1
|
Takada YK, Takada Y. Neuregulin-1 (NRG1) Binds to the Allosteric Binding Site (Site 2) and Suppresses Allosteric Integrin Activation by Inflammatory Cytokines: A Potential Mechanism of Anti-Inflammatory and Anti-Fibrosis Action of NRG1. Cells 2025; 14:617. [PMID: 40277942 PMCID: PMC12025393 DOI: 10.3390/cells14080617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
We showed that multiple inflammatory cytokines (e.g., CCL5, CXCL12, CX3CL1, CD40L, and FGF2) bind to the allosteric site (site 2) of integrins, distinct from the classical RGD-binding site (site 1), and allosterically activate integrins. A major inflammatory lipid mediator 25-hydroxycholesterol is known to bind to site 2 and allosterically activates integrins and induces inflammatory signals (e.g., IL-6 and TNF secretion). Thus, site 2 is involved in inflammatory signaling. Neuregulin-1 (NRG1) is known to suppresses the progression of inflammatory diseases, fibrosis, and insulin resistance. But, the mechanism of anti-inflammatory action of NRG1 is unclear. We previously showed that NRG1 binds to the classical RGD-binding site (site 1). Mutating the 3 Lys residues that are involved in site 1 binding (NRG1 3KE mutant) is defective in binding to site 1 and in ErbB3-mediated mitogenic signals. Docking simulation predicted that NRG1 binds to site 2. We hypothesized that NRG1 acts as an antagonist of site 2 and blocks allosteric activation by multiple cytokines. Here, we describe that NRG1 binds to site 2 but does not activate soluble αvβ3 or αIIbβ3 in 1 mM Ca2+, unlike inflammatory cytokines. Instead, NRG1 suppressed integrin activation by several inflammatory cytokines, suggesting that NRG1 acts as a competitive inhibitor of site 2. Wild-type NRG1 is not suitable for long-term treatment due to its mitogenicity. We showed that the non-mitogenic NRG1 3KE mutant still bound to site 2 and inhibited allosteric activation of soluble and cell-surface integrins, suggesting that NRG1 3KE may have potential as a therapeutic.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, University of California School of Medicine, Research III Suite 3300, 4645 Second Ave., Sacramento, CA 95817, USA
| | - Yoshikazu Takada
- Department of Dermatology, University of California School of Medicine, Research III Suite 3300, 4645 Second Ave., Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Research III Suite 3300, 4645 Second Ave., Sacramento, CA 95817, USA
- VA Northern California Health Care System, 150 Muir Road, Martinez, CA 94553, USA
| |
Collapse
|
2
|
Takada YK, Takada Y. The EC2 domains of tetraspanins CD9, CD81, and CD151 bind to the allosteric site of integrins (site 2) and activate integrins αvβ3, α5β1 and α4β1 in a biphasic manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643145. [PMID: 40161700 PMCID: PMC11952522 DOI: 10.1101/2025.03.13.643145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Previous studies showed that tetraspanins activate integrins, but the mechanism of this action is unclear. We previously showed that the extracellular-2 (EC2) domains of CD9, CD81, and CD151 bind to the classical RGD-binding site (site 1) of integrin αvβ3, suggesting that they are integrin ligands. We showed that several inflammatory cytokines (e.g., CX3CL1, CXCL12, CCL5, and CD40L) bind to the allosteric site (site 2) of integrins, which is distinct from site 1, and activate integrins (allosteric activation). 25-hydroxycholesterol, a major inflammatory lipid mediator, is known to bind to site 2 and induce inflammatory signals, suggesting that site 2 plays a role in inflammatory signaling. We hypothesized that the EC2 domains activate integrins by binding to site 2. Here we describe that docking simulation predicted that CD81 EC2 binds to site 2 of αvβ3 and more strongly to site 2 of α5β1. Peptide from site 2 bound to isolated EC2 domains, suggesting that the EC2 domains bind to site 2. The EC2 domains only weakly activated αvβ3 but more efficiently activated cell surface integrins α5β1 and α4β1 on the cell surface. These results are consistent with the previous findings that these tetraspanins preferentially interact with β1 integrins. The integrin activation by the EC2 domains was increased at low EC2 concentrations and reduced as EC2 concentrations increased (biphasic), which is consistent with the findings that the EC2 domains bind to two sites (site 1 and 2). We propose that the EC2 binding to site 2 is a novel target for drug discovery.
Collapse
|
3
|
Mariasoosai C, Bose S, Natesan S. Structural insights into the molecular recognition of integrin αVβ3 by RGD-containing ligands: The role of the specificity-determining loop (SDL). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614545. [PMID: 39386435 PMCID: PMC11463590 DOI: 10.1101/2024.09.23.614545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Integrin αVβ3 is a prominent member of the "RGD-recognizing" integrin family of cell surface receptors. αVβ3 binds to various extracellular matrix (ECM) proteins and oxysterols such as 25-hydroxycholesterol, is implicated in several diseases, including cancer metastasis, lung fibrosis, inflammation, and autoimmune diseases, and is pursued as a valuable therapeutic target. Despite enormous efforts to seek a pure antagonist, to date, no single drug candidate has successfully reached clinics due to associated partial agonism and toxicity issues. Developing effective and safe inhibitors require a thorough understanding of the molecular interactions and structural changes related to the receptor's activation and inhibition mechanisms. This study offers a comprehensive residue-residue contact and network analyses of the ligand-binding β-propeller βI domains (headpiece) based on all available experimental structures of integrin αVβ3 in unliganded, agonist-, antagonist-, and antibody-bound states. The analyses reveal many critical interactions that were not reported before and show that specific orientation and interactions of residues from the specificity-determining loop (SDL) are critical in molecular recognition and regulation. Also, the network analysis reveals that residues from the nearby allosteric site (site II) connect to the primary RGD-binding site via SDL, which likely acts as an interface between the two sites. Our results provide valuable insights into molecular interactions, structural changes, distinct features of the active and inactive headpiece conformations, the role of SDL in ligand recognition, and SDL-mediated allostery. Thus, the insights from this study may facilitate the designing of pure antagonists or site II-mediated allosteric modulators to integrin αVβ3 to treat various diseases.
Collapse
Affiliation(s)
- Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Takada YK, Wu X, Wei D, Hwang S, Takada Y. FGF1 Suppresses Allosteric Activation of β3 Integrins by FGF2: A Potential Mechanism of Anti-Inflammatory and Anti-Thrombotic Action of FGF1. Biomolecules 2024; 14:888. [PMID: 39199276 PMCID: PMC11351609 DOI: 10.3390/biom14080888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Several inflammatory cytokines bind to the allosteric site (site 2) and allosterically activate integrins. Site 2 is also a binding site for 25-hydroxycholesterol, an inflammatory lipid mediator, and is involved in inflammatory signaling (e.g., TNF and IL-6 secretion) in addition to integrin activation. FGF2 is pro-inflammatory and pro-thrombotic, and FGF1, homologous to FGF2, has anti-inflammatory and anti-thrombotic actions, but the mechanism of these actions is unknown. We hypothesized that FGF2 and FGF1 bind to site 2 of integrins and regulate inflammatory signaling. Here, we describe that FGF2 is bound to site 2 and allosterically activated β3 integrins, suggesting that the pro-inflammatory action of FGF2 is mediated by binding to site 2. In contrast, FGF1 bound to site 2 but did not activate these integrins and instead suppressed integrin activation induced by FGF2, indicating that FGF1 acts as an antagonist of site 2 and that the anti-inflammatory action of FGF1 is mediated by blocking site 2. A non-mitogenic FGF1 mutant (R50E), which is defective in binding to site 1 of αvβ3, suppressed β3 integrin activation by FGF2 as effectively as WT FGF1.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Xuesong Wu
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - David Wei
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Samuel Hwang
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
| | - Yoshikazu Takada
- Department of Dermatology, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA; (Y.K.T.); (X.W.); (D.W.); (S.H.)
- Department of Biochemistry and Molecular Medicine, Research III Suite 3300, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
5
|
Takada YK, Yu J, Ye X, Wu CY, Felding BH, Fujita M, Takada Y. The heparin-binding domain of VEGF165 directly binds to integrin αvβ3 and VEGFR2/KDR D1: a potential mechanism of negative regulation of VEGF165 signaling by αvβ3. Front Cell Dev Biol 2024; 12:1347616. [PMID: 38803393 PMCID: PMC11128890 DOI: 10.3389/fcell.2024.1347616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/04/2024] [Indexed: 05/29/2024] Open
Abstract
VEGF-A is a key cytokine in tumor angiogenesis and a major therapeutic target for cancer. VEGF165 is the predominant isoform of VEGF-A, and it is the most potent angiogenesis stimulant. VEGFR2/KDR domains 2 and 3 (D2D3) bind to the N-terminal domain (NTD, residues 1-110) of VEGF165. Since removal of the heparin-binding domain (HBD, residues 111-165) markedly reduced the mitogenic activity of the growth factor, it has been proposed that the HBD plays a critical role in the mitogenicity of VEGF165. Here, we report that αvβ3 specifically bound to the isolated VEGF165 HBD but not to VEGF165 NTD. Based on docking simulation and mutagenesis, we identified several critical amino acid residues within the VEGF165 HBD required for αvβ3 binding, i.e., Arg123, Arg124, Lys125, Lys140, Arg145, and Arg149. We discovered that VEGF165 HBD binds to the KDR domain 1 (D1) and identified that Arg123 and Arg124 are critical for KDR D1 binding by mutagenesis, indicating that the KDR D1-binding and αvβ3-binding sites overlap in the HBD. Full-length VEGF165 mutant (R123A/R124A/K125A/K140A/R145A/R149A) defective in αvβ3 and KDR D1 binding failed to induce ERK1/2 phosphorylation, integrin β3 phosphorylation, and KDR phosphorylation and did not support proliferation of endothelial cells, although the mutation did not affect the KDR D2D3 interaction with VEGF165. Since β3-knockout mice are known to show enhanced VEGF165 signaling, we propose that the binding of KDR D1 to the VEGF165 HBD and KDR D2D3 binding to the VEGF165 NTD are critically involved in the potent mitogenicity of VEGF165. We propose that binding competition between KDR and αvβ3 to the VEGF165 HBD endows integrin αvβ3 with regulatory properties to act as a negative regulator of VEGF165 signaling.
Collapse
Affiliation(s)
- Yoko K. Takada
- The Department of Dermatology, Sacramento, CA, United States
| | - Jessica Yu
- The Department of Dermatology, Sacramento, CA, United States
| | - Xiaojin Ye
- The Department of Dermatology, Sacramento, CA, United States
| | - Chun-Yi Wu
- The Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Brunie H. Felding
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, CA, United States
| | - Masaaki Fujita
- The Department of Dermatology, Sacramento, CA, United States
| | - Yoshikazu Takada
- The Department of Dermatology, Sacramento, CA, United States
- The Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
6
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
7
|
Tao ZY, Yang WF, Zhu WY, Wang LL, Li KY, Guan XY, Su YX. A neural-related gene risk score for head and neck squamous cell carcinoma. Oral Dis 2024; 30:477-491. [PMID: 36346196 DOI: 10.1111/odi.14434] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES This study aimed to establish a neural-related gene risk score (NRGRS) for the prediction of head and neck squamous cell carcinoma prognosis and explore its predictive value on the benefit of immune checkpoint inhibitor therapy. METHODS Based on the transcriptome data of HNSCC patients (n = 546) from The Cancer Genome Atlas database, 37 neural-related hub genes were identified by weighted gene co-expression network analysis. Four genes (ITGA5, PYGM, GNG7 and ATP2A3) were identified to construct NRGRS using Lasso-Cox regression method based on the derivation cohort and validated in the Gene Expression Omnibus cohort (n = 109). The survival analysis was performed to validate the prognostic value of NRGRS and immune characteristics in NRGRS-defined subgroups were analyzed. RESULTS NRGRS-high patients had a worse overall survival than NRGRS-low patients. Tumors with high NRGRS were more likely to have high infiltration of naive CD4+ T cells, M0, M2 macrophages and resting mast cells, which illustrated suppressive immunity and less benefit from immunotherapy therapy. CONCLUSION NRGRS strongly correlates with survival and is a promising biomarker to predict immunotherapy benefits for head and neck cancer patients. This study provides evidence for the potential correlation between neural-related transcriptome alteration and immune activity.
Collapse
Affiliation(s)
- Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei-Fa Yang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wang-Yong Zhu
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lei-Lei Wang
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kar Yan Li
- Clinical Research Centre, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
8
|
Takada Y, Fujita M, Takada YK. Virtual Screening of Protein Data Bank via Docking Simulation Identified the Role of Integrins in Growth Factor Signaling, the Allosteric Activation of Integrins, and P-Selectin as a New Integrin Ligand. Cells 2023; 12:2265. [PMID: 37759488 PMCID: PMC10527219 DOI: 10.3390/cells12182265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Integrins were originally identified as receptors for extracellular matrix (ECM) and cell-surface molecules (e.g., VCAM-1 and ICAM-1). Later, we discovered that many soluble growth factors/cytokines bind to integrins and play a critical role in growth factor/cytokine signaling (growth factor-integrin crosstalk). We performed a virtual screening of protein data bank (PDB) using docking simulations with the integrin headpiece as a target. We showed that several growth factors (e.g., FGF1 and IGF1) induce a integrin-growth factor-cognate receptor ternary complex on the surface. Growth factor/cytokine mutants defective in integrin binding were defective in signaling functions and act as antagonists of growth factor signaling. Unexpectedly, several growth factor/cytokines activated integrins by binding to the allosteric site (site 2) in the integrin headpiece, which is distinct from the classical ligand (RGD)-binding site (site 1). Since 25-hydroxycholesterol, a major inflammatory mediator, binds to site 2, activates integrins, and induces inflammatory signaling (e.g., IL-6 and TNFα secretion), it has been proposed that site 2 is involved in inflammatory signaling. We showed that several inflammatory factors (CX3CL1, CXCL12, CCL5, sPLA2-IIA, and P-selectin) bind to site 2 and activate integrins. We propose that site 2 is involved in the pro-inflammatory action of these proteins and a potential therapeutic target. It has been well-established that platelet integrin αIIbβ3 is activated by signals from the inside of platelets induced by platelet agonists (inside-out signaling). In addition to the canonical inside-out signaling, we showed that αIIbβ3 can be allosterically activated by inflammatory cytokines/chemokines that are stored in platelet granules (e.g., CCL5, CXCL12) in the absence of inside-out signaling (e.g., soluble integrins in cell-free conditions). Thus, the allosteric activation may be involved in αIIbβ3 activation, platelet aggregation, and thrombosis. Inhibitory chemokine PF4 (CXCL4) binds to site 2 but did not activate integrins, Unexpectedly, we found that PF4/anti-PF4 complex was able to activate integrins, indicating that the anti-PF4 antibody changed the phenotype of PF4 from inhibitory to inflammatory. Since autoantibodies to PF4 are detected in vaccine-induced thrombocytopenic thrombosis (VIPP) and autoimmune diseases (e.g., SLE, and rheumatoid arthritis), we propose that this phenomenon is related to the pathogenesis of these diseases. P-selectin is known to bind exclusively to glycans (e.g., sLex) and involved in cell-cell interaction by binding to PSGL-1 (CD62P glycoprotein ligand-1). Unexpectedly, through docking simulation, we discovered that the P-selectin C-type lectin domain functions as an integrin ligand. It is interesting that no one has studied whether P-selectin binds to integrins in the last few decades. The integrin-binding site and glycan-binding site were close but distinct. Also, P-selectin lectin domain bound to site 2 and allosterically activated integrins.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Masaaki Fujita
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| | - Yoko K. Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA 95817, USA; (M.F.); (Y.K.T.)
| |
Collapse
|
9
|
Takada YK, Simon SI, Takada Y. The C-type lectin domain of CD62P (P-selectin) functions as an integrin ligand. Life Sci Alliance 2023; 6:e202201747. [PMID: 37184585 PMCID: PMC10130748 DOI: 10.26508/lsa.202201747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Recognition of integrins by CD62P has not been reported and this motivated a docking simulation using integrin αvβ3 as a target. We predicted that the C-type lectin domain of CD62P functions as a potential integrin ligand and observed that it specifically bound to soluble β3 and β1 integrins. Known inhibitors of the interaction between CD62P-PSGL-1 did not suppress the binding, whereas the disintegrin domain of ADAM-15, a known integrin ligand, suppressed recognition by the lectin domain. Furthermore, an R16E/K17E mutation in the predicted integrin-binding interface located outside of the glycan-binding site within the lectin domain, strongly inhibited CD62P binding to integrins. In contrast, the E88D mutation that strongly disrupts glycan binding only slightly affected CD62P-integrin recognition, indicating that the glycan and integrin-binding sites are distinct. Notably, the lectin domain allosterically activated integrins by binding to the allosteric site 2. We conclude that CD62P-integrin binding may function to promote a diverse set of cell-cell adhesive interactions given that β3 and β1 integrins are more widely expressed than PSGL-1 that is limited to leukocytes.
Collapse
Affiliation(s)
- Yoko K Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA, USA
| | - Scott I Simon
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA, USA
| | - Yoshikazu Takada
- Department of Dermatology, UC Davis School of Medicine, Sacramento, CA, USA
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
10
|
Ge W, Yue M, Lin R, Zhou T, Xu H, Wang Y, Mao T, Li S, Wu X, Zhang X, Wang Y, Ma J, Wang Y, Xue S, Shentu D, Cui J, Wang L. PLA2G2A + cancer-associated fibroblasts mediate pancreatic cancer immune escape via impeding antitumor immune response of CD8 + cytotoxic T cells. Cancer Lett 2023; 558:216095. [PMID: 36796670 DOI: 10.1016/j.canlet.2023.216095] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
Our previous research defined a novel metabolic cancer associated fibroblasts subset (meCAFs) enriched in loose-type pancreatic ductal adenocarcinoma (PDAC) and related to CD8+ T cells accumulation. Consistently, the abundance of meCAFs was associated with poor prognosis but better immunotherapy responses in PDAC patients. However, the metabolic characteristic of meCAFs and its cross-talk with CD8+ T cells remain to be elucidated. In this study, we identified PLA2G2A as a marker of meCAFs. In particular, the abundance of PLA2G2A+ meCAFs was positively related to the accumulation of total CD8+ T cells and negatively correlated with clinical outcomes of PDAC patients and infiltration of intratumoral CD8+ T cells. We demonstrated that PLA2G2A+ meCAFs substantially attenuated the antitumor ability of tumor infiltrating CD8+ T cells and facilitated tumor immune escape in PDAC. Mechanistically, PLA2G2A regulated the function of CD8+ T cells as a pivotal soluble mediator via MAPK/Erk and NF-κB signaling pathways. In conclusion, our study identified the unrecognized role of PLA2G2A+ meCAFs in promoting tumor immune escape by impeding the antitumor immune function of CD8+ T cells, and strongly suggested PLA2G2A as a promising biomarker and therapeutic target for immunotherapy in PDAC.
Collapse
Affiliation(s)
- Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ming Yue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruirong Lin
- Department of Gastrointestinal Surgical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian, Fuzhou, 350014, China
| | - Tianhao Zhou
- Key Laboratory of Breast Cancer Prevention and Treatment, Ministry of Education, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Haiyan Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Tiebo Mao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shumin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuqi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaofei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongchao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jingyu Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shengbai Xue
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Daiyuan Shentu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiujie Cui
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
11
|
Jaiswal A, Rehman R, Dutta J, Singh S, Ray A, Shridhar M, Jaisankar J, Bhatt M, Khandelwal D, Sahoo B, Ram A, Mabalirajan U. Cellular Distribution of Secreted Phospholipase A2 in Lungs of IPF Patients and Its Inhibition in Bleomycin-Induced Pulmonary Fibrosis in Mice. Cells 2023; 12:cells12071044. [PMID: 37048117 PMCID: PMC10092981 DOI: 10.3390/cells12071044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/29/2023] [Indexed: 04/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease with a very poor prognosis as it has a 2.5 to 5 years mean survival after proper diagnosis. Even nintedanib and pirfenidone cannot halt the progression, though they slow the progression of IPF. Hence, there is a need to understand the novel pathophysiology. Phospholipase A2 (PLA2) could be the ideal candidate to study in IPF, as they have a role in both inflammation and fibrosis. In the present study, we have shown the expression profile of various secretory Phospholipase A2 (PLA2) isoforms by analyzing publicly available transcriptome data of single cells from the lungs of healthy individuals and IPF patients. Among 11 members of sPLA2, PLA2G2A is found to be increased in the fibroblasts and mesothelial cells while PLA2G5 is found to be increased in the fibroblasts of IPF patients. We identified a subset of fibroblasts expressing high PLA2G2A with moderate expression of PLA2G5 and which are specific to IPF only; we named it as PLA2G2A+ IPF fibroblast. Pathway analysis revealed that these PLA2G2A+ IPF fibroblast have upregulation of both inflammatory and fibrosis-related pathways like the TGF-β signaling pathway, IL-17 signaling, the arachidonic acid metabolism pathway and ECM-receptor interaction. In addition to this, we found elevated levels of sPLA2-IIA in plasma samples of IPF patients in our cohort. PLA2G3, PLA2G10 and PLA2G12B are found in to be increased in certain epithelial cells of IPF patients. Thus, these findings indicate that these five isoforms have a disease-dominant role along with innate immune roles as these isoforms are found predominantly in structural cells of IPF patients. Further, we have targeted sPLA2 in mice model of bleomycin-induced lung fibrosis by pBPB, a known sPLA2 inhibitor. pBPB treatment attenuated lung fibrosis induced by bleomycin along with a reduction in TGF-β and deposition of extracellular matrix in lung. Thus, these findings indicate that these sPLA2 isoforms especially PLA2G2A may serve as a therapeutic target in lung fibrosis.
Collapse
|
12
|
Interplay between C1-inhibitor and group IIA secreted phospholipase A 2 impairs their respective function. Immunol Res 2023; 71:70-82. [PMID: 36385678 PMCID: PMC9845149 DOI: 10.1007/s12026-022-09331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
High levels of human group IIA secreted phospholipase A2 (hGIIA) have been associated with various inflammatory disease conditions. We have recently shown that hGIIA activity and concentration are increased in the plasma of patients with hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE) and negatively correlate with C1-INH plasma activity. In this study, we analyzed whether the presence of both hGIIA and C1-INH impairs their respective function on immune cells. hGIIA, but not recombinant and plasma-derived C1-INH, stimulates the production of IL-6, CXCL8, and TNF-α from peripheral blood mononuclear cells (PBMCs). PBMC activation mediated by hGIIA is blocked by RO032107A, a specific hGIIA inhibitor. Interestingly, C1-INH inhibits the hGIIA-induced production of IL-6, TNF-α, and CXCL8, while it does not affect hGIIA enzymatic activity. On the other hand, hGIIA reduces the capacity of C1-INH at inhibiting C1-esterase activity. Spectroscopic and molecular docking studies suggest a possible interaction between hGIIA and C1-INH but further experiments are needed to confirm this hypothesis. Together, these results provide evidence for a new interplay between hGIIA and C1-INH, which may be important in the pathophysiology of hereditary angioedema.
Collapse
|
13
|
Chen ZZ, Wang WP, Xue HM, Liang Y. The lncRNA-miRNA-integrin alpha V ceRNA network can affect the occurrence and prognosis of gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2022; 15:388-402. [PMID: 36381423 PMCID: PMC9638841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES The aim of this study was to explore the role of integrin alpha V (ITGAV) and the related long noncoding RNA-microRNA-messenger RNA competing endogenous RNA (lncRNA-miRNA-mRNA ceRNA) network in the development and prognosis of cancers, especially gastric cancer (GC), through bioinformatic analysis. METHODS Pan-cancer and GC data were collected from the UCSC Xena website, and validation datasets were obtained from the Gene Expression Omnibus (GEO). R (version 3.6.3), GraphPad Prism 8, and SPSS 23.0 software were used to analyze data and prepare figures. RESULTS The expression of ITGAV in tumor tissues was higher than that of normal tissues in ten cancer types. A lower expression of ITGAV in five tumors (CESC, LGG, LIHC, MESO, and STAD) predicted better patient prognosis. In GC, the mRNA and protein expression of ITGAV in tumor tissues was higher than that of normal tissues. Patients with high ITGAV expression had poor prognosis and clinical characteristics, including worse grades and more advanced stages. Patients with higher ITGAV expression had higher immune and stromal scores and lower purity (P<0.05). In addition, seven miRNAs were found that were negatively correlated with ITGAV expression through the website; high expression of these miRNAs indicated a better prognosis. Using this correlation, the authors built the lncRNA-miRNA-ITGAV ceRNA network, to predict the prognosis of GC. CONCLUSIONS This study showed that ITGAV could be considered a prognostic factor for GC, and an lncRNA-miRNA-ITGAV ceRNA network was built to promote the exploration of the mechanism and prognosis of GC.
Collapse
Affiliation(s)
- Ze-Zhong Chen
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| | - Wen-Peng Wang
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| | - Hong-Mei Xue
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| | - Yu Liang
- General Surgery Department, No. 1 People's Hospital of Ningyang County 872 Jinyang Street, Ningyang 271400, Shandong Province, China
| |
Collapse
|
14
|
Takada YK, Fujita M, Takada Y. Pro-Inflammatory Chemokines CCL5, CXCL12, and CX3CL1 Bind to and Activate Platelet Integrin αIIbβ3 in an Allosteric Manner. Cells 2022; 11:cells11193059. [PMID: 36231020 PMCID: PMC9563052 DOI: 10.3390/cells11193059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Activation of platelet integrin αIIbβ3, a key event for hemostasis and thrombus formation, is known to be mediated exclusively by inside-out signaling. We showed that inflammatory chemokines CX3CL1 and CXCL12 in previous studies, and CCL5 in this study, bound to the allosteric binding site (site 2) of vascular integrin αvβ3, in addition to the classical ligand binding site (site 1), and allosterically activated integrins independent of inside-out signaling. Since αIIbβ3 is exposed to inflammatory chemokines at increased concentrations during inflammation (e.g., cytokine/chemokine storm) and platelet activation, we hypothesized that these chemokines bind to and activate αIIbβ3 in an allosteric activation mechanism. We found that these chemokines bound to αIIbβ3. Notably, they activated soluble αIIbβ3 in 1 mM Ca2+ by binding to site 2. They activated cell-surface αIIbβ3 on CHO cells, which lack machinery for inside-out signaling or chemokine receptors, quickly (<1 min) and at low concentrations (1–10 ng/mL) compared to activation of soluble αIIbβ3, probably because chemokines bind to cell surface proteoglycans. Furthermore, activation of αIIbβ3 by the chemokines was several times more potent than 1 mM Mn2+. We propose that CCL5 and CXCL12 (stored in platelet granules) may allosterically activate αIIbβ3 upon platelet activation and trigger platelet aggregation. Transmembrane CX3CL1 on activated endothelial cells may mediate platelet–endothelial interaction by binding to and activating αIIbβ3. Additionally, these chemokines in circulation over-produced during inflammation may trigger αIIbβ3 activation, which is a possible missing link between inflammation and thrombosis.
Collapse
Affiliation(s)
- Yoko K. Takada
- Department of Dermatology, School of Medicine, University of California–Davis, 4645 Second Ave., Research III Suite 3300, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Masaaki Fujita
- Department of Dermatology, School of Medicine, University of California–Davis, 4645 Second Ave., Research III Suite 3300, Sacramento, CA 95817, USA
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California–Davis, 4645 Second Ave., Research III Suite 3300, Sacramento, CA 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA
- Correspondence:
| |
Collapse
|
15
|
Novel Functions of Integrins as Receptors of CD154: Their Role in Inflammation and Apoptosis. Cells 2022; 11:cells11111747. [PMID: 35681441 PMCID: PMC9179867 DOI: 10.3390/cells11111747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022] Open
Abstract
CD154, an inflammatory mediator also known as CD40 ligand, has been identified as a novel binding partner for some members of the integrin family. The αIIbβ3, specifically expressed on platelets, was the first integrin to be described as a receptor for CD154 after CD40. Its interaction with soluble CD154 (sCD154) highly contributes to thrombus formation and stability. Identifying αIIbβ3 opened the door for investigating other integrins as partners of CD154. The αMβ2 expressed on myeloid cells was shown capable of binding CD154 and contributing as such to cell activation, adhesion, and release of proinflammatory mediators. In parallel, α5β1 communicates with sCD154, inducing pro-inflammatory responses. Additional pathogenic effects involving apoptosis-preventing functions were exhibited by the CD154–α5β1 dyad in T cells, conferring a role for such interaction in the survival of malignant cells, as well as the persistence of autoreactive T cells. More recently, CD154 receptors integrated two new integrin members, αvβ3 and α4β1, with little known as to their biological significance in this context. This article provides an overview of the novel role of integrins as receptors of CD154 and as critical players in pro-inflammatory and apoptotic responses.
Collapse
|
16
|
Ivanušec A, Šribar J, Križaj I. Secreted Phospholipases A 2 - not just Enzymes: Revisited. Int J Biol Sci 2022; 18:873-888. [PMID: 35002531 PMCID: PMC8741859 DOI: 10.7150/ijbs.68093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Secreted phospholipases A2 (sPLA2s) participate in a very broad spectrum of biological processes through their enzymatic activity and as ligands for membrane and soluble receptors. The physiological roles of sPLA2s as enzymes have been very well described, while their functions as ligands are still poorly known. Since the last overview of sPLA2-binding proteins (sPLA2-BPs) 10 years ago, several important discoveries have occurred in this area. New and more sensitive analytical tools have enabled the discovery of additional sPLA2-BPs, which are presented and critically discussed here. The structural diversity of sPLA2-BPs reveals sPLA2s as very promiscuous proteins, and we offer some structural explanations for this nature that makes these proteins evolutionarily highly advantageous. Three areas of physiological engagement of sPLA2-BPs have appeared most clearly: cellular transport and signalling, and regulation of the enzymatic activity of sPLA2s. Due to the multifunctionality of sPLA2s, they appear to be exceptional pharmacological targets. We reveal the potential to exploit interactions of sPLA2s with other proteins in medical terms, for the development of original diagnostic and therapeutic procedures. We conclude this survey by suggesting the priority questions that need to be answered.
Collapse
Affiliation(s)
- Adrijan Ivanušec
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jernej Šribar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
17
|
Scott KF, Mann TJ, Fatima S, Sajinovic M, Razdan A, Kim RR, Cooper A, Roohullah A, Bryant KJ, Gamage KK, Harman DG, Vafaee F, Graham GG, Church WB, Russell PJ, Dong Q, de Souza P. Human Group IIA Phospholipase A 2-Three Decades on from Its Discovery. Molecules 2021; 26:molecules26237267. [PMID: 34885848 PMCID: PMC8658914 DOI: 10.3390/molecules26237267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.
Collapse
Affiliation(s)
- Kieran F. Scott
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Correspondence: ; Tel.: +61-2-8738-9026
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Shadma Fatima
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
| | - Mila Sajinovic
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Anshuli Razdan
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
| | - Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Adam Cooper
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Aflah Roohullah
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Katherine J. Bryant
- School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Kasuni K. Gamage
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - David G. Harman
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia; (K.K.G.); (D.G.H.)
| | - Fatemeh Vafaee
- School of Biotechnology and Biological Sciences, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia;
- UNSW Data Science Hub, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Garry G. Graham
- Department of Clinical Pharmacology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010, Australia;
- School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (W.B.C.)
| | - Pamela J. Russell
- Australian Prostate Cancer Research Centre—QUT, Brisbane, QLD 4102, Australia;
| | - Qihan Dong
- Chinese Medicine Anti-Cancer Evaluation Program, Greg Brown Laboratory, Central Clinical School and Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Paul de Souza
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia; (T.J.M.); (S.F.); (A.C.); (A.R.); (P.d.S.)
- Ingham Institute of Applied Medical Research, Liverpool, NSW 2170, Australia; (M.S.); (A.R.)
- School of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
18
|
Fujita C, Sakurai Y, Yasuda Y, Takada Y, Huang CL, Fujita M. Anti-Monomeric C-Reactive Protein Antibody Ameliorates Arthritis and Nephritis in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:1755-1762. [PMID: 34470853 DOI: 10.4049/jimmunol.2100349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Conformation-specific Ags are ideal targets for mAb-based immunotherapy. Here, we demonstrate that the monomeric form of C-reactive protein (mCRP) is a specific therapeutic target for arthritis and nephritis in a murine model. Screening of >1800 anti-mCRP mAb clones identified 3C as a clone recognizing the monomeric, but not polymeric, form of CRP. The anti-mCRP mAb suppressed leukocyte infiltration in thioglycollate-induced peritonitis, attenuated rheumatoid arthritis symptoms in collagen Ab-induced arthritis model mice, and attenuated lupus nephritis symptoms in MRL/Mp-lpr/lpr lupus-prone model mice. These data suggest that the anti-mCRP mAb 3C has therapeutic potential against rheumatoid arthritis and lupus nephritis.
Collapse
Affiliation(s)
- Chitose Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan.,The Japan-Multinational Trial Organization, Aichi, Japan
| | - Yasuo Sakurai
- The Japan-Multinational Trial Organization, Aichi, Japan.,Canon Medical Systems Corporation, Tochigi, Japan
| | - Yuki Yasuda
- Canon Medical Systems Corporation, Tochigi, Japan
| | - Yoshikazu Takada
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA
| | - Cheng-Long Huang
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan.,The Japan-Multinational Trial Organization, Aichi, Japan
| | - Masaaki Fujita
- Division of Oncology, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan; .,The Japan-Multinational Trial Organization, Aichi, Japan.,Division of Clinical Immunology and Rheumatology, Kansai Electric Power Hospital, Osaka, Japan; and.,Department of Infectious Diseases, The Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| |
Collapse
|
19
|
Soluble CD40L activates soluble and cell-surface integrin αvβ3, α5β1, and α4β1 by binding to the allosteric ligand-binding site (site 2). J Biol Chem 2021; 296:100399. [PMID: 33571526 PMCID: PMC7960543 DOI: 10.1016/j.jbc.2021.100399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
CD40L is a member of the TNF superfamily that participates in immune cell activation. It binds to and signals through several integrins, including αvβ3 and α5β1, which bind to the trimeric interface of CD40L. We previously showed that several integrin ligands can bind to the allosteric site (site 2), which is distinct from the classical ligand-binding site (site 1), raising the question of if CD40L activates integrins. In our explorations of this question, we determined that integrin α4β1, which is prevalently expressed on the same CD4+ T cells as CD40L, is another receptor for CD40L. Soluble (s)CD40L activated soluble integrins αvβ3, α5β1, and α4β1 in cell-free conditions, indicating that this activation does not require inside-out signaling. Moreover, sCD40L activated cell-surface integrins in CHO cells that do not express CD40. To learn more about the mechanism of binding, we determined that sCD40L bound to a cyclic peptide from site 2. Docking simulations predicted that the residues of CD40L that bind to site 2 are located outside of the CD40L trimer interface, at a site where four HIGM1 (hyper-IgM syndrome type 1) mutations are clustered. We tested the effect of these mutations, finding that the K143T and G144E mutants were the most defective in integrin activation, providing support that this region interacts with site 2. We propose that allosteric integrin activation by CD40L also plays a role in CD40L signaling, and defective site 2 binding may be related to the impaired CD40L signaling functions of these HIGM1 mutants.
Collapse
|
20
|
Barisón MJ, Pereira IT, Waloski Robert A, Dallagiovanna B. Reorganization of Metabolism during Cardiomyogenesis Implies Time-Specific Signaling Pathway Regulation. Int J Mol Sci 2021; 22:1330. [PMID: 33572750 PMCID: PMC7869011 DOI: 10.3390/ijms22031330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the cell differentiation process involves the characterization of signaling and regulatory pathways. The coordinated action involved in multilevel regulation determines the commitment of stem cells and their differentiation into a specific cell lineage. Cellular metabolism plays a relevant role in modulating the expression of genes, which act as sensors of the extra-and intracellular environment. In this work, we analyzed mRNAs associated with polysomes by focusing on the expression profile of metabolism-related genes during the cardiac differentiation of human embryonic stem cells (hESCs). We compared different time points during cardiac differentiation (pluripotency, embryoid body aggregation, cardiac mesoderm, cardiac progenitor and cardiomyocyte) and showed the immature cell profile of energy metabolism. Highly regulated canonical pathways are thoroughly discussed, such as those involved in metabolic signaling and lipid homeostasis. We reveal the critical relevance of retinoic X receptor (RXR) heterodimers in upstream retinoic acid metabolism and their relationship with thyroid hormone signaling. Additionally, we highlight the importance of lipid homeostasis and extracellular matrix component biosynthesis during cardiomyogenesis, providing new insights into how hESCs reorganize their metabolism during in vitro cardiac differentiation.
Collapse
Affiliation(s)
| | | | | | - Bruno Dallagiovanna
- Basic Stem Cell Biology Laboratory, Instituto Carlos Chagas-FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR 81350-010, Brazil; (M.J.B.); (I.T.P.); (A.W.R.)
| |
Collapse
|
21
|
Emerging roles of lysophospholipids in health and disease. Prog Lipid Res 2020; 80:101068. [PMID: 33068601 DOI: 10.1016/j.plipres.2020.101068] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/22/2022]
Abstract
Lipids are abundant and play essential roles in human health and disease. The main functions of lipids are building blocks for membrane biogenesis. However, lipids are also metabolized to produce signaling molecules. Here, we discuss the emerging roles of circulating lysophospholipids. These lysophospholipids consist of lysoglycerophospholipids and lysosphingolipids. They are both present in cells at low concentration, but their concentrations in extracellular fluids are significantly higher. The biological functions of some of these lysophospholipids have been recently revealed. Remarkably, some of the lysophospholipids play pivotal signaling roles as well as being precursors for membrane biogenesis. Revealing how circulating lysophospholipids are produced, released, transported, and utilized in multi-organ systems is critical to understand their functions. The discovery of enzymes, carriers, transporters, and membrane receptors for these lysophospholipids has shed light on their physiological significance. In this review, we summarize the biological roles of these lysophospholipids via discussing about the proteins regulating their functions. We also discuss about their potential impacts to human health and diseases.
Collapse
|
22
|
Kim RR, Chen Z, J. Mann T, Bastard K, F. Scott K, Church WB. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A 2. Molecules 2020; 25:molecules25194459. [PMID: 32998383 PMCID: PMC7583969 DOI: 10.3390/molecules25194459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Human group IIA secretory phospholipase A2 (hGIIA) promotes the proliferation of cancer cells, making it a compelling therapeutic target, but it is also significant in other inflammatory conditions. Consequently, suitable inhibitors of hGIIA have always been sought. The activation of phospholipases A2 and the catalysis of glycerophospholipid substrates generally leads to the release of fatty acids such as arachidonic acid (AA) and lysophospholipid, which are then converted to mediator compounds, including prostaglandins, leukotrienes, and the platelet-activating factor. However, this ability of hGIIA to provide AA is not a complete explanation of its biological role in inflammation, as it has now been shown that it also exerts proinflammatory effects by a catalysis-independent mechanism. This mechanism is likely to be highly dependent on key specific molecular interactions, and the full mechanistic descriptions of this remain elusive. The current candidates for the protein partners that may mediate this catalysis-independent mechanism are also introduced in this review. A key discovery has been that selective inhibition of the catalysis-independent activity of hGIIA is achieved with cyclised derivatives of a pentapeptide, FLSYK, derived from the primary sequence of hGIIA. The effects of hGIIA on cell function appear to vary depending on the pathology studied, and so its mechanism of action is complex and context-dependent. This review is comprehensive and covers the most recent developments in the understanding of the many facets of hGIIA function and inhibition and the insight they provide into their clinical application for disease treatment. A cyclic analogue of FLSYK, c2, the most potent analogue known, has now been taken into clinical trials targeting advanced prostate cancer.
Collapse
Affiliation(s)
- Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Zheng Chen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
| | - Karine Bastard
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW The goal of risk prediction is to identify high-risk patients who will benefit from further preoperative evaluation. Clinical scores and biomarkers are very well established tools for risk prediction but their accuracy remains a controversial issue. RECENT FINDINGS Current guidelines recommend one of the risk tools for preoperative cardiac risk assessment: American College of Surgeons National Surgical Quality Improvement Program (NSQIP) calculator or Revised Cardiac Risk Index. Although not as easy to use as risk scores, risk models are more accurate and can predict individual patient risk more precisely. A step forward in risk estimation was performed by introducing new risk models developed from the American College of Surgeons NSQIP database - NSQIP surgical risk calculator and Myocardial Infarction or Cardiac Arrest index. Although biomarkers, especially in cardiac risk assessment, are already present in current European and American guidelines, this use is still controversial. Novel biomarkers: microRNAs, heart-type fatty acid-binding protein and mid-regional proadrenomedullin, can be used as new potential biomarkers in clinical practice. Also some of the experimental biomarkers have not yet been introduced into clinical practice, preliminary results are encouraging. SUMMARY Different risk indices and biomarkers might lead to varying risk estimates. However, the importance of clinical judgment in risk assessment should not be underestimated.
Collapse
|
24
|
Secreted Phospholipase A 2-IIA Modulates Transdifferentiation of Cardiac Fibroblast through EGFR Transactivation: An Inflammation-Fibrosis Link. Cells 2020; 9:cells9020396. [PMID: 32046347 PMCID: PMC7072256 DOI: 10.3390/cells9020396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Secreted phospholipase A2-IIA (sPLA2-IIA) is a pro-inflammatory protein associated with cardiovascular disorders, whose functions and underlying mechanisms in cardiac remodelling are still under investigation. We herein study the role of sPLA2-IIA in cardiac fibroblast (CFs)-to-myofibroblast differentiation and fibrosis, two major features involved in cardiac remodelling, and also explore potential mechanisms involved. In a mice model of dilated cardiomyopathy (DCM) after autoimmune myocarditis, serum and cardiac sPLA2-IIA protein expression were found to be increased, together with elevated cardiac levels of the cross-linking enzyme lysyl oxidase (LOX) and reactive oxygen species (ROS) accumulation. Exogenous sPLA2-IIA treatment induced proliferation and differentiation of adult rat CFs. Molecular studies demonstrated that sPLA2-IIA promoted Src phosphorylation, shedding of the membrane-anchored heparin-binding EGF-like growth factor (HB-EGF) ectodomain and EGFR phosphorylation, which triggered phosphorylation of ERK, P70S6K and rS6. This was also accompanied by an up-regulated expression of the bone morphogenic protein (BMP)-1, LOX and collagen I. ROS accumulation were also found to be increased in sPLA2-IIA-treated CFs. The presence of inhibitors of the Src/ADAMs-dependent HB-EGF shedding/EGFR pathway abolished the CF phenotype induced by sPLA2-IIA. In conclusion, sPLA2-IIA may promote myofibroblast differentiation through its ability to modulate EGFR transactivation and signalling as key mechanisms that underlie its biological and pro-fibrotic effects.
Collapse
|
25
|
A Potential Role of Phospholipase 2 Group IIA (PLA 2-IIA) in P. gingivalis-Induced Oral Dysbiosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31732936 DOI: 10.1007/978-3-030-28524-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Porphyromonas gingivalis is an oral pathogen with the ability to induce oral dysbiosis and periodontal disease. Nevertheless, the mechanisms by which P. gingivalis could abrogate the host-microbe symbiotic relationship leading to oral dysbiosis remain unclear. We have recently demonstrated that P. gingivalis specifically increased the antimicrobial properties of oral epithelial cells, through a strong induction of the expression of PLA2-IIA in a mechanism that involves activation of the Notch-1 receptor. Moreover, gingival expression of PLA2-IIA was significantly increased during initiation and progression of periodontal disease in non-human primates and interestingly, those PLA2-IIA expression changes were concurrent with oral dysbiosis. In this chapter, we present an innovative hypothesis of a potential mechanism involved in P. gingivalis-induced oral dysbiosis and inflammation based on our previous observations and a robust body of literature that supports the antimicrobial and proinflammatory properties of PLA2-IIA as well as its role in other chronic inflammatory diseases.
Collapse
|
26
|
Zhu K, Takada Y, Nakajima K, Sun Y, Jiang J, Zhang Y, Zeng Q, Takada Y, Zhao M. Expression of integrins to control migration direction of electrotaxis. FASEB J 2019; 33:9131-9141. [PMID: 31116572 PMCID: PMC6662972 DOI: 10.1096/fj.201802657r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023]
Abstract
Proper control of cell migration is critically important in many biologic processes, such as wound healing, immune surveillance, and development. Much progress has been made in the initiation of cell migration; however, little is known about termination and sometimes directional reversal. During active cell migration, as in wound healing, development, and immune surveillance, the integrin expression profile undergoes drastic changes. Here, we uncovered the extensive regulatory and even opposing roles of integrins in directional cell migration in electric fields (EFs), a potentially important endogenous guidance mechanism. We established cell lines that stably express specific integrins and determined their responses to applied EFs with a high throughput screen. Expression of specific integrins drove cells to migrate to the cathode or to the anode or to lose migration direction. Cells expressing αMβ2, β1, α2, αIIbβ3, and α5 migrated to the cathode, whereas cells expressing β3, α6, and α9 migrated to the anode. Cells expressing α4, αV, and α6β4 lost directional electrotaxis. Manipulation of α9 molecules, one of the molecular directional switches, suggested that the intracellular domain is critical for the directional reversal. These data revealed an unreported role for integrins in controlling stop, go, and reversal activity of directional migration of mammalian cells in EFs, which might ensure that cells reach their final destination with well-controlled speed and direction.-Zhu, K., Takada, Y., Nakajima, K., Sun, Y., Jiang, J., Zhang, Y., Zeng, Q., Takada, Y., Zhao, M. Expression of integrins to control migration direction of electrotaxis.
Collapse
Affiliation(s)
- Kan Zhu
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yoko Takada
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
| | - Kenichi Nakajima
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
| | - Yaohui Sun
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yan Zhang
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Sacramento, California, USA
| |
Collapse
|
27
|
Altered Metabolism of Phospholipases, Diacylglycerols, Endocannabinoids, and N-Acylethanolamines in Patients with Mastocytosis. J Immunol Res 2019; 2019:5836476. [PMID: 31355297 PMCID: PMC6636572 DOI: 10.1155/2019/5836476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/02/2019] [Accepted: 05/14/2019] [Indexed: 12/28/2022] Open
Abstract
Background Mastocytosis is a condition characterized by the expansion and accumulation of mast cells (MCs) in various organs. The symptoms are related to the increased release of MC-derived mediators that exert local and distant effects. MCs are a source and target of phospholipase enzymes (PLs), which catalyze the cleavage of membrane phospholipids releasing lipid mediators (e.g., diacylglycerols (DAGs) and the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG)). To date, there are no data on the role of these lipid mediators in mastocytosis. Here, we analyzed plasma levels of PLA2, PLC, DAG, ECs, and EC-related N-acylethanolamines in patients with mastocytosis. Methods In 23 patients with mastocytosis and 23 healthy individuals, we measured plasma PLA2 and PLC activities, DAG, 2-AG, anandamide (AEA), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA). Results Plasma PLA2 and PLC activities were increased in mastocytosis patients compared to controls. Concentrations of DAG (18:1 20:4 and 18:0 20:4), two second messengers produced by PLC, were higher in mastocytosis compared to controls, whereas the concentrations of their metabolite, 2-AG, were not altered. AEA was decreased in mastocytosis patients compared to controls; by contrast, AEA congener, PEA, was increased. PLA2 and PLC activities were increased only in patients with mediator-related symptoms. Moreover, PLC activity was positively correlated with disease severity and tryptase concentrations. By contrast, AEA was negatively correlated with tryptase concentrations. Conclusions PLs and some lipid mediators are altered in patients with mastocytosis. Our results may pave the way for investigating the functions of these mediators in the pathophysiology of mastocytosis and provide new potential biomarkers and therapeutic targets.
Collapse
|
28
|
Pokharel SM, Shil NK, Gc JB, Colburn ZT, Tsai SY, Segovia JA, Chang TH, Bandyopadhyay S, Natesan S, Jones JCR, Bose S. Integrin activation by the lipid molecule 25-hydroxycholesterol induces a proinflammatory response. Nat Commun 2019; 10:1482. [PMID: 30931941 PMCID: PMC6443809 DOI: 10.1038/s41467-019-09453-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/13/2019] [Indexed: 01/04/2023] Open
Abstract
Integrins are components of cell-matrix adhesions, and function as scaffolds for various signal transduction pathways. So far no lipid ligand for integrin has been reported. Here we show that a lipid, oxysterol 25-hydroxycholesterol (25HC), directly binds to α5β1 and αvβ3 integrins to activate integrin-focal adhesion kinase (FAK) signaling. Treatment of macrophages and epithelial cells with 25HC results in an increase in activated αvβ3 integrin in podosome and focal adhesion matrix adhesion sites. Moreover, activation of pattern recognition receptor on macrophages induces secretion of 25HC, triggering integrin signaling and the production of proinflammatory cytokines such as TNF and IL-6. Thus, the lipid molecule 25HC is a physiologically relevant activator of integrins and is involved in positively regulating proinflammatory responses. Our data suggest that extracellular 25HC links innate immune inflammatory response with integrin signaling.
Collapse
Affiliation(s)
- Swechha M Pokharel
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99163, USA
| | - Niraj K Shil
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99163, USA
| | - Jeevan B Gc
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceuticals Sciences, Washington State University, Spokane, WA, 99210, USA
| | - Zachary T Colburn
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99163, USA
| | - Su-Yu Tsai
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jesus A Segovia
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Te-Hung Chang
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core Laboratory, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Senthil Natesan
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceuticals Sciences, Washington State University, Spokane, WA, 99210, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99163, USA
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
29
|
Dore E, Boilard E. Roles of secreted phospholipase A 2 group IIA in inflammation and host defense. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:789-802. [PMID: 30905346 DOI: 10.1016/j.bbalip.2018.08.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Among all members of the secreted phospholipase A2 (sPLA2) family, group IIA sPLA2 (sPLA2-IIA) is possibly the most studied enzyme. Since its discovery, many names have been associated with sPLA2-IIA, such as "non-pancreatic", "synovial", "platelet-type", "inflammatory", and "bactericidal" sPLA2. Whereas the different designations indicate comprehensive functions or sources proposed for this enzyme, the identification of the precise roles of sPLA2-IIA has remained a challenge. This can be attributed to: the expression of the enzyme by various cells of different lineages, its limited activity towards the membranes of immune cells despite its expression following common inflammatory stimuli, its ability to interact with certain proteins independently of its catalytic activity, and its absence from multiple commonly used mouse models. Nevertheless, elevated levels of the enzyme during inflammatory processes and associated consistent release of arachidonic acid from the membrane of extracellular vesicles suggest that sPLA2-IIA may contribute to inflammation by using endogenous substrates in the extracellular milieu. Moreover, the remarkable potency of sPLA2-IIA towards bacterial membranes and its induced expression during the course of infections point to a role for this enzyme in the defense of the host against invading pathogens. In this review, we present current knowledge related to mammalian sPLA2-IIA and its roles in sterile inflammation and host defense.
Collapse
Affiliation(s)
- Etienne Dore
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada
| | - Eric Boilard
- Centre de Recherche du CHU de Québec, Université Laval, Department of Infectious Diseases and Immunity, Québec City, QC, Canada; Canadian National Transplantation Research Program, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Loffredo S, Ferrara AL, Bova M, Borriello F, Suffritti C, Veszeli N, Petraroli A, Galdiero MR, Varricchi G, Granata F, Zanichelli A, Farkas H, Cicardi M, Lambeau G, Marone G. Secreted Phospholipases A 2 in Hereditary Angioedema With C1-Inhibitor Deficiency. Front Immunol 2018; 9:1721. [PMID: 30083168 PMCID: PMC6064723 DOI: 10.3389/fimmu.2018.01721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hereditary angioedema (HAE) caused by deficiency (type I) or dysfunction (type II) of the C1 inhibitor protein (C1-INH-HAE) is a disabling, potentially fatal condition characterized by recurrent episodes of swelling. We have recently found that patients with C1-INH-HAE have increased plasma levels of vascular endothelial growth factors and angiopoietins (Angs), which have been associated with vascular permeability in several diseases. Among these and other factors, blood endothelial cells and vascular permeability can be modulated by extracellular or secreted phospholipases A2 (sPLA2s). Objective We sought to investigate the enzymatic activity and biological functions of sPLA2 in patients with C1-INH-HAE. Methods sPLA2s enzymatic activity was evaluated in the plasma from 109 adult patients with C1-INH-HAE and 68 healthy donors in symptom-free period and attacks. Plasma level of group IIA sPLA2 (hGIIA) protein was measured in selected samples. The effect of C1-INH-HAE plasma on endothelial permeability was examined in vitro using a vascular permeability assay. The role of hGIIA was determined using highly specific sPLA2 indole inhibitors. The effect of recombinant hGIIA on C1-INH activity was examined in vitro by functional assay. Results Plasma sPLA2 activity and hGIIA levels are increased in symptom-free C1-INH-HAE patients compared with controls. sPLA2 activity negatively correlates with C1-INH protein level and function. C1-INH-HAE plasma increases endothelial permeability in vitro, and this effect is partially reverted by a specific hGIIA enzymatic inhibitor. Finally, recombinant hGIIA inhibits C1-INH activity in vitro. Conclusion sPLA2 enzymatic activity (likely attributable to hGIIA), which is increased in C1-INH-HAE patients, can promote vascular permeability and impairs C1-INH activity. Our results may pave the way for investigating the functions of sPLA2s (in particular, hGIIA) in the pathophysiology of C1-INH-HAE and may inform the development of new therapeutic targets.
Collapse
Affiliation(s)
- Stefania Loffredo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Anne Lise Ferrara
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Maria Bova
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Francesco Borriello
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy.,Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chiara Suffritti
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Nóra Veszeli
- Hungarian Angioedema Center, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Angelica Petraroli
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy
| | - Andrea Zanichelli
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Henriette Farkas
- Hungarian Angioedema Center, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Marco Cicardi
- Department of Biomedical and Clinical Sciences, University of Milan, Luigi Sacco Hospital Milan, Milan, Italy
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gianni Marone
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council, Naples, Italy
| |
Collapse
|
31
|
Stromal cell-derived factor-1 (CXCL12) activates integrins by direct binding to an allosteric ligand-binding site (site 2) of integrins without CXCR4. Biochem J 2018; 475:723-732. [PMID: 29301984 DOI: 10.1042/bcj20170867] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 01/15/2023]
Abstract
Leukocyte arrest on the endothelial cell surface during leukocyte extravasation is induced by rapid integrin activation by chemokines. We recently reported that fractalkine induces integrin activation without its receptor CX3CR1 through binding to the allosteric site (site 2) of integrins. Peptides from site 2 bound to fractalkine and suppressed integrin activation by fractalkine. We hypothesized that this is not limited to membrane-bound fractalkine. We studied whether stromal cell-derived factor-1 (SDF1), another chemokine that plays a critical role in leukocyte arrest, activates integrins through binding to site 2. We describe here that (1) SDF1 activated soluble integrin αvβ3 in cell-free conditions, suggesting that SDF1 can activate αvβ3 without CXCR4; (2) site 2 peptide bound to SDF1, suggesting that SDF1 binds to site 2; (3) SDF1 activated integrins αvβ3, α4β1, and α5β1 on CHO cells (CXCR4-negative) and site 2 peptide suppressed the activation; (4) A CXCR4 antagonist AMD3100 did not affect the site 2-mediated integrin activation by SDF1; (5) Cell-surface integrins were fully activated in 1 min (much faster than activation of soluble αvβ3) and the activation lasted at least for 1 h. We propose that the binding of SDF1 to cell-surface proteoglycan facilitates the allosteric activation process; (6) Mutations in the predicted site 2-binding site in SDF1 suppressed integrin activation. These results suggest that SDF1 (e.g. presented on proteoglycans) can rapidly activate integrins in an allosteric manner by binding to site 2 in the absence of CXCR4. The allosteric integrin activation by SDF1 is a novel target for drug discovery.
Collapse
|
32
|
Nicolaou A, Northoff BH, Sass K, Ernst J, Kohlmaier A, Krohn K, Wolfrum C, Teupser D, Holdt LM. Quantitative trait locus mapping in mice identifies phospholipase Pla2g12a as novel atherosclerosis modifier. Atherosclerosis 2017; 265:197-206. [PMID: 28917158 DOI: 10.1016/j.atherosclerosis.2017.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS In a previous work, a female-specific atherosclerosis risk locus on chromosome (Chr) 3 was identified in an intercross of atherosclerosis-resistant FVB and atherosclerosis-susceptible C57BL/6 (B6) mice on the LDL-receptor deficient (Ldlr-/-) background. It was the aim of the current study to identify causative genes at this locus. METHODS We established a congenic mouse model, where FVB.Chr3B6/B6 mice carried an 80 Mb interval of distal Chr3 on an otherwise FVB.Ldlr-/- background, to validate the Chr3 locus. Candidate genes were identified using genome-wide expression analyses. Differentially expressed genes were validated using quantitative PCRs in F0 and F2 mice and their functions were investigated in pathophysiologically relevant cells. RESULTS Fine-mapping of the Chr3 locus revealed two overlapping, yet independent subloci for female atherosclerosis susceptibility: when transmitted by grandfathers to granddaughters, the B6 risk allele increased atherosclerosis and downregulated the expression of the secreted phospholipase Pla2g12a (2.6 and 2.2 fold, respectively); when inherited by grandmothers, the B6 risk allele induced vascular cell adhesion molecule 1 (Vcam1). Down-regulation of Pla2g12a and up-regulation of Vcam1 were validated in female FVB.Chr3B6/B6 congenic mice, which developed 2.5 greater atherosclerotic lesions compared to littermate controls (p=0.039). Pla2g12a was highly expressed in aortic endothelial cells in vivo, and knocking-down Pla2g12a expression by RNAi in cultured vascular endothelial cells or macrophages increased their adhesion to ECs in vitro. CONCLUSIONS Our data establish Pla2g12a as an atheroprotective candidate gene in mice, where high expression levels in ECs and macrophages may limit the recruitment and accumulation of these cells in nascent atherosclerotic lesions.
Collapse
Affiliation(s)
- Alexandros Nicolaou
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Bernd H Northoff
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Kristina Sass
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Jana Ernst
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Kohlmaier
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Knut Krohn
- Interdisciplinary Center for Clinical Research Leipzig (IZKF), Core-Unit DNA Technologies, University of Leipzig, Leipzig, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Daniel Teupser
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
33
|
Ugalde-Morales E, Li J, Humphreys K, Ludvigsson JF, Yang H, Hall P, Czene K. Common shared genetic variation behind decreased risk of breast cancer in celiac disease. Sci Rep 2017; 7:5942. [PMID: 28725034 PMCID: PMC5517429 DOI: 10.1038/s41598-017-06287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
There is epidemiologic evidence showing that women with celiac disease have reduced risk of later developing breast cancer, however, the etiology of this association is unclear. Here, we assess the extent of genetic overlap between the two diseases. Through analyses of summary statistics on densely genotyped immunogenic regions, we show a significant genetic correlation (r = −0.17, s.e. 0.05, P < 0.001) and overlap (Ppermuted < 0.001) between celiac disease and breast cancer. Using individual-level genotype data from a Swedish cohort, we find higher genetic susceptibility to celiac disease summarized by polygenic risk scores to be associated with lower breast cancer risk (ORper-SD, 0.94, 95% CI 0.91 to 0.98). Common single nucleotide polymorphisms between the two diseases, with low P-values (PCD < 1.00E-05, PBC ≤ 0.05), mapped onto genes enriched for immunoregulatory and apoptotic processes. Our results suggest that the link between breast cancer and celiac disease is due to a shared polygenic variation of immune related regions, uncovering pathways which might be important for their development.
Collapse
Affiliation(s)
- Emilio Ugalde-Morales
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | - Haomin Yang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Loffredo S, Borriello F, Iannone R, Ferrara AL, Galdiero MR, Gigantino V, Esposito P, Varricchi G, Lambeau G, Cassatella MA, Granata F, Marone G. Group V Secreted Phospholipase A 2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils. Front Immunol 2017; 8:443. [PMID: 28458672 PMCID: PMC5394767 DOI: 10.3389/fimmu.2017.00443] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/30/2017] [Indexed: 02/05/2023] Open
Abstract
Secreted phospholipases A2 (sPLA2s) are extracellular enzymes that catalyze the release of free fatty acids and lysophospholipids from membrane phospholipids and also bind to different receptors (e.g., PLA2R1 or integrins). To date, 12 mammalian sPLA2s have been identified, which play a critical role in pathophysiological processes including inflammation and cancer. sPLA2s activate immune cells such as human neutrophils (PMNs) by enzymatic activity- or receptor-mediated mechanisms. In addition, human PMNs synthesize and store human group V (hGV) and human group X (hGX) sPLA2s in their granules, but only the former is released upon cellular activation. We investigated the effects of sPLA2s on the release of proangiogenic and antiangiogenic factors by PMNs. We found that exogenous hGV and hGX sPLA2s induce the release of vascular endothelial growth factor (VEGF)-A, angiopoietin 1 (Ang1), and CXCL8/IL-8. Only hGV induces the secretion of the antiangiogenic isoform of VEGF-A, namely, VEGF-A165b. While the release of VEGF-A, Ang1, and CXCL8/IL-8 was likely mediated by hGV enzymatic activity and/or binding to PLA2R1 and heparan sulfate proteoglycans, the release of VEGF-A165b requires the interaction with αVβ3 and α4β1 integrins. We also provide evidence that endogenous hGV released by N-formyl-met-leu-phe (fMLF)-activated PMNs is involved in the release of angiogenic factors. The translational relevance of these data is supported by our findings that hGV expression is increased in human samples of lung cancer which are infiltrated by PMNs. Overall, our results suggest that the hGV-neutrophil axis may play a relevant role in the modulation of cancer-related inflammation and angiogenesis.
Collapse
Affiliation(s)
- Stefania Loffredo
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Francesco Borriello
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Division of Infectious Diseases, Department of Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Raffaella Iannone
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Anne L. Ferrara
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria R. Galdiero
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Vincenzo Gigantino
- Pathology Unit, Istituto Nazionale Tumori Fondazione “G. Pascale”, Naples, Italy
| | - Pasquale Esposito
- U.O.C. Immunohematology and Transfusion Medicine, University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gerard Lambeau
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Marco A. Cassatella
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Francescopaolo Granata
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Division of Clinical Immunology and Allergy, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- CNR Institute of Experimental Endocrinology and Oncology “G. Salvatore”, Naples, Italy
| |
Collapse
|
35
|
Kim RR, Malde AK, Nematollahi A, Scott KF, Church WB. Molecular dynamics simulations reveal structural insights into inhibitor binding modes and functionality in human Group IIA phospholipase A 2. Proteins 2017; 85:827-842. [PMID: 28056488 DOI: 10.1002/prot.25235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022]
Abstract
Human Group IIA phospholipase A2 (hGIIA) promotes inflammation in immune-mediated pathologies by regulating the arachidonic acid pathway through both catalysis-dependent and -independent mechanisms. The hGIIA crystal structure, both alone and inhibitor-bound, together with structures of closely related snake-venom-derived secreted phospholipase enzymes has been well described. However, differentiation of biological and nonbiological contacts and the relevance of structures determined from snake venom enzymes to human enzymes are not clear. We employed molecular dynamics (MD) and docking approaches to understand the binding of inhibitors that selectively or nonselectively block the catalysis-independent mechanism of hGIIA. Our results indicate that hGIIA behaves as a monomer in the solution environment rather than a dimer arrangement that is in the asymmetric unit of some crystal structures. The binding mode of a nonselective inhibitor, KH064, was validated by a combination of the experimental electron density and MD simulations. The binding mode of the selective pentapeptide inhibitor FLSYK to hGIIA was stipulated to be different to that of the snake venom phospholipases A2 of Daboia russelli pulchella (svPLA2 ). Our data suggest that the application of MD approaches to crystal structure data is beneficial in evaluating the robustness of conclusions drawn based on crystal structure data alone. Proteins 2017; 85:827-842. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryung Rae Kim
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alpeshkumar K Malde
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia, 4072
| | - Alireza Nematollahi
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kieran F Scott
- School of Medicine, Western Sydney University, The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia, 2170.,Centre for Oncology Education and Research Translation (CONCERT), The Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia, 2170
| | - W Bret Church
- Group in Biomolecular Structure and Informatics, Faculty of Pharmacy, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
36
|
Kokotou MG, Limnios D, Nikolaou A, Psarra A, Kokotos G. Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016). Expert Opin Ther Pat 2016; 27:217-225. [DOI: 10.1080/13543776.2017.1246540] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Maroula G. Kokotou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitris Limnios
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Nikolaou
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Psarra
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Álvarez-Santos M, Carbajal V, Tellez-Jiménez O, Martínez-Cordero E, Ruiz V, Hernández-Pando R, Lascurain R, Santibañez-Salgado A, Bazan-Perkins B. Airway Hyperresponsiveness in Asthma Model Occurs Independently of Secretion of β1 Integrins in Airway Wall and Focal Adhesions Proteins Down Regulation. J Cell Biochem 2016; 117:2385-96. [PMID: 26969873 DOI: 10.1002/jcb.25536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
The extracellular domains of some membrane proteins can be shed from the cell. A similar phenomenon occurs with β1 integrins (α1β1 and α2β1) in guinea pig. The putative role of β1 integrin subunit alterations due to shedding in airway smooth muscle (ASM) in an allergic asthma model was evaluated. Guinea pigs were sensitized and challenged with antigen. Antigenic challenges induced bronchoobstruction and hyperresponsiveness at the third antigenic challenge. Immunohistochemistry and immunoelectronmicroscopy studies showed that the cytosolic and extracellular domains of the β1 integrin subunit shared the same distribution in airway structures in both groups. Various polypeptides with similar molecular weights were detected with both the cytosolic and extracellular β1 integrin subunit antibodies in isolated airway myocytes and the connective tissue that surrounds the ASM bundle. Flow cytometry and Western blot studies showed that the expression of cytosolic and extracellular β1 integrin subunit domains in ASM was similar between groups. An increment of ITGB1 mRNA in ASM was observed in the asthma model group. RACE-PCR of ITGB1 in ASM did not show splicing variants. The expression levels of integrin-linked kinase (ILK) and paxillin diminished in the asthma model, but not talin. The levels of phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at Thr(696) increased in asthma model. Our work suggests that β1 integrin is secreted in guinea pig airway wall. This secretion is not altered in asthma model; nevertheless, β1 integrin cytodomain assembly proteins in focal cell adhesions in which ILK and paxillin are involved are altered in asthma model. J. Cell. Biochem. 117: 2385-2396, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mayra Álvarez-Santos
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Verónica Carbajal
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Olivia Tellez-Jiménez
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Erasmo Martínez-Cordero
- Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Victor Ruiz
- Laboratorio de Biología Molecular, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición, Vasco de Quiroga 15, México DF, 14000, México
| | - Ricardo Lascurain
- Departamento de Bioquímica, Universidad Nacional Autónoma de México, México DF, 70159, Mexico
| | - Alfredo Santibañez-Salgado
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| | - Blanca Bazan-Perkins
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlapan 4502, Col. Sección XVI, México DF, 14080, México
| |
Collapse
|
38
|
Takada Y, Fujita M. Secreted Phospholipase A2 Type IIA (sPLA2-IIA) Activates Integrins in an Allosteric Manner. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 925:103-115. [PMID: 27864802 DOI: 10.1007/5584_2016_95] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secreted phospholipase A2 type IIA (sPLA2-IIA) is a well-established pro-inflammatory protein and has been a major target for drug discovery. However, the mechanism of its signaling action has not been fully understood. We previously found that sPLA2-IIA binds to integrins αvβ3 and α4β1 in human and that this interaction plays a role in sPLA2-IIA's signaling action. Our recent studies found that sPLA2-IIA activates integrins in an allosteric manner through direct binding to a newly identified binding site of integrins (site 2), which is distinct from the classical RGD-binding site (site 1). The sPLA2-IIA-induced integrin activation may be related to the signaling action of sPLA2-IIA. Since sPLA2-IIA is present in normal human tears in addition to rheumatoid synovial fluid at high concentrations the sPLA2-IIA-mediated integrin activation on leukocytes may be involved in immune responses in normal and pathological conditions.
Collapse
Affiliation(s)
- Yoshikazu Takada
- Department of Dermatology, Biochemistry and Molecular Medicine, UC Davis School of Medicine, Research III Suite 3300, 4645 Second Avenue, Sacramento, CA, 95817, USA. .,The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan, Republic of China.
| | - Masaaki Fujita
- Department of Clinical Immunology and Rheumatology, The Tazuke-Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ohgimachi, Kita-ku, Osaka, 530-8480, Japan
| |
Collapse
|