1
|
Kandettu A, Kuthethur R, Chakrabarty S. A detailed review on the role of miRNAs in mitochondrial-nuclear cross talk during cancer progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167731. [PMID: 39978440 DOI: 10.1016/j.bbadis.2025.167731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/11/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that are associated with biochemical pathways through the post-transcriptional regulation of gene expression in different cell types. Based on their expression pattern and function, miRNAs can have oncogenic and tumor suppressor activities in different cancer cells. Altered mitochondrial function and bioenergetics are known hallmarks of cancer cells. Mitochondria play a central role in metabolic reprogramming during cancer progression. Cancer cells exploit mitochondrial function for cell proliferation, invasion, migration and metastasis. Genetic and epigenetic changes in nuclear genome contribute to altered mitochondrial function and metabolic reprogramming in cancer cells. Recent studies have identified the role of miRNAs as major facilitators of anterograde and retrograde signaling between the nucleus and mitochondria in cancer cells. Detailed analysis of the miRNA-mediated regulation of mitochondrial function in cancer cells may provide new avenues for the diagnosis, prognosis, and therapeutic management of the disease. Our review aims to discuss the role of miRNAs in nuclear-mitochondrial crosstalk regulating mitochondrial functions in different cancer types. We further discussed the potential application of mitochondrial miRNAs (mitomiRs) targeting mitochondrial biogenesis and metabolism in developing novel cancer therapy.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS) Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Wu B, Zhao J, Yu F, Li L, Zhao Y. Spatioselective Imaging of Noncoding RNAs in Mitochondria via an Organelle-Specific DNA Assembly Strategy. NANO LETTERS 2025; 25:1948-1955. [PMID: 39869396 DOI: 10.1021/acs.nanolett.4c05559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g., microRNA (miRNA)) in mitochondria via an organelle-specific DNA assembly strategy. The target miRNA-initiated assembly of DNA hairpins is inhibited by the block of toehold-mediated strand displacement reaction but can be exclusively activated by a mitochondria-encoded ribosomal RNA (rRNA) for hybridization chain reaction, enabling spatial control over miRNA imaging. We demonstrate that the conditionally controlled DNA assembly technology allows for minimization of nonspecific activation and thus improves the spatial precision of miRNA detection. In addition, the strategy is adaptable to visualizing other ncRNAs such as long noncoding RNAs in mitochondria, highlighting the universality of the approach. Overall, this work provides a useful tool for spatially selective imaging of ncRNAs and investigating the functions of organelle-located RNA.
Collapse
Affiliation(s)
- Bo Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
3
|
Patange V, Ahirwar K, Tripathi T, Tripathi P, Shukla R. Scientific investigation of non-coding RNAs in mitochondrial epigenetic and aging disorders: Current nanoengineered approaches for their therapeutic improvement. Mitochondrion 2025; 80:101979. [PMID: 39505245 DOI: 10.1016/j.mito.2024.101979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Genetic control is vital for the growth of cells and tissues, and it also helps living things, from single-celled organisms to complex creatures, maintain a stable internal environment. Within cells, structures called mitochondria act like tiny power plants, producing energy and keeping the cell balanced. The two primary categories of RNA are messenger RNA (mRNA) and non-coding RNA (ncRNA). mRNA carries the instructions for building proteins, while ncRNA does various jobs at the RNA level. There are different kinds of ncRNA, each with a specific role. Some help put RNA molecules together correctly, while others modify other RNAs or cut them into smaller pieces. Still others control how much protein is made from a gene. Scientists have recently discovered many more ncRNAs than previously known, and their functions are still being explored. This article analyzes the RNA molecules present within mitochondria, which have a crucial purpose in the operation of mitochondria. We'll also discuss how genes can be turned on and off without changing their DNA code, and how this process might be linked to mitochondrial RNA. Finally, we'll explore how scientists are using engineered particles to silence genes and develop new treatments based on manipulating ncRNA.
Collapse
Affiliation(s)
- Vaibhav Patange
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Tripti Tripathi
- Department of Physiology, Integral University, Kursi Road, Dashauli, UP 226026, India
| | - Pratima Tripathi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
4
|
Wang Z, Xie C, Chen X. Diagnostic and therapeutic role of non-coding RNAs regulating programmed cell death in melanoma. Front Oncol 2024; 14:1476684. [PMID: 39777348 PMCID: PMC11703721 DOI: 10.3389/fonc.2024.1476684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
lncRNAs (long non-coding RNAs) are heterogeneous RNA molecules that modulate various cellular processes, such as proliferation, differentiation, migration, invasion, and apoptosis, via different mechanisms. An increasing amount of research indicates that abnormal expression of lncRNA influences the development of drug resistance as well as the genesis and advancement of cancer, including melanoma. Furthermore, they are attractive biomarkers for non-invasive cancer diagnostics due to their strongly modulated expression and improved tissue and disease specificity. This review offers a succinct overview of the present understanding concerning the potential diagnostic biomarker potential of lncRNAs in melanoma. Cell death occurs frequently during growth and throughout life and is an active, organized, and genetically determined process. It is essential for the regulation of homeostasis. Controlled cell death and non-programmed cell death are both forms of cell death. The most prevalent forms of regulatory cell death are pyroptosis, ferroptosis, autophagy, necroptosis, necrosis, and apoptosis. Ferroptosis, pyroptosis, and autophagy are less common forms of cell death compared to necrosis, apoptosis, and necroptosis. ncRNAs are regulatory RNA molecules that are not involved in encoding proteins. They primarily consist of circular RNAs (circ RNAs), lncRNAs, and microRNAs (miRNAs). Moreover, non-coding RNAs have the ability to modulate tumor cell autophagy, pyroptosis, and ferroptosis at the transcriptional or post-transcriptional stage, as well as function as oncogenes and tumor suppressor genes, which can have considerable effects on the incidence and growth of tumors. This review concentrated on the recent advancements in the research of the diagnostic and therapeutic functions of ncRNAs in the regulation of programmed cell death in melanoma.
Collapse
Affiliation(s)
- Zixu Wang
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cong Xie
- Office for Doctoral Studies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiao Chen
- Office for Postgraduate Student Studies, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Yu F, Li X, Sheng C, Li L. DNA Nanotechnology Targeting Mitochondria: From Subcellular Molecular Imaging to Tailor-Made Therapeutics. Angew Chem Int Ed Engl 2024; 63:e202409351. [PMID: 38872505 DOI: 10.1002/anie.202409351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria, one of the most important organelles, represent a crucial subcellular target for fundamental research and biomedical applications. Despite significant advances in the design of DNA nanotechnologies for a variety of bio-applications, the dearth of strategies that enable mitochondria targeting for subcellular molecular imaging and therapy remains an outstanding challenge in this field. In this Minireview, we summarize the recent progresses on the emerging design and application of DNA nanotechnology for mitochondria-targeted molecular imaging and tumor treatment. We first highlight the engineering of mitochondria-localized DNA nanosensors for in situ detection and imaging of diverse key molecules that are essential to maintain mitochondrial functions, including mitochondrial DNA and microRNA, enzymes, small molecules, and metal ions. Then, we compile the developments of DNA nanotechnologies for mitochondria-targeted anti-tumor therapy, including modularly designed DNA nanodevices for subcellular delivery of therapeutic agents, and programmed DNA assembly for mitochondrial interference. We will place an emphasis on clarification of the chemical principles of how DNA nanobiotechnology can be designed to target mitochondria for various biomedical applications. Finally, the remaining challenges and future directions in this emerging field will be discussed, hoping to inspire further development of advanced DNA toolkits for both academic and clinical research regarding mitochondria.
Collapse
Affiliation(s)
- Fangzhi Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangfei Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuangui Sheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Piergentili R, Sechi S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int J Mol Sci 2024; 25:7498. [PMID: 39000605 PMCID: PMC11242419 DOI: 10.3390/ijms25137498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are a heterogeneous group, in terms of structure and sequence length, consisting of RNA molecules that do not code for proteins. These ncRNAs have a central role in the regulation of gene expression and are virtually involved in every process analyzed, ensuring cellular homeostasis. Although, over the years, much research has focused on the characterization of non-coding transcripts of nuclear origin, improved bioinformatic tools and next-generation sequencing (NGS) platforms have allowed the identification of hundreds of ncRNAs transcribed from the mitochondrial genome (mt-ncRNA), including long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miR). Mt-ncRNAs have been described in diverse cellular processes such as mitochondrial proteome homeostasis and retrograde signaling; however, the function of the majority of mt-ncRNAs remains unknown. This review focuses on a subgroup of human mt-ncRNAs whose dysfunction is associated with both failures in cell cycle regulation, leading to defects in cell growth, cell proliferation, and apoptosis, and the development of tumor hallmarks, such as cell migration and metastasis formation, thus contributing to carcinogenesis and tumor development. Here we provide an overview of the mt-ncRNAs/cancer relationship that could help the future development of new biomedical applications in the field of oncology.
Collapse
Affiliation(s)
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del Consiglio Nazionale delle Ricerche, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
7
|
Hu Z, Yang L, Zhang M, Tang H, Huang Y, Su Y, Ding Y, Li C, Wang M, Zhou Y, Zhang Q, Guo L, Wu Y, Wang Q, Liu N, Kang H, Wu Y, Yao D, Li Y, Ruan Z, Wang H, Bao F, Liu G, Wang J, Wang Y, Wang W, Lu G, Qin D, Pei D, Chan WY, Liu X. A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early development. Cell Metab 2024; 36:1586-1597.e7. [PMID: 38703762 DOI: 10.1016/j.cmet.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The mitochondrial genome transcribes 13 mRNAs coding for well-known proteins essential for oxidative phosphorylation. We demonstrate here that cytochrome b (CYTB), the only mitochondrial-DNA-encoded transcript among complex III, also encodes an unrecognized 187-amino-acid-long protein, CYTB-187AA, using the standard genetic code of cytosolic ribosomes rather than the mitochondrial genetic code. After validating the existence of this mtDNA-encoded protein arising from cytosolic translation (mPACT) using mass spectrometry and antibodies, we show that CYTB-187AA is mainly localized in the mitochondrial matrix and promotes the pluripotent state in primed-to-naive transition by interacting with solute carrier family 25 member 3 (SLC25A3) to modulate ATP production. We further generated a transgenic knockin mouse model of CYTB-187AA silencing and found that reduction of CYTB-187AA impairs females' fertility by decreasing the number of ovarian follicles. For the first time, we uncovered the novel mPACT pattern of a mitochondrial mRNA and demonstrated the physiological function of this 14th protein encoded by mtDNA.
Collapse
Affiliation(s)
- Zhijuan Hu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Maolei Zhang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haite Tang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yile Huang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Yujie Su
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingzhe Ding
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Chong Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mengfei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zhou
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhang
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Liman Guo
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Yue Wu
- Proteomics and Metabolomics Core Facility, Guangzhou National Laboratory, Guangzhou, China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemistry Biology, Nankai University, Tianjin, China
| | - Haoran Kang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Wu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Deyang Yao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yukun Li
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zifeng Ruan
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Feixiang Bao
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guopan Liu
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Junwei Wang
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China
| | - Wuming Wang
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Gang Lu
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dajiang Qin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wai-Yee Chan
- CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, CUHK-Jinan University Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xingguo Liu
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, SAR, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
8
|
Muneretto G, Plazzi F, Passamonti M. Mitochondrion-to-nucleus communication mediated by RNA export: a survey of potential mechanisms and players across eukaryotes. Biol Lett 2024; 20:20240147. [PMID: 38982851 PMCID: PMC11283861 DOI: 10.1098/rsbl.2024.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
The nucleus interacts with the other organelles to perform essential functions of the eukaryotic cell. Mitochondria have their own genome and communicate back to the nucleus in what is known as mitochondrial retrograde response. Information is transferred to the nucleus in many ways, leading to wide-ranging changes in nuclear gene expression and culminating with changes in metabolic, regulatory or stress-related pathways. RNAs are emerging molecules involved in this signalling. RNAs encode precise information and are involved in highly target-specific signalling, through a wide range of processes known as RNA interference. RNA-mediated mitochondrial retrograde response requires these molecules to exit the mitochondrion, a process that is still mostly unknown. We suggest that the proteins/complexes translocases of the inner membrane, polynucleotide phosphorylase, mitochondrial permeability transition pore, and the subunits of oxidative phosphorylation complexes may be responsible for RNA export.
Collapse
Affiliation(s)
- Giorgio Muneretto
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Donato L, Mordà D, Scimone C, Alibrandi S, D'Angelo R, Sidoti A. From powerhouse to regulator: The role of mitoepigenetics in mitochondrion-related cellular functions and human diseases. Free Radic Biol Med 2024; 218:105-119. [PMID: 38565400 DOI: 10.1016/j.freeradbiomed.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Beyond their crucial role in energy production, mitochondria harbor a distinct genome subject to epigenetic regulation akin to that of nuclear DNA. This paper delves into the nascent but rapidly evolving fields of mitoepigenetics and mitoepigenomics, exploring the sophisticated regulatory mechanisms governing mitochondrial DNA (mtDNA). These mechanisms encompass mtDNA methylation, the influence of non-coding RNAs (ncRNAs), and post-translational modifications of mitochondrial proteins. Together, these epigenetic modifications meticulously coordinate mitochondrial gene transcription, replication, and metabolism, thereby calibrating mitochondrial function in response to the dynamic interplay of intracellular needs and environmental stimuli. Notably, the dysregulation of mitoepigenetic pathways is increasingly implicated in mitochondrial dysfunction and a spectrum of human pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and cardiovascular conditions. This comprehensive review synthesizes the current state of knowledge, emphasizing recent breakthroughs and innovations in the field. It discusses the potential of high-resolution mitochondrial epigenome mapping, the diagnostic and prognostic utility of blood or tissue mtDNA epigenetic markers, and the promising horizon of mitochondrial epigenetic drugs. Furthermore, it explores the transformative potential of mitoepigenetics and mitoepigenomics in precision medicine. Exploiting a theragnostic approach to maintaining mitochondrial allostasis, this paper underscores the pivotal role of mitochondrial epigenetics in charting new frontiers in medical science.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Domenico Mordà
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy; Department of Veterinary Sciences, University of Messina, 98122, Messina, Italy.
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology (I.E.ME.S.T.) 90139 Palermo, Italy.
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98122, Messina, Italy.
| |
Collapse
|
10
|
Wang X, Memon AA, Hedelius A, Grundberg A, Sundquist J, Sundquist K. Circulating mitochondrial long non-coding 7S RNA in primary health care patients with depression/anxiety. J Affect Disord 2024; 349:101-106. [PMID: 38163568 DOI: 10.1016/j.jad.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The significant role of long non-coding 7S RNA in controlling mitochondrial transcription highlights its importance in mitochondrial function. Considering the suggested connection between mitochondrial dysfunction and the onset of mental disorders, this study aimed to explore the potential involvement of 7S RNA in the context of depression/anxiety. RESULTS A total of 181 patients in primary health care (age 20-64 years) with depression/anxiety and 59 healthy controls were included in the study. 7S RNA was measured using quantitative real-time PCR in plasma samples collected before (baseline) and after 8 weeks of treatment (mindfulness or cognitive-based behavioral therapy). Upon adjustment for age and sex, the baseline plasma levels of 7S RNA were significantly higher in patients than in healthy controls (p < 0.001). Notably, post-treatment, there was a significant reduction in 7S RNA levels (p = 0.03). These changes in 7S RNA were related to the treatment response, as indicated by HADS-D (Hospital Anxiety and Depression Scale) scores (ß = -0.04, p = 0.04), even after accounting for baseline scores and other cofounders. CONCLUSION The findings of this study indicate an association between plasma 7S RNA levels and depression/anxiety, as well as treatment response. While further confirmatory analyses are necessary, plasma 7S RNA holds promise as a potential predictive biomarker for both depression/anxiety and the treatment response within these disorders.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden.
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anna Hedelius
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Anton Grundberg
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| |
Collapse
|
11
|
Pereira IOA, Silva NNT, Lima AA, da Silva GN. Qualitative and quantitative changes in mitochondrial DNA associated with cervical cancer: A comprehensive review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:143-152. [PMID: 38523463 DOI: 10.1002/em.22591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
Cervical cancer is the fourth most commonly diagnosed cancer in women and is considered a preventable disease, as vaccination and screening programs effectively reduce its incidence and mortality rates. Disease physiopathology and malignant cell transformation is a complex process, but it is widely known that high-risk HPV (hrHPV) infection is a necessary risk factor for cancer development. Mitochondria, cell organelles with important bioenergetic and biosynthetic functions, are important for cell energy production, cell growth, and apoptosis. Mitochondrial DNA is a structure that is particularly susceptible to quantitative (mtDNA copy number variation) and qualitative (sequence variations) alterations that are associated with various types of cancer. Novel biomarkers with diagnostic and prognostic value in cervical cancer can be evaluated to provide higher specificity and complement hrHPV molecular testing, which is the most recommended method for primary screening. In accordance with this, this review aimed to assess mitochondrial alterations associated with cervical cancer in clinical cervicovaginal samples, in order to unravel their possible role as specific diagnostic and prognostic biomarkers for cervical malignancy, and also to guide the understanding of their involvement in carcinogenesis, HPV infection, and disease progression.
Collapse
Affiliation(s)
| | | | - Angelica Alves Lima
- School of Pharmacy, UFOP - Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | |
Collapse
|
12
|
Araya M, Sepúlveda F, Villegas J, Alarcón L, Burzio LO, Burzio VA, Borgna V. Knockdown of Antisense Noncoding Mitochondrial RNA Reduces Tumorigenicity of Patient-Derived Clear Cell Renal Carcinoma Cells in an Orthotopic Xenograft Mouse Model. Cancers (Basel) 2024; 16:830. [PMID: 38398221 PMCID: PMC10886546 DOI: 10.3390/cancers16040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent form of renal cancer and its treatment is hindered by a resistance to targeted therapies, immunotherapies and combinations of both. We have reported that the knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) with chemically modified antisense oligonucleotides induces proliferative arrest and apoptotic death in tumor cells from many human and mouse cancer types. These studies have been mostly performed in vitro and in vivo on commercially available cancer cell lines and have shown that in mouse models tumor growth is stunted by the treatment. The present work was performed on cells derived from primary and metastatic ccRCC tumors. We established primary cultures from primary and metastatic ccRCC tumors, which were subjected to knockdown of ASncmtRNAs in vitro and in vivo in an orthotopic xenograft model in NOD/SCID mice. We found that these primary ccRCC cells are affected in the same way as tumor cell lines and in the orthotopic model tumor growth was significantly reduced by the treatment. This study on patient-derived ccRCC tumor cells represents a model closer to actual patient ccRCC tumors and shows that knockdown of ASncmtRNAs poses a potential treatment option for these patients.
Collapse
Affiliation(s)
- Mariela Araya
- Centro Cientifico & Tecnologico de Excelencia Ciencia & Vida, Santiago 8580702, Chile;
| | - Francisca Sepúlveda
- Center for Regenerative Medicine, Faculty of Clinical Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago 7610615, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
| | - Jaime Villegas
- School of Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Santiago 8370251, Chile;
| | - Luis Alarcón
- Urology Service, Hospital Barros Luco-Trudeau, Santiago 8900085, Chile;
| | - Luis O. Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago 8370251, Chile;
| | - Verónica A. Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago 8370251, Chile;
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andrés Bello, Santiago 8370134, Chile
| | - Vincenzo Borgna
- Centro Cientifico & Tecnologico de Excelencia Ciencia & Vida, Santiago 8580702, Chile;
- Urology Service, Hospital Barros Luco-Trudeau, Santiago 8900085, Chile;
- School of Medicine, Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
13
|
Bruni F. Human mtDNA-Encoded Long ncRNAs: Knotty Molecules and Complex Functions. Int J Mol Sci 2024; 25:1502. [PMID: 38338781 PMCID: PMC10855489 DOI: 10.3390/ijms25031502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Until a few decades ago, most of our knowledge of RNA transcription products was focused on protein-coding sequences, which were later determined to make up the smallest portion of the mammalian genome. Since 2002, we have learnt a great deal about the intriguing world of non-coding RNAs (ncRNAs), mainly due to the rapid development of bioinformatic tools and next-generation sequencing (NGS) platforms. Moreover, interest in non-human ncRNAs and their functions has increased as a result of these technologies and the accessibility of complete genome sequences of species ranging from Archaea to primates. Despite not producing proteins, ncRNAs constitute a vast family of RNA molecules that serve a number of regulatory roles and are essential for cellular physiology and pathology. This review focuses on a subgroup of human ncRNAs, namely mtDNA-encoded long non-coding RNAs (mt-lncRNAs), which are transcribed from the mitochondrial genome and whose disparate localisations and functions are linked as much to mitochondrial metabolism as to cellular physiology and pathology.
Collapse
Affiliation(s)
- Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| |
Collapse
|
14
|
Nguyen J, Le Q, Win PW, Hill KA, Singh SM, Castellani CA. Decoding mitochondrial-nuclear (epi)genome interactions: the emerging role of ncRNAs. Epigenomics 2023; 15:1121-1136. [PMID: 38031736 DOI: 10.2217/epi-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bidirectional communication between the mitochondria and the nucleus is required for several physiological processes, and the nuclear epigenome is a key mediator of this relationship. ncRNAs are an emerging area of discussion for their roles in cellular function and regulation. In this review, we highlight the role of mitochondrial-encoded ncRNAs as mediators of communication between the mitochondria and the nuclear genome. We focus primarily on retrograde signaling, a process in which the mitochondrion relays ncRNAs to translate environmental stress signals to changes in nuclear gene expression, with implications on stress responses that may include disease(s). Other biological roles of mitochondrial-encoded ncRNAs, such as mitochondrial import of proteins and regulation of cell signaling, will also be discussed.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Phyo W Win
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Bendek MF, Fitzpatrick C, Jeldes E, Boland A, Deleuze JF, Farfán N, Villegas J, Nardocci G, Montecino M, Burzio LO, Burzio VA. Inverse Modulation of Aurora Kinase A and Topoisomerase IIα in Normal and Tumor Breast Cells upon Knockdown of Mitochondrial ASncmtRNA. Noncoding RNA 2023; 9:59. [PMID: 37888205 PMCID: PMC10609868 DOI: 10.3390/ncrna9050059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Breast cancer is currently the most diagnosed form of cancer and the leading cause of death by cancer among females worldwide. We described the family of long non-coding mitochondrial RNAs (ncmtRNAs), comprised of sense (SncmtRNA) and antisense (ASncmtRNA) members. Knockdown of ASncmtRNAs using antisense oligonucleotides (ASOs) induces proliferative arrest and apoptotic death of tumor cells, but not normal cells, from various tissue origins. In order to study the mechanisms underlying this selectivity, in this study we performed RNAseq in MDA-MB-231 breast cancer cells transfected with ASncmtRNA-specific ASO or control-ASO, or left untransfected. Bioinformatic analysis yielded several differentially expressed cell-cycle-related genes, from which we selected Aurora kinase A (AURKA) and topoisomerase IIα (TOP2A) for RT-qPCR and western blot validation in MDA-MB-231 and MCF7 breast cancer cells, as well as normal breast epithelial cells (HMEC). We observed no clear differences regarding mRNA levels but both proteins were downregulated in tumor cells and upregulated in normal cells. Since these proteins play a role in genomic integrity, this inverse effect of ASncmtRNA knockdown could account for tumor cell downfall whilst protecting normal cells, suggesting this approach could be used for genomic protection under cancer treatment regimens or other scenarios.
Collapse
Affiliation(s)
- Maximiliano F. Bendek
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
| | - Christopher Fitzpatrick
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Unit of Molecular Virology and Immunology, INRAE, University of Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Emanuel Jeldes
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Beatson Institute for Cancer Research, Glasgow G61 1BD, UK
| | - Anne Boland
- CEA, National Center for Research in Human Genomics (NCRHG), University of Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- CEA, National Center for Research in Human Genomics (NCRHG), University of Paris-Saclay, 91057 Evry, France
| | - Nicole Farfán
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
- Faculty of Health and Social Sciences, University of Las Americas, Santiago 8242125, Chile
| | - Jaime Villegas
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- School of Veterinary Medicine, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| | - Gino Nardocci
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Faculty of Medicine, University of Los Andes, Santiago 7620086, Chile
- Center for Biomedical Research and Innovation (CIIB), Faculty of Medicine, University of Los Andes, Santiago 7620086, Chile
| | - Martín Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| | - Luis O. Burzio
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
| | - Verónica A. Burzio
- Centers of Research Excellence in Science and Technology, Science & Life, Santiago 8580702, Chile; (M.F.B.); (C.F.)
- Department of Biological Sciences, Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile;
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, University of Andrés Bello, Santiago 8370146, Chile
| |
Collapse
|
16
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Varesano S, Pulliero A, Martorana E, Pizzino G, Raciti G, Coco S, Vellone VG, Izzotti A. Screening of Precancerous Lesions in Women with Human Papillomavirus (HPV) Infection by Molecular Typing and MicroRNA Analysis. J Pers Med 2023; 13:jpm13030531. [PMID: 36983713 PMCID: PMC10058065 DOI: 10.3390/jpm13030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Human papillomavirus (HPV) is causatively associated with cervical cancer, the fourth most common malignant disease of women worldwide: (1) The aim of the proposed study is to implement routine diagnostics of HPV precancerous cervical lesions by introducing new molecular diagnostic tools. (2) Methods: This is a retrospective cohort study with a total of twenty-two formalin-fixed paraffin-embedded (FFPE) cervical samples of various sample type (nine biopsy and thirteen conization) each patient had a previous abnormal results of pap test or HPV DNA test. Genotyping, viral load and co-infections were determined. For each patient, the individual expression of 2549 microRNAs were evaluated by microarray and qPCR. (3) Results: Our data demonstrates that the microRNAs were commonly expressed in tissues biopsies. miR 4485-5p, miR4485-3p and miR-4497 were highly down-regulated in tissue biopsies with HPV precancerous cervical lesions. (4) Conclusions: the introduction of a microRNA analysis panel can improve early diagnosis, understand the nature of the lesion and, consequently, improve the clinical management of patients with HPV precancerous cervical lesions.
Collapse
Affiliation(s)
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-0103538509
| | | | | | - Gabriele Raciti
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina (ME), 98122 Messina, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Valerio Gaetano Vellone
- Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa, 16132 Genoa, Italy
- Fetal and Perinatal Pathology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, 16147 Genoa, Italy
| | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
18
|
Mohideen AMSH, Johansen SD, Babiak I. mtR_find: A Parallel Processing Tool to Identify and Annotate RNAs Derived from the Mitochondrial Genome. Int J Mol Sci 2023; 24:ijms24054373. [PMID: 36901804 PMCID: PMC10001721 DOI: 10.3390/ijms24054373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
RNAs originating from mitochondrial genomes are abundant in transcriptomic datasets produced by high-throughput sequencing technologies, primarily in short-read outputs. Specific features of mitochondrial small RNAs (mt-sRNAs), such as non-templated additions, presence of length variants, sequence variants, and other modifications, necessitate the need for the development of an appropriate tool for their effective identification and annotation. We have developed mtR_find, a tool to detect and annotate mitochondrial RNAs, including mt-sRNAs and mitochondria-derived long non-coding RNAs (mt-lncRNA). mtR_find uses a novel method to compute the count of RNA sequences from adapter-trimmed reads. When analyzing the published datasets with mtR_find, we identified mt-sRNAs significantly associated with the health conditions, such as hepatocellular carcinoma and obesity, and we discovered novel mt-sRNAs. Furthermore, we identified mt-lncRNAs in early development in mice. These examples show the immediate impact of miR_find in extracting a novel biological information from the existing sequencing datasets. For benchmarking, the tool has been tested on a simulated dataset and the results were concordant. For accurate annotation of mitochondria-derived RNA, particularly mt-sRNA, we developed an appropriate nomenclature. mtR_find encompasses the mt-ncRNA transcriptomes in unpreceded resolution and simplicity, allowing re-analysis of the existing transcriptomic databases and the use of mt-ncRNAs as diagnostic or prognostic markers in the field of medicine.
Collapse
|
19
|
Zangouei AS, Zangoue M, Taghehchian N, Zangooie A, Rahimi HR, Saburi E, Alavi MS, Moghbeli M. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis. Biol Res 2023; 56:1. [PMID: 36597150 PMCID: PMC9808980 DOI: 10.1186/s40659-022-00411-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Zangoue
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Department of Anesthesiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Zangooie
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran ,grid.411701.20000 0004 0417 4622Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Reza Rahimi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahya Sadat Alavi
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Neira-Carrillo A, Zárate IA, Nieto E, Butto-Miranda N, Lobos-González L, Del Campo-Smith M, Palacio DA, Urbano BF. Electrospun Poly(acrylic acid- co-4-styrene sulfonate) as Potential Drug-Eluting Scaffolds for Targeted Chemotherapeutic Delivery Systems on Gastric (AGS) and Breast (MDA-Mb-231) Cancer Cell Lines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3903. [PMID: 36364679 PMCID: PMC9657868 DOI: 10.3390/nano12213903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Potential drug-eluting scaffolds of electrospun poly(acrylic acid-co-styrene sulfonate) P(AA-co-SS) in clonogenic assays using tumorigenic gastric and ovarian cancer cells were tested in vitro. Electrospun polymer nanofiber (EPnF) meshes of PAA and PSSNa homo- and P(AA-co-SS) copolymer composed of 30:70, 50:50, 70:30 acrylic acid (AA) and sodium 4-styrene sulfonate (SSNa) units were performed by electrospinning (ES). The synthesis, structural and morphological characterization of all EPnF meshes were analyzed by optical and electron microscopy (SEM-EDS), infrared spectroscopy (FTIR), contact angle, and X-ray diffraction (XRD) measurements. This study shows that different ratio of AA and SSNa of monomers in P(AA-co-SS) EPnF play a crucial role in clonogenic in vitro assays. We found that 50:50 P(AA-co-SS) EPnF mesh loaded with antineoplastic drugs can be an excellent suppressor of growth-independent anchored capacities in vitro assays and a good subcutaneous drug delivery system for chemotherapeutic medication in vivo model for surgical resection procedures in cancer research.
Collapse
Affiliation(s)
- Andrónico Neira-Carrillo
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
| | - Ignacio A. Zárate
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Eddie Nieto
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Nicole Butto-Miranda
- Department of Biological and Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago 8820808, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo, Clínica Alemana, Santiago 7610658, Chile
| | - Matias Del Campo-Smith
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 380492, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo, Clínica Alemana, Santiago 7610658, Chile
| | - Daniel A. Palacio
- Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción, Concepción 3349001, Chile
| | - Bruno F. Urbano
- Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción, Concepción 3349001, Chile
| |
Collapse
|
21
|
Dhorne-Pollet S, Fitzpatrick C, Da Costa B, Bourgon C, Eléouët JF, Meunier N, Burzio VA, Delmas B, Barrey E. Antisense oligonucleotides targeting ORF1b block replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Front Microbiol 2022; 13:915202. [PMID: 36386681 PMCID: PMC9644129 DOI: 10.3389/fmicb.2022.915202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/29/2022] [Indexed: 10/15/2023] Open
Abstract
The ongoing COVID-19 pandemic continues to pose a need for new and efficient therapeutic strategies. We explored antisense therapy using oligonucleotides targeting the severe acute respiratory syndrome coronavirus (SARS-CoV-2) genome. We predicted in silico four antisense oligonucleotides (ASO gapmers with 100% PTO linkages and LNA modifications at their 5' and 3'ends) targeting viral regions ORF1a, ORF1b, N and the 5'UTR of the SARS-CoV-2 genome. Efficiency of ASOs was tested by transfection in human ACE2-expressing HEK-293T cells and monkey VeroE6/TMPRSS2 cells infected with SARS-CoV-2. The ORF1b-targeting ASO was the most efficient, with a 71% reduction in the number of viral genome copies. N- and 5'UTR-targeting ASOs also significantly reduced viral replication by 55 and 63%, respectively, compared to non-related control ASO (ASO-C). Viral titration revealed a significant decrease in SARS-CoV-2 multiplication both in culture media and in cells. These results show that anti-ORF1b ASO can specifically reduce SARS-CoV-2 genome replication in vitro in two different cell infection models. The present study presents proof-of concept of antisense oligonucleotide technology as a promising therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
| | - Christopher Fitzpatrick
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
- Universidad Andrés Bello, Santiago, Chile
| | - Bruno Da Costa
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Clara Bourgon
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Nicolas Meunier
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Verónica A. Burzio
- Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia, Vida/Andes Biotechnologies SpA, Santiago, Chile
| | - Bernard Delmas
- INRAE, UMR VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Barrey
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
22
|
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, Sinelnikov MY, Nikolenko VN, Bulygin KV, Mikhaleva LM, Reshetov IV, Gu Y, Zhang J, Cao Y, Somasundaram SG, Kirkland CE, Fan R, Aliev G. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin Cancer Biol 2022; 83:556-569. [PMID: 33035656 DOI: 10.1016/j.semcancer.2020.09.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023]
Abstract
Epigenetic regulation of mitochondrial DNA (mtDNA) is an emerging and fast-developing field of research. Compared to regulation of nucler DNA, mechanisms of mtDNA epigenetic regulation (mitoepigenetics) remain less investigated. However, mitochondrial signaling directs various vital intracellular processes including aerobic respiration, apoptosis, cell proliferation and survival, nucleic acid synthesis, and oxidative stress. The later process and associated mismanagement of reactive oxygen species (ROS) cascade were associated with cancer progression. It has been demonstrated that cancer cells contain ROS/oxidative stress-mediated defects in mtDNA repair system and mitochondrial nucleoid protection. Furthermore, mtDNA is vulnerable to damage caused by somatic mutations, resulting in the dysfunction of the mitochondrial respiratory chain and energy production, which fosters further generation of ROS and promotes oncogenicity. Mitochondrial proteins are encoded by the collective mitochondrial genome that comprises both nuclear and mitochondrial genomes coupled by crosstalk. Recent reports determined the defects in the collective mitochondrial genome that are conducive to breast cancer initiation and progression. Mutational damage to mtDNA, as well as its overproliferation and deletions, were reported to alter the nuclear epigenetic landscape. Unbalanced mitoepigenetics and adverse regulation of oxidative phosphorylation (OXPHOS) can efficiently facilitate cancer cell survival. Accordingly, several mitochondria-targeting therapeutic agents (biguanides, OXPHOS inhibitors, vitamin-E analogues, and antibiotic bedaquiline) were suggested for future clinical trials in breast cancer patients. However, crosstalk mechanisms between altered mitoepigenetics and cancer-associated mtDNA mutations remain largely unclear. Hence, mtDNA mutations and epigenetic modifications could be considered as potential molecular markers for early diagnosis and targeted therapy of breast cancer. This review discusses the role of mitoepigenetic regulation in cancer cells and potential employment of mtDNA modifications as novel anti-cancer targets.
Collapse
Affiliation(s)
- Kuo Chen
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China; Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Pengwei Lu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Narasimha M Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - SubbaRao V Madhunapantula
- Center of Excellence in Regenerative Medicine and Molecular Biology (CEMR), Department of Biochemistry, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou, 450052, China
| | - Mikhail Y Sinelnikov
- Institue for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Vladimir N Nikolenko
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Kirill V Bulygin
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Department of Normal and Topographic Anatomy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University (MSU), 31-5 Lomonosovsky Prospect, 117192, Moscow, Russia
| | - Liudmila M Mikhaleva
- Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation
| | - Igor V Reshetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yuanting Gu
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia
| | - Siva G Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Cecil E Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street Salem, WV, 26426, USA
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Street, Zhengzhou, 450052, China.
| | - Gjumrakch Aliev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Street, Moscow, 119991, Russia; Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russian Federation; Institute of Physiologically Active Compounds of Russian Academy of Sciences, Severny pr. 1, Chernogolovka, Moscow Region, 142432, Russia; GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
23
|
Mitochondrial Ribosome Dysfunction in Human Alveolar Type II Cells in Emphysema. Biomedicines 2022; 10:biomedicines10071497. [PMID: 35884802 PMCID: PMC9313339 DOI: 10.3390/biomedicines10071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary emphysema is characterized by airspace enlargement and the destruction of alveoli. Alveolar type II (ATII) cells are very abundant in mitochondria. OXPHOS complexes are composed of proteins encoded by the mitochondrial and nuclear genomes. Mitochondrial 12S and 16S rRNAs are required to assemble the small and large subunits of the mitoribosome, respectively. We aimed to determine the mechanism of mitoribosome dysfunction in ATII cells in emphysema. ATII cells were isolated from control nonsmokers and smokers, and emphysema patients. Mitochondrial transcription and translation were analyzed. We also determined the miRNA expression. Decreases in ND1 and UQCRC2 expression levels were found in ATII cells in emphysema. Moreover, nuclear NDUFS1 and SDHB levels increased, and mitochondrial transcribed ND1 protein expression decreased. These results suggest an impairment of the nuclear and mitochondrial stoichiometry in this disease. We also detected low levels of the mitoribosome structural protein MRPL48 in ATII cells in emphysema. Decreased 16S rRNA expression and increased 12S rRNA levels were observed. Moreover, we analyzed miR4485-3p levels in this disease. Our results suggest a negative feedback loop between miR-4485-3p and 16S rRNA. The obtained results provide molecular mechanisms of mitoribosome dysfunction in ATII cells in emphysema.
Collapse
|
24
|
Karim L, Kosmider B, Bahmed K. Mitochondrial ribosomal stress in lung diseases. Am J Physiol Lung Cell Mol Physiol 2021; 322:L507-L517. [PMID: 34873929 DOI: 10.1152/ajplung.00078.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are involved in a variety of critical cellular functions, and their impairment drives cell injury. The mitochondrial ribosome (mitoribosome) is responsible for the protein synthesis of mitochondrial DNA encoded genes. These proteins are involved in oxidative phosphorylation, respiration, and ATP production required in the cell. Mitoribosome components originate from both mitochondrial and nuclear genomes. Their dysfunction can be caused by impaired mitochondrial protein synthesis or mitoribosome misassembly, leading to a decline in mitochondrial translation. This decrease can trigger mitochondrial ribosomal stress and contribute to pulmonary cell injury, death, and diseases. This review focuses on the contribution of the impaired mitoribosome structural components and function to respiratory disease pathophysiology. We present recent findings in the fields of lung cancer, chronic obstructive pulmonary disease, interstitial lung disease, and asthma. We also include reports on the mitoribosome dysfunction in pulmonary hypertension, high altitude pulmonary edema, bacterial and viral infections. Studies of the mitoribosome alterations in respiratory diseases can lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Loukmane Karim
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Biomedical Education and Data Science, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Farfán N, Sanhueza N, Briones M, Burzio LO, Burzio VA. Antisense noncoding mitochondrial RNA-2 gives rise to miR-4485-3p by Dicer processing in vitro. Biol Res 2021; 54:33. [PMID: 34666824 PMCID: PMC8527801 DOI: 10.1186/s40659-021-00356-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/05/2021] [Indexed: 11/21/2022] Open
Abstract
Background The antisense noncoding mitochondrial RNAs (ASncmtRNAs) derive from the mitochondrial 16S gene. Knockdown of these transcripts with chemically-modified antisense oligonucleotides induces proliferative arrest, apoptosis and invasiveness reduction in tumor but not normal cells. One of these transcripts, ASncmtRNA-2, contains the complete and identical sequence of hsa-miR-4485-3p and, upon knockdown of this transcript, there is a strong increase in levels of this miRNA, suggesting ASncmtRNA-2 as a source for miR-4485-3p, which is supported by several evidences from our group and others, in the ex vivo setting. Results Here we show that incubation of in vitro-transcribed ASncmtRNA-2 with recombinant Dicer produces RNA fragments corresponding to hsa-miR-4485-3p, showing that Dicer binds to and processes ASncmtRNA-2, strongly supporting the hypothesis that ASncmtRNA-2 acts as a precursor for miR-4485-3p. Conclusion The in vitro results presented here strengthen the hypothesis that miR-4485-3p is derived from ASncmtRNA-2 by Dicer processing. Since miR-4485-3p is classified as a tumor suppressor miRNA, this evidence strengthens the application of ASncmtRNA knockdown for cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00356-0.
Collapse
Affiliation(s)
- Nicole Farfán
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Center for Regenerative Medicine, Faculty of Medicine, Universidad del Desarrollo/Clínica Alemana de Santiago, Santiago, Chile
| | - Nicole Sanhueza
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Center for Integrative Biology, Faculty of Science, Universidad Mayor de Chile, Santiago, Chile
| | - Macarena Briones
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile
| | - Luis O Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile.,Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, Santiago, Chile. .,Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile.
| |
Collapse
|
26
|
Wozniak M, Czyz M. The Functional Role of Long Non-Coding RNAs in Melanoma. Cancers (Basel) 2021; 13:cancers13194848. [PMID: 34638331 PMCID: PMC8508152 DOI: 10.3390/cancers13194848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Melanoma is the most lethal skin cancer, with increasing incidence worldwide. The molecular events that drive melanoma development and progression have been extensively studied, resulting in significant improvements in diagnostics and therapeutic approaches. However, a high drug resistance to targeted therapies and adverse effects of immunotherapies are still a major challenge in melanoma treatment. Therefore, the elucidation of molecular mechanisms of melanomagenesis and cancer response to treatment is of great importance. Recently, many studies have revealed the close association of long noncoding RNAs (lncRNAs) with the development of many cancers, including melanoma. These RNA molecules are able to regulate a plethora of crucial cellular processes including proliferation, differentiation, migration, invasion and apoptosis through diverse mechanisms, and even slight dysregulation of their expression may lead to tumorigenesis. lncRNAs are able to bind to protein complexes, DNA and RNAs, affecting their stability, activity, and localization. They can also regulate gene expression in the nucleus. Several functions of lncRNAs are context-dependent. This review summarizes current knowledge regarding the involvement of lncRNAs in melanoma. Their possible role as prognostic markers of melanoma response to treatment and in resistance to therapy is also discussed.
Collapse
|
27
|
Giordani C, Silvestrini A, Giuliani A, Olivieri F, Rippo MR. MicroRNAs as Factors in Bidirectional Crosstalk Between Mitochondria and the Nucleus During Cellular Senescence. Front Physiol 2021; 12:734976. [PMID: 34566699 PMCID: PMC8458936 DOI: 10.3389/fphys.2021.734976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 01/12/2023] Open
Abstract
Mitochondria are essential organelles that generate most of the chemical energy to power the cell through ATP production, thus regulating cell homeostasis. Although mitochondria have their own independent genome, most of the mitochondrial proteins are encoded by nuclear genes. An extensive bidirectional communication network between mitochondria and the nucleus has been discovered, thus making them semi-autonomous organelles. The nucleus-to-mitochondria signaling pathway, called Anterograde Signaling Pathway can be deduced, since the majority of mitochondrial proteins are encoded in the nucleus, less is known about the opposite pathway, the so-called mitochondria-to-nucleus retrograde signaling pathway. Several studies have demonstrated that non-coding RNAs are essential "messengers" of this communication between the nucleus and the mitochondria and that they might have a central role in the coordination of important mitochondrial biological processes. In particular, the finding of numerous miRNAs in mitochondria, also known as mitomiRs, enabled insights into their role in mitochondrial gene transcription. MitomiRs could act as important mediators of this complex crosstalk between the nucleus and the mitochondria. Mitochondrial homeostasis is critical for the physiological processes of the cell. Disruption at any stage in their metabolism, dynamics and bioenergetics could lead to the production of considerable amounts of reactive oxygen species and increased mitochondrial permeability, which are among the hallmarks of cellular senescence. Extensive changes in mitomiR expression and distribution have been demonstrated in senescent cells, those could possibly lead to an alteration in mitochondrial homeostasis. Here, we discuss the emerging putative roles of mitomiRs in the bidirectional communication pathways between mitochondria and the nucleus, with a focus on the senescence-associated mitomiRs.
Collapse
Affiliation(s)
- Chiara Giordani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Silvestrini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
28
|
Huang J, Wu S, Wang P, Wang G. Non-coding RNA Regulated Cross-Talk Between Mitochondria and Other Cellular Compartments. Front Cell Dev Biol 2021; 9:688523. [PMID: 34414182 PMCID: PMC8369480 DOI: 10.3389/fcell.2021.688523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mitochondria are the main hubs for cellular energy production. Metabolites produced in mitochondria not only feed many important biosynthesis pathways but also function as signaling molecules. Mitochondrial biosynthesis requires collaboration of both nuclear and mitochondrial gene expression systems. In addition, mitochondria have to quickly respond to changes inside and outside the cells and have their own functional states reported to the nucleus and other cellular compartments. The underlying molecular mechanisms of these complex regulations have not been well understood. Recent evidence indicates that in addition to small molecules, non-coding RNAs may contribute to the communication between mitochondria and other cellular compartments and may even serve as signals. In this review, we summarize the current knowledge about mitochondrial non-coding RNAs (including nucleus-encoded non-coding RNAs that are imported into mitochondria and mitochondrion-encoded non-coding RNAs that are exported), their trafficking and their functions in co-regulation of mitochondrial and other cellular processes.
Collapse
Affiliation(s)
- Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Sipeng Wu
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Pengcheng Wang
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Geng Wang
- State Key laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| |
Collapse
|
29
|
Liang H, Liu J, Su S, Zhao Q. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol 2021; 18:2168-2182. [PMID: 34110970 DOI: 10.1080/15476286.2021.1935572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial noncoding RNAs (mt-ncRNAs) include noncoding RNAs inside the mitochondria that are transcribed from the mitochondrial genome or nuclear genome, and noncoding RNAs transcribed from the mitochondrial genome that are transported to the cytosol or nucleus. Recent findings have revealed that mt-ncRNAs play important roles in not only mitochondrial functions, but also other cellular activities. This review proposes a classification of mt-ncRNAs and outlines the emerging understanding of mitochondrial circular RNAs (mt-circRNAs), mitochondrial microRNAs (mitomiRs), and mitochondrial long noncoding RNAs (mt-lncRNAs), with an emphasis on their identification and functions.
Collapse
Affiliation(s)
- Huixin Liang
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shicheng Su
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Qiyi Zhao
- Department of Infectious Diseases, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
30
|
Zhang S, Wang Q, Li D, Huang B, Hou X, Wang D, Xiao Z, Meng H, Zhang Y, Dong L. Oncolytic Vaccinia Virus-Mediated Antitumor Effect and Cell Proliferation Were Promoted in PTC by Regulating circRNA_103598/miR-23a-3p/IL-6 Axis. Cancer Manag Res 2020; 12:10389-10396. [PMID: 33116893 PMCID: PMC7585822 DOI: 10.2147/cmar.s273072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy, and cases have been rising steadily worldwide in the past few decades. Despite great progress having been made in surgery and chemotherapy for PTC, the survival rate of PTC patients has not increased significantly. Therefore, there is an urgent need to explore novel treatment strategies. MATERIALS AND METHODS The levels of circRNA_103598, miR-23a-3p and IL-6 mRNA in PTC tissues and cells were examined by qRT-PCR assay. Cell proliferation and IC50 values of oncolytic vaccinia virus (OVV) were detected by CCK-8 assay. A dual-luciferase reporter assay was performed to detect the relationships among circRNA_103598, miR-23a-3p and IL-6. ELISA was carried out to detect the expression of IL-6. RESULTS We found that circRNA_103598 was increased in PTC tissues and cell lines and acted as a sponge for miR-23a-3p. Moreover, knockdown of miR-23a-3p suppressed the OVV-mediated antitumor effect and cell proliferation in PTC. In addition, we revealed that circRNA_103598 bound to miR-23a-3p as a sponge to promote IL-6 expression. CONCLUSION Our study first revealed the high expression and oncogenic function of circRNA_103598 in PTC cells. Then, circRNA_103598 sponged miR-23a-3p to upregulate IL-6 expression, with the resulted that cell proliferation was promoted and the OVV-mediated antitumor effect was enhanced by strengthening the viral replication, providing new insights into future therapy for PTC.
Collapse
Affiliation(s)
- Shuilong Zhang
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Qiang Wang
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Dewei Li
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Bo Huang
- Department of Gastrointestinal Pancreas, Hernia and Abdominal Wall Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People's Republic of China
| | - Xia Hou
- Department of Chest Radiotherapy, Tumor Hospital of Shanxi Province, Taiyuan, People's Republic of China
| | - Dongliang Wang
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Zhifu Xiao
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Hongjing Meng
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Yuhang Zhang
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| | - Lingxiang Dong
- Department of Thyroid Surgery, Shanxi Provincial People’s Hospital, Taiyuan, People’s Republic of China
| |
Collapse
|
31
|
Cavalcante GC, Magalhães L, Ribeiro-dos-Santos Â, Vidal AF. Mitochondrial Epigenetics: Non-Coding RNAs as a Novel Layer of Complexity. Int J Mol Sci 2020; 21:E1838. [PMID: 32155913 PMCID: PMC7084767 DOI: 10.3390/ijms21051838] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are organelles responsible for several functions involved in cellular balance, including energy generation and apoptosis. For decades now, it has been well-known that mitochondria have their own genetic material (mitochondrial DNA), which is different from nuclear DNA in many ways. More recently, studies indicated that, much like nuclear DNA, mitochondrial DNA is regulated by epigenetic factors, particularly DNA methylation and non-coding RNAs (ncRNAs). This field is now called mitoepigenetics. Additionally, it has also been established that nucleus and mitochondria are constantly communicating to each other to regulate different cellular pathways. However, little is known about the mechanisms underlying mitoepigenetics and nuclei-mitochondria communication, and also about the involvement of the ncRNAs in mitochondrial functions and related diseases. In this context, this review presents the state-of-the-art knowledge, focusing on ncRNAs as new players in mitoepigenetic regulation and discussing future perspectives of these fields.
Collapse
Affiliation(s)
- Giovanna C. Cavalcante
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Rua dos Mundurucus, 4487, 66073-005 Belém, PA, Brazil
| | - Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Federal University of Pará, Av. Augusto Correa, 01, 66075-970 Belém, PA, Brazil; (G.C.C.); (L.M.); (Â.R.-d.-S.)
- Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| |
Collapse
|
32
|
Gusic M, Prokisch H. ncRNAs: New Players in Mitochondrial Health and Disease? Front Genet 2020; 11:95. [PMID: 32180794 PMCID: PMC7059738 DOI: 10.3389/fgene.2020.00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
The regulation of mitochondrial proteome is unique in that its components have origins in both mitochondria and nucleus. With the development of OMICS technologies, emerging evidence indicates an interaction between mitochondria and nucleus based not only on the proteins but also on the non-coding RNAs (ncRNAs). It is now accepted that large parts of the non‐coding genome are transcribed into various ncRNA species. Although their characterization has been a hot topic in recent years, the function of the majority remains unknown. Recently, ncRNA species microRNA (miRNA) and long-non coding RNAs (lncRNA) have been gaining attention as direct or indirect modulators of the mitochondrial proteome homeostasis. These ncRNA can impact mitochondria indirectly by affecting transcripts encoding for mitochondrial proteins in the cytoplasm. Furthermore, reports of mitochondria-localized miRNAs, termed mitomiRs, and lncRNAs directly regulating mitochondrial gene expression suggest the import of RNA to mitochondria, but also transcription from the mitochondrial genome. Interestingly, ncRNAs have been also shown to hide small open reading frames (sORFs) encoding for small functional peptides termed micropeptides, with several examples reported with a role in mitochondria. In this review, we provide a literature overview on ncRNAs and micropeptides found to be associated with mitochondrial biology in the context of both health and disease. Although reported, small study overlap and rare replications by other groups make the presence, transport, and role of ncRNA in mitochondria an attractive, but still challenging subject. Finally, we touch the topic of their potential as prognosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Mirjana Gusic
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
33
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
34
|
Abildgaard C, Do Canto LM, Steffensen KD, Rogatto SR. Long Non-coding RNAs Involved in Resistance to Chemotherapy in Ovarian Cancer. Front Oncol 2020; 9:1549. [PMID: 32039022 PMCID: PMC6985280 DOI: 10.3389/fonc.2019.01549] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) accounts for more than 150,000 deaths worldwide every year. Patients are often diagnosed at an advanced stage with metastatic dissemination. Although platinum- and taxane-based chemotherapies are effective treatment options, they are rarely curative and eventually, the disease will progress due to acquired resistance. Emerging evidence suggests a crucial role of long non-coding RNAs (lncRNAs) in the response to therapy in OC. Transcriptome profiling studies using high throughput approaches have identified differential expression patterns of lncRNAs associated with disease recurrence. Furthermore, several aberrantly expressed lncRNAs in resistant OC cells have been related to increased cell division, improved DNA repair, up-regulation of drug transporters or reduced susceptibility to apoptotic stimuli, supporting their involvement in acquired resistance. In this review, we will discuss the key aspects of lncRNAs associated with the development of resistance to platinum- and taxane-based chemotherapy in OC. The molecular landscape of OC will be introduced, to provide a background for understanding the role of lncRNAs in the acquisition of malignant properties. We will focus on the interplay between lncRNAs and molecular pathways affecting drug response to evaluate their impact on treatment resistance. Additionally, we will discuss the prospects of using lncRNAs as biomarkers or targets for precision medicine in OC. Although there is still plenty to learn about lncRNAs and technical challenges to be solved, the evidence of their involvement in OC and the development of acquired resistance are compelling and warrant further investigation for clinical applications.
Collapse
Affiliation(s)
- Cecilie Abildgaard
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Luisa M Do Canto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark
| | - Karina D Steffensen
- Department of Clinical Oncology, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Silvia R Rogatto
- Department of Clinical Genetics, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
35
|
Borgna V, Lobos-González L, Guevara F, Landerer E, Bendek M, Ávila R, Silva V, Villota C, Araya M, Rivas A, López C, Socias T, Castillo J, Alarcón L, Burzio LO, Burzio VA, Villegas J. Targeting antisense mitochondrial noncoding RNAs induces bladder cancer cell death and inhibition of tumor growth through reduction of survival and invasion factors. J Cancer 2020; 11:1780-1791. [PMID: 32194789 PMCID: PMC7052861 DOI: 10.7150/jca.38880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/23/2019] [Indexed: 01/06/2023] Open
Abstract
Knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, supporting a selective therapy against different types of cancer. In this work, we evaluated the effects of knockdown of ASncmtRNAs on bladder cancer (BCa). We transfected the BCa cell lines UMUC-3, RT4 and T24 with the specific antisense oligonucleotide Andes-1537S, targeted to the human ASncmtRNAs. Knockdown induced a strong inhibition of cell proliferation and increase in cell death in all three cell lines. As observed in UMUC-3 cells, the treatment triggered apoptosis, evidenced by loss of mitochondrial membrane potential and Annexin V staining, along with activation of procaspase-3 and downregulation of the anti-apoptotic factors survivin and Bcl-xL. Treatment also inhibited cell invasion and spheroid formation together with inhibition of N-cadherin and MMP 11. In vivo treatment of subcutaneous xenograft UMUC-3 tumors in NOD/SCID mice with Andes-1537S induced inhibition of tumor growth as compared to saline control. Similarly, treatment of a high-grade bladder cancer PDX with Andes-1537S resulted in a strong inhibition of tumor growth. Our results suggest that ASncmtRNAs could be potent targets for bladder cancer as adjuvant therapy.
Collapse
Affiliation(s)
- Vincenzo Borgna
- Fundación Ciencia & Vida.,Facultad de Medicina, Universidad De Santiago.,Servicio de Urología, Hospital Barros Luco-Trudeau
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo
| | | | | | | | | | | | - Claudio Villota
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Bernardo O'Higgins
| | - Mariela Araya
- Fundación Ciencia & Vida.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | | | | | | | - Jorge Castillo
- Servicio de Anatomía Patológica, Hospital Barros Luco-Trudeau. Santiago, Chile
| | - Luis Alarcón
- Servicio de Urología, Hospital Barros Luco-Trudeau
| | - Luis O Burzio
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | - Verónica A Burzio
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| | - Jaime Villegas
- Fundación Ciencia & Vida.,Andes Biotechnologies SpA.,Facultad de Ciencias de la Vida, Universidad Andrés Bello
| |
Collapse
|
36
|
Exosomes released upon mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of malignant breast cancer cells. Sci Rep 2020; 10:343. [PMID: 31941923 PMCID: PMC6962334 DOI: 10.1038/s41598-019-57018-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
During intercellular communication, cells release extracellular vesicles such as exosomes, which contain proteins, ncRNAs and mRNAs that can influence proliferation and/or trigger apoptosis in recipient cells, and have been proposed to play an essential role in promoting invasion of tumor cells and in the preparation of metastatic niches. Our group proposed the antisense non-coding mitochondrial RNA (ASncmtRNA) as a new target for cancer therapy. ASncmtRNA knockdown using an antisense oligonucleotide (ASO-1537S) causes massive death of tumor cells but not normal cells and strongly reduces metastasis in mice. In this work, we report that exosomes derived from ASO-1537S-treated MDA-MB-231 breast cancer cells (Exo-1537S) inhibits tumorigenesis of recipient cells, in contrast to exosomes derived from control-ASO-treated cells (Exo-C) which, in contrast, enhance these properties. Furthermore, an in vivo murine peritoneal carcinomatosis model showed that Exo-1537S injection reduced tumorigenicity compared to controls. Proteomic analysis revealed the presence of Lactadherin and VE-Cadherin in exosomes derived from untreated cells (Exo-WT) and Exo-C but not in Exo-1537S, and the latter displayed enrichment of proteasomal subunits. These results suggest a role for these proteins in modulation of tumorigenic properties of exosome-recipient cells. Our results shed light on the mechanisms through which ASncmtRNA knockdown affects the preparation of breast cancer metastatic niches in a peritoneal carcinomatosis model.
Collapse
|
37
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
38
|
Villota C, Varas-Godoy M, Jeldes E, Campos A, Villegas J, Borgna V, Burzio LO, Burzio VA. HPV-18 E2 protein downregulates antisense noncoding mitochondrial RNA-2, delaying replicative senescence of human keratinocytes. Aging (Albany NY) 2019; 11:33-47. [PMID: 30595560 PMCID: PMC6339806 DOI: 10.18632/aging.101711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Human and mouse cells display a differential expression pattern of a family of mitochondrial noncoding RNAs (ncmtRNAs), according to proliferative status. Normal proliferating and cancer cells express a sense ncmtRNA (SncmtRNA), which seems to be required for cell proliferation, and two antisense transcripts referred to as ASncmtRNA-1 and -2. Remarkably however, the ASncmtRNAs are downregulated in human and mouse cancer cells, including HeLa and SiHa cells, transformed with HPV-18 and HPV-16, respectively. HPV E2 protein is considered a tumor suppressor in the context of high-risk HPV-induced transformation and therefore, to explore the mechanisms involved in the downregulation of ASncmtRNAs during tumorigenesis, we studied human foreskin keratinocytes (HFK) transduced with lentiviral-encoded HPV-18 E2. Transduced cells displayed a significantly extended replicative lifespan of up to 23 population doublings, compared to 8 in control cells, together with downregulation of the ASncmtRNAs. At 26 population doublings, cells transduced with E2 were arrested at G2/M, together with downregulation of E2 and SncmtRNA and upregulation of ASncmtRNA-2. Our results suggest a role for high-risk HPV E2 protein in cellular immortalization. Additionally, we propose a new cellular phenotype according to the expression of the SncmtRNA and the ASncmtRNAs.
Collapse
Affiliation(s)
- Claudio Villota
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Emanuel Jeldes
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - América Campos
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Laboratorio de Comunicaciones Celulares (CEMC) Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime Villegas
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Vincenzo Borgna
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Luis O Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Fundación Ciencia & Vida, Santiago, Chile.,Andes Biotechnologies SpA, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
39
|
Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: Epigenetics and environment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:668-682. [PMID: 31335990 PMCID: PMC6941438 DOI: 10.1002/em.22319] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 05/22/2023]
Abstract
Maintenance of the mitochondrial genome is essential for proper cellular function. For this purpose, mitochondrial DNA (mtDNA) needs to be faithfully replicated, transcribed, translated, and repaired in the face of constant onslaught from endogenous and environmental agents. Although only 13 polypeptides are encoded within mtDNA, the mitochondrial proteome comprises over 1500 proteins that are encoded by nuclear genes and translocated to the mitochondria for the purpose of maintaining mitochondrial function. Regulation of mtDNA and mitochondrial proteins by epigenetic changes and post-translational modifications facilitate crosstalk between the nucleus and the mitochondria and ultimately lead to the maintenance of cellular health and homeostasis. DNA methyl transferases have been identified in the mitochondria implicating that methylation occurs within this organelle; however, the extent to which mtDNA is methylated has been debated for many years. Mechanisms of demethylation within this organelle have also been postulated, but the exact mechanisms and their outcomes is still an active area of research. Mitochondrial dysfunction in the form of altered gene expression and ATP production, resulting from epigenetic changes, can lead to various conditions including aging-related neurodegenerative disorders, altered metabolism, changes in circadian rhythm, and cancer. Here, we provide an overview of the epigenetic regulation of mtDNA via methylation, long and short noncoding RNAs, and post-translational modifications of nucleoid proteins (as mitochondria lack histones). We also highlight the influence of xenobiotics such as airborne environmental pollutants, contamination from heavy metals, and therapeutic drugs on mtDNA methylation. Environ. Mol. Mutagen., 60:668-682, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
|
40
|
Fitzpatrick C, Bendek MF, Briones M, Farfán N, Silva VA, Nardocci G, Montecino M, Boland A, Deleuze JF, Villegas J, Villota C, Silva V, Lobos-Gonzalez L, Borgna V, Barrey E, Burzio LO, Burzio VA. Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors. Cell Death Dis 2019; 10:423. [PMID: 31142736 PMCID: PMC6541642 DOI: 10.1038/s41419-019-1649-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022]
Abstract
The family of long noncoding mitochondrial RNAs (ncmtRNAs), comprising sense (SncmtRNA), and antisense (ASncmtRNA-1 and ASncmtRNA-2) members, are differentially expressed according to cell proliferative status; SncmtRNA is expressed in all proliferating cells, while ASncmtRNAs are expressed in normal proliferating cells, but is downregulated in tumor cells. ASncmtRNA knockdown with an antisense oligonucleotide induces massive apoptosis in tumor cell lines, without affecting healthy cells. Apoptotic death is preceded by proliferation blockage, suggesting that these transcripts are involved in cell cycle regulation. Here, we show that ASncmtRNA knockdown induces cell death preceded by proliferative blockage in three different human breast cancer cell lines. This effect is mediated by downregulation of the key cell cycle progression factors cyclin B1, cyclin D1, CDK1, CDK4, and survivin, the latter also constituting an essential inhibitor of apoptosis, underlying additionally the onset of apoptosis. The treatment also induces an increase in the microRNA hsa-miR-4485-3p, whose sequence maps to ASncmtRNA-2 and transfection of MDA-MB-231 cells with a mimic of this miRNA induces cyclin B1 and D1 downregulation. Other miRNAs that are upregulated include nuclear-encoded hsa-miR-5096 and hsa-miR-3609, whose mimics downregulate CDK1. Our results suggest that ASncmtRNA targeting blocks tumor cell proliferation through reduction of essential cell cycle proteins, mediated by mitochondrial and nuclear miRNAs. This work adds to the elucidation of the molecular mechanisms behind cell cycle arrest preceding tumor cell apoptosis induced by ASncmtRNA knockdown. As proof-of-concept, we show that in vivo knockdown of ASncmtRNAs results in drastic inhibition of tumor growth in a xenograft model of MDA-MB-231 subcutaneous tumors, further supporting this approach for the development of new therapeutic strategies against breast cancer.
Collapse
Affiliation(s)
- Christopher Fitzpatrick
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Maximiliano F Bendek
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Macarena Briones
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile
| | - Nicole Farfán
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Valeria A Silva
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Valparaíso Interdisciplinary Neuroscience Center, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, 2360102, Chile
| | - Gino Nardocci
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Life Sciences and Faculty of Medicine, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Martín Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Life Sciences and Faculty of Medicine, Universidad Andrés Bello, 8370134, Santiago, Chile
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Jaime Villegas
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile.,Andes Biotechnologies Global Inc., Burlingame, CA, USA.,Center for Veterinary Medicine, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Villota
- School of Nutrition and Diet, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Verónica Silva
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile
| | - Lorena Lobos-Gonzalez
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana & Universidad del Desarrollo, Santiago, Chile
| | - Vincenzo Borgna
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Faculty of Medical Sciences, Universidad de Santiago de Chile, Santiago, Chile
| | - Eric Barrey
- INRA, Génétique Animale et Biologie Intégrative UMR1313, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis O Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile.,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile.,Andes Biotechnologies Global Inc., Burlingame, CA, USA
| | - Verónica A Burzio
- Fundación Ciencia & Vida/Andes Biotechnologies SpA, 7780272, Santiago, Chile. .,Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, 8370134, Santiago, Chile. .,Andes Biotechnologies Global Inc., Burlingame, CA, USA.
| |
Collapse
|
41
|
Abstract
Epigenetics can be explored at different levels and can be divided into two major areas: epigenetics of nuclear-encoded DNA and epigenetics of mitochondrial-encoded DNA. In epigenetics of nuclear-encoded DNA, the main roles are played by DNA methylation, changes in histone structure and several types of non-coding RNAs. Mitochondrial epigenetics seems to be similar in the aspect of DNA methylation and to some extent in the role of non-coding RNAs but differs significantly in changes in components coiling DNA. Nuclear DNA is coiled around histones, but mitochondrial DNA, together with associated proteins, is located in mitochondrial pseudocompartments called nucleoids. It has been shown that mitochondrial epigenetic mechanisms influence cell fate, transcription regulation, cell division, cell cycle, physiological homeostasis, bioenergetics and even pathologies, but not all of these mechanisms have been explored in stem cells. The main issue is that most of these mechanisms have only recently been discovered in mitochondria, while improvements in methodology, especially next-generation sequencing, have enabled in-depth studies. Because studies exploring mitochondria from other aspects show that mitochondria are crucial for the normal behavior of stem cells, it is suggested that precise mitochondrial epigenetics in stem cells should be studied more intensively.
Collapse
|
42
|
Zhao Y, Sun L, Wang RR, Hu JF, Cui J. The effects of mitochondria-associated long noncoding RNAs in cancer mitochondria: New players in an old arena. Crit Rev Oncol Hematol 2018; 131:76-82. [DOI: 10.1016/j.critrevonc.2018.08.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022] Open
|
43
|
Jørgensen TE, Karlsen BO, Emblem Å, Jakt LM, Nordeide JT, Moum T, Johansen SD. A mitochondrial long noncoding RNA in atlantic cod harbors complex heteroplasmic tandem repeat motifs. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:307-311. [PMID: 30198386 DOI: 10.1080/24701394.2018.1502281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A heteroplasmic tandem repeat (HTR) array occupies 100 to 300 bp of the mitochondrial DNA control region in the Atlantic cod, and recently we noted that the repeat appeared integrated in a polyadenylated mitochondrial long noncoding RNA. Here we provide a more detailed analysis of the mitochondrial HTR in the mitochondrial genome of 134 Atlantic cod specimens. We report all specimens to harbor mitochondrial HTRs in the control region, and identified 26 distinct variants among the 402 repeat motifs assessed. Whereas most specimens contained HTR profiles of 2-5 copies consisting of the same 40-bp motif, 22 specimens showed compound HTR arrays of at least two types of motifs present in the same mitochondrial DNA molecule. We found HTR profiles to be highly conserved between different tissue types of a single individual, and strictly maternally inherited in a mating experiment between parental Atlantic cod expressing different HTR profiles and array motifs. We conclude that mitochondrial heteroplasmy in the control region is very common in Atlantic cod, and results in length heterogenity of the long noncoding RNA lncCR-H.
Collapse
Affiliation(s)
- Tor Erik Jørgensen
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Bård Ove Karlsen
- b Research Laboratory and Department of Laboratory Medicine , Nordland Hospital , Bodø , Norway
| | - Åse Emblem
- c Department of Medical Biology Faculty of Health Sciences , UiT - Arctic University of Norway , Tromsø , Norway
| | - Lars Martin Jakt
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Jarle T Nordeide
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Truls Moum
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Steinar D Johansen
- a Genomics group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway.,c Department of Medical Biology Faculty of Health Sciences , UiT - Arctic University of Norway , Tromsø , Norway
| |
Collapse
|
44
|
Sun H, Huang Z, Sheng W, Xu MD. Emerging roles of long non-coding RNAs in tumor metabolism. J Hematol Oncol 2018; 11:106. [PMID: 30134946 PMCID: PMC6104013 DOI: 10.1186/s13045-018-0648-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/08/2018] [Indexed: 01/17/2023] Open
Abstract
Compared with normal cells, tumor cells display distinct metabolic characteristics. Long non-coding RNAs (lncRNAs), a large class of regulatory RNA molecules with limited or no protein-coding capacity, play key roles in tumorigenesis and progression. Recent advances have revealed that lncRNAs play a vital role in cell metabolism by regulating the reprogramming of the metabolic pathways in cancer cells. LncRNAs could regulate various metabolic enzymes that integrate cell malignant transformation and metabolic reprogramming. In addition to the known functions of lncRNAs in regulating glycolysis and glucose homeostasis, recent studies also implicate lncRNAs in amino acid and lipid metabolism. These observations reveal the high complexity of the malignant metabolism. Elucidating the metabolic-related functions of lncRNAs will provide a better understanding of the regulatory mechanisms of metabolism and thus may provide insights for the clinical development of cancer diagnostics, prognostics and therapeutics.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| | - Mi-die Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Pathology, Tissue bank, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
| |
Collapse
|
45
|
Hedberg A, Knutsen E, Løvhaugen AS, Jørgensen TE, Perander M, Johansen SD. Cancer-specific SNPs originate from low-level heteroplasmic variants in human mitochondrial genomes of a matched cell line pair. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:82-91. [PMID: 29671673 DOI: 10.1080/24701394.2018.1461852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Low-level mitochondrial heteroplasmy is a common phenomenon in both normal and cancer cells. Here, we investigate the link between low-level heteroplasmy and mitogenome mutations in a human breast cancer matched cell line by high-throughput sequencing. We identified 23 heteroplasmic sites, of which 15 were common between normal cells (Hs578Bst) and cancer cells (Hs578T). Most sites were clustered within the highly conserved Complex IV and ribosomal RNA genes. Two heteroplasmic variants in normal cells were found as fixed mutations in cancer cells. This indicates a positive selection of these variants in cancer cells. RNA-Seq analysis identified upregulated L-strand specific transcripts in cancer cells, which include three mitochondrial long non-coding RNA molecules. We hypothesize that this is due to two cancer cell-specific mutations in the control region.
Collapse
Affiliation(s)
- Annica Hedberg
- a Department of Medical Biology, Faculty of Health Sciences , UiT - The Arctic University of Norway , Tromsø , Norway
| | - Erik Knutsen
- a Department of Medical Biology, Faculty of Health Sciences , UiT - The Arctic University of Norway , Tromsø , Norway
| | - Anne Silje Løvhaugen
- a Department of Medical Biology, Faculty of Health Sciences , UiT - The Arctic University of Norway , Tromsø , Norway
| | - Tor Erik Jørgensen
- b Genomics Group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| | - Maria Perander
- a Department of Medical Biology, Faculty of Health Sciences , UiT - The Arctic University of Norway , Tromsø , Norway
| | - Steinar D Johansen
- a Department of Medical Biology, Faculty of Health Sciences , UiT - The Arctic University of Norway , Tromsø , Norway.,b Genomics Group, Faculty of Biosciences and Aquaculture , Nord University , Bodø , Norway
| |
Collapse
|
46
|
Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 2018; 25:R259-R282. [PMID: 29440232 DOI: 10.1530/erc-17-0548] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
The human genome is 'pervasively transcribed' leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the 'expanding universe' of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA's 3' untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.
Collapse
|
47
|
Borgna V, Villegas J, Burzio VA, Belmar S, Araya M, Jeldes E, Lobos-González L, Silva V, Villota C, Oliveira-Cruz L, Lopez C, Socias T, Castillo O, Burzio LO. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model. Oncotarget 2018; 8:43692-43708. [PMID: 28620146 PMCID: PMC5546434 DOI: 10.18632/oncotarget.18460] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/28/2017] [Indexed: 12/20/2022] Open
Abstract
Knockdown of antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptosis in several human and mouse tumor cell lines, but not normal cells, suggesting this approach for a selective therapy against different types of cancer. Here we show that in vitro knockdown of murine ASncmtRNAs induces apoptotic death of mouse renal adenocarcinoma RenCa cells, but not normal murine kidney epithelial cells. In a syngeneic subcutaneous RenCa model, treatment delayed and even reversed tumor growth. Since the subcutaneous model does not reflect the natural microenviroment of renal cancer, we used an orthotopic model of RenCa cells inoculated under the renal capsule. These studies showed inhibition of tumor growth and metastasis. Direct metastasis assessment by tail vein injection of RenCa cells also showed a drastic reduction in lung metastatic nodules. In vivo treatment reduces survivin, N-cadherin and P-cadherin levels, providing a molecular basis for metastasis inhibition. In consequence, the treatment significantly enhanced mouse survival in these models. Our results suggest that the ASncmtRNAs could be potent and selective targets for therapy against human renal cell carcinoma.
Collapse
Affiliation(s)
- Vincenzo Borgna
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Servicio de Urología, Hospital Barros Luco-Trudeau, Universidad de Santiago, Santiago, Chile
| | - Jaime Villegas
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | | | - Mariela Araya
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Emanuel Jeldes
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Lorena Lobos-González
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Verónica Silva
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Claudio Villota
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Constanza Lopez
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Teresa Socias
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile
| | - Octavio Castillo
- Facultad de Salud, Universidad Bernardo O Higgins, Santiago, Chile.,Centro de Cirugía Robótica, Clínica Indisa, Santa María, Santiago, Chile
| | - Luis O Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Ñuñoa, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
48
|
Lobos-González L, Silva V, Araya M, Restovic F, Echenique J, Oliveira-Cruz L, Fitzpatrick C, Briones M, Villegas J, Villota C, Vidaurre S, Borgna V, Socias M, Valenzuela S, Lopez C, Socias T, Varas M, Díaz J, Burzio LO, Burzio VA. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget 2018; 7:58331-58350. [PMID: 27507060 PMCID: PMC5295434 DOI: 10.18632/oncotarget.11110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/19/2016] [Indexed: 01/23/2023] Open
Abstract
We reported that knockdown of the antisense noncoding mitochondrial RNAs (ASncmtRNAs) induces apoptotic death of several human tumor cell lines, but not normal cells, suggesting this approach for selective therapy against different types of cancer. In order to translate these results to a preclinical scenario, we characterized the murine noncoding mitochondrial RNAs (ncmtRNAs) and performed in vivo knockdown in syngeneic murine melanoma models. Mouse ncmtRNAs display structures similar to the human counterparts, including long double-stranded regions arising from the presence of inverted repeats. Knockdown of ASncmtRNAs with specific antisense oligonucleotides (ASO) reduces murine melanoma B16F10 cell proliferation and induces apoptosis in vitro through downregulation of pro-survival and metastasis markers, particularly survivin. For in vivo studies, subcutaneous B16F10 melanoma tumors in C57BL/6 mice were treated systemically with specific and control antisense oligonucleotides (ASO). For metastasis studies, tumors were resected, followed by systemic administration of ASOs and the presence of metastatic nodules in lungs and liver was assessed. Treatment with specific ASO inhibited tumor growth and metastasis after primary tumor resection. In a metastasis-only assay, mice inoculated intravenously with cells and treated with the same ASO displayed reduced number and size of melanoma nodules in the lungs, compared to controls. Our results suggest that ASncmtRNAs could be potent targets for melanoma therapy. To our knowledge, the ASncmtRNAs are the first potential non-nuclear targets for melanoma therapy.
Collapse
Affiliation(s)
- Lorena Lobos-González
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Verónica Silva
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Mariela Araya
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Franko Restovic
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Present address: Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javiera Echenique
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Luciana Oliveira-Cruz
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Christopher Fitzpatrick
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Macarena Briones
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Jaime Villegas
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Claudio Villota
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Soledad Vidaurre
- Andes Biotechnologies SpA, Santiago, Chile.,Facultad de Salud, Deporte y Recreación, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Vincenzo Borgna
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Servicio de Urología, Hospital Barros-Lucco-Trudeau, Santiago, Chile
| | | | | | - Constanza Lopez
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Teresa Socias
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | | | - Jorge Díaz
- Facultad de Medicina, Universidad de Chile, Independencia, Santiago, Chile
| | - Luis O Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| | - Verónica A Burzio
- Andes Biotechnologies SpA, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias Biológicas, Universidad Andrés Bello, República, Santiago, Chile
| |
Collapse
|
49
|
An in silico argument for mitochondrial microRNA as a determinant of primary non function in liver transplantation. Sci Rep 2018; 8:3105. [PMID: 29449571 PMCID: PMC5814406 DOI: 10.1038/s41598-018-21091-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization.
Collapse
|
50
|
Abstract
The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration.
Collapse
Affiliation(s)
- Luca Lambertini
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1057, New York, NY, 10029, USA. .,Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levi Place, Box 1057, New York, NY, 10029, USA.
| | - Hyang-Min Byun
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, UK.,Ageing Research Laboratory, Newcastle University, Campus for Ageing and Vitality, Edwardson Building, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|