1
|
Colazo JM, Keech MC, Shah V, Hoogenboezem EN, Lo JH, Francini N, Cassidy NT, Yu F, Sorets AG, McCune JT, DeJulius CR, Cho H, Michell DL, Maerz T, Vickers KC, Gibson-Corley KN, Hasty KA, Crofford LJ, Cook RS, Duvall CL. siRNA conjugate with high albumin affinity and degradation resistance for delivery and treatment of arthritis in mice and guinea pigs. Nat Biomed Eng 2025:10.1038/s41551-025-01376-x. [PMID: 40379798 DOI: 10.1038/s41551-025-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/07/2025] [Indexed: 05/19/2025]
Abstract
Osteoarthritis and rheumatoid arthritis are debilitating joint diseases marked by pain, inflammation and cartilage destruction. Current osteoarthritis treatments only relieve symptoms, while rheumatoid arthritis therapies can cause immune suppression and provide variable efficacy. Here we developed an optimized small interfering RNA targeting matrix metalloproteinase 13 for preferential delivery to arthritic joints. Chemical modifications in a stabilizing 'zipper' pattern improved RNA resistance to degradation, and two independent linkers with 18 ethylene glycol repeats connecting to tandem C18 lipids enhanced albumin binding and targeted delivery to inflamed joints following intravenous administration. In preclinical models of post-traumatic osteoarthritis and rheumatoid arthritis, a single intravenous injection of the albumin-binding small interfering RNA achieved long-term joint retention, sustained gene silencing and reduced matrix metalloproteinase 13 activity over 30 days, resulting in decreased cartilage erosion and improved clinical outcomes, including reduced joint swelling and pressure sensitivity. This approach demonstrated superior efficacy over corticosteroids and small-molecule MMP inhibitors, highlighting the therapeutic promise of albumin 'hitchhiking' for targeted, systemic delivery of gene-silencing therapeutics to treat osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Juan M Colazo
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Megan C Keech
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Veeraj Shah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ella N Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justin H Lo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nina T Cassidy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander G Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hongsik Cho
- Department of Orthopaedic Surgery and Biomedical Engineering, UTHSC, Memphis VA Medical Center, Memphis, TN, USA
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kacey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karen A Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, UTHSC, Memphis VA Medical Center, Memphis, TN, USA
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Sun X, Hu X. Unveiling Matrix Metalloproteinase 13's Dynamic Role in Breast Cancer: A Link to Physical Changes and Prognostic Modulation. Int J Mol Sci 2025; 26:3083. [PMID: 40243781 PMCID: PMC11988641 DOI: 10.3390/ijms26073083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The biomechanical properties of the extracellular matrix (ECM) including its stiffness, viscoelasticity, collagen architecture, and temperature constitute critical biomechanical cues governing breast cancer progression. Matrix metalloproteinase 13 (MMP13) is an important marker of breast cancer and plays important roles in matrix remodelling and cell metastasis. Emerging evidence highlights MMP13 as a dynamic modulator of the ECM's physical characteristics through dual mechanoregulatory mechanisms. While MMP13-mediated collagen degradation facilitates microenvironmental softening, thus promoting tumour cell invasion, paradoxically, its crosstalk with cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) drives pathological stromal stiffening via aberrant matrix deposition and crosslinking. This biomechanical duality is amplified through feedforward loops with an epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) populations, mediated by signalling axes such as TGF-β/Runx2. Intriguingly, MMP13 exhibits context-dependent mechanomodulatory effects, demonstrating anti-fibrotic activity and inhibiting the metastasis of breast cancer. At the same time, angiogenesis and increased metabolism are important mechanisms through which MMP13 promotes a temperature increase in breast cancer. Targeting the spatiotemporal regulation of MMP13's mechanobiological functions may offer novel therapeutic strategies for disrupting the tumour-stroma vicious cycle.
Collapse
Affiliation(s)
- Xiaomeng Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
| | - Xiaojuan Hu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China;
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Xuefu Avenue, Honggutan District, Nanchang 330031, China
| |
Collapse
|
3
|
Mourya A, Arya S, Singh A, Bajad G, Loharkar S, Shubhra, Devangan P, Mehra NK, Shukla R, Chandra R, Madan J. Gold Nanoparticles as a Tool to Detect Biomarkers in Osteoarthritis: New Insights. Indian J Microbiol 2025; 65:253-276. [PMID: 40371044 PMCID: PMC12069218 DOI: 10.1007/s12088-024-01331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/08/2024] [Indexed: 01/06/2025] Open
Abstract
Extensive research over the years has revealed the remarkable potential of gold nanoparticles (AuNPs) for detecting biomarkers in osteoarthritis (OA). AuNPs are a promising class of nanomaterials offering a wide range of diagnostic and clinical applications. It provides an effective and robust framework for qualitative and quantitative analysis of biomarkers present in the biological fluids of OA patients. AuNPs as theranostics have gained significant attention due to their discrete physical and optical characteristics, including localized surface plasmon resonance (LSPR), fluorescence, surface-enhanced Raman scattering, and quantized charging effect. These unique properties provide AuNPs as an excellent scaffold for ligand multiplexing, allowing accrued sensitivity for biomarker detection. Several reports have delved into the LSPR properties of the kinetics of biological interactions between the ligand and analyte. Tuneable radiative properties of AuNPs coupled with surface engineering allow facile detection of biomarkers in biological fluids. Herein, we have presented a comprehensive summary of distinct biomarkers generated from different molecular pathological processes in OA. An armamentarium of diagnostic methodologies such as aptamer conjugation, antibody coupling, ligand anchoring, and peptide decoration on the surface of AuNPs facilitates the identification and quantification of biomarkers. Additionally, a diverse range of sensing strategies for biomarker spotting, along with current challenges and future perspectives, have also been well delineated in the present manuscript. Graphical Abstract
Collapse
Affiliation(s)
- Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Ayush Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Gopal Bajad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Soham Loharkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Shubhra
- Department of Pharmacy, University of Bologna, Bologna, Italy
| | - Pawan Devangan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
- Institute of Nanomedical Sciences, University of Delhi, Delhi, India
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
- Maharaja Surajmal Brij University, Bharatpur, Rajasthan India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana India
| |
Collapse
|
4
|
Persons AK, Baria MR, Rauck R, Barker T, Belacic Z, Neginhal S, Durgam S. Effects of adipose allograft matrix on viability of humeral head cartilage and rotator cuff tendon. BMC Musculoskelet Disord 2025; 26:54. [PMID: 39815205 PMCID: PMC11734559 DOI: 10.1186/s12891-025-08302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Rotator cuff repairs may fail because of compromised blood supply, suture anchor pullout, or poor fixation to bone. To augment the repairs and promote healing of the tears, orthobiologics, such a platelet-rich plasma (PRP), and biologic scaffolds have been applied with mixed results. Adipose allograft matrix (AAM), which recruits native cells to damaged tissues, may also be a potential treatment for rotator cuff tears. METHODS To assess the potential use of AAM on rotator cuff tears, humeral head cartilage and subscapularis tendon were collected from patients undergoing reverse shoulder arthroplasty (RSA). Punch biopsies of the tissues were used to create explants for tissue culture, and the remaining tissue was digested to isolate the chondrocytes and tenocytes for cell culture. Explants and cells were then cultured in media containing AAM. After 48 h, the tissues and cells were measured for cell viability, cell proliferation, extracellular matrix (ECM) and metalloproteinase (MMP) gene expression and for MMP, inflammatory cytokine, and growth factor concentrations. RESULTS Cell viability was increased in humeral head chondrocytes and rotator cuff tenocytes cultured with AAM. Gene expression of the matrix proteoglycan, aggrecan, and of the proteolytic enzyme MMP-13 were downregulated in humeral head chondrocytes. MMP-13 concentrations were increased in subscapularis tenocytes and in humeral head chondrocyte/subscapularis tenocyte co-cultures. The anti-inflammatory cytokine, IL-1ra was increased in cartilage/tendon explant co-cultures. TGF-β1 concentrations were increased in chondrocytes, but decreased in tenocytes. CONCLUSIONS Overall, AAM had no significant negative effects on the cells or explants. The results of these experiments provide the basis for the future use of AAM as a scaffolding for tissue engineering, preclinical animal models of rotator cuff tear and glenohumeral osteoarthritis, and clinical models. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
| | - Michael R Baria
- Department of Physical Medicine and Rehabilitation, Wexner Medical Center, Columbus, OH, USA.
- Department of Physical Medicine and Rehabilitation, Sports Medicine Research Institute, The Ohio State University, 2835 Fred Taylor Drive, Columbus, OH, 43202, USA.
| | - Ryan Rauck
- Department of Orthopaedics, Wexner Medical Center, Columbus, OH, USA
| | - Tyler Barker
- Ohio State Sports Medicine Research Institute, Columbus, OH, USA
| | | | | | - Sushmitha Durgam
- Department of Clinical Sciences, College of Veterinary Medicine, Columbus, OH, USA
| |
Collapse
|
5
|
Zhu P, Ma M, You T, Zhang B, Ye S, Liu S. Optimizing prolyl hydroxylation for functional recombinant collagen in Escherichia coli. Int J Biol Macromol 2024; 282:137400. [PMID: 39521206 DOI: 10.1016/j.ijbiomac.2024.137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Collagen, a key extracellular matrix component, is renowned for its biocompatibility, biodegradability, and bioactivity, finding wide applications in food, medicine, cosmetics, and industry. Recombinant collagen expression in Escherichia coli offers advantages such as shorter production cycles and lower costs compared to extraction from animal tissues, though it is known to lack essential post-translational modifications, such as proline hydroxylation, which are crucial for its stability and biological function. Studies have shown that certain prolyl hydroxylases, including BaP4H, DsP4H, and L593, exhibit relatively high modification efficiency in the E. coli expression system. However, structures and functions of recombinant human type III collagen after modification by three prolyl hydroxylases remain uncertain. In this study, we investigated the percentage of proline hydroxylation, hydroxylation sites, circular dichroism spectra, and biological functions of recombinant human type III collagen modified by various prolyl hydroxylases. The results indicated that the L593 exhibited the highest percentage of proline hydroxylation, and the percentage of proline hydroxylation was closely associated with the formation of the collagen triple helix, while the hydroxylation ratio of prolines is not positively correlated with the stability of the collagen triple helix structure. The biological function results showed that the cell adhesion of recombinant collagen 3-3(BaP4H) and 3-3(L593) was significantly enhanced, which was closely related to the triple helix structure of recombinant human type III collagen. Our study provides valuable insights into the industrial production and biological applications of collagen, enhancing its functional research and scalability.
Collapse
Affiliation(s)
- Pei Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Mingxue Ma
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Tianjie You
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Bo Zhang
- Hangzhou Insightale Biotechnology Co., LTD, Hangzhou 310000, PR China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| | - Si Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
6
|
Yang RQ, Chen YL, Lin D, Cao KY, Sun LC, Zhang LJ, Yoshida A, Cao MJ. Collaborative Effect of Matrix Metalloproteinases on Type I Collagen Degradation and Muscle Softening in Sea Bass ( Lateolabrax japonicus) during Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39367843 DOI: 10.1021/acs.jafc.4c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Matrix metalloproteinases (MMPs) play critical roles in the degradation of collagens, while their mechanism remains unclear. In the present study, the involvement of matrix metalloproteinases (MMPs) in collagen degradation of sea bass muscle during cold storage was explored. Immunohistochemical staining results showed significant degradation of type I collagen in the connective tissue of muscle endomysium during cold storage, thus affecting the muscle structural integrity and quality. Western blot analysis revealed an increment in the α1 chain and a decrease in the β and γ chains of type I collagen. Immunofluorescence staining showed that MMP-2, MMP-9, and MMP-13 were distributed in the endomysium surrounding the muscle fibers. Additionally, the catalytic domains of MMP-2, MMP-9, and MMP-13 with biological activities were successfully expressed. The degradation trend of type I collagen by MMPs under 4 °C was similar to that of muscle collagen during cold storage, suggesting that the degradation of type I collagen was attributed to the cooperative action of the MMPs. In conclusion, our study elucidated that the MMPs-engaged degradation of type I collagen is quite possibly the leading cause of sea bass muscle softening during cold storage.
Collapse
Affiliation(s)
- Ru-Qing Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kai-Yuan Cao
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
7
|
Yammine KM, Mirda Abularach S, Kim SY, Bikovtseva AA, Lilianty J, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis. Life Sci Alliance 2024; 7:e202402842. [PMID: 38981683 PMCID: PMC11234256 DOI: 10.26508/lsa.202402842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Likely owing to the unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific ER proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the easily expandable cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.
Collapse
Affiliation(s)
- Kathryn M Yammine
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Seo-Yeon Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Agata A Bikovtseva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jinia Lilianty
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Vincent L Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Richard P Schiavoni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John F Bateman
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Shireen R Lamandé
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Parkville, Australia
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
8
|
Danalache M, Umrath F, Riester R, Schwitalle M, Guilak F, Hofmann UK. Proteolysis of the pericellular matrix: Pinpointing the role and involvement of matrix metalloproteinases in early osteoarthritic remodeling. Acta Biomater 2024; 181:297-307. [PMID: 38710401 DOI: 10.1016/j.actbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM. This study aims to assess the role and involvement of specific matrix metalloproteinases (MMPs) in PCM degradation during OA. We selected cartilage samples from 148 OA patients based on the predominant spatial chondrocyte patterns. The presence of various MMPs (-1,-2,-3,-7,-8,-9,-10,-12,-13) was identified by multiplexed immunoassays. For each pattern and identified MMP, the levels and activation states (pro-form vs. active form) were measured by zymograms and western blots. The localization of these MMPs was determined using immunohistochemical labeling. To verify these results, healthy cartilage was exposed to purified MMPs, and the consecutive structural integrity of the PCM was analyzed through immunolabeling and proximity ligation assay. Screening showed elevated levels of MMP-1,-2,-3,-7, and -13, with their expression profile showing a clear dependency of the degeneration stage. MMP-2 and -7 were localized in the PCM, whereas MMP-1,-7, and -13 were predominantly intracellular. We found that MMP-2 and -3 directly disrupt collagen type VI, and MMP-3 and -7 destroy perlecan. MMP-2, -3, and -7 emerge as central players in early PCM degradation in OA. With the disease's initial stages already displaying elevated peaks in MMP expression, this insight may guide early targeted therapies to halt abnormal PCM remodeling. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) causes a gradual deterioration of the articular cartilage, accompanied by a progressive breakdown of the pericellular matrix (PCM). The PCM's crucial function in protecting and transmitting signals within chondrocytes is impaired in OA. By studying 148 OA-patient cartilage samples, the involvement of matrix metalloproteinases (MMPs) in PCM breakdown was explored. Findings highlighted elevated levels of certain MMPs linked to different stages of degeneration. Notably, MMP-2, -3, and -7 were identified as potent contributors to early PCM degradation, disrupting key components like collagen type VI and perlecan. Understanding these MMPs' roles in initiating OA progression, especially in its early stages, provides insights into potential targets for interventions to preserve PCM integrity and potentially impeding OA advancement.
Collapse
Affiliation(s)
- Marina Danalache
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - Felix Umrath
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, D-72076 Tübingen, Germany
| | - Rosa Riester
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Maik Schwitalle
- Winghofer Medicum, Röntgenstraße 38, D-72108 Rottenburg am Neckar, Germany
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Ulf Krister Hofmann
- Department of Orthopedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| |
Collapse
|
9
|
Yammine KM, Abularach SM, Kim SY, Bikovtseva AA, Lilianty J, Butty VL, Schiavoni RP, Bateman JF, Lamandé SR, Shoulders MD. ER procollagen storage defect without coupled unfolded protein response drives precocious arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.19.562780. [PMID: 37905055 PMCID: PMC10614947 DOI: 10.1101/2023.10.19.562780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Owing to unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.
Collapse
|
10
|
Saranya I, Akshaya R, Gomathi K, Mohanapriya R, He Z, Partridge N, Selvamurugan N. Circ_ST6GAL1-mediated competing endogenous RNA network regulates TGF-β1-stimulated matrix Metalloproteinase-13 expression via Runx2 acetylation in osteoblasts. Noncoding RNA Res 2024; 9:153-164. [PMID: 38035043 PMCID: PMC10686813 DOI: 10.1016/j.ncrna.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) stimulates matrix metalloproteinase-13 (MMP-13, a bone-remodeling gene) expression, and this effect requires p300-mediated Runx2 (Runt-related transcription factor 2) acetylation in osteoblasts. p300 and Runx2 are transcriptional coactivator and bone transcription factor, respectively, which play key roles in the regulation of bone-remodeling genes. Non-coding ribonucleic acids (ncRNAs), such as long ncRNAs (lncRNAs) and microRNAs (miRNAs), have been linked to both physiological and pathological bone states. In this study, we proposed that TGF-β1-mediated stimulation of MMP-13 expression is due to the downregulation of p300 targeting miRNAs in osteoblasts. We identified miR-130b-5p as one of the miRNAs downregulated by TGF-β1 in osteoblasts. Forced expression of miR-130b-5p decreased p300 expression, Runx2 acetylation, and MMP-13 expression in these cells. Furthermore, TGF-β1 upregulated circ_ST6GAL1, (a circular lncRNA) in osteoblasts; circRNA directly targeted miR-130b-5p. Antisense-mediated knockdown of circ_ST6GAL1 restored the function of miR-130b-5p, resulting in downregulation of p300, Runx2, and MMP-13 in these cells. Hence, our results suggest that TGF-β1 influences circ_ST6GAL1 to sponge and degrade miR-130b-5p, thereby promoting p300-mediated Runx2 acetylation for MMP-13 expression in osteoblasts. Thus, the circ_ST6GAL1/miR-130b-5p/p300 axis has potential significance in the treatment of bone and bone-related disorders.
Collapse
Affiliation(s)
- I. Saranya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R.L. Akshaya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - K. Gomathi
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - R. Mohanapriya
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| | - Z. He
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N.C. Partridge
- Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - N. Selvamurugan
- Biotechnology, School of Bioengineering, SRMIST, Kattankulathur, India
| |
Collapse
|
11
|
Manka SW. Mapping the Binding Sites of MMPs on Types II and III Collagens Using Triple-Helical Peptide Toolkits. Methods Mol Biol 2024; 2747:75-82. [PMID: 38038933 DOI: 10.1007/978-1-0716-3589-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Libraries of triple-helical collagen-like peptides (Collagen Toolkits) have helped to define collagens II and III binding specificities of numerous collagen-binding proteins. Here I describe a simple solid-phase binding assay utilizing a biotin-streptavidin system to screen the Collagen Toolkits for binding of two distinct matrix metalloproteinases (MMPs) implicated in cancer: the collagenolytic MMP1 (collagenase 1) and the non-collagenolytic MMP3 (stromelysin 1). The screening revealed markedly disparate binding footprints of these MMPs on collagens II and III, in line with their distinct biological activities. Analogous screening of other potentially collagen-binding proteases may shed light on their inherent tissue retention capabilities and their pro- or anti-metastatic potential.
Collapse
Affiliation(s)
- Szymon W Manka
- Institute of Prion Diseases and MRC Prion Unit at UCL, University College London, London, UK.
| |
Collapse
|
12
|
Colazo JM, Hoogenboezem EN, Keech MC, Francini N, Shah V, Yu F, Lo JH, Sorets AG, McCune JT, Cho H, DeJulius CR, Michell DL, Maerz T, Vickers KC, Gibson-Corley KN, Hasty KA, Crofford L, Cook RS, Duvall CL. Albumin-binding RNAi Conjugate for Carrier Free Treatment of Arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542971. [PMID: 37333210 PMCID: PMC10274717 DOI: 10.1101/2023.05.31.542971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are joint diseases that are associated with pain and lost quality of life. No disease modifying OA drugs are currently available. RA treatments are better established but are not always effective and can cause immune suppression. Here, an MMP13-selective siRNA conjugate was developed that, when delivered intravenously, docks onto endogenous albumin and promotes preferential accumulation in articular cartilage and synovia of OA and RA joints. MMP13 expression was diminished upon intravenous delivery of MMP13 siRNA conjugates, consequently decreasing multiple histological and molecular markers of disease severity, while also reducing clinical manifestations such as swelling (RA) and joint pressure sensitivity (RA and OA). Importantly, MMP13 silencing provided more comprehensive OA treatment efficacy than standard of care (steroids) or experimental MMP inhibitors. These data demonstrate the utility of albumin 'hitchhiking' for drug delivery to arthritic joints, and establish the therapeutic utility of systemically delivered anti-MMP13 siRNA conjugates in OA and RA. Editorial summary Lipophilic siRNA conjugates optimized for albumin binding and "hitchhiking" can be leveraged to achieve preferential delivery to and gene silencing activity within arthritic joints. Chemical stabilization of the lipophilic siRNA enables intravenous siRNA delivery without lipid or polymer encapsulation. Using siRNA sequences targeting MMP13, a key driver of arthritis-related inflammation, albumin hitchhiking siRNA diminished MMP13, inflammation, and manifestations of osteoarthritis and rheumatoid arthritis at molecular, histological, and clinical levels, consistently outperforming clinical standards of care and small molecule MMP antagonists.
Collapse
|
13
|
Human Umbilical Cord-Derived Mesenchymal Stem Cells Alleviate Psoriasis Through TNF-α/NF-κB/MMP13 Pathway. Inflammation 2023; 46:987-1001. [PMID: 36749439 DOI: 10.1007/s10753-023-01785-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Psoriasis is a chronic, immune-mediated disease that affects 2-3% of the global population. Recently, mesenchymal stem cells (MSCs) have been used to alleviate psoriasis. However, the therapeutic mechanisms of MSCs remain unclear. Matrix metalloproteinase-13 (MMP13), a member of the MMPs family, is the key enzyme in the cleavage of type II collagen and plays a pivotal role in extracellular matrix (ECM) remodeling. Here, it was found that Mmp13 was upregulated in the skin lesions of an imiquimod-induced mouse model, which was downregulated after intravenous infusion of human umbilical cord MSCs (hUC-MSCs). Knockdown of MMP13 inhibited the proliferation of keratinocytes and arrested the cell cycle in G1 stage. In addition, hUC-MSCs were co-cultured with THP-1 or PMA-stimulated THP-1 directly in vitro to simulate the fate of systematically infused hUC-MSCs. The level of TNF-α was decreased in the supernatant of co-cultured hUC-MSCs and THP-1 or PMA-stimulated THP-1. Moreover, it was identified that TNF-α upregulated MMP13 through the NF-κB pathway in keratinocytes. In conclusion, we propose that systematically infused hUC-MSCs exert a therapeutic effect on psoriasis through the TNF-α/NF-κB/MMP13 pathway.
Collapse
|
14
|
Heilmeier U, Hackl M, Schroeder F, Torabi S, Kapoor P, Vierlinger K, Eiriksdottir G, Gudmundsson EF, Harris TB, Gudnason V, Link TM, Grillari J, Schwartz AV. Circulating serum microRNAs including senescent miR-31-5p are associated with incident fragility fractures in older postmenopausal women with type 2 diabetes mellitus. Bone 2022; 158:116308. [PMID: 35066213 DOI: 10.1016/j.bone.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022]
Abstract
Fragility fractures are an important hallmark of aging and an increasingly recognized complication of Type 2 diabetes (T2D). T2D individuals have been found to exhibit an increased fracture risk despite elevated bone mineral density (BMD) by dual x-ray absorptiometry (DXA). However, BMD and FRAX-scores tend to underestimate fracture risk in T2D. New, reliable biomarkers are therefore needed. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity. Serum miRNA-classifiers were recently found to discriminate T2D women with and without prevalent fragility fractures with high specificity and sensitivity (AUC > 0.90). However, the association of circulating miRNAs with incident fractures in T2D has not been examined yet. In 168 T2D postmenopausal women in the AGES-Reykjavik cohort, miRNAs were extracted from baseline serum and a panel of 10 circulating miRNAs known to be involved in diabetic bone disease and aging was quantified by qPCR and Ct-values extracted. Unadjusted and adjusted Cox proportional hazard models assessed the associations between serum miRNAs and incident fragility fracture. Additionally, Receiver operating curve (ROC) analyses were performed. Of the included 168 T2D postmenopausal women who were on average 77.2 ± 5.6 years old, 70 experienced at least one incident fragility fracture during the mean follow-up of 5.8 ± 2.7 years. We found that 3 serum miRNAs were significantly associated with incident diabetic fragility fracture: while low expression of miR-19b-1-5p was associated with significantly lower risk of incident fragility fracture (HR 0.84 (95% CI: 0.71-0.99, p = 0.0323)), low expression of miR-203a and miR-31-5p was each significantly associated with a higher risk of incident fragility fracture per unit increase in Ct-value (miR-203a: HR 1.29 (95% CI: 1.12-1.49), p = 0.0004, miR-31-5p HR 1.27 (95% CI: 1.06-1.52), p = 0.009). Hazard ratios of the latter two miRNAs remained significant after adjustments for age, body mass index (BMI), areal bone mineral density (aBMD), clinical FRAX or FRAXaBMD. Women with miR-203a and miR-31-5p serum levels in the lowest expression quartiles exhibited a 2.4-3.4-fold larger fracture risk than women with miR-31-5p and miR-203a serum expressions in the highest expression quartile (0.002 ≤ p ≤ 0.039). Women with both miR-203a and miR-31-5p serum levels below the median had a significantly increased fracture risk (Unadjusted HR 3.26 (95% CI: 1.57-6.78, p = 0.001) compared to those with both expression levels above the median, stable to adjustments. We next built a diabetic fragility signature consisting of the 3 miRNAs that showed the largest associations with incident fracture (miR-203a, miR-31-5p, miR-19b-1-5p). This 3-miRNA signature showed with an AUC of 0.722 comparable diagnostic accuracy in identifying incident fractures to any of the clinical parameters such as aBMD, Clinical FRAX or FRAXaBMD alone. When the 3 miRNAs were combined with aBMD, this combined 4-feature signature performed with an AUC of 0.756 (95% CI: 0.680, 0.823) significantly better than aBMD alone (AUC 0.666, 95% CI: 0.585, 0.741) (p = 0.009). Our data indicate that specific serum microRNAs including senescent miR-31-5p are associated with incident fragility fracture in older diabetic women and can significantly improve fracture risk prediction in diabetics when combined with aBMD measurements of the femoral neck.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA; Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | | | - Fabian Schroeder
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | - Soheyla Torabi
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Puneet Kapoor
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Klemens Vierlinger
- Department of Molecular Diagnostics, Austrian Institute of Technology, AIT, Vienna, Austria
| | | | | | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, USA
| | - Vilmundur Gudnason
- The Icelandic Heart Association, Kopavogur, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, San Francisco, CA, USA
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Christian Doppler Laboratory of Biotechnology of Skin Aging, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Jensen MM, Bonna A, Frederiksen SJ, Hamaia SW, Højrup P, Farndale RW, Karring H. Tyrosine-sulfated dermatopontin shares multiple binding sites and recognition determinants on triple-helical collagens with proteins implicated in cell adhesion and collagen folding, fibrillogenesis, cross-linking, and degradation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140771. [PMID: 35306228 DOI: 10.1016/j.bbapap.2022.140771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.
Collapse
Affiliation(s)
- Morten M Jensen
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark
| | - Arkadiusz Bonna
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Sigurd J Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Samir W Hamaia
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Richard W Farndale
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
16
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|
17
|
Liu R, Imangali N, Ethiraj LP, Carney TJ, Winkler C. Transcriptome Profiling of Osteoblasts in a Medaka ( Oryzias latipes) Osteoporosis Model Identifies Mmp13b as Crucial for Osteoclast Activation. Front Cell Dev Biol 2022; 10:775512. [PMID: 35281094 PMCID: PMC8911226 DOI: 10.3389/fcell.2022.775512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteases (MMPs) play crucial roles in extracellular matrix (ECM) modulation during osteoclast-driven bone remodeling. In the present study, we used transcriptome profiling of bone cells in a medaka model for osteoporosis and bone regeneration to identify factors critical for bone remodeling and homeostasis. This identified mmp13b, which was strongly expressed in osteoblast progenitors and upregulated under osteoporotic conditions and during regeneration of bony fin rays. To characterize the role of mmp13b in bone remodeling, we generated medaka mmp13b mutants by CRISPR/Cas9. We found that mmp13b mutants form normal numbers of osteoblasts and osteoclasts. However, osteoclast activity was severely impaired under osteoporotic conditions. In mmp13b mutants and embryos treated with the MMP13 inhibitor CL-82198, unmineralized collagens and mineralized bone matrix failed to be degraded. In addition, the dynamic migratory behavior of activated osteoclasts was severely affected in mmp13b mutants. Expression analysis showed that maturation genes were downregulated in mmp13b deficient osteoclasts suggesting that they remain in an immature and non-activated state. We also found that fin regeneration was delayed in mmp13b mutants with a concomitant alteration of the ECM and reduced numbers of osteoblast progenitors in regenerating joint regions. Together, our findings suggest that osteoblast-derived Mmp13b alters the bone ECM to allow the maturation and activation of osteoclasts during bone remodeling in a paracrine manner. Mmp13b-induced ECM alterations are also required to facilitate osteoblast progenitor recruitment and full regeneration of bony fin rays.
Collapse
Affiliation(s)
- Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Lalith Prabha Ethiraj
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tom James Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Leptin Induced TLR4 Expression via the JAK2-STAT3 Pathway in Obesity-Related Osteoarthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7385160. [PMID: 34457118 PMCID: PMC8387187 DOI: 10.1155/2021/7385160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 02/03/2023]
Abstract
Obesity is considered as a risk factor of osteoarthritis (OA), but the precise relationship is still poorly understood. Leptin, one of the most relevant factors secreted by adipose tissues, plays an important role in the pathogenesis of OA. Our aim was to investigate the regulation and molecular mechanism of the leptin signaling pathway in obesity-related OA. SD rats were fed with a high-fat diet (HFD) for 5, 15, and 27 weeks. The levels of leptin in serum increased from W5, while in the synovial fluid increased from W15. The histological evaluation showed that the pathological changes of OA occurred at 27 weeks rather than 5 or 15 weeks. We also found that leptin induced CD14/TLR4 activation by the JAK2-STAT3 signaling pathway to promote OA. Moreover, silencing SOCS3 enhanced leptin-induced JAK2-STAT3-CD14/TLR4 activation in rat primary chondrocytes. Our findings indicated that leptin may be one of the initiating factors of obesity-related OA. TLR4 is at least partially regulated by leptin through the JAK2-STAT3-CD14 pathway. Meanwhile, SOCS3 acting as a negative feedback inhibitor of leptin signaling presented a potential therapeutic prospect for obesity-related OA. Our study provided new evidence suggesting the key role of leptin in mediating obesity-related OA process and its underlying mechanisms.
Collapse
|
19
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
20
|
Zhang XF, Ma JX, Wang YL, Ma XL. Calcyclin (S100A6) Attenuates Inflammatory Response and Mediates Apoptosis of Chondrocytes in Osteoarthritis via the PI3K/AKT Pathway. Orthop Surg 2021; 13:1094-1101. [PMID: 33942537 PMCID: PMC8126894 DOI: 10.1111/os.12990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To clarify the regulatory effect of Calcyclin (S100A6) on chondrocytes apoptosis and its relationship with progression of osteoarthritis in an effort to explore potential therapeutic targets for osteoarthritis. METHOD Immunofluorescence assay was produced to identify the rat chondrocyte sample and western blots assay was detected the expression changes of S100A6 between control group and osteoarthritis model which induced by interleukin-1β. Adenovirus were transfected into the chondrocytes in vitro, in order to regulate the S100A6 expression. The influence of S100A6 on inflammatory reaction of osteoarthritis was detected by RT-PCR. Also, Caspase-3 activity assay and TUNEL assay were performed to evaluate the apoptosis changes. In addition, RT-PCR and western blots were performed to verify that S100A6 mediated the PI3K/AKT signaling pathway. Through the usage of pathway regulator, we detected S100A6 produced the effect by mediating the PI3K/AKT pathway. RESULTS We determined the expression of S100A6 decreased in osteoarthritis model, the relative expression level in osteoarthritis model was about 0.5 fold compared with control group. Through adenovirus transfection we revealed that the inflammatory factors of osteoarthritis (interleukin-6 and matrix metalloproteinase-13) showed a negative correlation with the S100A6 expression. The relative expression level of interleukin-6 and matrix metalloproteinase-13 were 1.534 and 1.259 when S100A6 was up-regulated and the values were up to 2.445 and 2.074, respectively, when S100A6 was down-regulated. Also, the data verified the apoptosis could be reduced when the S100A6 was up-regulated and be activated when the S100A6 was down-regulated, the Caspase-3 activity was 16.512 U/μg and 24.45 U/μg respectively. Similar results were shown in TUNEL assay, the apoptosis index was 4.46% and 31.44%, respectively. Additionally, the results of polymerase chain reaction and western blots both demonstrated that the expression level of PI3K and AKT were increased when S100A6 was up-regulated, conversely the expression level of those two signal modules were reduced if the S100A6 was down-regulated. More importantly, the apoptosis triggered by S100A6 can be offset by the PI3K/AKT pathway inhibitor and activator (LY294002 and IGF-1), the values of Caspase-3 activity and apoptosis index became close to the untreated osteoarthritis group. The experimental results in this study were statistically significant. CONCLUSION We investigated that Calcyclin (S100A6) relieved the inflammation and mediated the chondrocyte apoptosis through PI3K/AKT pathway and we confirmed that S100A6 might be an attractive therapeutic target.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China
| | - Jian-Xiong Ma
- Institute of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Yuan-Lin Wang
- Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xin-Long Ma
- Institute of Orthopaedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
21
|
Cryptic ligand on collagen matrix unveiled by MMP13 accelerates bone tissue regeneration via MMP13/Integrin α3/RUNX2 feedback loop. Acta Biomater 2021; 125:219-230. [PMID: 33677160 DOI: 10.1016/j.actbio.2021.02.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) remodeling is necessary for the development and self-healing of tissue, and the process is tissue specific. Matrix metalloproteinases (MMPs) play a role in ECM remodeling by unwinding and cleaving ECM. We hypothesized that ECM remodeling by MMPs is involved in the differentiation of stem cells into specific lineages during self-healing. To prove the hypothesis, we investigated which MMPs are involved in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) grown on a type I collagen (Col I) matrix, and we found that specifically high expression of MMP13 in hMSCs grown on a Col I matirx during osteogenic differentiation. Moreover, knocking down of MMP13 decreased the osteogenic differentiation of hMSCs grown on a Col I matrix. In addition, pre-treatment of recombinant human MMP13 lead to remodeling of Col I matrix and increased the osteogenic differentiation of hMSCs and in vivo bone formation following the upregulation of the expression of runt-related transcription factor 2 (RUNX2), integrin α3 (ITGA3), and focal adhesion kinase. Furthermore, the transcription factor RUNX2 bound to the MMP13 promoter. These results suggest that growth on a remodeled Col I matrix by MMP13 stimulates osteogenic differentiation of hMSCs and self-healing of bone tissue via an MMP13/ITGA3/RUNX2 positive feedback loop. STATEMENT OF SIGNIFICANCE: Self-healing of tissue could be the key to treating diseases that cannot be overcome by present technology. We investigated the mechanism underlying the self-healing of tissue and we found that the osteogenic differentiation was increased in hMSCs grown on a remodeled Col I matrix by the optimized concentration of MMP13 not in hMSCs grown on a Col I fragments cleaved by a high concentration of MMP13. In addition, we found the remodeled Col I matrix by MMP13 increased the osteogenic capacity through a MMP13/integrin α3/RUNX2 positive feedback loop. This result would be able to not only provide a strategy for bone tissue-specific functional materials following strong evidence about the self-healing mechanism of bone through the interaction between stem cells and the ECM matrix. As such, we strongly believe our finding will be of interest to researchers studying biomaterials, stem cell biology and matrix interaction for regenerative medicine and therapy.
Collapse
|
22
|
ElTanbouly MA, Zhao Y, Schaafsma E, Burns CM, Mabaera R, Cheng C, Noelle RJ. VISTA: A Target to Manage the Innate Cytokine Storm. Front Immunol 2021; 11:595950. [PMID: 33643285 PMCID: PMC7905033 DOI: 10.3389/fimmu.2020.595950] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the success of immunotherapy targeting immunoregulatory receptors (immune checkpoints) in cancer have generated enthusiastic support to target these receptors in a wide range of other immune related diseases. While the overwhelming focus has been on blockade of these inhibitory pathways to augment immunity, agonistic triggering via these receptors offers the promise of dampening pathogenic inflammatory responses. V-domain Ig suppressor of T cell activation (VISTA) has emerged as an immunoregulatory receptor with constitutive expression on both the T cell and myeloid compartments, and whose agonistic targeting has proven a unique avenue relative to other checkpoint pathways to suppress pathologies mediated by the innate arm of the immune system. VISTA agonistic targeting profoundly changes the phenotype of human monocytes towards an anti-inflammatory cell state, as highlighted by striking suppression of the canonical markers CD14 and Fcγr3a (CD16), and the almost complete suppression of both the interferon I (IFN-I) and antigen presentation pathways. The insights from these very recent studies highlight the impact of VISTA agonistic targeting of myeloid cells, and its potential therapeutic implications in the settings of hyperinflammatory responses such as cytokine storms, driven by dysregulated immune responses to viral infections (with a focus on COVID-19) and autoimmune diseases. Collectively, these findings suggest that the VISTA pathway plays a conserved, non-redundant role in myeloid cell function.
Collapse
Affiliation(s)
- Mohamed A. ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Yanding Zhao
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Evelien Schaafsma
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | | | - Rodwell Mabaera
- Department of Medicine, Norris Cotton Cancer Center, Lebanon, NH, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
23
|
Hu Q, Ecker M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22041742. [PMID: 33572320 PMCID: PMC7916132 DOI: 10.3390/ijms22041742] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease characterized by the destruction of articular cartilage and chronic inflammation of surrounding tissues. Matrix metalloproteinase-13 (MMP-13) is the primary MMP involved in cartilage degradation through its particular ability to cleave type II collagen. Hence, it is an attractive target for the treatment of OA. However, the detailed molecular mechanisms of OA initiation and progression remain elusive, and, currently, there are no interventions available to restore degraded cartilage. This review fully illustrates the involvement of MMP-13 in the initiation and progression of OA through the regulation of MMP-13 activity at the molecular and epigenetic levels, as well as the strategies that have been employed against MMP-13. The aim of this review is to identify MMP-13 as an attractive target for inhibitor development in the treatment of OA.
Collapse
|
24
|
Leatherdale A, Parker D, Tasneem S, Wang Y, Bihan D, Bonna A, Hamaia SW, Gross PL, Ni H, Doble BW, Lillicrap D, Farndale RW, Hayward CPM. Multimerin 1 supports platelet function in vivo and binds to specific GPAGPOGPX motifs in fibrillar collagens that enhance platelet adhesion. J Thromb Haemost 2021; 19:547-561. [PMID: 33179420 PMCID: PMC7898486 DOI: 10.1111/jth.15171] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multimerin 1 (human: MMRN1, mouse: Mmrn1) is a homopolymeric, adhesive, platelet and endothelial protein that binds to von Willebrand factor and enhances platelet adhesion to fibrillar collagen ex vivo. OBJECTIVES To examine the impact of Mmrn1 deficiency on platelet adhesive function, and the molecular motifs in fibrillar collagen that bind MMRN1 to enhance platelet adhesion. METHODS Mmrn1-deficient mice were generated and assessed for altered platelet adhesive function. Collagen Toolkit peptides, and other triple-helical collagen peptides, were used to identify multimerin 1 binding motifs and their contribution to platelet adhesion. RESULTS MMRN1 bound to conserved GPAGPOGPX sequences in collagens I, II, and III (including GPAGPOGPI, GPAGPOGPV, and GPAGPOGPQ) that enhanced activated human platelet adhesion to collagen synergistically with other triple-helical collagen peptides (P < .05). Mmrn1-/- and Mmrn1+/- mice were viable and fertile, with complete and partial platelet Mmrn1 deficiency, respectively. Relative to wild-type mice, Mmrn1-/- and Mmrn1+/- mice did not have overt bleeding, increased median bleeding times, or increased wound blood loss (P ≥ .07); however, they both showed significantly impaired platelet adhesion and thrombus formation in the ferric chloride injury model (P ≤ .0003). Mmrn1-/- platelets had impaired adhesion to GPAGPOGPX peptides and fibrillar collagen (P ≤ .03) and formed smaller aggregates than wild-type platelets when captured onto collagen, triple-helical collagen mimetic peptides, von Willebrand factor, or fibrinogen (P ≤ .008), despite preserved, low shear, and high shear aggregation responses. CONCLUSIONS Multimerin 1 supports platelet adhesion and thrombus formation and binds to highly conserved, GPAGPOGPX motifs in fibrillar collagens that synergistically enhance platelet adhesion.
Collapse
Affiliation(s)
| | - D’Andra Parker
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Subia Tasneem
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Yiming Wang
- Laboratory Medicine and PathobiologyKeenan Research CentreLi Ka‐Shing Knowledge InstituteSt. Michael's HospitalUniversity of TorontoTorontoONCanada
- Canadian Blood Services Centre for InnovationOttawaONCanada
| | - Dominique Bihan
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
| | - Arkadiusz Bonna
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
- Present address:
CambCol Laboratories LtdElyUK
| | - Samir W. Hamaia
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
| | - Peter L. Gross
- Medicine, Thrombosis and Atherosclerosis Research InstituteMcMaster UniversityHamiltonONCanada
| | - Heyu Ni
- Laboratory Medicine and PathobiologyKeenan Research CentreLi Ka‐Shing Knowledge InstituteSt. Michael's HospitalUniversity of TorontoTorontoONCanada
- Canadian Blood Services Centre for InnovationOttawaONCanada
| | - Bradley W. Doble
- Biochemistry and Biomedical SciencesMcMaster Stem Cell and Cancer Research InstituteMcMaster UniversityHamiltonONCanada
| | - David Lillicrap
- Pathology and Molecular MedicineRichardson LaboratoryQueen’s UniversityKingstonONCanada
| | - Richard W. Farndale
- Biochemistry, Downing SiteUniversity of CambridgeCambridgeUK
- Present address:
CambCol Laboratories LtdElyUK
| | - Catherine P. M. Hayward
- Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
- Hamilton Regional Laboratory Medicine Program, and Department of MedicineMcMaster UniversityHamiltonONCanada
| |
Collapse
|
25
|
Shortridge C, Akbari Fakhrabadi E, Wuescher LM, Worth RG, Liberatore MW, Yildirim-Ayan E. Impact of Digestive Inflammatory Environment and Genipin Crosslinking on Immunomodulatory Capacity of Injectable Musculoskeletal Tissue Scaffold. Int J Mol Sci 2021; 22:1134. [PMID: 33498864 PMCID: PMC7866115 DOI: 10.3390/ijms22031134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
The paracrine and autocrine processes of the host response play an integral role in the success of scaffold-based tissue regeneration. Recently, the immunomodulatory scaffolds have received huge attention for modulating inflammation around the host tissue through releasing anti-inflammatory cytokine. However, controlling the inflammation and providing a sustained release of anti-inflammatory cytokine from the scaffold in the digestive inflammatory environment are predicated upon a comprehensive understanding of three fundamental questions. (1) How does the release rate of cytokine from the scaffold change in the digestive inflammatory environment? (2) Can we prevent the premature scaffold degradation and burst release of the loaded cytokine in the digestive inflammatory environment? (3) How does the scaffold degradation prevention technique affect the immunomodulatory capacity of the scaffold? This study investigated the impacts of the digestive inflammatory environment on scaffold degradation and how pre-mature degradation can be prevented using genipin crosslinking and how genipin crosslinking affects the interleukin-4 (IL-4) release from the scaffold and differentiation of naïve macrophages (M0). Our results demonstrated that the digestive inflammatory environment (DIE) attenuates protein retention within the scaffold. Over 14 days, the encapsulated protein released 46% more in DIE than in phosphate buffer saline (PBS), which was improved through genipin crosslinking. We have identified the 0.5 (w/v) genipin concentration as an optimal concentration for improved IL-4 released from the scaffold, cell viability, mechanical strength, and scaffold porosity, and immunomodulation studies. The IL-4 released from the injectable scaffold could differentiate naïve macrophages to an anti-inflammatory (M2) lineage; however, upon genipin crosslinking, the immunomodulatory capacity of the scaffold diminished significantly, and pro-inflammatory markers were expressed dominantly.
Collapse
Affiliation(s)
- Colin Shortridge
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
| | - Ehsan Akbari Fakhrabadi
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (E.A.F.); (M.W.L.)
| | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (L.M.W.); (R.G.W.)
| | - Randall G. Worth
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; (L.M.W.); (R.G.W.)
| | - Matthew W. Liberatore
- Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (E.A.F.); (M.W.L.)
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA;
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA
| |
Collapse
|
26
|
Raeeszadeh-Sarmazdeh M, Do LD, Hritz BG. Metalloproteinases and Their Inhibitors: Potential for the Development of New Therapeutics. Cells 2020; 9:E1313. [PMID: 32466129 PMCID: PMC7290391 DOI: 10.3390/cells9051313] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The metalloproteinase (MP) family of zinc-dependent proteases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteases (ADAMs), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) plays a crucial role in the extracellular matrix (ECM) remodeling and degradation activities. A wide range of substrates of the MP family includes ECM components, chemokines, cell receptors, and growth factors. Metalloproteinases activities are tightly regulated by proteolytic activation and inhibition via their natural inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the imbalance of the activation and inhibition is responsible in progression or inhibition of several diseases, e.g., cancer, neurological disorders, and cardiovascular diseases. We provide an overview of the structure, function, and the multifaceted role of MMPs, ADAMs, and TIMPs in several diseases via their cellular functions such as proteolysis of other cell signaling factors, degradation and remodeling of the ECM, and other essential protease-independent interactions in the ECM. The significance of MP inhibitors targeting specific MMP or ADAMs with high selectivity is also discussed. Recent advances and techniques used in developing novel MP inhibitors and MP responsive drug delivery tools are also reviewed.
Collapse
Affiliation(s)
- Maryam Raeeszadeh-Sarmazdeh
- Chemical and Materials Engineering Department, University of Nevada, Reno, NV 89557, USA; (L.D.D.); (B.G.H.)
| | | | | |
Collapse
|
27
|
Wang Y, Han L, Shen M, Jones ES, Spizzo I, Walton SL, Denton KM, Gaspari TA, Samuel CS, Widdop RE. Serelaxin and the AT 2 Receptor Agonist CGP42112 Evoked a Similar, Nonadditive, Cardiac Antifibrotic Effect in High Salt-Fed Mice That Were Refractory to Candesartan Cilexetil. ACS Pharmacol Transl Sci 2020; 3:76-87. [PMID: 32259090 DOI: 10.1021/acsptsci.9b00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/29/2022]
Abstract
Fibrosis is involved in the majority of cardiovascular diseases and is a key contributor to end-organ dysfunction. In the current study, the antifibrotic effects of recombinant human relaxin-2 (serelaxin; RLX) and/or the AT2R agonist CGP42112 (CGP) were compared with those of the established AT1R antagonist, candesartan cilexetil (CAND), in a high salt-induced cardiac fibrosis model. High salt (HS; 5%) for 8 weeks did not increase systolic blood pressure in male FVB/N mice, but CAND treatment alone significantly reduced systolic blood pressure from HS-induced levels. HS significantly increased cardiac interstitial fibrosis, which was reduced by either RLX and/or CGP, which were not additive under the current experimental conditions, while CAND failed to reduce HS-induced cardiac fibrosis. The antifibrotic effects induced by RLX and/or CGP were associated with reduced myofibroblast differentiation. Additionally, all treatments inhibited the HS-induced elevation in tissue inhibitor of matrix metalloproteinases-1, together with trends for increased MMP-13 expression, that collectively would favor collagen degradation. Furthermore, these antifibrotic effects were associated with reduced cardiac inflammation. Collectively, these results highlight that either RXFP1 or AT2R stimulation represents novel therapeutic strategies to target fibrotic conditions, particularly in HS states that may be refractory to AT1R blockade.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Lei Han
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Matthew Shen
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Emma S Jones
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Sarah L Walton
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, and Department of Physiology, Monash University, Clayton, Victoria 3800 Australia
| |
Collapse
|
28
|
Andrade D, Oliveira G, Menezes L, Nascimento AL, Carvalho S, Stumbo AC, Thole A, Garcia-Souza É, Moura A, Carvalho L, Cortez E. Insulin-like growth factor-1 short-period therapy improves cardiomyopathy stimulating cardiac progenitor cells survival in obese mice. Nutr Metab Cardiovasc Dis 2020; 30:151-161. [PMID: 31753790 DOI: 10.1016/j.numecd.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular diseases are the main cause of mortality in obesity. Despite advanced understanding, the mechanisms that regulate cardiac progenitor cells (CPC) survival in pathological conditions are not clear. Low IGF-1 plasma levels are correlated to obesity, cardiomyopathy and CPC death, so this work aimed to investigate IGF-1 therapeutic potential on cardiomyopathy and its relationship with the survival, proliferation and differentiation of CPC in Western diet-induced obesity. METHODS AND RESULTS Male Swiss mice were divided into control group (CG, n = 8), fed with standard diet; and obese group (OG, n = 16), fed with Western diet, for 12 weeks. At 11th week, OG was subdivided to receive a daily subcutaneous injection of human recombinant IGF-1 (100 μg.Kg-1) for seven consecutive days (OG + IGF1, n = 8). Results showed that IGF-1 therapy improved the metabolic parameters negatively impacted by western diet in OG, reaching levels similar to CG. OG + IGF-1 also demonstrated restored heart energetic metabolism, fibrosis resolution, decreased apoptosis level, restored cardiac gap junctions and intracellular calcium balance. Cardiomyopathy improvement was accompanied by increased CPC survival, proliferation and newly cardiomyocytes formation related to increased pAkt/Akt ratio. CONCLUSION These results suggest that only one week of IGF-1 therapy has cardioprotective effects through Akt pathway upregulation, ensuring CPC survival and differentiation, contributing to heart failure rescue.
Collapse
Affiliation(s)
- Daniela Andrade
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Genilza Oliveira
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Luciana Menezes
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Ana Lúcia Nascimento
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Érica Garcia-Souza
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, UERJ, Brazil
| | - Anibal Moura
- Laboratory of Nutrition Physiology and Development, Department of Physiological Sciences, Institute of Biology, UERJ, Brazil
| | - Laís Carvalho
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil
| | - Erika Cortez
- Laboratory of Stem Cell Research, Department of Histology and Embryology, Institute of Biology, State University of Rio de Janeiro, UERJ, Brazil.
| |
Collapse
|
29
|
Manka SW, Bihan D, Farndale RW. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci Rep 2019; 9:18785. [PMID: 31827179 PMCID: PMC6906530 DOI: 10.1038/s41598-019-55266-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) participates in normal extracellular matrix turnover during embryonic development, organ morphogenesis and wound healing, and in tissue-destruction associated with aneurysm, cancer, arthritis and heart failure. Despite its inability to cleave triple-helical collagens, MMP-3 can still bind to them, but the mechanism, location and role of binding are not known. We used the Collagen Toolkits, libraries of triple-helical peptides that embrace the entire helical domains of collagens II and III, to map MMP-3 interaction sites. The enzyme recognises five sites on collagen II and three sites on collagen III. They share a glycine-phenylalanine-hydroxyproline/alanine (GFO/A) motif that is recognised by the enzyme in a context-dependent manner. Neither MMP-3 zymogen (proMMP-3) nor the individual catalytic (Cat) and hemopexin (Hpx) domains of MMP-3 interact with the peptides, revealing cooperative binding of both domains to the triple helix. The Toolkit binding data combined with molecular modelling enabled us to deduce the putative collagen-binding mode of MMP-3, where all three collagen chains make contacts with the enzyme in the valley running across both Cat and Hpx domains. The observed binding pattern casts light on how MMP-3 could regulate collagen turnover and compete with various collagen-binding proteins regulating cell adhesion and proliferation.
Collapse
Affiliation(s)
- Szymon W Manka
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Dominique Bihan
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
30
|
Kirkness MWH, Lehmann K, Forde NR. Mechanics and structural stability of the collagen triple helix. Curr Opin Chem Biol 2019; 53:98-105. [DOI: 10.1016/j.cbpa.2019.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
|
31
|
Chen EA, Lin YS. Using synthetic peptides and recombinant collagen to understand DDR–collagen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118458. [DOI: 10.1016/j.bbamcr.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
|
32
|
Farndale RW. Collagen-binding proteins: insights from the Collagen Toolkits. Essays Biochem 2019; 63:337-348. [PMID: 31266822 DOI: 10.1042/ebc20180070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022]
Abstract
The Collagen Toolkits are libraries of 56 and 57 triple-helical synthetic peptides spanning the length of the collagen II and collagen III helices. These have been used in solid-phase binding assays to locate sites where collagen receptors and extracellular matrix components bind to collagens. Truncation and substitution allowed exact binding sites to be identified, and corresponding minimal peptides to be synthesised for use in structural and functional studies. 170 sites where over 30 proteins bind to collagen II have been mapped, providing firm conclusions about the amino acid distribution within such binding sites. Protein binding to collagen II is not random, but displays a periodicity of approximately 28 nm, with several prominent nodes where multiple proteins bind. Notably, the vicinity of the collagenase-cleavage site in Toolkit peptide II-44 is highly promiscuous, binding over 20 different proteins. This may reflect either the diverse chemistry of that locus or its diverse function, together with the interplay between regulatory binding partners. Peptides derived from Toolkit studies have been used to determine atomic level resolution of interactions between collagen and several of its binding partners and are finding practical application in tissue engineering.
Collapse
Affiliation(s)
- Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge, U.K.
- CambCol Laboratories, PO Box 727, Station Rd, Wilburton Ely, CB7 9RP, U.K
| |
Collapse
|
33
|
Saiganesh S, Saathvika R, Arumugam B, Vishal M, Udhaya V, Ilangovan R, Selvamurugan N. TGF-β1-stimulation of matrix metalloproteinase-13 expression by down-regulation of miR-203a-5p in rat osteoblasts. Int J Biol Macromol 2019; 132:541-549. [PMID: 30951775 DOI: 10.1016/j.ijbiomac.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta1 (TGF-β1) is a pleiotropic and ubiquitous cytokine involved in bone development and bone remodeling. Matrix metalloproteinase-13 (MMP13) plays a role in the degradation of the extracellular matrix (ECM), and the regulation of this gene is critical in bone remodeling. We previously reported that TGF-β1 stimulates MMP13 expression in rat osteoblasts. Recently, studies have examined the regulation of bone metabolism by microRNAs (miRNAs) to determine their therapeutic potential in osteogenesis. Here, we assessed the effect of TGF-β1 on down-regulation of miRNAs that target MMP13 and stimulation of MMP13 expression in osteoblasts. We used in silico analysis and identified 11 specific miRNAs which directly target rat MMP13. Among these miRNAs, miR-203a-5p expression was significantly decreased by TGF-β1-treatment in rat osteoblasts. Transient transfection of a miR-203a-5p mimic into rat osteoblasts reduced MMP13 expression. A luciferase reporter assay confirmed a direct targeting of miR-miR-203a-5p with the 3' untranslated regions of the MMP13 gene. Hence, we suggest that TGF-β1 stimulated down-regulation of miR-203a-5p, resulting in the stimulation of MMP13 expression in rat osteoblasts. Thus, identification of the role of miR-203a-5p via TGF-β1 and MMP13 in bone remodeling indicated its potential as a biomarker or therapeutic agent for treating bone and bone-related diseases.
Collapse
Affiliation(s)
- S Saiganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Saathvika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - M Vishal
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - V Udhaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Ilangovan
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
34
|
Saberi K, Pasbakhsh P, Omidi A, Borhani-Haghighi M, Nekoonam S, Omidi N, Ghasemi S, Kashani IR. Melatonin preconditioning of bone marrow-derived mesenchymal stem cells promotes their engraftment and improves renal regeneration in a rat model of chronic kidney disease. J Mol Histol 2019; 50:129-140. [PMID: 30671880 DOI: 10.1007/s10735-019-09812-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/06/2019] [Indexed: 12/26/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMMSCs) transplantation has shown to be effective in treating chronic kidney disease. However, the effectiveness of this strategy is constrained by low homing and survival rate of transplanted cells in the injured organs. Therefore, developing strategies to improve homing and cell survival rate and therapeutic potential in cell-based therapies seems necessary. The purpose of this study is to evaluate the effect of pretreating BMMSCs with melatonin (MT) on the prosurvival and renoprotective of transplanted cells into the irreversible model of unilateral ureteral obstruction. Adult male Sprague-Dawley rats were randomized into four groups: Sham, UUO, UUO + BMMSCs, and UUO + BMMSCs + MT. The results of our study demonstrated that preconditioning with MT enhanced homing of BMMSCs into the injured kidney. MT reduced the number of TUNEL positive transplanted cells in the UUO + BMMSCs + MT group. The UUO + BMMSCs + MT group showed lower expressions of TGF-β1, α-SMA and TNF-α at both gene and protein levels but higher expression of E-cadherin compared with the UUO + BMMSCs group. In addition, MT preconditioned BMMSCs ameliorated basement membrane disruption and histological status of injured renal tubules and also reduced fibrosis in damaged kidneys. In conclusion, our results show that stem cells pretreated by MT may represent a feasible approach for improving the beneficial effects of stem cell therapy and significantly enhance their survival after transplantation to the injured kidney.
Collapse
Affiliation(s)
- Kamran Saberi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Shafa Neuroscience Research Center, KhatamAlanbia Hospital, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Omidi
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sodabeh Ghasemi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Lidén Å, Karlsen TV, Guss B, Reed RK, Rubin K. Integrin α V β 3 can substitute for collagen-binding β 1 -integrins in vivo to maintain a homeostatic interstitial fluid pressure. Exp Physiol 2019. [PMID: 29524327 PMCID: PMC5947675 DOI: 10.1113/ep086902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? Collagen‐binding β1‐integrins function physiologically in cellular control of dermal interstitial fluid pressure (PIF) in vivo and thereby participate in control of extravascular fluid volume. During anaphylaxis, simulated by injection of compound 48/80, integrin αVβ3 takes over this physiological function. Here we addressed the question whether integrin αVβ3 can replace collagen‐binding β1‐integrin to maintain a long‐term homeostatic PIF. What is the main finding and its importance? Mice lacking the collagen‐binding integrin α11β1 show a complex dermal phenotype with regard to the interstitial physiology apparent in the control of PIF. Notably dermal PIF is not lowered with compound 48/80 in these animals. Our present data imply that integrin αVβ3 is the likely candidate that has taken over the role of collagen‐binding β1‐integrins for maintaining a steady‐state homeostatic PIF. A better understanding of molecular processes involved in control of PIF is instrumental for establishing novel treatment regimens for control of oedema formation in anaphylaxis and septic shock.
Abstract Accumulated data indicate that cell‐mediated contraction of reconstituted collagenous gels in vitro can serve as a model for cell‐mediated control of interstitial fluid pressure (PIF) in vivo. A central role for collagen‐binding β1‐integrins in both processes has been established. Furthermore, integrin αVβ3 takes over the role of collagen‐binding β1‐integrins in mediating contraction after perturbations of collagen‐binding β1‐integrins in vitro. Integrin αVβ3 is also instrumental for normalization of dermal PIF that has been lowered due to mast cell degranulation with compound 48/80 (C48/80) in vivo. Here we demonstrate a role of integrin αVβ3 in maintaining a long term homeostatic dermal PIF in mice lacking the collagen‐binding integrin α11β1 (α11−/− mice). Measurements of PIF were performed after circulatory arrest. Furthermore, cell‐mediated integrin αVβ3‐directed contraction of collagenous gels in vitro depends on free access to a collagen site known to bind several extracellular matrix (ECM) proteins that form substrates for αVβ3‐directed cell attachment, such as fibronectin and fibrin. A streptococcal collagen‐binding protein, CNE, specifically binds to and blocks this site on the collagen triple helix. Here we show that whereas CNE perturbed αVβ3‐directed and platelet‐derived growth factor BB‐induced normalization of dermal PIF after C48/80, it did not affect αVβ3‐dependent maintenance of a homeostatic dermal PIF. These data imply that dynamic modification of the ECM structure is needed during acute patho‐physiological modulations of PIF but not for long‐term maintenance of a homeostatic PIF. Our data thus show that collagen‐binding β1‐integrins, integrin αVβ3 and ECM structure are potential targets for novel therapy aimed at modulating oedema formation and hypovolemic shock during anaphylaxis.
Collapse
Affiliation(s)
- Åsa Lidén
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Tine Veronika Karlsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, SE-750 07, Uppsala, Sweden
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Kristofer Rubin
- Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 63, Lund, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life laboratories, Uppsala University, BMC Box 582, SE 751 23, Uppsala, Sweden
| |
Collapse
|
36
|
Rosini S, Pugh N, Bonna AM, Hulmes DJS, Farndale RW, Adams JC. Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites. Sci Signal 2018; 11:eaar2566. [PMID: 29844053 DOI: 10.1126/scisignal.aar2566] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Fibrillar collagens of the extracellular matrix are critical for tissue structure and physiology; however, excessive or abnormal deposition of collagens is a defining feature of fibrosis. Regulatory mechanisms that act on collagen fibril assembly potentially offer new targets for antifibrotic treatments. Tissue weakening, altered collagen fibril morphologies, or both, are shared phenotypes of mice lacking matricellular thrombospondins. Thrombospondin-1 (TSP1) plays an indirect role in collagen homeostasis through interactions with matrix metalloproteinases and transforming growth factor-β1 (TGF-β1). We found that TSP1 also affects collagen fibril formation directly. Compared to skin from wild-type mice, skin from Thbs1-/- mice had reduced collagen cross-linking and reduced prolysyl oxidase (proLOX) abundance with increased conversion to catalytically active LOX. In vitro, TSP1 bound to both the C-propeptide domain of collagen I and the highly conserved KGHR sequences of the collagen triple-helical domain that participate in cross-linking. TSP1 also bound to proLOX and inhibited proLOX processing by bone morphogenetic protein-1. In human dermal fibroblasts (HDFs), TSP1 and collagen I colocalized in intracellular vesicles and on extracellular collagen fibrils, whereas TSP1 and proLOX colocalized only in intracellular vesicles. Inhibition of LOX-mediated collagen cross-linking did not prevent the extracellular association between collagen and TSP1; however, treatment of HDFs with KGHR-containing, TSP1-binding, triple-helical peptides disrupted the collagen-TSP1 association, perturbed the collagen extracellular matrix, and increased myofibroblastic differentiation in a manner that depended on TGF-β receptor 1. Thus, the extracellular KGHR-dependent interaction of TSP1 with fibrillar collagens contributes to fibroblast homeostasis.
Collapse
Affiliation(s)
- Silvia Rosini
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Nicholas Pugh
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Arkadiusz M Bonna
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit (LBTI), UMR5305, CNRS/University of Lyon I, 69367 Lyon Cedex 07, France
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | |
Collapse
|
37
|
Abstract
Despite an increased understanding of the pathogenesis of osteoarthritis (OA) and the availability of a number of drugs designed to ameliorate its symptoms, a successful disease-modifying therapy remains elusive. Recent lines of evidence suggest that dehydroepiandrosterone (DHEA), a 19-carbon steroid hormone classified as an adrenal androgen, exerts a chondroprotective effect in OA patients, and it has been proven to be an effective DMOAD candidate that slows OA progression. However, the exact mechanisms underlying its anti-OA effect is largely unknown. This review summarizes emerging observations from studies of cell biology, preclinical animal studies, and preliminary clinical trials and describes the findings of investigations on this topic to develop an initial blueprint of the mechanisms by which DHEA slows OA progression. Presently, studies on DMOADs are increasing in importance but have met limited success. Encouragingly, the current data on DHEA are promising and may prove that DHEA-based treatment is efficacious for preventing and slowing human OA progression.
Collapse
|
38
|
Banerjee J, Azevedo HS. Crafting of functional biomaterials by directed molecular self-assembly of triple helical peptide building blocks. Interface Focus 2017; 7:20160138. [PMID: 29147553 PMCID: PMC5665793 DOI: 10.1098/rsfs.2016.0138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Collagen is the most abundant extracellular matrix protein in the body and has widespread use in biomedical research, as well as in clinics. In addition to difficulties in the production of recombinant collagen due to its high non-natural imino acid content, animal-derived collagen imposes several major drawbacks-variability in composition, immunogenicity, pathogenicity and difficulty in sequence modification-that may limit its use in the practical scenario. However, in recent years, scientists have shifted their attention towards developing synthetic collagen-like materials from simple collagen model triple helical peptides to eliminate the potential drawbacks. For this purpose, it is highly desirable to develop programmable self-assembling strategies that will initiate the hierarchical self-assembly of short peptides into large-scale macromolecular assemblies with recommendable bioactivity. Herein, we tried to elaborate our understanding related to the strategies that have been adopted by few research groups to trigger self-assembly in the triple helical peptide system producing fascinating supramolecular structures. We have also touched upon the major epitopes within collagen that can be incorporated into collagen mimetic peptides for promoting bioactivity.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Material Science, Institute of Bioengineering, University of London, Queen Mary, Mile End Road, London E1 4NS, UK
| |
Collapse
|
39
|
Hoop CL, Zhu J, Nunes AM, Case DA, Baum J. Revealing Accessibility of Cryptic Protein Binding Sites within the Functional Collagen Fibril. Biomolecules 2017; 7:biom7040076. [PMID: 29104255 PMCID: PMC5745458 DOI: 10.3390/biom7040076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022] Open
Abstract
Fibrillar collagens are the most abundant proteins in the extracellular matrix. Not only do they provide structural integrity to all of the connective tissues in the human body, but also their interactions with multiple cell receptors and other matrix molecules are essential to cell functions, such as growth, repair, and cell adhesion. Although specific binding sequences of several receptors have been determined along the collagen monomer, processes by which collagen binding partners recognize their binding sites in the collagen fibril, and the critical driving interactions, are poorly understood. The complex molecular assembly of bundled triple helices within the collagen fibril makes essential ligand binding sites cryptic or hidden from the molecular surface. Yet, critical biological processes that require collagen ligands to have access to interaction sites still occur. In this contribution, we will discuss the molecular packing of the collagen I fibril from the perspective of how collagen ligands access their known binding regions within the fibril, and we will present our analysis of binding site accessibility from the fibril surface. Understanding the basis of these interactions at the atomic level sets the stage for developing drug targets against debilitating collagen diseases and using collagen as drug delivery systems and new biomaterials.
Collapse
Affiliation(s)
- Cody L Hoop
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jie Zhu
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Ana Monica Nunes
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
40
|
Hsueh MF, Kraus VB, Önnerfjord P. Cartilage matrix remodelling differs by disease state and joint type. Eur Cell Mater 2017; 34:70-82. [PMID: 28836259 PMCID: PMC5599932 DOI: 10.22203/ecm.v034a05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Dramatic alterations in mechanical properties have been documented for osteoarthritic (OA) cartilage. However, the matrix composition underlying these changes has not been mapped and their aetiology is not entirely understood. We hypothesised that an understanding of the cartilage matrix heterogeneity could provide insights into the origin of these OA-related alterations. We generated serial transverse cryo sections for 7 different cartilage conditions: 2 joint sites (knee and hip), 2 disease states (healthy and OA) and 3 tissue depths (superficial, middle and deep). By laser capture microscopy, we acquired ~200 cartilage matrix specimens from territorial (T) and interterritorial (IT) regions for all 7 conditions. A standardised matrix area was collected for each condition for a total of 0.02 ± 0.001 mm3 (corresponding to 20 µg of tissue) from a total of 4800 specimens. Extracted proteins were analysed for abundance by targeted proteomics. For most proteins, a lower IT/T ratio was observed for the OA disease state and knee joint type. A major cause of the altered IT/T ratios was the decreased protein abundance in IT regions. The collagenase-derived type III collagen neo-epitope, indicative of collagen proteolysis, was significantly more abundant in OA cartilage. In addition, it was enriched on average of 1.45-fold in IT relative to T matrix. These results were consistent with an elevated proteolysis in IT regions of OA cartilage, due to degenerative influences originating from synovial tissue and/or produced locally by chondrocytes. In addition, they offered direct evidence for dynamic remodelling of cartilage and provided a cogent biochemical template for understanding the alterations of matrix mechanical properties.
Collapse
Affiliation(s)
- Ming-Feng Hsueh
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27701
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, NC 27701,Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC 27701
| | - Patrik Önnerfjord
- Department of Clinical Sciences Lund, Section of Rheumatology and Molecular Skeletal Biology Center of Excellence in Biological and Medical Mass Spectrometry, Lund University, Lund, Sweden
| |
Collapse
|
41
|
Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment. Matrix Biol 2016; 63:11-22. [PMID: 27988350 DOI: 10.1016/j.matbio.2016.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 01/15/2023]
Abstract
Mechanical damage at the time of joint injury and the ensuing inflammatory response associated with elevated levels of pro-inflammatory cytokines in the synovial fluid, are reported to contribute to the progression to osteoarthritis after injury. In this exploratory study, we used a targeted proteomics approach to follow the progression of matrix degradation in response to mechanical damage and cytokine treatment of human knee cartilage explants, and thereby to study potential molecular biomarkers. This proteomics approach allowed us to unambiguously identify and quantify multiple peptides and proteins in the cartilage medium and explants upon treatment with ±injurious compression ±cytokines, treatments that mimic the earliest events in post-traumatic OA. We followed degradation of different protein domains, e.g., G1/G2/G3 of aggrecan, by measuring representative peptides of matrix proteins released into the medium at 7 time points throughout the 21-day culture period. COMP neo-epitopes, which were previously identified in the synovial fluid of knee injury/OA patients, were also released by these human cartilage explants treated with cyt and cyt+inj. The absence of collagen pro-peptides and elevated levels of specific COMP and COL3A1 neo-epitopes after human knee trauma may be relevant as potential biomarkers for post-traumatic OA. This model system thereby enables study of the kinetics of cartilage degradation and the identification of biomarkers within cartilage explants and those released to culture medium. Discovery proteomics revealed that candidate proteases were identified after specific treatment conditions, including MMP1, MMP-3, MMP-10 and MMP-13.
Collapse
|
42
|
Solomonov I, Zehorai E, Talmi-Frank D, Wolf SG, Shainskaya A, Zhuravlev A, Kartvelishvily E, Visse R, Levin Y, Kampf N, Jaitin DA, David E, Amit I, Nagase H, Sagi I. Distinct biological events generated by ECM proteolysis by two homologous collagenases. Proc Natl Acad Sci U S A 2016; 113:10884-9. [PMID: 27630193 PMCID: PMC5047162 DOI: 10.1073/pnas.1519676113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is well established that the expression profiles of multiple and possibly redundant matrix-remodeling proteases (e.g., collagenases) differ strongly in health, disease, and development. Although enzymatic redundancy might be inferred from their close similarity in structure, their in vivo activity can lead to extremely diverse tissue-remodeling outcomes. We observed that proteolysis of collagen-rich natural extracellular matrix (ECM), performed uniquely by individual homologous proteases, leads to distinct events that eventually affect overall ECM morphology, viscoelastic properties, and molecular composition. We revealed striking differences in the motility and signaling patterns, morphology, and gene-expression profiles of cells interacting with natural collagen-rich ECM degraded by different collagenases. Thus, in contrast to previous notions, matrix-remodeling systems are not redundant and give rise to precise ECM-cell crosstalk. Because ECM proteolysis is an abundant biochemical process that is critical for tissue homoeostasis, these results improve our fundamental understanding its complexity and its impact on cell behavior.
Collapse
Affiliation(s)
- Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eldar Zehorai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dalit Talmi-Frank
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alla Shainskaya
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alina Zhuravlev
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Kartvelishvily
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Robert Visse
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Yishai Levin
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nir Kampf
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hideaki Nagase
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, United Kingdom
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
43
|
Chameettachal S, Midha S, Ghosh S. Regulation of Chondrogenesis and Hypertrophy in Silk Fibroin-Gelatin-Based 3D Bioprinted Constructs. ACS Biomater Sci Eng 2016; 2:1450-1463. [DOI: 10.1021/acsbiomaterials.6b00152] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shibu Chameettachal
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Swati Midha
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology, Delhi, India
| |
Collapse
|
44
|
Tiku ML, Madhan B. Preserving the longevity of long-lived type II collagen and its implication for cartilage therapeutics. Ageing Res Rev 2016; 28:62-71. [PMID: 27133944 DOI: 10.1016/j.arr.2016.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 11/30/2022]
Abstract
Human life expectancy has been steadily increasing at a rapid rate, but this increasing life span also brings about increases in diseases, dementia, and disability. A global burden of disease 2010 study revealed that hip and knee osteoarthritis ranked the 11th highest in terms of years lived with disability. Wear and tear can greatly influence the quality of life during ageing. In particular, wear and tear of the articular cartilage have adverse effects on joints and result in osteoarthritis. The articular cartilage uses longevity of type II collagen as the foundation around which turnover of proteoglycans and the homeostatic activity of chondrocytes play central roles thereby maintaining the function of articular cartilage in the ageing. The longevity of type II collagen involves a complex interaction of the scaffolding needs of the cartilage and its biochemical, structural and mechanical characteristics. The covalent cross-linking of heterotypic polymers of collagens type II, type IX and type XI hold together cartilage, allowing it to withstand ageing stresses. Discerning the biological clues in the armamentarium for preserving cartilage appears to be collagen cross-linking. Therapeutic methods to crosslink in in-vivo are non-existent. However intra-articular injections of polyphenols in vivo stabilize the cartilage and make it resistant to degradation, opening a new therapeutic possibility for prevention and intervention of cartilage degradation in osteoarthritis of aging.
Collapse
Affiliation(s)
- Moti L Tiku
- Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Balaraman Madhan
- Council of Scientific and Industrial Research - Central Leather Research Institute, Adyar, Chennai, Tamil Nadu, India
| |
Collapse
|
45
|
Subramanian SR, Singam ERA, Berinski M, Subramanian V, Wade RC. Identification of an Electrostatic Ruler Motif for Sequence-Specific Binding of Collagenase to Collagen. J Phys Chem B 2016; 120:8580-9. [PMID: 27245212 DOI: 10.1021/acs.jpcb.6b02573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sequence-specific cleavage of collagen by mammalian collagenase plays a pivotal role in cell function. Collagenases are matrix metalloproteinases that cleave the peptide bond at a specific position on fibrillar collagen. The collagenase Hemopexin-like (HPX) domain has been proposed to be responsible for substrate recognition, but the mechanism by which collagenases identify the cleavage site on fibrillar collagen is not clearly understood. In this study, Brownian dynamics simulations coupled with atomic-detail and coarse-grained molecular dynamics simulations were performed to dock matrix metalloproteinase-1 (MMP-1) on a collagen IIIα1 triple helical peptide. We find that the HPX domain recognizes the collagen triple helix at a conserved R-X11-R motif C-terminal to the cleavage site to which the HPX domain of collagen is guided electrostatically. The binding of the HPX domain between the two arginine residues is energetically stabilized by hydrophobic contacts with collagen. From the simulations and analysis of the sequences and structural flexibility of collagen and collagenase, a mechanistic scheme by which MMP-1 can recognize and bind collagen for proteolysis is proposed.
Collapse
Affiliation(s)
- Sundar Raman Subramanian
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Ettayapuram Ramaprasad Azhagiya Singam
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Michael Berinski
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Edinburgh Genomics, The University of Edinburgh , Edinburgh, Scotland
| | - Venkatesan Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai, India
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies , Schloss-Wolfsbrunnenweg 35, 69117 Heidelberg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg , Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University , Heidelberg, Germany
| |
Collapse
|
46
|
Kalamajski S, Bihan D, Bonna A, Rubin K, Farndale RW. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase. J Biol Chem 2016; 291:7951-60. [PMID: 26893379 PMCID: PMC4825002 DOI: 10.1074/jbc.m115.693408] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Indexed: 11/28/2022] Open
Abstract
The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.
Collapse
Affiliation(s)
- Sebastian Kalamajski
- From the Department of Laboratory Medical Sciences, Lund University, Medicon Village 406-3, 22363 Lund, Sweden and
| | - Dominique Bihan
- the Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Arkadiusz Bonna
- the Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kristofer Rubin
- From the Department of Laboratory Medical Sciences, Lund University, Medicon Village 406-3, 22363 Lund, Sweden and
| | - Richard W Farndale
- the Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| |
Collapse
|
47
|
Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 2016; 97:69-84. [PMID: 26631222 DOI: 10.1016/j.addr.2015.11.013] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.
Collapse
|
48
|
Howes JM, Pugh N, Knäuper V, Farndale RW. Modified platelet deposition on matrix metalloproteinase 13 digested collagen I. J Thromb Haemost 2015; 13:2253-9. [PMID: 26447617 PMCID: PMC4855633 DOI: 10.1111/jth.13166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/23/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Atherothrombosis underlies acute coronary syndromes, including unstable angina and acute myocardial infarction. Within the unstable plaque, monocytes express collagenolytic matrix metalloproteinases (MMPs), including MMP-13, which degrades fibrous collagen. Following rupture, vessel wall components including degraded collagen are exposed to circulating platelets. Platelet receptors then mediate the recruitment and activation of platelets to form a thrombus, blocking blood flow and resulting in myocardial infarction and sudden death. OBJECTIVES Here we aim to provide information on the effects of collagen degradation on platelet adhesion and thrombus formation. METHODS Using increasing concentrations of MMP-13, we induced progressive degradation of fibrous and monomeric collagen I, visualized by electrophoresis, and then investigated the capacity of the resulting fragments to support static platelet adhesion and thrombus formation in whole flowing blood. RESULTS Both integrin and glycoprotein VI-dependent interactions with fibrous collagen underpin high levels of platelet adhesion under both conditions, with little obvious effect of MMP-13 treatment. Static platelet adhesion to monomeric collagen was strongly α2β1-dependent regardless of degradation status. Under flow conditions, partially degraded monomeric collagen supported increased thrombus deposition at 10 μg mL(-1) MMP-13, falling close to background when collagen degradation was complete (100 μg mL(-1) MMP-13). CONCLUSIONS New binding activities come into play after partial digestion of collagen monomers, and net platelet-reactivity through all axes is abolished as degradation becomes more complete.
Collapse
Affiliation(s)
- J-M Howes
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - N Pugh
- Department of Biomedical and Forensic Science, Anglia Ruskin University, Cambridge, UK
| | - V Knäuper
- Cardiff University Dental School, Cardiff, UK
| | - R W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
49
|
Stawikowski MJ, Stawikowska R, Fields GB. Collagenolytic Matrix Metalloproteinase Activities toward Peptomeric Triple-Helical Substrates. Biochemistry 2015; 54:3110-21. [PMID: 25897652 DOI: 10.1021/acs.biochem.5b00110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although collagenolytic matrix metalloproteinases (MMPs) possess common domain organizations, there are subtle differences in their processing of collagenous triple-helical substrates. In this study, we have incorporated peptoid residues into collagen model triple-helical peptides and examined MMP activities toward these peptomeric chimeras. Several different peptoid residues were incorporated into triple-helical substrates at subsites P3, P1, P1', and P10' individually or in combination, and the effects of the peptoid residues were evaluated on the activities of full-length MMP-1, MMP-8, MMP-13, and MMP-14/MT1-MMP. Most peptomers showed little discrimination between MMPs. However, a peptomer containing N-methyl Gly (sarcosine) in the P1' subsite and N-isobutyl Gly (NLeu) in the P10' subsite was hydrolyzed efficiently only by MMP-13 [nomenclature relative to the α1(I)772-786 sequence]. Cleavage site analysis showed hydrolysis at the Gly-Gln bond, indicating a shifted binding of the triple helix compared to the parent sequence. Favorable hydrolysis by MMP-13 was not due to sequence specificity or instability of the substrate triple helix but rather was based on the specific interactions of the P7' peptoid residue with the MMP-13 hemopexin-like domain. A fluorescence resonance energy transfer triple-helical peptomer was constructed and found to be readily processed by MMP-13, not cleaved by MMP-1 and MMP-8, and weakly hydrolyzed by MT1-MMP. The influence of the triple-helical structure containing peptoid residues on the interaction between MMP subsites and individual substrate residues may provide additional information about the mechanism of collagenolysis, the understanding of collagen specificity, and the design of selective MMP probes.
Collapse
Affiliation(s)
- Maciej J Stawikowski
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Roma Stawikowska
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States
| | - Gregg B Fields
- †Florida Atlantic University, 5353 Parkside Drive, Jupiter, Florida 33458, United States.,‡Torrey Pines Institute for Molecular Studies, 11350 Southwest Village Parkway, Port St. Lucie, Florida 34987, United States.,§The Scripps Research Institute/Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|