1
|
Hazari MA, Kannan G, Dasgupta S, Pavan MK, Jha AK, Sultana F, Pujahari SR, Singh S, Dutta S, Pydi SP, Dutta S, Zafar H, Bhaumik P, Kumar A, Sen S. Faster Amylin Aggregation on Fibrillar Collagen I Hastens Diabetic Progression through β-Cell Death and Loss of Function. J Am Chem Soc 2025; 147:15985-16006. [PMID: 40300850 DOI: 10.1021/jacs.4c15698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Amyloid deposition of the neuroendocrine peptide amylin in islet tissues is a hallmark of type 2 diabetes (T2DM), leading to β-cell toxicity through nutrient deprivation, membrane rupture, and apoptosis. Though accumulation of toxic amylin aggregates in islet matrices is well documented, the role of the islet extracellular matrix in mediating amylin aggregation and its pathological consequences remains elusive. Here, we address this question by probing amylin interaction with collagen I (Col)─whose expression in the islet tissue increases during diabetes progression. By combining multiple biophysical techniques, we show that hydrophobic, hydrophilic, and cation-π interactions regulate amylin binding to Col, with fibrillar Col driving faster amylin aggregation. Amylin-entangled Col matrices containing high amounts of amylin induce death and loss of function in INS1E β-cells. Together, our results illustrate how amylin incorporation in islet matrices through amylin-Col interactions drives T2DM progression by impacting β-cell viability and insulin secretion.
Collapse
Affiliation(s)
| | - Gautam Kannan
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Subrata Dasgupta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Musale Krushna Pavan
- Department of Computer Science and Engineering, IIT Kanpur, Kanpur 208016, India
| | - Akash Kumar Jha
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Farhin Sultana
- Department of Oncogene Regulation, CNCI, Kolkata 700026, India
| | | | - Simran Singh
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, IIT Kanpur, Kanpur 208016, India
| | - Sarbajeet Dutta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Sai Prasad Pydi
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, IIT Kanpur, Kanpur 208016, India
| | | | - Hamim Zafar
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur 208016, India
- Department of Computer Science and Engineering, IIT Kanpur, Kanpur 208016, India
- Mehta Family Centre for Engineering in Medicine, IIT Kanpur, Kanpur 208016, India
| | - Prasenjit Bhaumik
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Ashutosh Kumar
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| | - Shamik Sen
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Ritsch I, Dyson HJ, Wright PE. Initiation of transthyretin aggregation at neutral pH by fluid agitation. Proc Natl Acad Sci U S A 2025; 122:e2425230122. [PMID: 40067885 PMCID: PMC11929447 DOI: 10.1073/pnas.2425230122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
The transthyretin (TTR) tetramer, assembled as a dimer of dimers, transports thyroxine and retinol binding protein in blood plasma and cerebrospinal fluid. Aggregation of wild type (WT) or pathogenic variant TTR leads to transthyretin amyloidosis, which is associated with neurodegenerative and cardiac disease. The trigger for TTR aggregation under physiological conditions is unknown. The tetramer is extremely stable at neutral pH, but aggregation via tetramer dissociation and monomer misfolding can be induced in vitro by lowering the pH. To elucidate factors that may cause TTR aggregation at neutral pH, we examined the effect of shear forces such as those that arise from fluid flow in the vascular system. Fluid shear forces were generated by rapidly stirring TTR solutions in conical microcentrifuge tubes. Under agitation, TTR formed β-rich aggregates and fibrils at a rate that was dependent upon protein concentration. The lag time before the onset of agitation-induced aggregation increases as the total TTR concentration is increased, consistent with a mechanism in which the tetramer first dissociates to form monomer that either partially unfolds to enter the aggregation pathway or reassociates to form tetramer. NMR spectra recorded at various time points during the lag phase revealed growth of an aggregation-prone intermediate trapped as a dynamically perturbed tetramer. Enhanced conformational fluctuations in the weak dimer-dimer interface suggest loosening of critical intersubunit contacts which likely destabilizes the agitated tetramer and predisposes it toward dissociation. These studies provide insights into the mechanism of aggregation of WT human TTR under near-physiological conditions.
Collapse
Affiliation(s)
- Irina Ritsch
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, La Jolla, CA92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, La Jolla, CA92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, La Jolla, CA92037
| |
Collapse
|
3
|
Tammara V, Das A. A Self-Consistent Molecular Mechanism of β 2-Microglobulin Aggregation. J Phys Chem B 2024; 128:12425-12442. [PMID: 39656191 DOI: 10.1021/acs.jpcb.4c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Despite the consensus on the origin of dialysis-related amyloidosis (DRA) being β2-microglobulin (β2m) aggregation, the debate on the underlying mechanism persists because of the continuous emergence of β2m variant- and pH-dependent contradictory results. By characterizing the native monomeric (initiation) and aggregated fibrillar (termination) states of β2m via a combination of two enhanced sampling approaches, we here propose a mechanism that explains the heterogeneous behavior of wild-type (WT) and pathogenic (V27M and D76N) β2m variants in physiological and disease-pertinent acidic pH environments. It appears that the higher retainment of monomeric native folds at neutral pH (native-like) distinguishes pathogenic β2m mutants from the WT (moderate loss). However, at acidic pH, all three variants behave similarly in producing a substantial amount of partially unfolded states (conformational switch, propensity), though with different extents (WT < V27M < D76N). Whereas at the fibrillar end, all β2m variants display a pH-dependent protofilament separation pathway and a higher protofilament binding affinity (stability) at acidic pH, where the relative order of binding affinity (WT < V27M < D76N) remains consistent with pH modulation. Combining these observations, we conclude that β2m variants possibly shift from native-like aggregation to conformational switch-initiated fibrillation as the pH is altered from neutral to acidic. The combined propensity-stability approach based on the initiation and termination points of β2m aggregation not only assists us in deciphering the mechanism but also emphasizes the protagonistic roles of both terminal points in the overall aggregation process.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Goto Y, Nakajima K, Yamamoto S, Yamaguchi K. Supersaturation, a Critical Factor Underlying Proteostasis of Amyloid Fibril Formation. J Mol Biol 2024; 436:168475. [PMID: 38311232 DOI: 10.1016/j.jmb.2024.168475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
From a physicochemical viewpoint, amyloid fibril formation is a phase transition from soluble to crystal-like sates limited by supersaturation. It occurs only above solubility (i.e., the solubility limit) coupled with a breakdown of supersaturation. Although many studies have examined the role of molecular chaperones in the context of proteostasis, the role of supersaturation has not been addressed. Moreover, although molecular chaperone-dependent disaggregations have been reported for preformed amyloid fibrils, amyloid fibrils will not dissolve above the solubility of monomers, even if agitations fragment long fibrils to shorter amyloid particles. On the other hand, on considering a reversible and coupled equilibrium of interactions, folding/unfolding and amyloid formation/disaggregation, molecules stabilizing native states can work as a disaggregase reversing the amyloid fibrils to monomers. It is likely that the proteostasis network has various intra- and extracellular components which disaggregate preformed amyloid fibrils as well as prevent amyloid formation. Further studies with a view of solubility and supersaturation will be essential for comprehensive understanding of proteostasis.
Collapse
Affiliation(s)
- Yuji Goto
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kichitaro Nakajima
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keiichi Yamaguchi
- Microsonochemistry Joint Research Chair, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Raimondi S, Faravelli G, Nocerino P, Mondani V, Baruffaldi A, Marchese L, Mimmi MC, Canetti D, Verona G, Caterino M, Ruoppolo M, Mangione PP, Bellotti V, Lavatelli F, Giorgetti S. Human wild-type and D76N β 2-microglobulin variants are significant proteotoxic and metabolic stressors for transgenic C. elegans. FASEB Bioadv 2023; 5:484-505. [PMID: 37936921 PMCID: PMC10626158 DOI: 10.1096/fba.2023-00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
β2-microglobulin (β2-m) is a plasma protein derived from physiological shedding of the class I major histocompatibility complex (MHCI), causing human systemic amyloidosis either due to persistently high concentrations of the wild-type (WT) protein in hemodialyzed patients, or in presence of mutations, such as D76N β2-m, which favor protein deposition in the adulthood, despite normal plasma levels. Here we describe a new transgenic Caenorhabditis elegans (C. elegans) strain expressing human WT β2-m at high concentrations, mimicking the condition that underlies dialysis-related amyloidosis (DRA) and we compare it to a previously established strain expressing the highly amyloidogenic D76N β2-m at lower concentrations. Both strains exhibit behavioral defects, the severity of which correlates with β2-m levels rather than with the presence of mutations, being more pronounced in WT β2-m worms. β2-m expression also has a deep impact on the nematodes' proteomic and metabolic profiles. Most significantly affected processes include protein degradation and stress response, amino acids metabolism, and bioenergetics. Molecular alterations are more pronounced in worms expressing WT β2-m at high concentration compared to D76N β2-m worms. Altogether, these data show that β2-m is a proteotoxic protein in vivo also in its wild-type form, and that concentration plays a key role in modulating pathogenicity. Our transgenic nematodes recapitulate the distinctive features subtending DRA compared to hereditary β2-m amyloidosis (high levels of non-mutated β2-m vs. normal levels of variant β2-m) and provide important clues on the molecular bases of these human diseases.
Collapse
Affiliation(s)
- Sara Raimondi
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
| | - Giulia Faravelli
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
| | - Paola Nocerino
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
| | - Valentina Mondani
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
| | - Alma Baruffaldi
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
| | - Loredana Marchese
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
- Research Department Fondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Maria Chiara Mimmi
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
| | - Diana Canetti
- Centre for Amyloidosis, Division of MedicineUniversity College LondonLondonUK
| | - Guglielmo Verona
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
- Centre for Amyloidosis, Division of MedicineUniversity College LondonLondonUK
| | - Marianna Caterino
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples "Federico II"NaplesItaly
- CEINGE – Biotecnologie Avanzate s.c.a.r.l.NaplesItaly
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples "Federico II"NaplesItaly
- CEINGE – Biotecnologie Avanzate s.c.a.r.l.NaplesItaly
| | - P. Patrizia Mangione
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
- Research Department Fondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Vittorio Bellotti
- Research Department Fondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Francesca Lavatelli
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
- Research Department Fondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of BiochemistryUniversity of PaviaPaviaItaly
- Research Department Fondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
6
|
Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Disease-relevant β 2-microglobulin variants share a common amyloid fold. Nat Commun 2023; 14:1190. [PMID: 36864041 PMCID: PMC9981686 DOI: 10.1038/s41467-023-36791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
β2-microglobulin (β2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of β2m result in diseases with distinct pathologies. β2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst β2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aβ.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Aelin Therapeutics, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Roberto Maya Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, SK10 2XR, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Bicycle Therapeutics, Blocks A & B, Portway Building, Grant Park, Abingdon, Cambridge, CB21 6GS, UK
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
7
|
Wilson MR, Satapathy S, Vendruscolo M. Extracellular protein homeostasis in neurodegenerative diseases. Nat Rev Neurol 2023; 19:235-245. [PMID: 36828943 DOI: 10.1038/s41582-023-00786-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
The protein homeostasis (proteostasis) system encompasses the cellular processes that regulate protein synthesis, folding, concentration, trafficking and degradation. In the case of intracellular proteostasis, the identity and nature of these processes have been extensively studied and are relatively well known. By contrast, the mechanisms of extracellular proteostasis are yet to be fully elucidated, although evidence is accumulating that their age-related progressive impairment might contribute to neuronal death in neurodegenerative diseases. Constitutively secreted extracellular chaperones are emerging as key players in processes that operate to protect neurons and other brain cells by neutralizing the toxicity of extracellular protein aggregates and promoting their safe clearance and disposal. Growing evidence indicates that these extracellular chaperones exert multiple effects to promote cell viability and protect neurons against pathologies arising from the misfolding and aggregation of proteins in the synaptic space and interstitial fluid. In this Review, we outline the current knowledge of the mechanisms of extracellular proteostasis linked to neurodegenerative diseases, and we examine the latest understanding of key molecules and processes that protect the brain from the pathological consequences of extracellular protein aggregation and proteotoxicity. Finally, we contemplate possible therapeutic opportunities for neurodegenerative diseases on the basis of this emerging knowledge.
Collapse
Affiliation(s)
- Mark R Wilson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Sandeep Satapathy
- Blavatnik Institute of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Prokaeva T, Joshi T, Klimtchuk ES, Gibson VM, Spencer B, Siddiqi O, Nedelkov D, Hu Y, Berk JL, Cuddy SAM, Dasari S, Chiu A, Choate LA, McPhail ED, Cui H, Chen H, Burks EJ, Sanchorawala V, Connors LH. A novel substitution of proline (P32L) destabilises β2-microglobulin inducing hereditary systemic amyloidosis. Amyloid 2022; 29:255-262. [PMID: 35575118 DOI: 10.1080/13506129.2022.2072199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND β2-microglobulin amyloidosis was first described in the 1980s as a protein deposition disease associated with long-term haemodialysis. More recently, two inherited forms resulting from separate point mutations in the β2-microglobulin gene have been identified. In this report, we detail a novel β2M variant, P32L, caused by a unique dinucleotide mutation that is linked to systemic hereditary β2-microglobulin amyloidosis. METHODS Three family members from a Portuguese kinship featured cardiomyopathy, requiring organ transplantation in one case, along with soft tissue involvement; other involvements included gastrointestinal, neuropathic and sicca syndrome. In vitro studies with recombinant P32L, P32G, D76N and wild-type β2-microglobulin were undertaken to compare the biophysical properties of the proteins. RESULTS The P32L variant was caused by the unique heterozygous dinucleotide mutation c.154_155delinsTT. Amyloid disease featured lowered serum β2-microglobulin levels with near equal amounts of circulating P32L and wild-type proteins; amyloid deposits were composed exclusively of P32L variant protein. In vitro studies of P32L demonstrated thermodynamic and chemical instability and enhanced susceptibility to proteolysis with rapid formation of pre-fibrillar oligomeric structures by N- and C-terminally truncated species under physiological conditions. CONCLUSIONS This work provides both clinical and experimental evidence supporting the critical role of P32 residue replacement in β2M amyloid fibrillogenesis.
Collapse
Affiliation(s)
- Tatiana Prokaeva
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Tracy Joshi
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Elena S Klimtchuk
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Victoria M Gibson
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Brian Spencer
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Omar Siddiqi
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | | | | | - John L Berk
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA
| | - Sarah A M Cuddy
- Amyloidosis Program, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - April Chiu
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lauren A Choate
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ellen D McPhail
- Department of Laboratory of Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Haili Cui
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hui Chen
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Lawreen H Connors
- Amyloidosis Center, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
Maya-Martinez R, Xu Y, Guthertz N, Walko M, Karamanos TK, Sobott F, Breeze AL, Radford SE. Dimers of D76N-β 2-microglobulin display potent antiamyloid aggregation activity. J Biol Chem 2022; 298:102659. [PMID: 36328246 PMCID: PMC9712992 DOI: 10.1016/j.jbc.2022.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022] Open
Abstract
Self-association of WT β2-microglobulin (WT-β2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-β2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-β2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-β2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-β2m. We show that the crosslinked D76N-β2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-β2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-β2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-β2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.
Collapse
Affiliation(s)
- Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
10
|
Nakajima K, Yamaguchi K, Noji M, Aguirre C, Ikenaka K, Mochizuki H, Zhou L, Ogi H, Ito T, Narita I, Gejyo F, Naiki H, Yamamoto S, Goto Y. Macromolecular crowding and supersaturation protect hemodialysis patients from the onset of dialysis-related amyloidosis. Nat Commun 2022; 13:5689. [PMID: 36192385 PMCID: PMC9530240 DOI: 10.1038/s41467-022-33247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dialysis-related amyloidosis (DRA), a serious complication among long-term hemodialysis patients, is caused by amyloid fibrils of β2-microglobulin (β2m). Although high serum β2m levels and a long dialysis vintage are the primary and secondary risk factors for the onset of DRA, respectively, patients with these do not always develop DRA, indicating that there are additional risk factors. To clarify these unknown factors, we investigate the effects of human sera on β2m amyloid fibril formation, revealing that sera markedly inhibit amyloid fibril formation. Results from over 100 sera indicate that, although the inhibitory effects of sera deteriorate in long-term dialysis patients, they are ameliorated by maintenance dialysis treatments in the short term. Serum albumin prevents amyloid fibril formation based on macromolecular crowding effects, and decreased serum albumin concentration in dialysis patients is a tertiary risk factor for the onset of DRA. We construct a theoretical model assuming cumulative effects of the three risk factors, suggesting the importance of monitoring temporary and accumulated risks to prevent the development of amyloidosis, which occurs based on supersaturation-limited amyloid fibril formation in a crowded milieu.
Collapse
Affiliation(s)
- Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan.,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Noji
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshidahonmatsu-cho, Sakyo-ku, Kyoto, 606-8316, Japan
| | - César Aguirre
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Lianjie Zhou
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toru Ito
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan
| | - Fumitake Gejyo
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, 956-8603, Japan
| | - Hironobu Naiki
- Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8510, Japan.
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Osaka, 565-0871, Japan. .,Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Hunashal Y, Percipalle M, Molnár T, Kardos J, Percipalle P, Esposito G. Approaching Protein Aggregation and Structural Dynamics by Equilibrium and Nonequilibrium Paramagnetic Perturbation. Anal Chem 2022; 94:10949-10958. [PMID: 35877130 DOI: 10.1021/acs.analchem.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a μs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Dipartimento di Area Medica, Universita' di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Mathias Percipalle
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Chemistry and Magnetic Resonance Center, University of Florence, 50019 Florence, Italy
| | - Tamás Molnár
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Jòzsef Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Molecular Bioscience, The Wenner Gren Institute Stockholm University, Stockholm SE-106 91, Sweden
| | - Gennaro Esposito
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,INBB, Viale Medaglie d'Oro 305, Roma 00136, Italy
| |
Collapse
|
12
|
Faravelli G, Mondani V, Mangione PP, Raimondi S, Marchese L, Lavatelli F, Stoppini M, Corazza A, Canetti D, Verona G, Obici L, Taylor GW, Gillmore JD, Giorgetti S, Bellotti V. Amyloid Formation by Globular Proteins: The Need to Narrow the Gap Between in Vitro and in Vivo Mechanisms. Front Mol Biosci 2022; 9:830006. [PMID: 35237660 PMCID: PMC8883118 DOI: 10.3389/fmolb.2022.830006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/20/2022] [Indexed: 11/15/2022] Open
Abstract
The globular to fibrillar transition of proteins represents a key pathogenic event in the development of amyloid diseases. Although systemic amyloidoses share the common characteristic of amyloid deposition in the extracellular matrix, they are clinically heterogeneous as the affected organs may vary. The observation that precursors of amyloid fibrils derived from circulating globular plasma proteins led to huge efforts in trying to elucidate the structural events determining the protein metamorphosis from their globular to fibrillar state. Whereas the process of metamorphosis has inspired poets and writers from Ovid to Kafka, protein metamorphism is a more recent concept. It is an ideal metaphor in biochemistry for studying the protein folding paradigm and investigating determinants of folding dynamics. Although we have learned how to transform both normal and pathogenic globular proteins into fibrillar polymers in vitro, the events occurring in vivo, are far more complex and yet to be explained. A major gap still exists between in vivo and in vitro models of fibrillogenesis as the biological complexity of the disease in living organisms cannot be reproduced at the same extent in the test tube. Reviewing the major scientific attempts to monitor the amyloidogenic metamorphosis of globular proteins in systems of increasing complexity, from cell culture to human tissues, may help to bridge the gap between the experimental models and the actual pathological events in patients.
Collapse
Affiliation(s)
- Giulia Faravelli
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Mondani
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - P. Patrizia Mangione
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Sara Raimondi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesca Lavatelli
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Stoppini
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Alessandra Corazza
- Department of Medicine (DAME), University of Udine, Udine, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Graham W. Taylor
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
| | - Julian D. Gillmore
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, United Kingdom
| | - Sofia Giorgetti
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Vittorio Bellotti
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Wolfson Drug Discovery Unit, Division of Medicine, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, United Kingdom
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- *Correspondence: Vittorio Bellotti, ,
| |
Collapse
|
13
|
Dang H, Chen Z, Chen W, Luo X, Liu P, Wang L, Chen J, Tang X, Wang Z, Liang Y. The residues 4 to 6 at the N-terminus in particular modulate fibril propagation of β-microglobulin. Acta Biochim Biophys Sin (Shanghai) 2021; 54:187-198. [PMID: 35130623 PMCID: PMC9909321 DOI: 10.3724/abbs.2021017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The ΔN6 truncation is the main posttranslational modification of β-microglobulin (βM) found in dialysis-related amyloid. Investigation of the interaction of wild-type (WT) βM with N-terminally truncated variants is therefore of medical relevance. However, it is unclear which residues among the six residues at the N-terminus are crucial to the interactions and the modulation of amyloid fibril propagation of βM. We herein analyzed homo- and heterotypic seeding of amyloid fibrils of WT human βM and its N-terminally-truncated variants ΔN1 to ΔN6, lacking up to six residues at the N-terminus. At acidic pH 2.5, we produced amyloid fibrils from recombinant, WT βM and its six truncated variants, and found that ΔN6 βM fibrils exhibit a significantly lower conformational stability than WT βM fibrils. Importantly, under more physiological conditions (pH 6.2), we assembled amyloid fibrils only from recombinant, ΔN4, ΔN5, and ΔN6 βM but not from WT βM and its three truncated variants ΔN1 to ΔN3. Notably, the removal of the six, five or four residues at the N-terminus leads to enhanced fibril formation, and homo- and heterotypic seeding of ΔN6 fibrils strongly promotes amyloid fibril formation of WT βM and its six truncated variants, including at more physiological pH 6.2. Collectively, these results demonstrated that the residues 4 to 6 at the N-terminus particularly modulate amyloid fibril propagation of βM and the interactions of WT βM with N-terminally truncated variants, potentially indicating the direct relevance to the involvement of the protein's aggregation in dialysis-related amyloidosis.
Collapse
Affiliation(s)
- Haibin Dang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Zhixian Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Wang Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Xudong Luo
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | | | - Liqiang Wang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | - Jie Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China
| | | | | | - Yi Liang
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesWuhan UniversityWuhan 430072China2.Wuhan University Shenzhen Research InstituteShenzhen 518057Chinaand 3.School of Civil EngineeringWuhan UniversityWuhan430072China,Correspondence address. Tel: +86-27-68754902; E-mail:
| |
Collapse
|
14
|
Bulyáki É, Kun J, Molnár T, Papp A, Micsonai A, Vadászi H, Márialigeti B, Kovács AI, Gellén G, Yamaguchi K, Lin Y, So M, Józsi M, Schlosser G, Lee YH, Liliom K, Goto Y, Kardos J. Pathogenic D76N Variant of β 2-Microglobulin: Synergy of Diverse Effects in Both the Native and Amyloid States. BIOLOGY 2021; 10:biology10111197. [PMID: 34827190 PMCID: PMC8614874 DOI: 10.3390/biology10111197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Elevated β2-microglobulin (β2m) serum levels cause serious complications in patients on long-term kidney dialysis by depositing in the form of amyloid fibrils in the osteoarticular system. Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m mutant exhibiting normal serum levels and a distinct, visceral deposition pattern. D76N β2m showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Despite the extensive research, the molecular bases of the aberrant aggregation of β2m in vivo remains elusive. Here, using a variety of biophysical techniques, we investigated the role of the pathogenic D76N mutation in the amyloid formation of β2m by point mutations affecting the stabilizing ion-pairs of β2m. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular matrix proteins. Understanding the underlying molecular mechanisms might help to find target points for effective treatments against diseases associated with the deleterious aggregation of proteins. Abstract β2-microglobulin (β2m), the light chain of the MHC-I complex, is associated with dialysis-related amyloidosis (DRA). Recently, a hereditary systemic amyloidosis was discovered, caused by a naturally occurring D76N β2m variant, which showed a structure remarkably similar to the wild-type (WT) protein, albeit with decreased thermodynamic stability and increased amyloidogenicity. Here, we investigated the role of the D76N mutation in the amyloid formation of β2m by point mutations affecting the Asp76-Lys41 ion-pair of WT β2m and the charge cluster on Asp38. Using a variety of biophysical techniques, we investigated the conformational stability and partial unfolding of the native state of the variants, as well as their amyloidogenic propensity and the stability of amyloid fibrils under various conditions. Furthermore, we studied the intermolecular interactions of WT and mutant proteins with various binding partners that might have in vivo relevance. We found that, relative to WT β2m, the exceptional amyloidogenicity of the pathogenic D76N β2m variant is realized by the deleterious synergy of diverse effects of destabilized native structure, higher sensitivity to negatively charged amphiphilic molecules (e.g., lipids) and polyphosphate, more effective fibril nucleation, higher conformational stability of fibrils, and elevated affinity for extracellular components, including extracellular matrix proteins.
Collapse
Affiliation(s)
- Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Tamás Molnár
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Alexandra Papp
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
| | - Borbála Márialigeti
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Attila István Kovács
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (T.M.); (B.M.); (A.I.K.)
| | - Gabriella Gellén
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
| | - Yuxi Lin
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
| | - Masatomo So
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (A.P.); (M.J.)
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Young-Ho Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (Y.L.); (Y.-H.L.)
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Korea
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University (CNU), Daejeon 34134, Korea
- Research Headquarters, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Károly Liliom
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka 565-0871, Japan; (K.Y.); (Y.G.)
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan; or
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (É.B.); (J.K.); (A.M.); (H.V.)
- Correspondence:
| |
Collapse
|
15
|
Oliveira NFB, Rodrigues FEP, Vitorino JNM, Loureiro RJS, Faísca PFN, Machuqueiro M. Predicting stable binding modes from simulated dimers of the D76N mutant of β 2-microglobulin. Comput Struct Biotechnol J 2021; 19:5160-5169. [PMID: 34630936 PMCID: PMC8473664 DOI: 10.1016/j.csbj.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
β2m D76N mutant populates an aggregation-prone monomer (I2) with unstructured termini. MD and MM-PBSA indicate that I2 dimers are stabilized by hydrophobic interactions. The termini regions and BC- and DE-loops are prevalent in the most stable interfaces. The most stable dimer has a limited growth potential without structural rearrangement.
The D76N mutant of the β2m protein is a biologically motivated model system to study protein aggregation. There is strong experimental evidence, supported by molecular simulations, that D76N populates a highly dynamic conformation (which we originally named I2) that exposes aggregation-prone patches as a result of the detachment of the two terminal regions. Here, we use Molecular Dynamics simulations to study the stability of an ensemble of dimers of I2 generated via protein–protein docking. MM-PBSA calculations indicate that within the ensemble of investigated dimers the major contribution to interface stabilization at physiological pH comes from hydrophobic interactions between apolar residues. Our structural analysis also reveals that the interfacial region associated with the most stable binding modes are particularly rich in residues pertaining to both the N- and C-terminus, as well residues from the BC- and DE-loops. On the other hand, the less stable interfaces are stabilized by intermolecular interactions involving residues from the CD- and EF-loops. By focusing on the most stable binding modes, we used a simple geometric rule to propagate the corresponding dimer interfaces. We found that, in the absence of any kind of structural rearrangement occurring at an early stage of the oligomerization pathway, some interfaces drive a self-limited growth process, while others can be propagated indefinitely allowing the formation of long, polymerized chains. In particular, the interfacial region of the most stable binding mode reported here falls in the class of self-limited growth.
Collapse
Affiliation(s)
- Nuno F B Oliveira
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - Filipe E P Rodrigues
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - João N M Vitorino
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| | - Rui J S Loureiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal
| | - Patrícia F N Faísca
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Physics, Faculty of Sciences, University of Lisbon, Lisbon 1749-016, Portugal
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, Lisboa 1749-016, Portugal.,Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa 1749-016, Portugal
| |
Collapse
|
16
|
Good SC, Dewison KM, Radford SE, van Oosten-Hawle P. Global Proteotoxicity Caused by Human β 2 Microglobulin Variants Impairs the Unfolded Protein Response in C. elegans. Int J Mol Sci 2021; 22:10752. [PMID: 34639093 PMCID: PMC8509642 DOI: 10.3390/ijms221910752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Aggregation of β2 microglobulin (β2m) into amyloid fibrils is associated with systemic amyloidosis, caused by the deposition of amyloid fibrils containing the wild-type protein and its truncated variant, ΔN6 β2m, in haemo-dialysed patients. A second form of familial systemic amyloidosis caused by the β2m variant, D76N, results in amyloid deposits in the viscera, without renal dysfunction. Although the folding and misfolding mechanisms of β2 microglobulin have been widely studied in vitro and in vivo, we lack a comparable understanding of the molecular mechanisms underlying toxicity in a cellular and organismal environment. Here, we established transgenic C. elegans lines expressing wild-type (WT) human β2m, or the two highly amyloidogenic naturally occurring variants, D76N β2m and ΔN6 β2m, in the C. elegans bodywall muscle. Nematodes expressing the D76N β2m and ΔN6 β2m variants exhibit increased age-dependent and cell nonautonomous proteotoxicity associated with reduced motility, delayed development and shortened lifespan. Both β2m variants cause widespread endogenous protein aggregation contributing to the increased toxicity in aged animals. We show that expression of β2m reduces the capacity of C. elegans to cope with heat and endoplasmic reticulum (ER) stress, correlating with a deficiency to upregulate BiP/hsp-4 transcripts in response to ER stress in young adult animals. Interestingly, protein secretion in all β2m variants is reduced, despite the presence of the natural signal sequence, suggesting a possible link between organismal β2m toxicity and a disrupted ER secretory metabolism.
Collapse
Affiliation(s)
| | | | | | - Patricija van Oosten-Hawle
- Faculty of Biological Sciences, School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.C.G.); (K.M.D.); (S.E.R.)
| |
Collapse
|
17
|
Canetti D, Nocerino P, Rendell NB, Botcher N, Gilbertson JA, Blanco A, Rowczenio D, Morelli A, Mangione PP, Corazza A, Verona G, Giorgetti S, Marchese L, Westermark P, Hawkins PN, Gillmore JD, Bellotti V, Taylor GW. Clinical ApoA-IV amyloid is associated with fibrillogenic signal sequence. J Pathol 2021; 255:311-318. [PMID: 34331462 PMCID: PMC9291309 DOI: 10.1002/path.5770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022]
Abstract
Apolipoprotein A‐IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA‐IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA‐IV signal sequence residues (p.18‐43 to p.20‐43) in 16/24 trypsin‐digested amyloid deposits but in only 1/266 non‐ApoA‐IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA‐IV amyloid was first described, and in plasma from a single cardiac ApoA‐IV amyloidosis patient. The most common signal‐containing peptide observed in ApoA‐IV amyloid, p.20‐43, and to a far lesser extent the N‐terminal peptide, p.21‐43, were fibrillogenic in vitro at physiological pH, generating Congo red‐positive fibrils. The addition of a single signal‐derived alanine residue to the N‐terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA‐IV‐associated pathologies. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Diana Canetti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Paola Nocerino
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Nicola Botcher
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Janet A Gilbertson
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Angel Blanco
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Dorota Rowczenio
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Alessandra Morelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip N Hawkins
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Julian D Gillmore
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| |
Collapse
|
18
|
Cornwell O, Ault JR, Bond NJ, Radford SE, Ashcroft AE. Investigation of D76N β 2-Microglobulin Using Protein Footprinting and Structural Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1583-1592. [PMID: 33586970 PMCID: PMC9282677 DOI: 10.1021/jasms.0c00438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
NMR studies and X-ray crystallography have shown that the structures of the 99-residue amyloidogenic protein β2-microglobulin (β2m) and its more aggregation-prone variant, D76N, are indistinguishable, and hence, the reason for the striking difference in their aggregation propensities remains elusive. Here, we have employed two protein footprinting methods, hydrogen-deuterium exchange (HDX) and fast photochemical oxidation of proteins (FPOP), in conjunction with ion mobility-mass spectrometry, to probe the differences in conformational dynamics of the two proteins. Using HDX-MS, a clear difference in HDX protection is observed between these two proteins in the E-F loop (residues 70-77) which contains the D76N substitution, with a significantly higher deuterium uptake being observed in the variant protein. Conversely, following FPOP-MS only minimal differences in the level of oxidation between the two proteins are observed in the E-F loop region, suggesting only modest side-chain movements in that area. Together the HDX-MS and FPOP-MS data suggest that a tangible perturbation to the hydrogen-bonding network in the E-F loop has taken place in the D76N variant and furthermore illustrate the benefit of using multiple complementary footprinting methods to address subtle, but possibly biologically important, differences between highly similar proteins.
Collapse
Affiliation(s)
- Owen Cornwell
- Biopharmaceuticals
R & D, AstraZeneca, Granta Park, Cambridge CB21 6GP, U.K.
| | - James R. Ault
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nicholas J. Bond
- Biopharmaceuticals
R & D, AstraZeneca, Granta Park, Cambridge CB21 6GP, U.K.
| | - Sheena E. Radford
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Alison E. Ashcroft
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
19
|
Morand J, Nunes A, Faísca PFN. The folding space of protein β2-microglobulin is modulated by a single disulfide bridge. Phys Biol 2021; 18. [PMID: 34098544 DOI: 10.1088/1478-3975/ac08ec] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
Protein beta-2-microglobulin (β2m) is classically considered the causative agent of dialysis related amyloidosis, a conformational disorder that affects patients undergoing long-term hemodialysis. The wild type (WT) form, the ΔN6 structural variant, and the D76N mutant have been extensively used as model systems ofβ2m aggregation. In all of them, the native structure is stabilized by a disulfide bridge between the sulphur atoms of the cysteine residues 25 (at B strand) and 80 (at F strand), which has been considered fundamental inβ2m fibrillogenesis. Here, we use extensive discrete molecular dynamics simulations of a full atomistic structure-based model to explore the role of this disulfide bridge as a modulator of the folding space ofβ2m. In particular, by considering different models for the disulfide bridge, we explore the thermodynamics of the folding transition, and the formation of intermediate states that may have the potential to trigger the aggregation cascade. Our results show that the dissulfide bridge affects folding transition and folding thermodynamics of the considered model systems, although to different extents. In particular, when the interaction between the sulphur atoms is stabilized relative to the other intramolecular interactions, or even locked (i.e. permanently established), the WT form populates an intermediate state featuring a well preserved core and two unstructured termini, which was previously detected only for the D76N mutant. The formation of this intermediate state may have important implications in our understanding ofβ2m fibrillogenesis.
Collapse
Affiliation(s)
- Jules Morand
- Departamento de Física and BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, CampoGrande, Ed. C8, 1749-016 Lisboa, Portugal
| | - Ana Nunes
- Departamento de Física and BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, CampoGrande, Ed. C8, 1749-016 Lisboa, Portugal
| | - Patrícia F N Faísca
- Departamento de Física and BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, CampoGrande, Ed. C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
20
|
Pepys MB. Transthyretin amyloidosis: new answers but many questions. J Intern Med 2021; 289:933-935. [PMID: 33475212 DOI: 10.1111/joim.13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mark B Pepys
- Wolfson Drug Discovery Unit - UCL Royal Free Campus, London, UK
| |
Collapse
|
21
|
Sakurai K, Tomiyama R. Enhanced accessibility and hydrophobicity of amyloidogenic intermediates of the β2-microglobulin D76N mutant revealed by high-pressure experiments. J Biol Chem 2021; 296:100333. [PMID: 33508321 PMCID: PMC7950326 DOI: 10.1016/j.jbc.2021.100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 11/05/2022] Open
Abstract
β2-Microglobulin (β2m) is the causative protein of dialysis-related amyloidosis. Its unfolding mainly proceeds along the pathway of NC →UC ⇄ UT, whereas refolding follows the UT → IT (→NT) →NC pathway, in which N, I, and U are the native, intermediate, and unfolded states, respectively, with the Pro32 peptidyl-prolyl bond in cis or trans conformation as indicated by the subscript. It is noted that the IT state is a putative amyloidogenic precursor state. Several aggregation-prone variants of β2m have been reported to date. One of these variants is D76N β2m, which is a naturally occurring amyloidogenic mutant. To elucidate the molecular mechanisms contributing to the enhanced amyloidogenicity of the mutant, we investigated the equilibrium and kinetic transitions of pressure-induced folding/unfolding equilibria in the wild type and D76N mutant by monitoring intrinsic tryptophan and 1-anilino-8-naphthalene sulfonate fluorescence. An analysis of kinetic data revealed that the different folding/unfolding behaviors of the wild type and D76N mutant were due to differences in the activation energy between the unfolded and the intermediate states as well as stability of the native state, leading to more rapid accumulation of IT state for D76N in the refolding process. In addition, the IT state was found to assume more hydrophobic nature. These changes induced the enhanced amyloidogenicity of the D76N mutant and the distinct pathogenic symptoms of patients. Our results suggest that the stabilization of the native state will be an effective approach for suppressing amyloid fibril formation of this mutant.
Collapse
Affiliation(s)
- Kazumasa Sakurai
- High Pressure Protein Research Center, Institute of Advanced Technology, Kindai University, Wakayama, Japan; Department of Biotechnology, Faculty of Biology-oriented Science and Technology, Kindai University, Wakayama, Japan.
| | - Ryosuke Tomiyama
- Department of Biotechnology, Faculty of Biology-oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
22
|
Maschio MC, Fregoni J, Molteni C, Corni S. Proline isomerization effects in the amyloidogenic protein β2-microglobulin. Phys Chem Chem Phys 2021; 23:356-367. [DOI: 10.1039/d0cp04780e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein β2-microglobulin can aggregate in insoluble amyloid fibrils. By relying on extensive sampling simulations, we study the Pro32 isomerization as a possible triggering factor leading to structural modifications in β2-m.
Collapse
Affiliation(s)
| | - Jacopo Fregoni
- CNR-Nano S3
- Modena
- Italy
- Department of Chemical Sciences
- University of Padova
| | - Carla Molteni
- Department of Physics
- King's College London
- Strand
- London WC2R 2LS
- UK
| | - Stefano Corni
- CNR-Nano S3
- Modena
- Italy
- Department of Chemical Sciences
- University of Padova
| |
Collapse
|
23
|
Glancey G. Modeling the transfer of low molecular weight plasma proteins during hemodialysis and online hemodiafiltration. Artif Organs 2020; 45:419-426. [PMID: 33001450 DOI: 10.1111/aor.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/16/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
Replacing the renal excretion of low molecular weight proteins (LMWP) by extracorporeal dialysis (dialysis) treatment poses technological challenges. Hemodialyzers with sieving coefficients for LMWP that match or even exceed those of the glomerular membrane barrier are commercially available; however, the associated losses of albumin are much higher than physiological levels of renal albumin excretion. A unidimensional, convection-diffusion model of solute transfer has been developed to analyze and quantitate LMWP extraction and albumin loss during dialysis treatment. The model is applicable to any extracorporeal dialysis technique and any type of hemodialyzer. Clinical extraction data for beta 2 microglobin (β2M, 11.6 kDa), myoglobin (16.7 kDa) and interleukin 6 (IL6, 21-30 kDa) from 15 patients on hemodiafiltration (HDF) using a Nipro Elisio H series high flux hemodialyzer were analyzed using the model and values for the convection and mass transfer coefficients were derived. The model predicts that under normal clinical operating conditions, given equal amounts of β2M removal, albumin losses are higher using pre-dilution rather than post-dilution HDF. The model can be used to provide estimates of the internal filtration rates of hemodialyzers operating in vivo.
Collapse
Affiliation(s)
- Gerald Glancey
- Renal Unit, Ipswich Hospital, East Suffolk and North Essex Foundation Trust, Ipswich, UK
| |
Collapse
|
24
|
Insights into a Protein-Nanoparticle System by Paramagnetic Perturbation NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25215187. [PMID: 33171781 PMCID: PMC7664681 DOI: 10.3390/molecules25215187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Background: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, β2-microglobulin (β2m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit β2m fibril formation in vitro. Methods: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on β2m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. Results: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of β2m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. Conclusions: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions.
Collapse
|
25
|
Loureiro RJS, Faísca PFN. The Early Phase of β2-Microglobulin Aggregation: Perspectives From Molecular Simulations. Front Mol Biosci 2020; 7:578433. [PMID: 33134317 PMCID: PMC7550760 DOI: 10.3389/fmolb.2020.578433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Protein β2-microglobulin is the causing agent of two amyloidosis, dialysis related amyloidosis (DRA), affecting the bones and cartilages of individuals with chronic renal failure undergoing long-term hemodialysis, and a systemic amyloidosis, found in one French family, which impairs visceral organs. The protein’s small size and its biomedical significance attracted the attention of theoretical scientists, and there are now several studies addressing its aggregation mechanism in the context of molecular simulations. Here, we review the early phase of β2-microglobulin aggregation, by focusing on the identification and structural characterization of monomers with the ability to trigger aggregation, and initial small oligomers (dimers, tetramers, hexamers etc.) formed in the so-called nucleation phase. We focus our analysis on results from molecular simulations and integrate our views with those coming from in vitro experiments to provide a broader perspective of this interesting field of research. We also outline directions for future computer simulation studies.
Collapse
Affiliation(s)
- Rui J S Loureiro
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Patrícia F N Faísca
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal.,Department of Physics, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| |
Collapse
|
26
|
Sala BM, Le Marchand T, Pintacuda G, Camilloni C, Natalello A, Ricagno S. Conformational Stability and Dynamics in Crystals Recapitulate Protein Behavior in Solution. Biophys J 2020; 119:978-988. [PMID: 32758421 DOI: 10.1016/j.bpj.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022] Open
Abstract
A growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to characterize molecular properties of proteins in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of transiently populated states (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold; the low fold stability of the native state is a hallmark of aggregation propensity. It remains unclear, however, to which extent biophysical properties of proteins such as the presence of transient conformations or protein stability characterized in crystallo reflect the protein behavior that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, β2-microglobulin in solution and in microcrystalline state. By combining NMR chemical shifts with molecular dynamics simulations, we confirmed that conformational dynamics of β2-microglobulin native state in the crystal lattice is in keeping with what observed in solution. A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution. Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterization of processes such as unfolding and aggregation.
Collapse
Affiliation(s)
| | - Tanguy Le Marchand
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon), Université de Lyon, Villeurbanne, France
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon), Université de Lyon, Villeurbanne, France
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
27
|
Smith HI, Guthertz N, Cawood EE, Maya-Martinez R, Breeze AL, Radford SE. The role of the I T-state in D76N β 2-microglobulin amyloid assembly: A crucial intermediate or an innocuous bystander? J Biol Chem 2020; 295:12474-12484. [PMID: 32661194 PMCID: PMC7458819 DOI: 10.1074/jbc.ra120.014901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Indexed: 02/05/2023] Open
Abstract
The D76N variant of human β2-microglobulin (β2m) is the causative agent of a hereditary amyloid disease. Interestingly, D76N-associated amyloidosis has a distinctive pathology compared with aggregation of WT-β2m, which occurs in dialysis-related amyloidosis. A folding intermediate of WT-β2m, known as the IT-state, which contains a nonnative trans Pro-32, has been shown to be a key precursor of WT-β2m aggregation in vitro However, how a single amino acid substitution enhances the rate of aggregation of D76N-β2m and gives rise to a different amyloid disease remained unclear. Using real-time refolding experiments monitored by CD and NMR, we show that the folding mechanisms of WT- and D76N-β2m are conserved in that both proteins fold slowly via an IT-state that has similar structural properties. Surprisingly, however, direct measurement of the equilibrium population of IT using NMR showed no evidence for an increased population of the IT-state for D76N-β2m, ruling out previous models suggesting that this could explain its enhanced aggregation propensity. Producing a kinetically trapped analog of IT by deleting the N-terminal six amino acids increases the aggregation rate of WT-β2m but slows aggregation of D76N-β2m, supporting the view that although the folding mechanisms of the two proteins are conserved, their aggregation mechanisms differ. The results exclude the IT-state as the origin of the rapid aggregation of D76N-β2m, suggesting that other nonnative states must cause its high aggregation rate. The results highlight how a single substitution at a solvent-exposed site can affect the mechanism of aggregation and the resulting disease.
Collapse
Affiliation(s)
- Hugh I Smith
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
28
|
Delfi M, Leone S, Emendato A, Ami D, Borriello M, Natalello A, Iannuzzi C, Picone D. Understanding the self-assembly pathways of a single chain variant of monellin: A first step towards the design of sweet nanomaterials. Int J Biol Macromol 2020; 152:21-29. [PMID: 32088237 DOI: 10.1016/j.ijbiomac.2020.02.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Peptides and proteins possess an inherent tendency to self-assemble, prompting the formation of amyloid aggregates from their soluble and functional states. Amyloids are linked to many devastating diseases, but self-assembling proteins can also represent formidable tools to produce new and sustainable biomaterials for biomedical and biotechnological applications. The mechanism of fibrillar aggregation, which influences the morphology and the properties of the protein aggregates, depend on factors such as pH, ionic strength, temperature, agitation, and protein concentration. We have here used intensive mechanical agitation, with or without beads, to prompt the aggregation of the single-chain derivative of the plant protein monellin, named MNEI, which is a well characterized sweet protein. Transmission electron microscopy confirmed the formation of fibrils several micrometers long, morphologically different from the previously characterized fibers of MNEI. Changes in the protein secondary structures during the aggregation process were monitored by Fourier transform infrared spectroscopy, which detected differences in the conformation of the final aggregates obtained under mechanical agitation. Moreover, soluble oligomers could be detected in the early phases of aggregation by polyacrylamide gel-electrophoresis. These findings emphasize the existence of multiple pathways of fibrillar aggregation for MNEI, which could be exploited for the design of innovative protein-based biomaterials.
Collapse
Affiliation(s)
- Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Serena Leone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Alessandro Emendato
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Margherita Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Clara Iannuzzi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
29
|
Horváth D, Menyhárd DK, Perczel A. Protein Aggregation in a Nutshell: The Splendid Molecular Architecture of the Dreaded Amyloid Fibrils. Curr Protein Pept Sci 2020; 20:1077-1088. [PMID: 31553291 DOI: 10.2174/1389203720666190925102832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 11/22/2022]
Abstract
The recent high-resolution structures of amyloid fibrils show that the organization of peptide segments into amyloid aggregate architecture is a general process, though the morphology is more complex and intricate than suspected previously. The amyloid fibrils are often cytotoxic, accumulating as intracellular inclusions or extracellular plaques and have the ability to interfere with cellular physiology causing various cellular malfunctions. At the same time, the highly ordered amyloid structures also present an opportunity for nature to store and protect peptide chains under extreme conditions - something that might be used for designing storage, formulation, and delivery of protein medications or for contriving bio-similar materials of great resistance or structure-ordering capacity. Here we summarize amyloid characteristics; discussing the basic morphologies, sequential requirements and 3D-structure that are required for the understanding of this newly (re)discovered protein structure - a prerequisite for developing either inhibitors or promoters of amyloid-forming processes.
Collapse
Affiliation(s)
- Dániel Horváth
- Laboratory of Structural Chemistry & Biology and MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eotvos Lorand University, H-1518, 112, PO Box 32, Budapest, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry & Biology and MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eotvos Lorand University, H-1518, 112, PO Box 32, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry & Biology and MTA-ELTE Protein Modeling Research Group at the Institute of Chemistry, Eotvos Lorand University, H-1518, 112, PO Box 32, Budapest, Hungary
| |
Collapse
|
30
|
Hoop CL, Zhu J, Bhattacharya S, Tobita CA, Radford SE, Baum J. Collagen I Weakly Interacts with the β-Sheets of β 2-Microglobulin and Enhances Conformational Exchange To Induce Amyloid Formation. J Am Chem Soc 2020; 142:1321-1331. [PMID: 31875390 PMCID: PMC7135851 DOI: 10.1021/jacs.9b10421] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Amyloidogenesis is
significant in both protein function and pathology.
Amyloid formation of folded, globular proteins is commonly initiated
by partial or complete unfolding. However, how this unfolding event
is triggered for proteins that are otherwise stable in their native
environments is not well understood. The accumulation of the immunoglobulin
protein β2-microglobulin (β2m) into
amyloid plaques in the joints of long-term hemodialysis patients is
the hallmark of dialysis-related amyloidosis (DRA). While β2m does not form amyloid unassisted near neutral pH in vitro, the localization of β2m deposits
to joint spaces suggests a role for the local extracellular matrix
(ECM) proteins, specifically collagens, in promoting amyloid formation.
Indeed, collagen and other ECM components have been observed to facilitate
β2m amyloid formation, but the large size and anisotropy
of the complex, combined with the low affinity of these interactions,
have limited atomic-level elucidation of the amyloid-promoting mechanism(s)
by these molecules. Using solution NMR approaches that uniquely probe
weak interactions in large molecular weight complexes, we are able
to map the binding interfaces on β2m for collagen
I and detect collagen I-induced μs–ms time-scale dynamics
in the β2m backbone. By combining solution NMR relaxation
methods and 15N-dark-state exchange saturation transfer
experiments, we propose a model in which weak, multimodal collagen
I−β2m interactions promote exchange with a
minor population of amyloid-competent species to induce fibrillogenesis.
The results portray the intimate role of the environment in switching
an innocuous protein into an amyloid-competent state, rationalizing
the localization of amyloid deposits in DRA.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Jie Zhu
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | | | - Caitlyn A Tobita
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences , University of Leeds , Leeds LS2 9JT , U.K
| | - Jean Baum
- Department of Chemistry and Chemical Biology , Rutgers University , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
31
|
Faravelli G, Raimondi S, Marchese L, Partridge FA, Soria C, Mangione PP, Canetti D, Perni M, Aprile FA, Zorzoli I, Di Schiavi E, Lomas DA, Bellotti V, Sattelle DB, Giorgetti S. C. elegans expressing D76N β 2-microglobulin: a model for in vivo screening of drug candidates targeting amyloidosis. Sci Rep 2019; 9:19960. [PMID: 31882874 PMCID: PMC6934621 DOI: 10.1038/s41598-019-56498-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023] Open
Abstract
The availability of a genetic model organism with which to study key molecular events underlying amyloidogenesis is crucial for elucidating the mechanism of the disease and the exploration of new therapeutic avenues. The natural human variant of β2-microglobulin (D76N β2-m) is associated with a fatal familial form of systemic amyloidosis. Hitherto, no animal model has been available for studying in vivo the pathogenicity of this protein. We have established a transgenic C. elegans line, expressing the human D76N β2-m variant. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and the algorithm Paragon, we were able to detect growth and motility impairment in D76N β2-m expressing worms. We also demonstrated the specificity of the β2-m variant in determining the pathological phenotype by rescuing the wild type phenotype when β2-m expression was inhibited by RNA interference (RNAi). Using this model, we have confirmed the efficacy of doxycycline, an inhibitor of the aggregation of amyloidogenic proteins, in rescuing the phenotype. In future, this C. elegans model, in conjunction with the INVAPP/Paragon system, offers the prospect of high-throughput chemical screening in the search for new drug candidates.
Collapse
Affiliation(s)
- Giulia Faravelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy.
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - Frederick A Partridge
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6JF, United Kingdom
| | - Cristina Soria
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Michele Perni
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Francesco A Aprile
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Irene Zorzoli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and Bioresources (IBBR), CNR, 80131, Naples, Italy
| | - David A Lomas
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6JF, United Kingdom
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, Gower Street, London, WC1E 6JF, United Kingdom
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
32
|
Nediani C, Ruzzolini J, Romani A, Calorini L. Oleuropein, a Bioactive Compound from Olea europaea L., as a Potential Preventive and Therapeutic Agent in Non-Communicable Diseases. Antioxidants (Basel) 2019; 8:E578. [PMID: 31766676 PMCID: PMC6943788 DOI: 10.3390/antiox8120578] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Growing scientific literature data suggest that the intake of natural bioactive compounds plays a critical role in preventing or reducing the occurrence of human chronic non-communicable diseases (NCDs). Oleuropein, the main phenolic component of Olea europaea L., has attracted scientific attention for its several health beneficial properties such as antioxidant, anti-inflammatory, cardio- and neuro-protective, and anti-cancer. This article is a narrative review focused on the current literature concerning the effect of oleuropein in NCDs, such as neuro- and cardiovascular diseases, diabetes mellitus, chronic kidney diseases, and cancer, by its putative antioxidant and anti-inflammatory activity, but also for its other peculiar actions such as an autophagy inducer and amyloid fibril growth inhibitor and, finally, for its anti-cancer effect. Despite the increasing number of published studies, looking at the beneficial effects of oleuropein, there is limited clinical evidence focused on the benefits of this polyphenol as a nutraceutical product in humans, and many problems are still to be resolved about its bioavailability, bioaccessibility, and dosage. Thus, future clinical randomized trials are needed to establish the relation between the beneficial effects and the mechanisms of action occurring in the human body in response to the intake of oleuropein.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis)-DiSIA, University of Florence, Via U. Schiff, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, viale Morgagni 50, 50134 Florence, Italy; (J.R.); (L.C.)
- Istituto Toscano Tumori and Center of Excellence for Research, Transfer and High Education (DENOTHE), University of Florence, Piazza di San Marco 4, 50121 Florence, Italy
| |
Collapse
|
33
|
Loosening of Side-Chain Packing Associated with Perturbations in Peripheral Dynamics Induced by the D76N Mutation of β 2-Microglobulin Revealed by Pressure-NMR and Molecular Dynamic Simulations. Biomolecules 2019; 9:biom9090491. [PMID: 31527472 PMCID: PMC6769805 DOI: 10.3390/biom9090491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023] Open
Abstract
β2-Microglobulin (β2m) is the causative protein of dialysis-related amyloidosis, and its D76N variant is less stable and more prone to aggregation. Since their crystal structures are indistinguishable from each other, enhanced amyloidogenicity induced by the mutation may be attributed to changes in the structural dynamics of the molecule. We examined pressure and mutation effects on the β2m molecule by NMR and MD simulations, and found that the mutation induced the loosening of the inter-sheet packing of β2m, which is relevant to destabilization and subsequent amyloidogenicity. On the other hand, this loosening was coupled with perturbed dynamics at some peripheral regions. The key result for this conclusion was that both the mutation and pressure induced similar reductions in the mobility of these residues, suggesting that there is a common mechanism underlying the suppression of inherent fluctuations in the β2m molecule. Analyses of data obtained under high pressure conditions suggested that the network of dynamically correlated residues included not only the mutation site, but also distal residues, such as those of the C- and D-strands. Reductions in these local dynamics correlated with the loosening of inter-sheet packing.
Collapse
|
34
|
J S Loureiro R, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, F N Faísca P. The Early Phase of β2m Aggregation: An Integrative Computational Study Framed on the D76N Mutant and the ΔN6 Variant. Biomolecules 2019; 9:biom9080366. [PMID: 31416179 PMCID: PMC6722664 DOI: 10.3390/biom9080366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human β2-microglobulin (b2m) protein is classically associated with dialysis-related amyloidosis (DRA). Recently, the single point mutant D76N was identified as the causative agent of a hereditary systemic amyloidosis affecting visceral organs. To get insight into the early stage of the β2m aggregation mechanism, we used molecular simulations to perform an in depth comparative analysis of the dimerization phase of the D76N mutant and the ΔN6 variant, a cleaved form lacking the first six N-terminal residues, which is a major component of ex vivo amyloid plaques from DRA patients. We also provide first glimpses into the tetramerization phase of D76N at physiological pH. Results from extensive protein–protein docking simulations predict an essential role of the C- and N-terminal regions (both variants), as well as of the BC-loop (ΔN6 variant), DE-loop (both variants) and EF-loop (D76N mutant) in dimerization. The terminal regions are more relevant under acidic conditions while the BC-, DE- and EF-loops gain importance at physiological pH. Our results recapitulate experimental evidence according to which Tyr10 (A-strand), Phe30 and His31 (BC-loop), Trp60 and Phe62 (DE-loop) and Arg97 (C-terminus) act as dimerization hot-spots, and further predict the occurrence of novel residues with the ability to nucleate dimerization, namely Lys-75 (EF-loop) and Trp-95 (C-terminus). We propose that D76N tetramerization is mainly driven by the self-association of dimers via the N-terminus and DE-loop, and identify Arg3 (N-terminus), Tyr10, Phe56 (D-strand) and Trp60 as potential tetramerization hot-spots.
Collapse
Affiliation(s)
- Rui J S Loureiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diogo Vila-Viçosa
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Patrícia F N Faísca
- BioISI-Biosystems & Integrative Sciences Institute and Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
35
|
Beckett D, El-Baba TJ, Gilbert K, Clemmer DE, Raghavachari K. Untangling Hydrogen Bond Networks with Ion Mobility Spectrometry and Quantum Chemical Calculations: A Case Study on H +XPGG. J Phys Chem B 2019; 123:5730-5741. [PMID: 31241336 DOI: 10.1021/acs.jpcb.9b03803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ion mobility spectrometry-mass spectrometry and quantum chemical calculations are used to determine the structures and stabilities of singly protonated XaaProGlyGly peptides: H+DPGG, H+NPGG, H+EPGG, and H+QPGG. The IMS distributions are similar, suggesting the peptides adopt closely related structures in the gas phase. Quantum chemical calculations show that all conformers seen in the experimental spectrum correspond to the cis configuration about the Xaa-Pro peptide bond, significantly different from the behavior seen previously for H+GPGG. Density functional theory and quantum theory of atoms in molecules (QTAIM) investigations uncover a silent drama as a minor conformer not observed in the H+DPGG spectrum becomes the preferred conformer in H+QPGG, with both conformers being coincident in collision cross section. Investigation of the highly coupled hydrogen bond network, replete with CH···O interactions and bifurcated hydrogen bonds, reveals the cause of this effect as well as the absence of trans conformers from the spectra. A series of generalized observations are provided to aid in enzyme and ligand design using these coupled hydrogen bond motifs.
Collapse
Affiliation(s)
- Daniel Beckett
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Tarick J El-Baba
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Kevin Gilbert
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| | - Krishnan Raghavachari
- Department of Chemistry , Indiana University , Bloomington Indiana 47401 , United States
| |
Collapse
|
36
|
Benseny-Cases N, Karamanos TK, Hoop CL, Baum J, Radford SE. Extracellular matrix components modulate different stages in β 2-microglobulin amyloid formation. J Biol Chem 2019; 294:9392-9401. [PMID: 30996004 PMCID: PMC6579475 DOI: 10.1074/jbc.ra119.008300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Indexed: 11/26/2022] Open
Abstract
Amyloid deposition of WT human β2-microglobulin (WT-hβ2m) in the joints of long-term hemodialysis patients is the hallmark of dialysis-related amyloidosis. In vitro, WT-hβ2m does not form amyloid fibrils at physiological pH and temperature unless co-solvents or other reagents are added. Therefore, understanding how fibril formation is initiated and maintained in the joint space is important for elucidating WT-hβ2m aggregation and dialysis-related amyloidosis onset. Here, we investigated the roles of collagen I and the commonly administered anticoagulant, low-molecular-weight (LMW) heparin, in the initiation and subsequent aggregation phases of WT-hβ2m in physiologically relevant conditions. Using thioflavin T fluorescence to study the kinetics of amyloid formation, we analyzed how these two agents affect specific stages of WT-hβ2m assembly. Our results revealed that LMW-heparin strongly promotes WT-hβ2m fibrillogenesis during all stages of aggregation. However, collagen I affected WT-hβ2m amyloid formation in contrasting ways: decreasing the lag time of fibril formation in the presence of LMW-heparin and slowing the rate at higher concentrations. We found that in self-seeded reactions, interaction of collagen I with WT-hβ2m amyloid fibrils attenuates surface-mediated growth of WT-hβ2m fibrils, demonstrating a key role of secondary nucleation in WT-hβ2m amyloid formation. Interestingly, collagen I fibrils did not suppress surface-mediated assembly of WT-hβ2m monomers when cross-seeded with fibrils formed from the N-terminally truncated variant ΔN6-hβ2m. Together, these results provide detailed insights into how collagen I and LMW-heparin impact different stages in the aggregation of WT-hβ2m into amyloid, which lead to dramatic effects on the time course of assembly.
Collapse
Affiliation(s)
- Núria Benseny-Cases
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Theodoros K Karamanos
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Cody L Hoop
- the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Jean Baum
- the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854
| | - Sheena E Radford
- From the Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
37
|
Butnaru D, Chapman J. The impact of self-replicating proteins on inflammation, autoimmunity and neurodegeneration-An untraveled path. Autoimmun Rev 2019; 18:231-240. [PMID: 30639644 DOI: 10.1016/j.autrev.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) in neurodegenerative diseases is a battlefield in which microglia fight a highly atypical battle. During the inflammatory process microglia themselves become dysfunctional and even with all the available immune arsenal including cytokine or/and antibody production, the battle is eventually lost. A closer look into the picture will reveal the fact that this is mainly due to the atypical characteristics of the infectious agent. The supramolecular assemblies of misfolded proteins carry unique features not encountered in any of the common pathogens. Through misfolding, proteins undergo conformational changes which make them become immunogenic, neurotoxic and highly infective. The immunogenicity appears to be triggered by the exposure of previously hidden hydrophobic portions in proteins which act as damage-associated molecular patters (DAMPs) for the immune system. The neurotoxicity and infectivity are promoted by the small oligomeric forms of misfolded proteins/peptides. Oligomers adopt conformations such as tubular-like, beta-barrel-like, etc., that penetrate cell membranes through their hydrophobic surfaces, thus destabilizing ionic homeostasis. At the same time, oligomers act as a seed for protein misfolding through a prion/prion-like mechanism. Here, we propose the hypothesis that oligomers have catalytic surfaces and exercise their capacity to infect native proteins through specific characteristics such as hydrophobic, electrostatic and π-π stacking interactions as well as the specific surface area (SSA), surface curvature and surface chemistry of their nanoscale supramolecular assemblies. All these are the key elements for prion/prion-like mechanism of self-replication and disease spreading within the CNS. Thus, understanding the mechanism of prion's templating activity may help us in the prevention and development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Dana Butnaru
- The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Israel.
| | - Joab Chapman
- Sheba Medical Center, Israel; Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
38
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2018; 19:755-773. [PMID: 30237470 PMCID: PMC7617691 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 653] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
39
|
Zipeto D, Serena M, Mutascio S, Parolini F, Diani E, Guizzardi E, Muraro V, Lattuada E, Rizzardo S, Malena M, Lanzafame M, Malerba G, Romanelli MG, Tamburin S, Gibellini D. HIV-1-Associated Neurocognitive Disorders: Is HLA-C Binding Stability to β 2-Microglobulin a Missing Piece of the Pathogenetic Puzzle? Front Neurol 2018; 9:791. [PMID: 30298049 PMCID: PMC6160745 DOI: 10.3389/fneur.2018.00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
AIDS dementia complex (ADC) and HIV-associated neurocognitive disorders (HAND) are complications of HIV-1 infection. Viral infections are risk factors for the development of neurodegenerative disorders. Aging is associated with low-grade inflammation in the brain, i.e., the inflammaging. The molecular mechanisms linking immunosenescence, inflammaging and the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease, are largely unknown. ADC and HAND share some pathological features with AD and may offer some hints on the relationship between viral infections, neuroinflammation, and neurodegeneration. β2-microglobulin (β2m) is an important pro-aging factor that interferes with neurogenesis and worsens cognitive functions. Several studies published in the 80-90s reported high levels of β2m in the cerebrospinal fluid of patients with ADC. High levels of β2m have also been detected in AD. Inflammatory diseases in elderly people are associated with polymorphisms of the MHC-I locus encoding HLA molecules that, by associating with β2m, contribute to cellular immunity. We recently reported that HLA-C, no longer associated with β2m, is incorporated into HIV-1 virions, determining an increase in viral infectivity. We also documented the presence of HLA-C variants more or less stably linked to β2m. These observations led us to hypothesize that some variants of HLA-C, in the presence of viral infections, could determine a greater release and accumulation of β2m, which in turn, may be involved in triggering and/or sustaining neuroinflammation. ADC is the most severe form of HAND. To explore the role of HLA-C in ADC pathogenesis, we analyzed the frequency of HLA-C variants with unstable binding to β2m in a group of patients with ADC. We found a higher frequency of unstable HLA-C alleles in ADC patients, and none of them was harboring stable HLA-C alleles in homozygosis. Our data suggest that the role of HLA-C variants in ADC/HAND pathogenesis deserves further studies. If confirmed in a larger number of samples, this finding may have practical implication for a personalized medicine approach and for developing new therapies to prevent HAND. The exploration of HLA-C variants as risk factors for AD and other neurodegenerative disorders may be a promising field of study.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | | | | | | | - Marina Malena
- U.O.S. Infectious Diseases, AULSS 9 Scaligera, Verona, Italy
| | | | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
40
|
Dongmo Foumthuim CJ, Corazza A, Esposito G, Fogolari F. Molecular dynamics simulations of β2-microglobulin interaction with hydrophobic surfaces. MOLECULAR BIOSYSTEMS 2018; 13:2625-2637. [PMID: 29051937 DOI: 10.1039/c7mb00464h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrophobic surfaces are known to adsorb and unfold proteins, a process that has been studied only for a few proteins. Here we address the interaction of β2-microglobulin, a paradigmatic protein for the study of amyloidogenesis, with hydrophobic surfaces. A system with 27 copies of the protein surrounded by a model cubic hydrophobic box is studied by implicit solvent molecular dynamics simulations. Most proteins adsorb on the walls of the box without major distortions in local geometry, whereas free molecules maintain proper structures and fluctuations as observed in explicit solvent molecular dynamics simulations. The major conclusions from the simulations are as follows: (i) the adopted implicit solvent model is adequate to describe protein dynamics and thermodynamics; (ii) adsorption occurs readily and is irreversible on the simulated timescale; (iii) the regions most involved in molecular encounters and stable interactions with the walls are the same as those that are important in protein-protein and protein-nanoparticle interactions; (iv) unfolding following adsorption occurs at regions found to be flexible by both experiments and simulations; (v) thermodynamic analysis suggests a very large contribution from van der Waals interactions, whereas unfavorable electrostatic interactions are not found to contribute much to adsorption energy. Surfaces with different degrees of hydrophobicity may occur in vivo. Our simulations show that adsorption is a fast and irreversible process which is accompanied by partial unfolding. The results and the thermodynamic analysis presented here are consistent with and rationalize previous experimental work.
Collapse
|
41
|
Le Marchand T, de Rosa M, Salvi N, Sala BM, Andreas LB, Barbet-Massin E, Sormanni P, Barbiroli A, Porcari R, Sousa Mota C, de Sanctis D, Bolognesi M, Emsley L, Bellotti V, Blackledge M, Camilloni C, Pintacuda G, Ricagno S. Conformational dynamics in crystals reveal the molecular bases for D76N beta-2 microglobulin aggregation propensity. Nat Commun 2018; 9:1658. [PMID: 29695721 PMCID: PMC5916882 DOI: 10.1038/s41467-018-04078-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 11/09/2022] Open
Abstract
Spontaneous aggregation of folded and soluble native proteins in vivo is still a poorly understood process. A prototypic example is the D76N mutant of beta-2 microglobulin (β2m) that displays an aggressive aggregation propensity. Here we investigate the dynamics of β2m by X-ray crystallography, solid-state NMR, and molecular dynamics simulations to unveil the effects of the D76N mutation. Taken together, our data highlight the presence of minor disordered substates in crystalline β2m. The destabilization of the outer strands of D76N β2m accounts for the increased aggregation propensity. Furthermore, the computational modeling reveals a network of interactions with residue D76 as a keystone: this model allows predicting the stability of several point mutants. Overall, our study shows how the study of intrinsic dynamics in crystallo can provide crucial answers on protein stability and aggregation propensity. The comprehensive approach here presented may well be suited for the study of other folded amyloidogenic proteins. The aggregation prone D76N beta-2 microglobulin mutant causes systemic amyloidosis. Here the authors combine crystallography, solid-state NMR, and computational studies and show that the D76N mutation increases protein dynamics and destabilizes the outer strands, which leads to an exposure of amyloidogenic parts explaining its aggregation propensity.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 CNRS/UCB Lyon 1/ENS Lyon), Université de Lyon, 69100, Villeurbanne, France
| | - Matteo de Rosa
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, 30044, Grenoble, France
| | - Benedetta Maria Sala
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 CNRS/UCB Lyon 1/ENS Lyon), Université de Lyon, 69100, Villeurbanne, France
| | - Emeline Barbet-Massin
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 CNRS/UCB Lyon 1/ENS Lyon), Université de Lyon, 69100, Villeurbanne, France
| | - Pietro Sormanni
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alberto Barbiroli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, 20133, Milano, Italy
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, NW3 2PF, UK
| | | | | | - Martino Bolognesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy.,Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università degli Studi di Milano, 20133, Milano, Italy
| | - Lyndon Emsley
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 CNRS/UCB Lyon 1/ENS Lyon), Université de Lyon, 69100, Villeurbanne, France
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, NW3 2PF, UK
| | - Martin Blackledge
- Institut de Biologie Structurale, CNRS, CEA, UGA, 30044, Grenoble, France
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy.
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 CNRS/UCB Lyon 1/ENS Lyon), Université de Lyon, 69100, Villeurbanne, France.
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133, Milano, Italy.
| |
Collapse
|
42
|
Brancolini G, Maschio MC, Cantarutti C, Corazza A, Fogolari F, Bellotti V, Corni S, Esposito G. Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and ΔN6 β2-microglobulin variants. NANOSCALE 2018; 10:4793-4806. [PMID: 29469914 DOI: 10.1039/c7nr06808e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein aggregation including the formation of dimers and multimers in solution, underlies an array of human diseases such as systemic amyloidosis which is a fatal disease caused by misfolding of native globular proteins damaging the structure and function of affected organs. Different kind of interactors can interfere with the formation of protein dimers and multimers in solution. A very special class of interactors are nanoparticles thanks to the extremely efficient extension of their interaction surface. In particular citrate-coated gold nanoparticles (cit-AuNPs) were recently investigated with amyloidogenic protein β2-microglobulin (β2m). Here we present the computational studies on two challenging models known for their enhanced amyloidogenic propensity, namely ΔN6 and D76N β2m naturally occurring variants, and disclose the role of cit-AuNPs on their fibrillogenesis. The proposed interaction mechanism lies in the interference of the cit-AuNPs with the protein dimers at the early stages of aggregation, that induces dimer disassembling. As a consequence, natural fibril formation can be inhibited. Relying on the comparison between atomistic simulations at multiple levels (enhanced sampling molecular dynamics and Brownian dynamics) and protein structural characterisation by NMR, we demonstrate that the cit-AuNPs interactors are able to inhibit protein dimer assembling. As a consequence, the natural fibril formation is also inhibited, as found in experiment.
Collapse
Affiliation(s)
- Giorgia Brancolini
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy.
| | | | - Cristina Cantarutti
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy
| | - Alessandra Corazza
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Federico Fogolari
- Dipartimento di Scienza Mediche e Biologiche (DSMB), University of Udine, Piazzale Kolbe 3, 33100 Udine, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare, Universita' di Pavia, Via Taramelli 3, 27100 Pavia, Italy and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Stefano Corni
- Department of Chemical Science, University of Padova, via VIII Febbraio 2, 35122 Padova and Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Gennaro Esposito
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy. and Istituto Nazionale Biostrutture e Biosistemi, Viale medaglie d'Oro, 305 - 00136 Roma, Italy and Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
43
|
Cantarutti C, Raj G, Fogolari F, Giorgetti S, Corazza A, Bellotti V, Naumov P, Esposito G. Interference of citrate-stabilized gold nanoparticles with β2-microglobulin oligomeric association. Chem Commun (Camb) 2018; 54:5422-5425. [DOI: 10.1039/c8cc01053f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Citrate-coated gold nanoparticles interfere with the association equilibria of β2-microglobulin and thus inhibit the early events of fibrillogenesis.
Collapse
Affiliation(s)
| | - Gijo Raj
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | | | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
| | | | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare
- Università di Pavia
- 27100 Pavia
- Italy
- Division of Medicine
| | - Panče Naumov
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | - Gennaro Esposito
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
- INBB
- 00136 Roma
| |
Collapse
|
44
|
Grigolato F, Colombo C, Ferrari R, Rezabkova L, Arosio P. Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation. ACS NANO 2017; 11:11358-11367. [PMID: 29045787 DOI: 10.1021/acsnano.7b05895] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interactions between proteins and surfaces in combination with hydrodynamic flow and mechanical agitation can often trigger the conversion of soluble peptides and proteins into aggregates, including amyloid fibrils. Despite the extensive literature on the empirical effects of surfaces and mechanical forces on the formation of amyloids, the molecular details of the mechanisms underlying this behavior are still elusive. This limitation is, in part, due to the complex reaction network underlying the formation of amyloids, where several microscopic reactions of nucleation and growth can occur both at the interfaces and in bulk. In this work, we design a high-throughput assay based on nanoparticles and we apply a chemical kinetic platform to analyze the mechanisms underlying the effect of surfaces and mechanical forces on the formation of amyloid fibrils from human insulin under physiological conditions. By considering a variety of polymeric nanoparticles with different surface properties we explore a broad range of repulsive and attractive interactions between insulin and surfaces. Our analysis shows that hydrophobic interfaces induce the formation of amyloid fibrils by specifically promoting the primary heterogeneous nucleation rate. In contrast, mechanical forces accelerate the formation of amyloid fibrils by favoring mass transport and further amplify the number of fibrils by promoting fragmentation events. Thus, surfaces and agitation have a combined effect on the kinetics of protein aggregation observed at the macroscopic level but, individually, they each affect distinct microscopic reaction steps: the presence of interfaces generates primary nucleation events of fibril formation, which is then amplified by mechanical forces. These results suggest that the inhibition of surface-induced heterogeneous nucleation should be considered a primary target to suppress aggregation and explain why in many systems the simultaneous presence of surfaces and hydrodynamic flow enhances protein aggregation.
Collapse
Affiliation(s)
- Fulvio Grigolato
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich , Vladimir Prelog Weg 1, 8093, Zurich, Switzerland
| | - Claudio Colombo
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich , Vladimir Prelog Weg 1, 8093, Zurich, Switzerland
| | - Raffaele Ferrari
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich , Vladimir Prelog Weg 1, 8093, Zurich, Switzerland
| | - Lenka Rezabkova
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich , Vladimir Prelog Weg 1, 8093, Zurich, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich , Vladimir Prelog Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
45
|
Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. A tale of two tails: The importance of unstructured termini in the aggregation pathway of β2-microglobulin. Proteins 2017; 85:2045-2057. [DOI: 10.1002/prot.25358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Rui J. S. Loureiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology; Harvard University; Cambridge Massachusetts
| | - Patricia F. N. Faísca
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
- Departamento de Física; Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
46
|
Dobson J, Kumar A, Willis LF, Tuma R, Higazi DR, Turner R, Lowe DC, Ashcroft AE, Radford SE, Kapur N, Brockwell DJ. Inducing protein aggregation by extensional flow. Proc Natl Acad Sci U S A 2017; 114:4673-4678. [PMID: 28416674 PMCID: PMC5422818 DOI: 10.1073/pnas.1702724114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein's structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, β2-microglobulin (β2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36-1.8 ms, at concentrations as low as 0.5 mg mL-1 In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation.
Collapse
Affiliation(s)
- John Dobson
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Amit Kumar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Leon F Willis
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Roman Tuma
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | - David C Lowe
- MedImmune Ltd., Cambridge, CB21 6GH, United Kingdom
| | - Alison E Ashcroft
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sheena E Radford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom;
| | - David J Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom;
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
47
|
Raimondi S, Porcari R, Mangione PP, Verona G, Marcoux J, Giorgetti S, Taylor GW, Ellmerich S, Ballico M, Zanini S, Pardon E, Al-Shawi R, Simons JP, Corazza A, Fogolari F, Leri M, Stefani M, Bucciantini M, Gillmore JD, Hawkins PN, Valli M, Stoppini M, Robinson CV, Steyaert J, Esposito G, Bellotti V. A specific nanobody prevents amyloidogenesis of D76N β 2-microglobulin in vitro and modifies its tissue distribution in vivo. Sci Rep 2017; 7:46711. [PMID: 28429761 PMCID: PMC5399440 DOI: 10.1038/srep46711] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Systemic amyloidosis is caused by misfolding and aggregation of globular proteins in vivo for which effective treatments are urgently needed. Inhibition of protein self-aggregation represents an attractive therapeutic strategy. Studies on the amyloidogenic variant of β2-microglobulin, D76N, causing hereditary systemic amyloidosis, have become particularly relevant since fibrils are formed in vitro in physiologically relevant conditions. Here we compare the potency of two previously described inhibitors of wild type β2-microglobulin fibrillogenesis, doxycycline and single domain antibodies (nanobodies). The β2-microglobulin -binding nanobody, Nb24, more potently inhibits D76N β2-microglobulin fibrillogenesis than doxycycline with complete abrogation of fibril formation. In β2-microglobulin knock out mice, the D76N β2-microglobulin/ Nb24 pre-formed complex, is cleared from the circulation at the same rate as the uncomplexed protein; however, the analysis of tissue distribution reveals that the interaction with the antibody reduces the concentration of the variant protein in the heart but does not modify the tissue distribution of wild type β2-microglobulin. These findings strongly support the potential therapeutic use of this antibody in the treatment of systemic amyloidosis.
Collapse
Affiliation(s)
- Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Riccardo Porcari
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - P Patrizia Mangione
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy.,Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Julien Marcoux
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Stephan Ellmerich
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Maurizio Ballico
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE
| | - Stefano Zanini
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE
| | - Els Pardon
- Structural Biology Research Centre, VIB, Pleinlaan 2, 1050, Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Raya Al-Shawi
- Centre for Biomedical Science, Division of Medicine, University College London, London NW3 2PF, UK
| | - J Paul Simons
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Alessandra Corazza
- Department of Medical and Biological Sciences (DSMB), University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Federico Fogolari
- Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy.,Department of Mathematics, Computer Science and Physics, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50, 50134 Florence, Italy.,Research Centre for Molecular Basis of Neurodegeneration, 50134 Florence, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Viale Morgagni 50, 50134 Florence, Italy.,Research Centre for Molecular Basis of Neurodegeneration, 50134 Florence, Italy
| | - Julian D Gillmore
- National Amyloidosis Centre, University College London, London NW3 2PF, UK
| | - Philip N Hawkins
- National Amyloidosis Centre, University College London, London NW3 2PF, UK
| | - Maurizia Valli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Monica Stoppini
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Jan Steyaert
- Structural Biology Research Centre, VIB, Pleinlaan 2, 1050, Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | - Gennaro Esposito
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, UAE.,Istituto Nazionale Biostrutture e Biosistemi, Viale Medaglie d'Oro 305, 00136 Roma, Italy.,Department of Mathematics, Computer Science and Physics, University of Udine, Piazzale Kolbe 4, 33100 Udine, Italy
| | - Vittorio Bellotti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Via Taramelli 3b, 27100 Pavia, Italy.,Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| |
Collapse
|
48
|
Cantarutti C, Raimondi S, Brancolini G, Corazza A, Giorgetti S, Ballico M, Zanini S, Palmisano G, Bertoncin P, Marchese L, Patrizia Mangione P, Bellotti V, Corni S, Fogolari F, Esposito G. Citrate-stabilized gold nanoparticles hinder fibrillogenesis of a pathological variant of β 2-microglobulin. NANOSCALE 2017; 9:3941-3951. [PMID: 28265615 DOI: 10.1039/c6nr09362k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanoparticles have repeatedly been shown to enhance fibril formation when assayed with amyloidogenic proteins. Recently, however, evidence casting some doubt about the generality of this conclusion started to emerge. Therefore, to investigate further the influence of nanoparticles on the fibrillation process, we used a naturally occurring variant of the paradigmatic amyloidogenic protein β2-microglobulin (β2m), namely D76N β2m where asparagine replaces aspartate at position 76. This variant is responsible for aggressive systemic amyloidosis. After characterizing the interaction of the variant with citrate-stabilized gold nanoparticles (Cit-AuNPs) by NMR and modeling, we analyzed the fibril formation by three different methods: thioflavin T fluorescence, native agarose gel electrophoresis and transmission electron microscopy. The NMR evidence indicated a fast-exchange interaction involving preferentially specific regions of the protein that proved, by subsequent modeling, to be consistent with a dimeric adduct interacting with Cit-AuNPs. The fibril detection assays showed that AuNPs are able to hamper D76N β2m fibrillogenesis through an effective interaction that competes with protofibril formation or recruitment. These findings open promising perspectives for the optimization of the nanoparticle surface to design tunable interactions with proteins.
Collapse
Affiliation(s)
| | - Sara Raimondi
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | | | - Alessandra Corazza
- DSMB, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Sofia Giorgetti
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Maurizio Ballico
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefano Zanini
- Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical and Environmental Engineering, Masdar Institute of Science and Technology, PO Box 54224, Abu Dhabi, United Arab Emirates
| | - Paolo Bertoncin
- Dipartimento Scienze della Vita, Università di Trieste, Via Weiss 2, 34128 Trieste, Italy
| | - Loredana Marchese
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - P Patrizia Mangione
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Vittorio Bellotti
- Dipartimento Medicina Molecolare, Università di Pavia, Via Taramelli 3, 27100 Pavia, Italy and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy and Division of Medicine, University College of London, London NW3 2PF, UK
| | - Stefano Corni
- CNR Istituto Nanoscienze, Via Campi 213/A, 41125 Modena, Italy.
| | - Federico Fogolari
- DSMB, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Gennaro Esposito
- DSMB, Università di Udine, P.le Kolbe 4, 33100 Udine, Italy. and INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy and Science and Math Division, New York University at Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
49
|
Nakajima K, So M, Takahashi K, Tagawa YI, Hirao M, Goto Y, Ogi H. Optimized Ultrasonic Irradiation Finds Out Ultrastable Aβ1–40 Oligomers. J Phys Chem B 2017; 121:2603-2613. [DOI: 10.1021/acs.jpcb.7b01409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kichitaro Nakajima
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masatomo So
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuma Takahashi
- School
of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yoh-ichi Tagawa
- School
of Life Science and Technology, Tokyo Institute of Technology, 4259 B51, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masahiko Hirao
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yuji Goto
- Institute
for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotsugu Ogi
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
50
|
Fagagnini A, Montioli R, Caloiu A, Ribó M, Laurents DV, Gotte G. Extensive deamidation of RNase A inhibits its oligomerization through 3D domain swapping. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:76-87. [PMID: 27783927 DOI: 10.1016/j.bbapap.2016.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/27/2022]
Abstract
Bovine pancreatic ribonuclease A (RNase A) is the monomeric prototype of the so-called secretory 'pancreatic-type' RNase super-family. Like the naturally domain-swapped dimeric bovine seminal variant, BS-RNase, and its glycosylated RNase B isoform, RNase A forms N- and C-terminal 3D domain-swapped oligomers after lyophilization from acid solutions, or if subjected to thermal denaturation at high protein concentration. All mentioned RNases can undergo deamidation at Asn67, forming Asp or isoAsp derivatives that modify the protein net charge and consequently its enzymatic activity. In addition, deamidation slightly affects RNase B self-association through the 3D domain swapping (3D-DS) mechanism. We report here the influence of extensive deamidation on RNase A tendency to oligomerize through 3D-DS. In particular, deamidation of Asn67 alone slightly decreases the propensity of the protein to oligomerize, with the Asp derivative being less affected than the isoAsp one. Contrarily, the additional Asp and/or isoAsp conversion of residues other than N67 almost nullifies RNase A oligomerization capability. In addition, Gln deamidation, although less kinetically favorable, may affect RNase A self-association. Using 2D and 3D NMR we identified the Asn/Gln residues most prone to undergo deamidation. Together with CD spectroscopy, NMR also indicates that poly-deamidated RNase A generally maintains its native tertiary structure. Again, we investigated in silico the effect of the residues undergoing deamidation on RNase A dimers structures. Finally, the effect of deamidation on RNase A oligomerization is discussed in comparison with studies on deamidation-prone proteins involved in amyloid formation.
Collapse
Affiliation(s)
- Andrea Fagagnini
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Andra Caloiu
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marc Ribó
- Laboratori d'Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Universitat de Girona, 17071, y Institut d'Investigació Biomèdica de Girona Josep Trueta, (IdIBGi), Girona, Spain
| | - Douglas V Laurents
- Instituto de Quimica Fisica "Rocasolano" (C.S.I.C.), Serrano 119, E-28006 Madrid, Spain
| | - Giovanni Gotte
- Dipartimento di Neuroscienze, Biomedicina e del Movimento, Sezione di Chimica Biologica, Università degli Studi di Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|