highly conserved in vertebrates and that the conserved sequence contains an N-glycosylation motif and cis-interacting intracellular region, which participate in Ninj1 homomer assembly. Taken together, these data show that Ninj1 assembles into a homomeric protein complex and that N-glycosylation is a prerequisite for Ninj1 homomer assembly. J. Cell. Biochem. 118: 2219-2230, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Min Wook Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Ran Hee Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Dongyoon Shin
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Taekwon Son
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Korea
| |
Collapse
|
42
|
Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol 2016; 54:7353-7368. [PMID: 27815839 DOI: 10.1007/s12035-016-0207-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/11/2016] [Indexed: 01/28/2023]
Abstract
Over the last few decades, molecular neurobiology has uncovered many genes whose deficiency in mice results in behavioral traits associated with human neuropsychiatric disorders such as autism, obsessive-compulsive disorder (OCD), and schizophrenia. However, the etiology of these common diseases remains enigmatic with the potential involvement of a battery of genes. Here, we report abnormal behavioral phenotypes of mice deficient in a cell adhesion molecule Ninjurin 1 (Ninj1), which are relevant to repetitive and anxiety behaviors of neuropsychiatric disorders. Ninj1 knockout (KO) mice exhibit compulsive grooming-induced hair loss and self-made lesions as well as increased anxiety-like behaviors. Histological analysis reveals that Ninj1 is predominantly expressed in cortico-thalamic circuits, and neuron-specific Ninj1 conditional KO mice manifest aberrant phenotypes similar to the global Ninj1 KO mice. Notably, the brains of Ninj1 KO mice display altered synaptic transmission in thalamic neurons as well as a reduced number of functional synapses. Moreover, the disruption of Ninj1 leads to glutamatergic abnormalities, including increased ionotropic glutamate receptors but reduced glutamate levels. Furthermore, chronic treatment with fluoxetine, a drug reportedly ameliorates compulsive behaviors in mice, prevents progression of hair loss and alleviates the compulsive grooming and anxiety-like behavior of Ninj1 KO mice. Collectively, our results suggest that Ninj1 could be involved in neuropsychiatric disorders associated with impairments of repetitive and anxiety behaviors.
Collapse
|
43
|
Jennewein C, Sowa R, Faber AC, Dildey M, von Knethen A, Meybohm P, Scheller B, Dröse S, Zacharowski K. Contribution of Ninjurin1 to Toll-like receptor 4 signaling and systemic inflammation. Am J Respir Cell Mol Biol 2016; 53:656-63. [PMID: 25860173 DOI: 10.1165/rcmb.2014-0354oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nerve injury-induced protein (Ninjurin [Ninj]) 1 is an adhesion molecule originally identified in Schwann cells after nerve injury, whereas it is also expressed in leukocytes, epithelium, endothelium, and various organs, and is induced under inflammatory conditions. Its contribution to inflammation was so far restricted to the nervous system and exclusively attributed to its role during leukocyte migration. We hypothesized a proinflammatory role for Ninj1 also outside the nervous system. To elucidate its impact during inflammation, we analyzed expression levels and its contribution to inflammation in septic mice and studied its effect on inflammatory signaling in vitro. The effect on inflammation was analyzed by genetic (only in vitro) and pharmacologic repression in septic mice (cecal ligation and puncture) and cell culture, respectively. Repression of Ninj1 by an inhibitory peptide or small interfering RNA attenuated LPS-triggered inflammation in macrophages and endothelial cells by modulating p38 phosphorylation and activator protein-1 activation. Inhibition of Ninj1 in septic mice reduced systemic and pulmonary inflammation as well as organ damage, and ameliorated survival after 24 hours. Ninj1 is elevated under inflammatory conditions and contributes to inflammation not only by mediating leukocyte migration, but also by modulating Toll-like receptor 4-dependent expression of inflammatory mediators. We assume that, owing to both mechanisms, inhibition reduces systemic inflammation and organ damage in septic mice. Our data contribute to a better understanding of the complex inflammatory mechanisms and add a novel therapeutic target for inflammatory conditions such as sepsis.
Collapse
Affiliation(s)
- Carla Jennewein
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Ralf Sowa
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Anne C Faber
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Madlen Dildey
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Andreas von Knethen
- 2 Institute of Biochemistry I, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Patrick Meybohm
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Bertram Scheller
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Stefan Dröse
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| | - Kai Zacharowski
- 1 Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany; and
| |
Collapse
|
44
|
SHIN MINWOOK, BAE SUNGJIN, WEE HEEJUN, LEE HYOJONG, AHN BUMJU, LE HOANG, LEE EUNJI, KIM RANHEE, LEE HYESHIN, SEO JIHAE, PARK JIHYEON, KIM KYUWON. Ninjurin1 regulates lipopolysaccharide-induced inflammation through direct binding. Int J Oncol 2015; 48:821-8. [DOI: 10.3892/ijo.2015.3296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/23/2015] [Indexed: 11/06/2022] Open
|
45
|
Hwang SJ, Jun SH, Park Y, Cha SH, Yoon M, Cho S, Lee HJ, Park Y. Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1677-88. [PMID: 26003298 DOI: 10.1016/j.nano.2015.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/30/2015] [Accepted: 05/02/2015] [Indexed: 01/22/2023]
Abstract
UNLABELLED Here we developed a novel green synthesis method for gold nanoparticles (CGA-AuNPs) using chlorogenic acid (CGA) as reductants without the use of other chemicals and validated the anti-inflammatory efficacy of CGA-AuNPs in vitro and in vivo. The resulting CGA-AuNPs appeared predominantly spherical in shape with an average diameter of 22.25±4.78nm. The crystalline nature of the CGA-AuNPs was confirmed by high-resolution X-ray diffraction and by selected-area electron diffraction analyses. High-resolution liquid chromatography/electrospray ionization mass spectrometry revealed that the caffeic acid moiety of CGA forms quinone structure through a two-electron oxidation causing the reduction of Au(3+) to Au(0). When compared to CGA, CGA-AuNPs exhibited enhanced anti-inflammatory effects on NF-κB-mediated inflammatory network, as well as cell adhesion. Collectively, green synthesis of CGA-AuNPs using bioactive reductants and mechanistic studies based on mass spectrometry may open up new directions in nanomedicine and CGA-AuNPs can be an anti-inflammatory nanomedicine for future applications. FROM THE CLINICAL EDITOR Gold nanoparticles (Au NPs) have been shown to be very useful in many applications due to their easy functionalization capability. In this article, the authors demonstrated a novel method for the synthesis of gold nanoparticles using chlorogenic acid (CGA) as reductants. In-vitro experiments also confirmed biological activity of the resultant gold nanoparticles. Further in-vivo studies are awaited.
Collapse
Affiliation(s)
- Su Jung Hwang
- College of Pharmacy, Inje University, Gyeongnam, Republic of Korea
| | - Sang Hui Jun
- College of Pharmacy, Inje University, Gyeongnam, Republic of Korea
| | - Yohan Park
- College of Pharmacy, Inje University, Gyeongnam, Republic of Korea; u-Healthcare & Anti-aging Reearch Center (u-HARC), Inje University, Gyeongnam, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gyeongnam, Republic of Korea
| | - Song-Hyun Cha
- National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, Seoul, Republic of Korea
| | - Minho Yoon
- National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, Seoul, Republic of Korea
| | - Seonho Cho
- National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gyeongnam, Republic of Korea; u-Healthcare & Anti-aging Reearch Center (u-HARC), Inje University, Gyeongnam, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gyeongnam, Republic of Korea.
| | - Youmie Park
- College of Pharmacy, Inje University, Gyeongnam, Republic of Korea; u-Healthcare & Anti-aging Reearch Center (u-HARC), Inje University, Gyeongnam, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gyeongnam, Republic of Korea; National Creative Research Initiatives (NCRI) Center for Isogeometric Optimal Design, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Ahn BJ, Le H, Shin MW, Bae SJ, Lee EJ, Lee SY, Yang JH, Wee HJ, Cha JH, Seo JH, Lee HS, Lee HJ, Arai K, Lo EH, Jeon S, Oh GT, Kim WJ, Ryu JK, Suh JK, Kim KW. Ninjurin1 enhances the basal motility and transendothelial migration of immune cells by inducing protrusive membrane dynamics. J Biol Chem 2014; 289:21926-36. [PMID: 24917672 DOI: 10.1074/jbc.m113.532358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ninjurin1 is involved in the pathogenesis of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, by mediating leukocyte extravasation, a process that depends on homotypic binding. However, the precise regulatory mechanisms of Ninjurin1 during inflammation are largely undefined. We therefore examined the pro-migratory function of Ninjurin1 and its regulatory mechanisms in macrophages. Interestingly, Ninjurin1-deficient bone marrow-derived macrophages exhibited reduced membrane protrusion formation and dynamics, resulting in the impairment of cell motility. Furthermore, exogenous Ninjurin1 was distributed at the membrane of filopodial structures in Raw264.7 macrophage cells. In Raw264.7 cells, RNA interference of Ninjurin1 reduced the number of filopodial projections, whereas overexpression of Ninjurin1 facilitated their formation and thus promoted cell motility. Ninjurin1-induced filopodial protrusion formation required the activation of Rac1. In Raw264.7 cells penetrating an MBEC4 endothelial cell monolayer, Ninjurin1 was localized to the membrane of protrusions and promoted their formation, suggesting that Ninjurin1-induced protrusive activity contributed to transendothelial migration. Taking these data together, we conclude that Ninjurin1 enhances macrophage motility and consequent extravasation of immune cells through the regulation of protrusive membrane dynamics. We expect these findings to provide insight into the understanding of immune responses mediated by Ninjurin1.
Collapse
Affiliation(s)
- Bum Ju Ahn
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hoang Le
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Min Wook Shin
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sung-Jin Bae
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Eun Ji Lee
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sung Yi Lee
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ju Hee Yang
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hee-Jun Wee
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jong-Ho Cha
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji Hae Seo
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hye Shin Lee
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hyo-Jong Lee
- the College of Pharmacy, Inje University, Gimhae 621-749, Korea
| | - Ken Arai
- the Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Eng H Lo
- the Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Sejin Jeon
- the Department of Life Science and GT5 Program, Ewha Womans University, Seodaemoon-gu, Seoul 120-750, Korea, and
| | - Goo Taeg Oh
- the Department of Life Science and GT5 Program, Ewha Womans University, Seodaemoon-gu, Seoul 120-750, Korea, and
| | - Woo Jean Kim
- the National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 402-751, Korea
| | - Ji-Kan Ryu
- the National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 402-751, Korea
| | - Jun-Kyu Suh
- the National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 402-751, Korea
| | - Kyu-Won Kim
- From the SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea, the Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul 151-742, Korea,
| |
Collapse
|