1
|
Mielke MM, Fielding RA, Atkinson EJ, Aversa Z, Schafer MJ, Cummings SR, Pahor M, Leeuwenburgh C, LeBrasseur NK. Biomarkers of cellular senescence predict risk of mild cognitive impairment: Results from the lifestyle interventions for elders (LIFE) study. J Nutr Health Aging 2025; 29:100529. [PMID: 40056496 DOI: 10.1016/j.jnha.2025.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
OBJECTIVES Cellular senescence, characterized by a marked and multifactorial senescence-associated secretory phenotype (SASP), is a potential unifying mechanism of aging and chronic disease. Most studies of the SASP have focused on frailty and other functional outcomes. Senescent cells have been detected in the brains of patients with Alzheimer's disease, but few studies have examined associations between plasma SASP markers and cognition. The objective of this study was to examine the cross-sectional and longitudinal associations between plasma SASP markers and mild cognitive impairment among older adults at high risk of mobility disability. DESIGN The Lifestyle Interventions for Elders (LIFE) study was a randomized controlled trial of a group-based physical activity program compared to a "successful aging" health education program to assess effects on major mobility disability that was conducted from February 2010 to December 2013. SETTING Recruitment occurred at eight centers in the United States. PARTICIPANTS We included 1,373 participants enrolled in the study with baseline measures of 27 biomarkers of cellular senescence and adjudication of mild cognitive impairment (MCI) and dementia at baseline and 24-month follow-up. At baseline, participants were aged 70-80, sedentary, and at high risk of mobility disability. MEASUREMENTS A neuropsychological assessment was administered at baseline and 24 months post-randomization. At both timepoints, a clinical adjudication committee determined whether individuals had a diagnosis of cognitively normal, MCI, or dementia; individuals with dementia at baseline were excluded. The concentrations of 26 of the 27 plasma proteins identified as components of the SASP were measured with commercially available Luminex xMAP multiplex magnetic bead-based immunoassays analyzed on the MAGPIX System while 1 protein (Activin A) was measured using an enzyme-linked immunosorbent assay. RESULTS Logistic regression models were used to examine the associations of each senescence biomarker, in quartiles, with baseline or incident MCI. Models stratified by clinical site and adjusted for intervention assignment, age, gender, race, and education. Among 1,373 participants, 117 (8.5%) were diagnosed with MCI at baseline. Increasing quartiles of myeloperoxidase (MPO) was associated with higher odds of MCI compared to quartile 1 (Q2: OR = 1.34, 95% CI: 0.74-2.45; Q3: OR = 1.43, 95% CI: 0.80-2.59; Q4: OR = 1.79, 95% CI: 1.02-3.22). Additionally, matrix metalloproteinase 1 (MMP1) quartiles 2-4 had lower odds of MCI compared to quartile 1 (Q2: OR = 0.61, 95% CI: 0.35-1.02; Q3: OR = 0.58, 95% CI: 0.33-0.98; Q4: OR = 0.64, 95% CI: 0.37-1.08). Of the 1,256 cognitively unimpaired participants at baseline, 141 (11.2%) were diagnosed with incident MCI or dementia at the 24-month follow-up. Compared to quartile 1, increasing baseline quartiles of MPO (Q2: OR = 1.10, 95% CI: 0.63-1.92; Q3: OR = 1.36, 95% CI: 0.80-2.33; Q4: OR = 1.92, 95% CI: 1.16-3.25) and matrix metalloproteinase 7 (MMP7, Q2: OR = 0.88, 95% CI: 0.47-1.62; Q3: OR = 1.46, 95% CI: 0.85-2.55; Q4: OR = 2.14, 95% CI: 1.28-3.65) were associated with increased odds of MCI or dementia at 24 months. CONCLUSIONS Among older adults at high risk of mobility disability, high plasma MPO was cross-sectionally and, along with MMP7, longitudinally associated with increased odds of MCI and dementia. In contrast, high MMP1 was cross-sectionally associated with reduced odds of MCI.
Collapse
Affiliation(s)
- Michelle M Mielke
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| | - Roger A Fielding
- Metabolism and Basic Biology of Aging Directive, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States.
| | - Elizabeth J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States.
| | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.
| | - Steven R Cummings
- Departments of Medicine, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States; Research Institute, California Pacific Medical Center, San Francisco, CA, United States.
| | - Marco Pahor
- Principle Investigator of the LIFE Study, Independent Scholar, Miami, FL, United States.
| | - Christiaan Leeuwenburgh
- Department of Physiology and Aging, Institute on Aging, University of Florida, Gainesville, FL, United States.
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
2
|
Johnson EA, Nowar R, Viola KL, Huang W, Zhou S, Bicca MA, Zhu W, Kranz DL, Klein WL, Silverman RB. Inhibition of amyloid beta oligomer accumulation by NU-9: A unifying mechanism for the treatment of neurodegenerative diseases. Proc Natl Acad Sci U S A 2025; 122:e2402117122. [PMID: 40030015 PMCID: PMC11912461 DOI: 10.1073/pnas.2402117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases, which connects these neuropathologies by a common phenotype. Various proteins and peptides form aggregates that are poorly degraded, and their ensuing pathological accumulation underlies these neurodegenerative diseases. Similarities may exist in the mechanisms responsible for the buildup of these aggregates. Therefore, therapeutics designed to treat one neurodegenerative disease may be beneficial to others. In ALS models, the compound NU-9 was previously shown to block neurodegeneration produced by aggregation-inducing mutations of SOD-1 and TDP-43 [B. Genç et al., Clin. Transl. Med. 11, e336 (2021)]. Here, we report that NU-9 also prevents the accumulation of amyloid beta oligomers (AβOs), small peptide aggregates that are instigators of Alzheimer's disease neurodegeneration [M. Tolar et al., Int. J. Mol. Sci. 22, 6355 (2021)]. AβO buildup was measured by immunofluorescence imaging of cultured hippocampal neurons exposed to exogenous monomeric Aβ. In this model, AβO buildup occurs via cathepsin L- and dynamin-dependent trafficking. This is prevented by NU-9 through a cellular mechanism that is cathepsin B- and lysosome-dependent, suggesting that NU-9 enhances the ability of endolysosomal trafficking to protect against AβO buildup. This possibility is strongly supported by a quantitative assay for autophagosomes that shows robust stimulation by NU-9. These results contribute additional understanding to the mechanisms of protein aggregation and suggest that multiple neurodegenerative diseases might be treatable by targeting common pathogenic mechanisms responsible for protein aggregation.
Collapse
Affiliation(s)
- Elizabeth A. Johnson
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Raghad Nowar
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Kirsten L. Viola
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Weijian Huang
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Sihang Zhou
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Maíra A. Bicca
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Wei Zhu
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Daniel L. Kranz
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - William L. Klein
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Neurobiology, Northwestern University, Evanston, IL60208
- Department of Neurology, Northwestern University, Chicago, IL60611
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Pharmacology, Northwestern University, Chicago, IL60611
| |
Collapse
|
3
|
Aivalioti E, Georgiopoulos G, Tual-Chalot S, Bampatsias D, Delialis D, Sopova K, Drakos SG, Stellos K, Stamatelopoulos K. Amyloid-beta metabolism in age-related neurocardiovascular diseases. Eur Heart J 2025; 46:250-272. [PMID: 39527015 PMCID: PMC11735085 DOI: 10.1093/eurheartj/ehae655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 09/15/2024] [Indexed: 11/16/2024] Open
Abstract
Epidemiological evidence suggests the presence of common risk factors for the development and prognosis of both cardio- and cerebrovascular diseases, including stroke, Alzheimer's disease, vascular dementia, heart, and peripheral vascular diseases. Accumulation of harmful blood signals may induce organotypic endothelial dysfunction affecting blood-brain barrier function and vascular health in age-related diseases. Genetic-, age-, lifestyle- or cardiovascular therapy-associated imbalance of amyloid-beta (Aβ) peptide metabolism in the brain and periphery may be the missing link between age-related neurocardiovascular diseases. Genetic polymorphisms of genes related to Aβ metabolism, lifestyle modifications, drugs used in clinical practice, and Aβ-specific treatments may modulate Aβ levels, affecting brain, vascular, and cardiac diseases. This narrative review elaborates on the effects of interventions on Aβ metabolism in the brain, cerebrospinal fluid, blood, and peripheral heart or vascular tissues. Implications for clinical applicability, gaps in knowledge, and future perspectives of Aβ as the link among age-related neurocardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College, London, UK
- Department of Physiology, School of Medicine, University of Patras, Patra, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| | - Dimitrios Bampatsias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
| | - Kateryna Sopova
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, UT, USA
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13–17, D-68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, PO Box 11528, 80 Vas. Sofias Str., Athens, Greece
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle Upon Tyne, NE1 3BZ, UK
| |
Collapse
|
4
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2025; 62:885-899. [PMID: 38935232 PMCID: PMC11711632 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Sulatskaya AI. Degradation of pathogenic amyloids induced by matrix metalloproteinase-9. Int J Biol Macromol 2024; 281:136362. [PMID: 39395518 DOI: 10.1016/j.ijbiomac.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Over the past decade, the greatest promise for treating severe and currently incurable systemic and neurodegenerative diseases has turned to agents capable of effectively degrading pathological amyloid deposits without causing side effects. Specifically, amyloid destruction observed in immunotherapy is hypothesized to occur through activation of proteolytic enzymes. This study examines poorly understood effects of an immune enzyme, extracellular matrix metalloproteinase-9 (MMP9), on amyloids associated with Alzheimer's and Parkinson's diseases, lysozyme, insulin, and dialysis-related amyloidoses. The study establishes the universality of MMP9's effect on various amyloids, with its efficacy largely depending on the fibrillar cluster size. Irreversible amyloid degradation by MMP9 is attributed to the destruction of intramolecular interactions rather than intermolecular hydrogen bonds in the fibril backbone. This process results in the loss of ordered fiber structure without reducing aggregate size or increasing cytotoxicity. Thus, MMP9 can mitigate side effects of anti-amyloid therapy associated with the formation of low-molecular-weight degradation products that may accelerate fibrillogenesis and amyloid propagation between tissues and organs. MMP9 shows promise as a component of safe anti-amyloid drugs by enhancing the accessibility of binding sites through "loosening" amyloid clusters, which facilitates subsequent fragmentation and monomerization by other enzymes.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
6
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
7
|
Bernocchi F, Bonomi CG, Assogna M, Moreschini A, Mercuri NB, Koch G, Martorana A, Motta C. Astrocytic-derived vascular remodeling factors are independently associated with blood brain barrier permeability in Alzheimer's disease. Neurobiol Aging 2024; 141:66-73. [PMID: 38823205 DOI: 10.1016/j.neurobiolaging.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Astrocytes in Alzheimer's disease (AD) exert a pivotal role in the maintenance of blood-brain barrier (BBB) integrity essentially through structural support and release of soluble factors. This study provides new insights into the vascular remodeling processes occurring in AD, and reveals, in vivo, a pathological profile of astrocytic secretion involving Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinases (MMP)-9, MMP-2 and Endothelin-1 (ET-1). Cerebrospinal fluid (CSF) levels of VEGF, MMP-2/-9 were lower in patients belonging to the AD continuum, compared to aged-matched controls. CSF levels of VEGF and ET-1 positively correlated with MMP-9 but negatively with MMP-2, suggesting a complex vascular remodeling process occurring in AD. Only MMP-2 levels were significantly associated with CSF AD biomarkers. Conversely, higher MMP-2 (β = 0.411, p < 0.001), ET-1 levels (β = 0.344, p < 0.001) and VEGF (β = 0.221, p = 0.022), were associated with higher BBB permeability. Astrocytic-derived vascular remodeling factors are altered in AD, disclosing the failure of important protective mechanisms which proceed independently alongside AD pathology.
Collapse
Affiliation(s)
- Francesca Bernocchi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Chiara Giuseppina Bonomi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Martina Assogna
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy
| | - Alessandra Moreschini
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Medicine, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy; Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Caterina Motta
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy.
| |
Collapse
|
8
|
Jamal HS, Raja R, Ahmed S, Yesiloz G, Ali SA. Immobilization of collagenase in inorganic hybrid nanoflowers with enhanced stability, proteolytic activity, and their anti-amyloid potential. Int J Biol Macromol 2024; 274:133114. [PMID: 38871102 DOI: 10.1016/j.ijbiomac.2024.133114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Organic-inorganic hybrid nanomaterials are considered as promising immobilization matrix for enzymes owing to their markedly enhanced stability and reusability. Herein, collagenase was chosen as a model enzyme to synthesize collagenase hybrid nanoflowers (Col-hNFs). Maximum collagenase activity (155.58 μmol min-1 L-1) and encapsulation yield (90 %) were observed in presence of Zn(II) ions at 0.05 mg/mL collagenase, 120 mM zinc chloride and PBS (pH 7.5). Synthesized Col-Zn-hNFs were extensively characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. SEM images showed flower-like morphology with average size of 5.1 μm and zeta potential of -14.3 mV. Col-Zn-hNFs demonstrated superior relative activity across wide pH and temperature ranges, presence of organic solvents and surfactants as compared to its free form. Moreover, Col-Zn-hNFs exhibited excellent shelf life stability and favorable reusability. Col-Zn-hNFs showed the ability to suppress and eradicate fully developed insulin fibrils in vitro (IC50 = 2.8 and 6.2 μg/mL, respectively). This indicates a promising inhibitory potential of Col-Zn-hNFs against insulin amyloid fibrillation. The findings suggest that the utilization of Col-Zn-hNFs as a carrier matrix holds immense potential for immobilizing collagenase with improved catalytic properties and biomedical applications.
Collapse
Affiliation(s)
- Hafiza Sumaiyya Jamal
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Rameez Raja
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Shakil Ahmed
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Gurkan Yesiloz
- National Nanotechnology Research Center of Turkiye, Institute of Materials Science and Nanotechnology, Bilkent University-UNAM-Universiteler Mah, 06800 Cankaya, Ankara, Turkey
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
9
|
Buniatian GH, Schwinghammer U, Tremmel R, Cynis H, Weiss TS, Weiskirchen R, Lauschke VM, Youhanna S, Ramos I, Valcarcel M, Seferyan T, Rahfeld J, Rieckmann V, Klein K, Buadze M, Weber V, Kolak V, Gebhardt R, Friedman SL, Müller UC, Schwab M, Danielyan L. Consequences of Amyloid-β Deficiency for the Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307734. [PMID: 38430535 PMCID: PMC11095235 DOI: 10.1002/advs.202307734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/27/2024] [Indexed: 03/04/2024]
Abstract
The hepatic content of amyloid beta (Aβ) decreases drastically in human and rodent cirrhosis highlighting the importance of understanding the consequences of Aβ deficiency in the liver. This is especially relevant in view of recent advances in anti-Aβ therapies for Alzheimer's disease (AD). Here, it is shown that partial hepatic loss of Aβ in transgenic AD mice immunized with Aβ antibody 3D6 and its absence in amyloid precursor protein (APP) knockout mice (APP-KO), as well as in human liver spheroids with APP knockdown upregulates classical hallmarks of fibrosis, smooth muscle alpha-actin, and collagen type I. Aβ absence in APP-KO and deficiency in immunized mice lead to strong activation of transforming growth factor-β (TGFβ), alpha secretases, NOTCH pathway, inflammation, decreased permeability of liver sinusoids, and epithelial-mesenchymal transition. Inversely, increased systemic and intrahepatic levels of Aβ42 in transgenic AD mice and neprilysin inhibitor LBQ657-treated wild-type mice protect the liver against carbon tetrachloride (CCl4)-induced injury. Transcriptomic analysis of CCl4-treated transgenic AD mouse livers uncovers the regulatory effects of Aβ42 on mitochondrial function, lipid metabolism, and its onco-suppressive effects accompanied by reduced synthesis of extracellular matrix proteins. Combined, these data reveal Aβ as an indispensable regulator of cell-cell interactions in healthy liver and a powerful protector against liver fibrosis.
Collapse
Affiliation(s)
- Gayane Hrachia Buniatian
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Ute Schwinghammer
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Roman Tremmel
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| | - Holger Cynis
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
- Junior Research Group, Immunomodulation in Pathophysiological ProcessesFaculty of MedicineMartin‐Luther‐University Halle‐WittenbergWeinbergweg 2206120Halle (Saale)Germany
| | - Thomas S. Weiss
- Children's University Hospital (KUNO)University Hospital RegensburgFranz‐Josef‐Strauss‐Allee 1193053RegensburgGermany
| | - Ralf Weiskirchen
- Institute of Molecular PathobiochemistryExperimental Gene Therapy and Clinical ChemistryRWTH University Hospital AachenPauwelsstr. 3052074AachenGermany
| | - Volker M. Lauschke
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
- Department of Physiology and Pharmacology Karolinska InstituteStockholm171 77Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology Karolinska InstituteStockholm171 77Sweden
| | - Isbaal Ramos
- Innovative Technologies in Biological Systems SL (INNOPROT)BizkaiaDerio48160Spain
| | - Maria Valcarcel
- Innovative Technologies in Biological Systems SL (INNOPROT)BizkaiaDerio48160Spain
| | - Torgom Seferyan
- H. Buniatian Institute of BiochemistryNational Academy of Sciences of the Republic of Armenia (NAS RA)5/1 Paruir Sevak St.Yerevan0014Armenia
| | - Jens‐Ulrich Rahfeld
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
| | - Vera Rieckmann
- Department of Drug Design and Target ValidationFraunhofer Institute for Cell Therapy and ImmunologyWeinbergweg 2206120Halle (Saale)Germany
| | - Kathrin Klein
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- University of Tuebingen72074TuebingenGermany
| | - Marine Buadze
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Victoria Weber
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Valentina Kolak
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
| | - Rolf Gebhardt
- Rudolf‐Schönheimer Institute of BiochemistryFaculty of MedicineUniversity of LeipzigJohannisstraße 3004103LeipzigGermany
| | - Scott L. Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount Sinai1425 Madison AveNew YorkNY10029USA
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology IPMBDepartment of Functional GenomicsUniversity of HeidelbergIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Matthias Schwab
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
- Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyAuerbachstr. 11270376StuttgartGermany
- Departments of Biochemistry and Clinical Pharmacologyand Neuroscience LaboratoryYerevan State Medical University2‐ Koryun StYerevan0025Armenia
- Cluster of Excellence iFIT (EXC2180) “Image‐guided and Functionally Instructed Tumor Therapies”University of Tübingen72076TübingenGermany
| | - Lusine Danielyan
- Department of Clinical PharmacologyUniversity Hospital of TuebingenAuf der Morgenstelle 872076TuebingenGermany
- Departments of Biochemistry and Clinical Pharmacologyand Neuroscience LaboratoryYerevan State Medical University2‐ Koryun StYerevan0025Armenia
| |
Collapse
|
10
|
Iemmolo M, Bivona G, Piccoli T, Nicosia A, Schiera G, Di Liegro CM, Di Pietra F, Ghersi G. Effects of Cerebrospinal Fluids from Alzheimer and Non-Alzheimer Patients on Neurons-Astrocytes-Microglia Co-Culture. Int J Mol Sci 2024; 25:2510. [PMID: 38473758 DOI: 10.3390/ijms25052510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of β-amyloid plaques, tau tangles, neuroinflammation, and synaptic/neuronal loss, the latter being the strongest correlating factor with memory and cognitive impairment. Through an in vitro study on a neurons-astrocytes-microglia (NAM) co-culture system, we analyzed the effects of cerebrospinal fluid (CSF) samples from AD and non-AD patients (other neurodegenerative pathologies). Treatment with CSF from AD patients showed a loss of neurofilaments and spheroids, suggesting the presence of elements including CX3CL1 (soluble form), destabilizing the neurofilaments, cellular adhesion processes, and intercellular contacts. The NAM co-cultures were analyzed in immunofluorescence assays for several markers related to AD, such as through zymography, where the expression of proteolytic enzymes was quantified both in cell extracts and the co-cultures' conditioned medium (CM). Through qRT-PCR assays, several genes involved in the formation of β-amyloid plaque, in phosphorylation of tau, and in inflammation pathways and MMP expression were investigated.
Collapse
Affiliation(s)
- Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Tommaso Piccoli
- Department of Laboratory Medicine, University Hospital "P. Giaccone", 90127 Palermo, Italy
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), 90146 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Fabrizio Di Pietra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, 90123 Palermo, Italy
| |
Collapse
|
11
|
Qian Q, Luo WL. A network pharmacology method explores the molecular mechanism of Coptis chinensis for the treatment of Alzheimer's disease. Medicine (Baltimore) 2024; 103:e37103. [PMID: 38306514 PMCID: PMC10843322 DOI: 10.1097/md.0000000000037103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
To predict the molecular mechanisms of action of Coptis chinensis in the treatment of Alzheimer's disease using network pharmacology. The active ingredients and targets of Coptis chinensis were obtained from the Traditional Chinese Medicine System Pharmacology Database. Target information for Alzheimer's disease was screened using the GeneCard and OMIM databases. The Venn diagram tool was used to identify the intersecting targets of Coptis chinensis and Alzheimer's disease. The obtained target information was entered into the STRING database to construct a protein-protein interaction network. The R language was used to perform Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of significant targets. Auto Dock Vina software was used for molecular docking. Fourteen effective active ingredients and 158 key targets associated with Coptis chinensis were identified. There were 1113 targets related to Alzheimer's disease genes. A drug-component-disease-target network was constructed and 84 key targets were identified for the treatment of Alzheimer's disease by Coptis chinensis. The main signaling pathways were the PI3K-Akt, AGE-RAGE, MAPK, HIF-1, TNF, and relaxin signaling pathways. The molecular docking results showed that berberine has a high affinity for Alzheimer's Disease. Coptis chinensis could play a multi-target and multi-pathway role against Alzheimer's disease, which has guiding significance for clinical research.
Collapse
Affiliation(s)
- Qian Qian
- Chengdu Shuangnan Hospital, Chengdu, China
| | - Wen Lan Luo
- Chengdu Public Health Clinical Medical Center, Chengdu, China
| |
Collapse
|
12
|
Aksnes M, Capogna E, Vidal-Piñeiro D, Chaudhry FA, Myrstad M, Idland AV, Halaas NB, Dakhil S, Blennow K, Zetterberg H, Walhovd KB, Watne LO, Fjell AM. Matrix metalloproteinases are associated with brain atrophy in cognitively unimpaired individuals. Neurobiol Aging 2023; 131:11-23. [PMID: 37549446 DOI: 10.1016/j.neurobiolaging.2023.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/20/2023] [Indexed: 08/09/2023]
Abstract
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) have been linked to age-related neurodegeneration and Alzheimer's disease (AD), but their role in normal aging is poorly understood. We used linear mixed models to determine if baseline or rate of yearly change in cerebrospinal fluid (CSF) levels of MMP-2; MMP-3; MMP-10; TIMP-123 (composite of TIMP-1, TIMP-2, and TIMP-3); or TIMP-4 predicted changes in bilateral entorhinal cortex thickness, hippocampal volume, or lateral ventricle volume in cognitively unimpaired individuals. We also assessed effects on the CSF AD biomarkers amyloid-β42 and phosphorylated tau181. Low baseline levels of MMP-3 predicted larger ventricle volumes and more entorhinal cortex thinning. Increased CSF MMP-2 levels over time predicted more entorhinal thinning, hippocampal atrophy, and ventricular expansion, while increased TIMP-123 over time predicted ventricular expansion. No MMP/TIMPs predicted changes in CSF AD biomarkers. Notably, we show for the first time that longitudinal increases in MMP-2 and TIMP-123 levels may predict age-associated brain atrophy. In conclusion, MMPs and TIMPs may play a role in brain atrophy in cognitively unimpaired aging.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, Oslo, Norway.
| | - Elettra Capogna
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway; Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway
| | - Ane-Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Nathalie Bodd Halaas
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Shams Dakhil
- Oslo Delirium Research Group, Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Center for Neurodegenerative Diseases, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristine Beate Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Leiv Otto Watne
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo, Norway; Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Choi M, Ryu J, Vu HD, Kim D, Youn YJ, Park MH, Huynh PT, Hwang GB, Youn SW, Jeong YH. Transferrin-Conjugated Melittin-Loaded L-Arginine-Coated Iron Oxide Nanoparticles for Mitigating Beta-Amyloid Pathology of the 5XFAD Mouse Brain. Int J Mol Sci 2023; 24:14954. [PMID: 37834402 PMCID: PMC10573775 DOI: 10.3390/ijms241914954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and a major contributor to dementia. Although the cause of this condition has been identified long ago as aberrant aggregations of amyloid and tau proteins, effective therapies for it remain elusive. The complexities of drug development for AD treatment are often compounded by the impermeable blood-brain barrier and low-yield brain delivery. In addition, the use of high drug concentrations to overcome this challenge may entail side effects. To address these challenges and enhance the precision of delivery into brain regions affected by amyloid aggregation, we proposed a transferrin-conjugated nanoparticle-based drug delivery system. The transferrin-conjugated melittin-loaded L-arginine-coated iron oxide nanoparticles (Tf-MeLioNs) developed in this study successfully mitigated melittin-induced cytotoxicity and hemolysis in the cell culture system. In the 5XFAD mouse brain, Tf-MeLioNs remarkably reduced amyloid plaque accumulation, particularly in the hippocampus. This study suggested Tf-LioNs as a potential drug delivery platform and Tf-MeLioNs as a candidate for therapeutic drug targeting of amyloid plaques in AD. These findings provide a foundation for further exploration and advancement in AD therapeutics.
Collapse
Affiliation(s)
- Moonseok Choi
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Junghwa Ryu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Huy Duc Vu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Dongsoo Kim
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Young-Jin Youn
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Min Hui Park
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Phuong Tu Huynh
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Gyu-Bin Hwang
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Sung Won Youn
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Yun Ha Jeong
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| |
Collapse
|
14
|
Song C, Li H, Zheng C, Zhang T, Zhang Y. Dual Efficacy of a Catalytic Anti-Oligomeric Aβ42 scFv Antibody in Clearing Aβ42 Aggregates and Reducing Aβ Burden in the Brains of Alzheimer's Disease Mice. Mol Neurobiol 2023; 60:5515-5532. [PMID: 37326904 DOI: 10.1007/s12035-023-03406-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
One of the primary pathological mechanisms underlying Alzheimer's disease (AD) is the deposition of amyloid β-protein (Aβ42) aggregates in the brain. In this study, a catalytic anti-oligomeric Aβ42 scFv antibody, HS72, was identified by screening a human antibody library, its ability to degrade Aβ42 aggregates was defined, and its role in the reduction of Aβ burden in the AD mouse brain was evaluated. HS72 specifically targeted Aβ42 aggregates with an approximately 14-68 kDa range. Based on molecular docking simulations, HS72 likely catalyzed the hydrolytic cleavage of the His13-His14 bond of Aβ42 chains in an Aβ42 aggregate unit, releasing N/C-terminal fragments and Aβ42 monomers. Degradation of Aβ42 aggregates by HS72 triggered a considerable disassembly or breakdown of the Aβ42 aggregates and greatly reduced their neurotoxicity. Aβ deposit/plaque load in the hippocampus of AD mice was reduced by approximately 27% after 7 days (once daily) of intravenous HS72 administration, while brain neural cells were greatly restored and their morphology was drastically improved. The above efficacies of HS72 were all greater than those of HT7, a simple anti-oligomeric Aβ42 scFv antibody. Although a catalytic anti-oligomeric Aβ42 antibody may have a slightly lower affinity for Aβ42 aggregates than a simple anti-oligomeric Aβ42 antibody, the former may display a stronger overall efficacy (dual efficacy of induction and catalysis) than the latter (induction alone) in clearing Aβ42 aggregates and improving histopathological changes in AD brain. Our findings on the catalytic antibody HS72 indicate the possibility of functional evolution of anti-oligomeric Aβ42 antibodies and provide novel insights into the immunotherapy of AD.
Collapse
Affiliation(s)
- Chuli Song
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - He Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Changxin Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Tianyu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingjiu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
15
|
Alrumaihi F. A cheminformatics-biophysics correlate to identify promising lead molecules against matrix metalloproteinase-2 (MMP-2) enzyme: A promising anti-cancer target. Saudi Pharm J 2023; 31:1244-1253. [PMID: 37284415 PMCID: PMC10239696 DOI: 10.1016/j.jsps.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) is an endopeptidase enzyme that is devoted to extracellular matrix proteins degradation. The enzyme is warranted as promising drugs target for different light threating diseases such as arthritis, cancer and fibrosis. Herein, in this study, three drug molecules: CMNPD8322, CMNPD8320, and CMNPD8318 were filtered as high affinity binding compounds with binding energy score of -9.75 kcal/mol, -9.11 kcal/mol, -9.05 kcal/mol, respectively. The control binding energy score was -9.01 kcal/mol. The compounds docked deeply inside the pocket interacting with S1 pocket residues. The docked complexes dynamics in real time at cellular environment was then done to decipher the stable binding conformation and intermolecular interactions network. The compounds complexes achieved very stable dynamics with root mean square deviation (RMSD) with mean value of around 2-3 Å compared to control complex that showed higher fluctuations of 5 Å. The simulation trajectories frames based binding free energy demonstrated all the compounds-MMP-2 complexes reported highly stable energy, particularly the van der Waals energy dominate the overall net energy. Similarly, the complexes revalidation of WaterSwap based energies also disclosed the complexes highly stable in term docked conformation. Also, the compounds illustrated the compounds favorable pharmacokinetics and were non-toxic and non-mutagenic. Thus, the compounds might be used thorough experimental assays to confirm compounds selective biological potency against MMP-2 enzyme.
Collapse
|
16
|
Schilling S, Pradhan A, Heesch A, Helbig A, Blennow K, Koch C, Bertgen L, Koo EH, Brinkmalm G, Zetterberg H, Kins S, Eggert S. Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity. Acta Neuropathol Commun 2023; 11:87. [PMID: 37259128 DOI: 10.1186/s40478-023-01577-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
The amyloid precursor protein (APP) is a key player in Alzheimer`s disease (AD) and the precursor of the Aβ peptide, which is generated by consecutive cleavages of β- and γ-secretases. Familial Alzheimer's disease (FAD) describes a hereditary subgroup of AD that represents a low percentage of AD cases with an early onset of the disease. Different APP FAD mutations are thought to have qualitatively different effects on its proteolytic conversion. However, few studies have explored the pathogenic and putative physiological differences in more detail. Here, we compared different FAD mutations, located at the β- (Swedish), α- (Flemish, Arctic, Iowa) or γ-secretase (Iberian) cleavage sites. We examined heterologous expression of APP WT and FAD mutants in non-neuronal cells and their impact on presynaptic differentiation in contacting axons of co-cultured neurons. To decipher the underlying molecular mechanism, we tested the subcellular localization, the endocytosis rate and the proteolytic processing in detail by immunoprecipitation-mass spectrometry. Interestingly, we found that only the Iberian mutation showed altered synaptogenic function. Furthermore, the APP Iowa mutant shows significantly decreased α-secretase processing which is in line with our results that APP carrying the Iowa mutation was significantly increased in early endosomes. However, most interestingly, immunoprecipitation-mass spectrometry analysis revealed that the amino acid substitutions of APP FAD mutants have a decisive impact on their processing reflected in altered Aβ profiles. Importantly, N-terminally truncated Aβ peptides starting at position 5 were detected preferentially for APP Flemish, Arctic, and Iowa mutants containing amino acid substitutions around the α-secretase cleavage site. The strongest change in the ratio of Aβ40/Aβ42 was observed for the Iberian mutation while APP Swedish showed a substantial increase in Aβ1-17 peptides. Together, our data indicate that familial AD mutations located at the α-, β-, and γ-secretase cleavage sites show considerable differences in the underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ajay Pradhan
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Amelie Heesch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Andrea Helbig
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christian Koch
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Lea Bertgen
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Edward H Koo
- San Diego (UCSD), Department of Neuroscience, University of California, La Jolla, CA, 92093-0662, USA
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
17
|
Aksnes M, Edwin TH, Saltvedt I, Eldholm RS, Chaudhry FA, Halaas NB, Myrstad M, Watne LO, Knapskog AB. Sex-specific associations of matrix metalloproteinases in Alzheimer's disease. Biol Sex Differ 2023; 14:35. [PMID: 37221606 DOI: 10.1186/s13293-023-00514-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/21/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) can be characterised in vivo by biomarkers reflecting amyloid-β (Aβ) and tau pathology. However, there is a need for biomarkers reflecting additional pathological pathways. Matrix metalloproteinases (MMPs) have recently been highlighted as candidate biomarkers for sex-specific mechanisms and progression in AD. METHODS In this cross-sectional study, we investigated nine MMPs and four tissue inhibitors of metalloproteinases (TIMPs) in the cerebrospinal fluid of 256 memory clinic patients with mild cognitive impairment or dementia due to AD and 100 cognitively unimpaired age-matched controls. We studied group differences in MMP/TIMP levels and examined the associations with established markers of Aβ and tau pathology as well as disease progression. Further, we studied sex-specific interactions. RESULTS MMP-10 and TIMP-2 levels differed significantly between the memory clinic patients and the cognitively unimpaired controls. Furthermore, MMP- and TIMP-levels were generally strongly associated with tau biomarkers, whereas only MMP-3 and TIMP-4 were associated with Aβ biomarkers; these associations were sex-specific. In terms of progression, we found a trend towards higher MMP-10 at baseline predicting more cognitive and functional decline over time exclusively in women. CONCLUSION Our results support the use of MMPs/TIMPs as markers of sex differences and progression in AD. Our findings show sex-specific effects of MMP-3 and TIMP-4 on amyloid pathology. Further, this study highlights that the sex-specific effects of MMP-10 on cognitive and functional decline should be studied further if MMP-10 is to be used as a prognostic biomarker for AD.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway.
| | - Trine H Edwin
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Rannveig S Eldholm
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, 7030, Trondheim, Norway
| | - Farrukh A Chaudhry
- Department of Molecular Medicine, University of Oslo, 0315, Oslo, Norway
| | - Nathalie B Halaas
- Department of Geriatric Medicine, University of Oslo, 0315, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| | - Marius Myrstad
- Department of Internal Medicine, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
- Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, 1346, Gjettum, Norway
| | - Leiv O Watne
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, 0450, Oslo, Norway
| |
Collapse
|
18
|
Im D, Kim S, Yoon G, Hyun DG, Eom YG, Lee YE, Sohn CH, Choi JM, Kim HI. Decoding the Roles of Amyloid-β (1-42)'s Key Oligomerization Domains toward Designing Epitope-Specific Aggregation Inhibitors. JACS AU 2023; 3:1065-1075. [PMID: 37124297 PMCID: PMC10131210 DOI: 10.1021/jacsau.2c00668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 05/03/2023]
Abstract
Fibrillar amyloid aggregates are the pathological hallmarks of multiple neurodegenerative diseases. The amyloid-β (1-42) protein, in particular, is a major component of senile plaques in the brains of patients with Alzheimer's disease and a primary target for disease treatment. Determining the essential domains of amyloid-β (1-42) that facilitate its oligomerization is critical for the development of aggregation inhibitors as potential therapeutic agents. In this study, we identified three key hydrophobic sites (17LVF19, 32IGL34, and 41IA42) on amyloid-β (1-42) and investigated their involvement in the self-assembly process of the protein. Based on these findings, we designed candidate inhibitor peptides of amyloid-β (1-42) aggregation. Using the designed peptides, we characterized the roles of the three hydrophobic regions during amyloid-β (1-42) fibrillar aggregation and monitored the consequent effects on its aggregation property and structural conversion. Furthermore, we used an amyloid-β (1-42) double point mutant (I41N/A42N) to examine the interactions between the two C-terminal end residues with the two hydrophobic regions and their roles in amyloid self-assembly. Our results indicate that interchain interactions in the central hydrophobic region (17LVF19) of amyloid-β (1-42) are important for fibrillar aggregation, and its interaction with other domains is associated with the accessibility of the central hydrophobic region for initiating the oligomerization process. Our study provides mechanistic insights into the self-assembly of amyloid-β (1-42) and highlights key structural domains that facilitate this process. Our results can be further applied toward improving the rational design of candidate amyloid-β (1-42) aggregation inhibitors.
Collapse
Affiliation(s)
- Dongjoon Im
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center
for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single
Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Soohyeong Kim
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center
for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single
Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Gyusub Yoon
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center
for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single
Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Da Gyeong Hyun
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center
for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single
Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| | - Yu-Gon Eom
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Lee
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Ho Sohn
- Center
for Nanomedicine, Institute for Basic Science
(IBS), Seoul 03722, Republic of Korea
- Graduate
Program in Nanobiomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeong-Mo Choi
- Department
of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Chemistry
Institute for Functional Materials, Pusan
National University, Busan 46241, Republic
of Korea
| | - Hugh I. Kim
- Department
of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center
for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
- Single
Cell Analysis Laboratory, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
20
|
Ocenasova A, Shawkatova I, Javor J, Parnicka Z, Minarik G, Kralova M, Kiralyova I, Mikolaskova I, Durmanova V. MMP2 rs243866 and rs2285053 Polymorphisms and Alzheimer’s Disease Risk in Slovak Caucasian Population. Life (Basel) 2023; 13:life13040882. [PMID: 37109410 PMCID: PMC10143987 DOI: 10.3390/life13040882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterised by progressive loss of memory. In the AD brain, matrix metalloproteinases (MMPs) are involved in the disruption of the blood-brain barrier resulting in a neuroinflammatory response. The objective of our investigation was to assess the association of MMP2 rs243866 and rs2285053 polymorphisms with susceptibility to AD, to assess the interaction of MMP2 variants with APOE ε4 risk allele, and to evaluate their influence on the age at disease onset and MoCA score. A total of 215 late-onset AD patients and 373 control subjects from Slovakia were genotyped for MMP2 rs243866 and rs2285053 polymorphisms. The MMP2 association with AD risk and clinical parameters was evaluated by logistic and linear regression analyses. No statistically significant differences in either MMP2 rs243866 and rs2285053 allele or genotype frequencies between AD patients and the control group have been observed (p > 0.05). However, the correlation with clinical findings revealed a higher age at disease onset in MMP2 rs243866 GG carriers in the dominant model as compared to other MMP2 genotype carriers (p = 0.024). Our results suggest that MMP2 rs243866 promoter polymorphism may have an impact on the age at AD onset in the patients.
Collapse
Affiliation(s)
- Agata Ocenasova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Ivana Shawkatova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Juraj Javor
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Zuzana Parnicka
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | | | - Maria Kralova
- Clinic of Psychiatry, Faculty of Medicine, University Hospital, Comenius University in Bratislava, 813 69 Bratislava, Slovakia
| | | | - Iveta Mikolaskova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Vladimira Durmanova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9011-9887
| |
Collapse
|
21
|
Theerasri A, Janpaijit S, Tencomnao T, Prasansuklab A. Beyond the classical amyloid hypothesis in Alzheimer's disease: Molecular insights into current concepts of pathogenesis, therapeutic targets, and study models. WIREs Mech Dis 2023; 15:e1591. [PMID: 36494193 DOI: 10.1002/wsbm.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the progressive neurodegenerative disorders and the most common cause of dementia in the elderly worldwide causing difficulties in the daily life of the patient. AD is characterized by the aberrant accumulation of β-amyloid plaques and tau protein-containing neurofibrillary tangles (NFTs) in the brain giving rise to neuroinflammation, oxidative stress, synaptic failure, and eventual neuronal cell death. The total cost of care in AD treatment and related health care activities is enormous and pharmaceutical drugs approved by Food and Drug Administration have not manifested sufficient efficacy in protection and therapy. In recent years, there are growing studies that contribute a fundamental understanding to AD pathogenesis, AD-associated risk factors, and pharmacological intervention. However, greater molecular process-oriented research in company with suitable experimental models is still of the essence to enhance the prospects for AD therapy and cell lines as a disease model are still the major part of this milestone. In this review, we provide an insight into molecular mechanisms, particularly the recent concept in gut-brain axis, vascular dysfunction and autophagy, and current models used in the study of AD. Here, we emphasized the importance of therapeutic strategy targeting multiple mechanisms together with utilizing appropriate models for the discovery of novel effective AD therapy. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Atsadang Theerasri
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Sakawrat Janpaijit
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.,College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Matrix Metalloproteinases in Cardioembolic Stroke: From Background to Complications. Int J Mol Sci 2023; 24:ijms24043628. [PMID: 36835040 PMCID: PMC9959608 DOI: 10.3390/ijms24043628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases participating in physiological processes of the brain, maintaining the blood-brain barrier integrity and playing a critical role in cerebral ischemia. In the acute phase of stroke activity, the expression of MMPs increase and is associated with adverse effects, but in the post-stroke phase, MMPs contribute to the process of healing by remodeling tissue lesions. The imbalance between MMPs and their inhibitors results in excessive fibrosis associated with the enhanced risk of atrial fibrillation (AF), which is the main cause of cardioembolic strokes. MMPs activity disturbances were observed in the development of hypertension, diabetes, heart failure and vascular disease enclosed in CHA2DS2VASc score, the scale commonly used to evaluate the risk of thromboembolic complications risk in AF patients. MMPs involved in hemorrhagic complications of stroke and activated by reperfusion therapy may also worsen the stroke outcome. In the present review, we briefly summarize the role of MMPs in the ischemic stroke with particular consideration of the cardioembolic stroke and its complications. Moreover, we discuss the genetic background, regulation pathways, clinical risk factors and impact of MMPs on the clinical outcome.
Collapse
|
23
|
Ulku I, Liebsch F, Akerman SC, Schulz JF, Kulic L, Hock C, Pietrzik C, Di Spiezio A, Thinakaran G, Saftig P, Multhaup G. Mechanisms of amyloid-β34 generation indicate a pivotal role for BACE1 in amyloid homeostasis. Sci Rep 2023; 13:2216. [PMID: 36750595 PMCID: PMC9905473 DOI: 10.1038/s41598-023-28846-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
The beta‑site amyloid precursor protein (APP) cleaving enzyme (BACE1) was discovered due to its "amyloidogenic" activity which contributes to the production of amyloid-beta (Aβ) peptides. However, BACE1 also possesses an "amyloidolytic" activity, whereby it degrades longer Aβ peptides into a non‑toxic Aβ34 intermediate. Here, we examine conditions that shift the equilibrium between BACE1 amyloidogenic and amyloidolytic activities by altering BACE1/APP ratios. In Alzheimer disease brain tissue, we found an association between elevated levels of BACE1 and Aβ34. In mice, the deletion of one BACE1 gene copy reduced BACE1 amyloidolytic activity by ~ 50%. In cells, a stepwise increase of BACE1 but not APP expression promoted amyloidolytic cleavage resulting in dose-dependently increased Aβ34 levels. At the cellular level, a mislocalization of surplus BACE1 caused a reduction in Aβ34 levels. To align the role of γ-secretase in this pathway, we silenced Presenilin (PS) expression and identified PS2-γ-secretase as the main γ-secretase that generates Aβ40 and Aβ42 peptides serving as substrates for BACE1's amyloidolytic cleavage to generate Aβ34.
Collapse
Affiliation(s)
- Irem Ulku
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Filip Liebsch
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 0B1, Canada.,Department of Chemistry, Institute of Biochemistry, University of Cologne, 50674, Cologne, Germany
| | - S Can Akerman
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jana F Schulz
- Institut Für Chemie Und Biochemie, Freie Universität Berlin, 14195, Berlin, Germany.,Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Luka Kulic
- Roche Pharma Research & Early Development, F.Hoffmann-La Roche Ltd., 4070, Basel, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, Un Iversity of Zurich, 8952, Schlieren, Switzerland.,Neurimmune AG, 8952, Schlieren, Switzerland
| | - Claus Pietrzik
- Department Molecular Neurodegeneration, Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University of Mainz, Duesbergweg 6, 55099, Mainz, Germany
| | | | - Gopal Thinakaran
- Department of Molecular Medicine and Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - Paul Saftig
- Biochemisches Institut, CAU Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Gerhard Multhaup
- Integrated Program in Neuroscience, McGill University, Montreal, QC, H3G 0B1, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
24
|
Vervuurt M, de Kort AM, Jäkel L, Kersten I, Abdo WF, Schreuder FHBM, Rasing I, Terwindt GM, Wermer MJH, Greenberg SM, Klijn CJM, Kuiperij HB, Verbeek MM. Decreased ratios of matrix metalloproteinases to tissue-type inhibitors in cerebrospinal fluid in sporadic and hereditary cerebral amyloid angiopathy. Alzheimers Res Ther 2023; 15:26. [PMID: 36717932 PMCID: PMC9885599 DOI: 10.1186/s13195-023-01171-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND To evaluate the potential of cerebrospinal fluid (CSF) levels of matrix metalloproteinases and tissue-type inhibitors (MMP; TIMP), and ratios of MMPs to TIMPs, to function as biomarkers for sporadic or hereditary cerebral amyloid angiopathy (CAA). METHODS CSF concentrations of the matrix metalloproteinases MMP-2, MMP-9 and MMP-14, as well as the tissue inhibitors of metalloproteinases TIMP-1, TIMP-2 and TIMP-3, were determined using immunoassays. These assays were applied to two, independent study groups of sporadic CAA (sCAA) (n = 28/43) and control subjects (n = 40/40), as well as to groups of pre-symptomatic (n = 11) and symptomatic hereditary Dutch-CAA (D-CAA) patients (n = 12), and age-matched controls (n = 22/28, respectively). RESULTS In the sCAA/control cohorts, inconsistent differences were found for individual MMPs and TIMPs, but MMP-2/TIMP-2 (discovery/validation: p = 0.004; p = 0.02) and MMP-14/TIMP-2 ratios (discovery/validation: p < 0.001; p = 0.04) were consistently decreased in sCAA, compared to controls. Moreover, MMP-14 was decreased in symptomatic D-CAA (p = 0.03), compared to controls. The MMP-14/TIMP-1 (p = 0.03) and MMP-14/TIMP-2 (p = 0.04) ratios were decreased in symptomatic D-CAA compared to controls and also compared to pre-symptomatic D-CAA (p = 0.004; p = 0.005, respectively). CONCLUSION CSF MMP-2/TIMP-2 and MMP-14/TIMP-2 were consistently decreased in sCAA, compared to controls. Additionally, MMP-14/TIMP-2 levels were also decreased in symptomatic D-CAA, compared to both pre-symptomatic D-CAA and controls, and can therefore be considered a biomarker for sporadic and late-stage hereditary forms of CAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Anna M de Kort
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Lieke Jäkel
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Iris Kersten
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Catharina J M Klijn
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Cognition and Behaviour, Donders Institute for Brain, Radboud University Medical Center, P.O. Box 9101, 6500 HB , 830 TML, Nijmegen, The Netherlands.
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Nguyen YT, Kim N, Lee HJ. Metal Complexes as Promising Matrix Metalloproteinases Regulators. Int J Mol Sci 2023; 24:ijms24021258. [PMID: 36674771 PMCID: PMC9861486 DOI: 10.3390/ijms24021258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, cancers and dementia, such as Alzheimer's disease, are the most fatal causes of death. Many studies tried to understand the pathogenesis of those diseases clearly and develop a promising way to treat the diseases. Matrix metalloproteinases (MMPs) have been reported to be involved in the pathology of cancers and AD through tumor cell movement and amyloid degradation. Therefore, control of the levels and actions of MMPs, especially MMP-2 and MMP-9, is necessary to care for and/or cure cancer and AD. Various molecules have been examined for their potential application as regulators of MMPs expression and activity. Among the molecules, multiple metal complexes have shown advantages, including simple synthesis, less toxicity and specificity toward MMPs in cancer cells or in the brain. In this review, we summarize the recent studies and knowledge of metal complexes (e.g., Pt-, Ru-, Au-, Fe-, Cu-, Ni-, Zn-, and Sn-complexes) targeting MMPs and their potentials for treating and/or caring the most fatal human diseases, cancers and AD.
Collapse
Affiliation(s)
- Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Chungcheongnam-do, Republic of Korea
- Correspondence: (N.K.); (H.J.L.)
| |
Collapse
|
26
|
van der Thiel MM, Backes WH, Ramakers IHGB, Jansen JFA. Novel developments in non-contrast enhanced MRI of the perivascular clearance system: What are the possibilities for Alzheimer's disease research? Neurosci Biobehav Rev 2023; 144:104999. [PMID: 36529311 DOI: 10.1016/j.neubiorev.2022.104999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/21/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
The cerebral waste clearance system (i.e, glymphatic or intramural periarterial drainage) works through a network of perivascular spaces (PVS). Dysfunction of this system likely contributes to aggregation of Amyloid-β and subsequent toxic plaques in Alzheimer's disease (AD). A promising, non-invasive technique to study this system is MRI, though applications in dementia are still scarce. This review focusses on recent non-contrast enhanced (non-CE) MRI techniques which determine and visualise physiological aspects of the clearance system at multiple levels, i.e., cerebrospinal fluid flow, PVS-flow and interstitial fluid movement. Furthermore, various MRI studies focussing on aspects of the clearance system which are relevant to AD are discussed, such as studies on ageing, sleep alterations, and cognitive decline. Additionally, the complementary function of non-CE to CE methods is elaborated upon. We conclude that non-CE studies have great potential to determine which parts of the waste clearance system are affected by AD and in which stages of cognitive impairment dysfunction of this system occurs, which could allow future clinical trials to target these specific mechanisms.
Collapse
Affiliation(s)
- Merel M van der Thiel
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Department of Psychiatry &Neuropsychology, Maastricht University, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
27
|
Tsiknia AA, Sundermann EE, Reas ET, Edland SD, Brewer JB, Galasko D, Banks SJ. Sex differences in Alzheimer's disease: plasma MMP-9 and markers of disease severity. Alzheimers Res Ther 2022; 14:160. [PMID: 36324151 PMCID: PMC9628176 DOI: 10.1186/s13195-022-01106-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Studies have reported higher plasma matrix metalloproteinase-9 (MMP-9) levels in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Despite evidence that MMP-9 activity and its influence on AD pathophysiology may be modulated by sex hormones, sex differences in the association between MMP-9 and AD biomarkers and cognition have not been explored. METHODS Our sample included 238 amyloid-β (Aβ)-positive participants with MCI or AD dementia from the Alzheimer's Disease Neuroimaging Initiative (37.4% women, 74.6 ± 7.3 years). We used linear regression models to examine whether sex modified free and total plasma MMP-9 associations with CSF t-tau, p-tau181, and Aβ42. We used linear mixed effects models to examine whether sex modified total and free plasma MMP-9 associations with cognition, using longitudinal Mini-Mental Status Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog) data. RESULTS Total and free MMP-9 levels did not differ by sex, but AD dementia patients had higher total MMP-9 levels than participants with MCI (β = 0.06 [-0.11 to -0.01], p = 0.031). Sex modified the association of CSF t-tau with total (β = 128.68 [55.37 to 201.99], p < 0.001) and free MMP-9 (β = 98.61 [33.61 to 163.62], p = 0.003), whereby higher total and free MMP-9 correlated with higher CSF t-tau in women and lower CSF t-tau in men. Higher free MMP-9 correlated with lower CSF p-tau181 among men (β = -14.98 [-27.37 to -2.58], p = 0.018), but not women. In participants with MCI, higher free MMP-9 levels were associated with higher CSF Aβ42 among men (β = 26.88 [4.03 to 49.73], p = 0.022) but not women. In the overall sample, higher free and total MMP-9 at baseline predicted worsening MMSE scores in women (β = -2.10 [-3.97 to -0.27], p = 0.027 and β = -2.24 [-4.32 to -0.18], p = 0.035) but not men. Higher free MMP-9 correlated with worse ADAS-cog scores (β = 12.34 [3.02 to 21.65], p = 0.011) in women (β = 12.34 [3.02 to 21.65], p = 0.011) but not men with AD dementia cross-sectionally but correlated with worsening ADAS-cog scores longitudinally only in men (β = 8.98 [0.27 to 17.68], p = 0.042). CONCLUSIONS MMP-9 may have more detrimental effects on AD-related pathological and cognitive changes in women. If replicated, our findings could help uncover potential mechanisms contributing to women's elevated susceptibility to AD.
Collapse
Affiliation(s)
- Amaryllis A. Tsiknia
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Erin E. Sundermann
- grid.410371.00000 0004 0419 2708Research Service, VA San Diego Healthcare System, San Diego, CA 92161 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093 USA
| | - Emilie T. Reas
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Steven D. Edland
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Division of Biostatistics, School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA 92093 USA
| | - James B. Brewer
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Douglas Galasko
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Sarah J. Banks
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | | |
Collapse
|
28
|
Hanbouch L, Schaack B, Kasri A, Fontaine G, Gkanatsiou E, Brinkmalm G, Camporesi E, Portelius E, Blennow K, Mourier G, Gilles N, Millan MJ, Marquer C, Zetterberg H, Boussicault L, Potier MC. Specific Mutations in the Cholesterol-Binding Site of APP Alter Its Processing and Favor the Production of Shorter, Less Toxic Aβ Peptides. Mol Neurobiol 2022; 59:7056-7073. [PMID: 36076005 PMCID: PMC9525381 DOI: 10.1007/s12035-022-03025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-β peptides Aβ40 and Aβ42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aβ in the APP sequence resulted in a concomitant significant increase in the production of shorter Aβ peptides. Mass spectrometry (MS) confirmed the predominance of Aβx-33 and Aβx-34 with the APPK28A mutant. The enzymatic activity of α-, β-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aβ40 and Aβ42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aβ derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aβ species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.
Collapse
Affiliation(s)
- Linda Hanbouch
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Béatrice Schaack
- Univ. Grenoble Alpes, CNRS, INP, TheRex Team, TIMC-IMAG, 38700, La Tronche, France
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38044, Grenoble, France
| | - Amal Kasri
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Gaëlle Fontaine
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Gilles Mourier
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Nicolas Gilles
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Département Médicaments Et Technologies Pour La Santé (DMTS), Université Paris Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - Mark J Millan
- Neuroscience Inflammation Thérapeutic Area, IDR Servier, 125 Chemin de Ronde, 78290, Croissy-sur-Seine, France
- Institute of Neuroscience and Psychology, College of Medicine, Vet and Life Sciences, Glasgow University, 62 Hillhead Street, Glasgow, G12 8QB, Scotland
| | - Catherine Marquer
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, S-431 80, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - Lydie Boussicault
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute, ICM, CNRS UMR7225-INSERM U1127-Sorbonne University Hôpital de La Pitié-Salpêtrière, 47 Bd de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
29
|
Busch L, Eggert S, Endres K, Bufe B. The Hidden Role of Non-Canonical Amyloid β Isoforms in Alzheimer's Disease. Cells 2022; 11:3421. [PMID: 36359817 PMCID: PMC9654995 DOI: 10.3390/cells11213421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Recent advances have placed the pro-inflammatory activity of amyloid β (Aβ) on microglia cells as the focus of research on Alzheimer's Disease (AD). Researchers are confronted with an astonishing spectrum of over 100 different Aβ variants with variable length and chemical modifications. With the exception of Aβ1-42 and Aβ1-40, the biological significance of most peptides for AD is as yet insufficiently understood. We therefore aim to provide a comprehensive overview of the contributions of these neglected Aβ variants to microglia activation. First, the impact of Aβ receptors, signaling cascades, scavenger mechanisms, and genetic variations on the physiological responses towards various Aβ species is described. Furthermore, we discuss the importance of different types of amyloid precursor protein processing for the generation of these Aβ variants in microglia, astrocytes, oligodendrocytes, and neurons, and highlight how alterations in secondary structures and oligomerization affect Aβ neurotoxicity. In sum, the data indicate that gene polymorphisms in Aβ-driven signaling pathways in combination with the production and activity of different Aβ variants might be crucial factors for the initiation and progression of different forms of AD. A deeper assessment of their interplay with glial cells may pave the way towards novel therapeutic strategies for individualized medicine.
Collapse
Affiliation(s)
- Lukas Busch
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| | - Simone Eggert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, D-37075 Goettingen, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Centre of the Johannes Gutenberg University, D-55131 Mainz, Germany
| | - Bernd Bufe
- Department of Informatics and Microsystems Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibruecken, Germany
| |
Collapse
|
30
|
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms231911085. [PMID: 36232390 PMCID: PMC9569603 DOI: 10.3390/ijms231911085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness.
Collapse
Affiliation(s)
- Panka Pintér
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Correspondence:
| |
Collapse
|
31
|
N-terminally truncated Aβ4-x proteoforms and their relevance for Alzheimer's pathophysiology. Transl Neurodegener 2022; 11:30. [PMID: 35641972 PMCID: PMC9158284 DOI: 10.1186/s40035-022-00303-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/21/2022] [Indexed: 01/22/2023] Open
Abstract
Background The molecular heterogeneity of Alzheimer’s amyloid-β (Aβ) deposits extends well beyond the classic Aβ1-40/Aβ1-42 dichotomy, substantially expanded by multiple post-translational modifications that increase the proteome diversity. Numerous truncated fragments consistently populate the brain Aβ peptidome, and their homeostatic regulation and potential contribution to disease pathogenesis are largely unknown. Aβ4-x peptides have been reported as major components of plaque cores and the limited studies available indicate their relative abundance in Alzheimer’s disease (AD). Methods Immunohistochemistry was used to assess the topographic distribution of Aβ4-x species in well-characterized AD cases using custom-generated monoclonal antibody 18H6—specific for Aβ4-x species and blind for full-length Aβ1-40/Aβ1-42—in conjunction with thioflavin-S and antibodies recognizing Aβx-40 and Aβx-42 proteoforms. Circular dichroism, thioflavin-T binding, and electron microscopy evaluated the biophysical and aggregation/oligomerization properties of full-length and truncated synthetic homologues, whereas stereotaxic intracerebral injections of monomeric and oligomeric radiolabeled homologues in wild-type mice were used to evaluate their brain clearance characteristics. Results All types of amyloid deposits contained the probed Aβ epitopes, albeit expressed in different proportions. Aβ4-x species showed preferential localization within thioflavin-S-positive cerebral amyloid angiopathy and cored plaques, strongly suggesting poor clearance characteristics and consistent with the reduced solubility and enhanced oligomerization of their synthetic homologues. In vivo clearance studies demonstrated a fast brain efflux of N-terminally truncated and full-length monomeric forms whereas their oligomeric counterparts—particularly of Aβ4-40 and Aβ4-42—consistently exhibited enhanced brain retention. Conclusions The persistence of aggregation-prone Aβ4-x proteoforms likely contributes to the process of amyloid formation, self-perpetuating the amyloidogenic loop and exacerbating amyloid-mediated pathogenic pathways.
Collapse
|
32
|
Garcia G, Fernandes A, Stein F, Brites D. Protective Signature of IFNγ-Stimulated Microglia Relies on miR-124-3p Regulation From the Secretome Released by Mutant APP Swedish Neuronal Cells. Front Pharmacol 2022; 13:833066. [PMID: 35620289 PMCID: PMC9127204 DOI: 10.3389/fphar.2022.833066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia-associated inflammation and miRNA dysregulation are key players in Alzheimer’s disease (AD) pathophysiology. Previously, we showed miR-124 upregulation in APP Swedish SH-SY5Y (SWE) and PSEN1 iPSC-derived neurons and its propagation by the secretome (soluble and exosomal fractions). After modulation with miR-124 mimic/inhibitor, we identified common responsive mechanisms between such models. We also reported miR-124 colocalization with microglia in AD patient hippocampi. Herein, we determined how miR-124 modulation in SWE cells influences microglia polarized subtypes in the context of inflammation. We used a coculture system without cell-to-cell contact formed by miR-124 modulated SWE cells and human CHME3 microglia stimulated with interferon-gamma (IFNγ-MG), in which we assessed their adopted gene/miRNA profile and proteomic signature. The increase of miR-124 in SWE cells/secretome (soluble and exosomal) was mimicked in IFNγ-MG. Treatment of SWE cells with the miR-124 inhibitor led to RAGE overexpression and loss of neuronal viability, while the mimic caused RAGE/HMGB1 downregulation and prevented mitochondria membrane potential loss. When accessing the paracrine effects on microglia, SWE miR-124 inhibitor favored their IFNγ-induced inflammatory signature (upregulated RAGE/HMGB1/iNOS/IL-1β; downregulated IL-10/ARG-1), while the mimic reduced microglia activation (downregulated TNF-α/iNOS) and deactivated extracellular MMP-2/MMP-9 levels. Microglia proteomics identified 113 responsive proteins to SWE miR-124 levels, including a subgroup of 17 proteins involved in immune function/inflammation and/or miR-124 targets. A total of 72 proteins were downregulated (e.g., MAP2K6) and 21 upregulated (e.g., PAWR) by the mimic, while the inhibitor also upregulated 21 proteins and downregulated 17 (e.g., TGFB1, PAWR, and EFEMP1). Other targets were associated with neurodevelopmental mechanisms, synaptic function, and vesicular trafficking. To examine the source of miR-124 variations in microglia, we silenced the RNase III endonuclease Dicer1 to block miRNA canonical biogenesis. Despite this suppression, the coculture with SWE cells/exosomes still raised microglial miR-124 levels, evidencing miR-124 transfer from neurons to microglia. This study is pioneer in elucidating that neuronal miR-124 reshapes microglia plasticity and in revealing the relevance of neuronal survival in mechanisms underlying inflammation in AD-associated neurodegeneration. These novel insights pave the way for the application of miRNA-based neuropharmacological strategies in AD whenever miRNA dysregulated levels are identified during patient stratification.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
33
|
Moretto E, Stuart S, Surana S, Vargas JNS, Schiavo G. The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Front Cell Neurosci 2022; 16:844211. [PMID: 35573838 PMCID: PMC9100790 DOI: 10.3389/fncel.2022.844211] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aβ) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aβ aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, National Research Council, CNR, Milan, Italy
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- *Correspondence: Edoardo Moretto,
| | - Skye Stuart
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sunaina Surana
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Jose Norberto S. Vargas
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Giampietro Schiavo,
| |
Collapse
|
34
|
Brezovakova V, Sykova E, Jadhav S. Astrocytes Derived from Familial and Sporadic Alzheimer's Disease iPSCs Show Altered Calcium Signaling and Respond Differently to Misfolded Protein Tau. Cells 2022; 11:cells11091429. [PMID: 35563735 PMCID: PMC9101114 DOI: 10.3390/cells11091429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Astrocytes regulate important functions in the brain, and their dysregulation has been linked to the etiology of neurodegenerative diseases, such as Alzheimer’s disease (AD). The role of astroglia in human AD remains enigmatic, owing to the limitations of animal models, which, while recreating some pathological aspects of the disease, do not fully mirror its course. In addition, the recognition of major structural and functional differences between human and mouse astrocytes has also prompted research into human glial cells. In the current study, astrocytes were generated using human iPSCs from patients with sporadic Alzheimer’s disease (sAD), familial Alzheimer’s disease (fAD) and non-demented controls (NDC). All clones gained astrocyte-specific morphological and proteomic characteristics upon in vitro differentiation, without considerable inter-clonal variances. In comparison to NDC, AD astrocytes displayed aberrant calcium dynamics in response to glutamate. When exposed to monomeric and aggregated tau, AD astrocytes demonstrated hypertrophy and elevated GFAP expression, differential expression of select signaling and receptor proteins, and the enhanced production of metalloproteinases (MMPs). Moreover, astrocytic secretomes were able to degrade tau in both monomeric and pathologically aggregated forms, which was mediated by MMP-2 and -9. The capacity to neutralize tau varied considerably between clones, with fAD astrocytes having the lowest degradability relative to sAD and healthy astrocytes. Importantly, when compared to aggregated tau alone, astrocytic secretome pretreatment of tau differentially reduced its detrimental effects on neurons. Our results show crucial differences in sporadic and familial AD astrocytes and suggests that these cells may play distinctive roles in the pathogenesis of early and late onset Alzheimer’s disease.
Collapse
|
35
|
Pilat D, Paumier JM, García-González L, Louis L, Stephan D, Manrique C, Khrestchatisky M, Di Pasquale E, Baranger K, Rivera S. MT5-MMP promotes neuroinflammation, neuronal excitability and Aβ production in primary neuron/astrocyte cultures from the 5xFAD mouse model of Alzheimer’s disease. J Neuroinflammation 2022; 19:65. [PMID: 35277173 PMCID: PMC8915472 DOI: 10.1186/s12974-022-02407-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Membrane-type matrix metalloproteinase 5 (MT5-MMP) deficiency in the 5xFAD mouse model of Alzheimer's disease (AD) reduces brain neuroinflammation and amyloidosis, and prevents deficits in synaptic activity and cognition in prodromal stages of the disease. In addition, MT5-MMP deficiency prevents interleukin-1 beta (IL-1β)-mediated inflammation in the peripheral nervous system. In this context, we hypothesized that the MT5-MMP/IL-1β tandem could regulate nascent AD pathogenic events in developing neural cells shortly after the onset of transgene activation.
Methods
To test this hypothesis, we used 11–14 day in vitro primary cortical cultures from wild type, MT5-MMP−/−, 5xFAD and 5xFAD/MT5-MMP−/− mice, and evaluated the impact of MT5-MMP deficiency and IL-1β treatment for 24 h, by performing whole cell patch-clamp recordings, RT-qPCR, western blot, gel zymography, ELISA, immunocytochemistry and adeno-associated virus (AAV)-mediated transduction.
Results
5xFAD cells showed higher levels of MT5-MMP than wild type, concomitant with higher basal levels of inflammatory mediators. Moreover, MT5-MMP-deficient cultures had strong decrease of the inflammatory response to IL-1β, as well as decreased stability of recombinant IL-1β. The levels of amyloid beta peptide (Aβ) were similar in 5xFAD and wild-type cultures, and IL-1β treatment did not affect Aβ levels. Instead, the absence of MT5-MMP significantly reduced Aβ by more than 40% while sparing APP metabolism, suggesting altogether no functional crosstalk between IL-1β and APP/Aβ, as well as independent control of their levels by MT5-MMP. The lack of MT5-MMP strongly downregulated the AAV-induced neuronal accumulation of the C-terminal APP fragment, C99, and subsequently that of Aβ. Finally, MT5-MMP deficiency prevented basal hyperexcitability observed in 5xFAD neurons, but not hyperexcitability induced by IL-1β treatment.
Conclusions
Neuroinflammation and hyperexcitability precede Aβ accumulation in developing neural cells with nascent expression of AD transgenes. MT5-MMP deletion is able to tune down basal neuronal inflammation and hyperexcitability, as well as APP/Aβ metabolism. In addition, MT5-MMP deficiency prevents IL-1β-mediated effects in brain cells, except hyperexcitability. Overall, this work reinforces the idea that MT5-MMP is at the crossroads of pathogenic AD pathways that are already incipiently activated in developing neural cells, and that targeting MT5-MMP opens interesting therapeutic prospects.
Collapse
|
36
|
Human herpesvirus 6A U4 inhibits proteasomal degradation of amyloid precursor protein. J Virol 2021; 96:e0168821. [PMID: 34878807 DOI: 10.1128/jvi.01688-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) belongs to the betaherpesvirus subfamily and is divided into two distinct species, HHV-6A and HHV-6B. HHV-6 can infect nerve cells and is associated with a variety of nervous system diseases. Recently, the association of HHV-6A infection with Alzheimer's disease (AD) has been suggested. The main pathological phenomena of AD are the accumulation of β-amyloid (Aβ), neurofibrillary tangles, and neuroinflammation, however, the specific molecular mechanism of pathogenesis of AD is not fully clear. In this study, we focused on the effect of HHV-6A U4 gene function on Aβ expression. Co-expression of HHV-6A U4 with APP resulted in inhibition of ubiquitin-mediated proteasomal degradation of amyloid precursor protein (APP). Consequently, accumulation of β-amyloid peptide (Aβ), insoluble neurofibrillary tangles, and loss of neural cells may occur. Immunoprecipitation coupled to mass spectrometry (IP-MS) showed that HHV-6A U4 protein interacts with E3 ubiquitin ligase composed of DDB1 and Cullin 4B which is also responsible for APP degradation. We hypothesize that HHV-6A U4 protein competes with APP for binding to E3 ubiquitin ligase, resulting in inhibition of APP ubiquitin modification and clearance. Finally, this is leading to the increase of APP expression and Aβ deposition, which is the hallmark of AD. These findings provide novel evidence for the etiological hypothesis of AD that can contribute to the further analysis of HHV-6A role in AD. IMPORTANCE The association of HHV-6A infection with Alzheimer's disease has attracted increasing attention, although its role and molecular mechanism remain to be established. Our results here indicate that HHV-6A U4 inhibits APP (amyloid precursor protein) degradation. U4 protein interacts with CRLs (Cullin-RING E3 ubiquitin-protein ligases) which is also responsible for APP degradation. We propose a model that U4 competitively binds to CRLs with APP, resulting in APP accumulation and Aβ generation. Our findings provide new insights into the etiological hypothesis of HHV-6A in AD that can help further analyses.
Collapse
|
37
|
Choi H, Kim E, Choi JY, Park E, Lee HJ. Potent therapeutic targets for treatment of Alzheimer's disease: Amyloid degrading enzymes. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hang Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eungchan Kim
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Jae Yoon Choi
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| | - Eunsik Park
- Department of Life Sport Education Kongju National University Gongju Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education Kongju National University Gongju Republic of Korea
| |
Collapse
|
38
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
39
|
Alić I, Goh PA, Murray A, Portelius E, Gkanatsiou E, Gough G, Mok KY, Koschut D, Brunmeir R, Yeap YJ, O'Brien NL, Groet J, Shao X, Havlicek S, Dunn NR, Kvartsberg H, Brinkmalm G, Hithersay R, Startin C, Hamburg S, Phillips M, Pervushin K, Turmaine M, Wallon D, Rovelet-Lecrux A, Soininen H, Volpi E, Martin JE, Foo JN, Becker DL, Rostagno A, Ghiso J, Krsnik Ž, Šimić G, Kostović I, Mitrečić D, Francis PT, Blennow K, Strydom A, Hardy J, Zetterberg H, Nižetić D. Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Mol Psychiatry 2021; 26:5766-5788. [PMID: 32647257 PMCID: PMC8190957 DOI: 10.1038/s41380-020-0806-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 11/15/2022]
Abstract
A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of β-amyloid-(Aβ)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aβ deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical β and γ-secretase inhibition. We found that T21 organoids secrete increased proportions of Aβ-preventing (Aβ1-19) and Aβ-degradation products (Aβ1-20 and Aβ1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
Collapse
Grants
- MR/S011277/1 Medical Research Council
- MR/L501542/1 Medical Research Council
- RF1 AG059695 NIA NIH HHS
- G-0907 Parkinson's UK
- MR/N026004/1 Medical Research Council
- MR/R024901/1 Medical Research Council
- Wellcome Trust
- 217199 Wellcome Trust
- G0901254 Medical Research Council
- G0701075 Medical Research Council
- 098330 Wellcome Trust
- William Harvey Academy Fellowship, co-funded by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608765
- Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
- National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
- BrightFocus Foundation (BrightFocus)
- Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- KB holds the Torsten Söderberg Professorship in Medicine at the Royal Swedish Academy of Sciences, and is supported by the Swedish Alzheimer Foundation (#AF-742881), Hjärnfonden, Sweden (#FO2017-0243), and the Swedish State Support for Clinical Research (#ALFGBG-715986).
- Wellcome Trust (Wellcome)
- JH received funding from the Dementia Research Institute, an anonymous foundation and the Dolby foundation
- HZ is a Wallenberg Academy Fellow supported by grants from the Swedish Research Council, the European Research Council, Swedish State Support for Clinical Research (ALFGBG-720931) the UK Dementia Research Institute at UCL
Collapse
Affiliation(s)
- Ivan Alić
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- LonDownS Consortium, London, UK
| | - Aoife Murray
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Gillian Gough
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Kin Y Mok
- LonDownS Consortium, London, UK
- Dementia Research Institute & Reta Lila Weston Institute, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David Koschut
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Reinhard Brunmeir
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Niamh L O'Brien
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- LonDownS Consortium, London, UK
| | - Jürgen Groet
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- LonDownS Consortium, London, UK
| | - Xiaowei Shao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Steven Havlicek
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - N Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Rosalyn Hithersay
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Carla Startin
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
| | - Sarah Hamburg
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
| | - Margaret Phillips
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mark Turmaine
- Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne Rovelet-Lecrux
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Hilkka Soininen
- University of Eastern Finland, Institute of Clinical Medicine/Neurology, Kuopio, FI-70211, Finland
| | - Emanuela Volpi
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Joanne E Martin
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Agueda Rostagno
- Department of Pathology & Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Jorge Ghiso
- Department of Pathology & Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Dinko Mitrečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Andre Strydom
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - John Hardy
- LonDownS Consortium, London, UK
- Dementia Research Institute & Reta Lila Weston Institute, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
- Dementia Research Institute & Reta Lila Weston Institute, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Dean Nižetić
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK.
- LonDownS Consortium, London, UK.
| |
Collapse
|
40
|
Lecordier S, Manrique-Castano D, El Moghrabi Y, ElAli A. Neurovascular Alterations in Vascular Dementia: Emphasis on Risk Factors. Front Aging Neurosci 2021; 13:727590. [PMID: 34566627 PMCID: PMC8461067 DOI: 10.3389/fnagi.2021.727590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/05/2021] [Indexed: 12/25/2022] Open
Abstract
Vascular dementia (VaD) constitutes the second most prevalent cause of dementia in the world after Alzheimer’s disease (AD). VaD regroups heterogeneous neurological conditions in which the decline of cognitive functions, including executive functions, is associated with structural and functional alterations in the cerebral vasculature. Among these cerebrovascular disorders, major stroke, and cerebral small vessel disease (cSVD) constitute the major risk factors for VaD. These conditions alter neurovascular functions leading to blood-brain barrier (BBB) deregulation, neurovascular coupling dysfunction, and inflammation. Accumulation of neurovascular impairments over time underlies the cognitive function decline associated with VaD. Furthermore, several vascular risk factors, such as hypertension, obesity, and diabetes have been shown to exacerbate neurovascular impairments and thus increase VaD prevalence. Importantly, air pollution constitutes an underestimated risk factor that triggers vascular dysfunction via inflammation and oxidative stress. The review summarizes the current knowledge related to the pathological mechanisms linking neurovascular impairments associated with stroke, cSVD, and vascular risk factors with a particular emphasis on air pollution, to VaD etiology and progression. Furthermore, the review discusses the major challenges to fully elucidate the pathobiology of VaD, as well as research directions to outline new therapeutic interventions.
Collapse
Affiliation(s)
- Sarah Lecordier
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Daniel Manrique-Castano
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Yara El Moghrabi
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Ayman ElAli
- Neuroscience Axis, Research Center of CHU de Québec-Université Laval, Québec City, QC, Canada.,Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
41
|
Choi J, Kwon H, Han PL. Hyperoxygenation Treatment Reduces Beta-amyloid Deposition via MeCP2-dependent Upregulation of MMP-2 and MMP-9 in the Hippocampus of Tg-APP/PS1 Mice. Exp Neurobiol 2021; 30:294-307. [PMID: 34483143 PMCID: PMC8424382 DOI: 10.5607/en21014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/18/2022] Open
Abstract
Recently we reported that hyperoxygenation treatment reduces amyloid-beta accumulation and rescues cognitive impairment in the Tg-APP/PS1 mouse model of Alzheimer’s disease. In the present study, we continue to investigate the mechanism by which hyperoxygenation reduces amyloid-beta deposition in the brain. Hyperoxygenation treatment induces upregulation of matrix metalloproteinase-2 (MMP-2), MMP-9, and tissue plasminogen activator (tPA), the endopeptidases that can degrade amyloid-beta, in the hippocampus of Tg-APP/PS1 mice. The promoter regions of the three proteinase genes all contain potential binding sites for MeCP2 and Pea3, which are upregulated in the hippocampus after hyperoxygenation. Hyperoxygenation treatment in HT22 neuronal cells increases MeCP2 but not Pea3 expression. In HT22 cells, siRNA-mediated knockdown of Mecp2 decreases Mmp-9 expression and to a lesser extent, Mmp-2 and tPA expression. In mice, siRNA-mediated Mecp2 knockdown in the hippocampus reduces Mmp-9 expression, but not significantly Mmp-2 and tPA expression. The ChIP assay indicates that hyperoxygenation treatment in Tg-APP/PS1 mice increases MeCP2 binding to the promoter regions of Mmp-2, Mmp-9 and tPA genes in the hippocampus. Together, these results suggest that hyperoxygenation increases the expression of MMP-2, MMP-9, and tPA, of which MMP-9 is upregulated via MeCP2 in neuronal cells, and MMP-2 and tPA are upregulated through MeCP2 and other nuclear factors.
Collapse
Affiliation(s)
- Juli Choi
- Departments of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hyejin Kwon
- Departments of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Departments of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
42
|
Inui T, Hoffer M, Balaban CD. Mild blast wave exposure produces intensity-dependent changes in MMP2 expression patches in rat brains - Findings from different blast severities. Brain Res 2021; 1767:147541. [PMID: 34077763 DOI: 10.1016/j.brainres.2021.147541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinase 2 (MMP2) is a gelatinase with multiple functions at the neurovascular interface, including local modification of the glia limitans to facilitate access of immune cells into the brain and amyloid-beta degradation during responses to injury or disease. This study examines regional changes in immunoreactive MMP2 in the rat brain after a single mild (2.7-7.9 psi peak) or moderate (13-17.5 psi peak) blast overpressure (BOP) exposure. Immunopositive MMP2 expression was examined quantitatively in histological sections of decalcified rat heads as a marker at 2, 24, and 72 h after BOP. The MMP2 immunoreactivity was isolated to patchy deposits in brain parenchyma surrounding blood vessels. Separate analyses were conducted for the cerebellum, brain stem caudal to the thalamo-mesencephalic junction, and the cerebrum (including diencephalon). The deposits varied in number, size, staining homogeneity (standard deviation of immunopositive region), and a cumulative measure, the product of size, average intensity and number, as a function of blast intensity and time. The sequences of changes in MMP2 spots from sham control animals suggested that the mild BOP exposure differences normalized within 72 h. However, the responses to moderate exposure revealed a delayed response at 72 h in the subtentorial brain stem and the cerebrum, but not the cerebellum. Hence, local MMP2 responses may be a contextual biomarker for locally regulated responses to widely distributed brain injury foci.
Collapse
Affiliation(s)
- Takaki Inui
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Otorhinolaryngology - Head and Neck Surgery, Osaka Mdical College, Osaka, Japan.
| | - Michael Hoffer
- Naval Medical Center San Diego, Spatial Orientation Center, Department of Otolaryngology, Naval Medical Center San Diego, CA, USA; University of Miami, Miller School of Medicine, Department of Otolaryngology, University of Miami, FL, USA.
| | - Carey D Balaban
- Department of Otolaryngology, University of Pittsburgh, PA, USA; Department of Neurobiology, Communication Sciences & Disorders, and Bioengineering, University of Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Dorandish S, Williams A, Atali S, Sendo S, Price D, Thompson C, Guthrie J, Heyl D, Evans HG. Regulation of amyloid-β levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells. Sci Rep 2021; 11:9708. [PMID: 33958632 PMCID: PMC8102533 DOI: 10.1038/s41598-021-88574-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we set out to identify regulators of intact amyloid-β40/42 (Aβ) levels in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher Aβ levels were detected in the media of A549 than H1299 cells without or with treatment with 4-methylumbelliferone (4-MU) and/or the anti-CD44 antibody (5F12). Using inhibitors, we found that PI3K, AKT, and NFκB are likely involved in regulating Aβ levels in the media. However, increased Aβ levels that more closely resembled those found upon 4-MU co-treatment resulted from MMP2/9 inhibition, suggesting that MMP2/9 maybe the main contributors to regulation of Aβ levels in the media. Differences in Aβ levels might be accounted for, in part, by p53 since blocking p53 function in A549 cells resulted in decreased Aβ levels, increased MMP2/9 levels, increased PI3K/AKT activities and the phospho/total NFκB ratio. Using siRNA targeted against MMP2 or MMP9, we found increased Aβ levels in the media, however, MMP2 knockdown led to Aβ levels closely mimicking those detected by co-treatment with 4-MU. Cell viability or apoptosis upon treatment with either MMP2 or MMP9 siRNA along with Aβ immunodepletion, showed that MMP2 is the predominant regulator of the cytotoxic effects induced by Aβ in lung cancer cells.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sophia Sendo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Colton Thompson
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
44
|
Meta-Analysis of Methamphetamine Modulation on Amyloid Precursor Protein through HMGB1 in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094781. [PMID: 33946401 PMCID: PMC8124433 DOI: 10.3390/ijms22094781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
The deposition of amyloid-beta (Aβ) through the cleavage of amyloid-beta precursor protein (APP) is a biomarker of Alzheimer’s disease (AD). This study used QIAGEN Ingenuity Pathway Analysis (IPA) to conduct meta-analysis on the molecular mechanisms by which methamphetamine (METH) impacts AD through modulating the expression of APP. All the molecules affected by METH and APP were collected from the QIAGEN Knowledge Base (QKB); 78 overlapping molecules were identified. Upon simulation of METH exposure using the “Molecule Activity Predictor” feature, eight molecules were found to be affected by METH and exhibited activation relationships on APP expression at a confidence of p = 0.000453 (Z-score = 3.51, two-tailed). Core Analysis of these eight molecules identified High Mobility Group Box protein 1 (HMGB1) signaling pathway among the top 5 canonical pathways with most overlap with the 8-molecule dataset. Simulated METH exposure increased APP expression through HMGB1 at a confidence of p < 0.00001 (Z-score = 7.64, two-tailed). HMGB1 is a pathogenic hallmark in AD progression. It not only increases the production of inflammatory mediators, but also mediates the disruption of the blood-brain barrier. Our analyses suggest the involvement of HMGB1 signaling pathway in METH-induced modulation of APP as a potential casual factor of AD.
Collapse
|
45
|
das Neves SP, Delivanoglou N, Da Mesquita S. CNS-Draining Meningeal Lymphatic Vasculature: Roles, Conundrums and Future Challenges. Front Pharmacol 2021; 12:655052. [PMID: 33995074 PMCID: PMC8113819 DOI: 10.3389/fphar.2021.655052] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
A genuine and functional lymphatic vascular system is found in the meninges that sheath the central nervous system (CNS). This unexpected (re)discovery led to a reevaluation of CNS fluid and solute drainage mechanisms, neuroimmune interactions and the involvement of meningeal lymphatics in the initiation and progression of neurological disorders. In this manuscript, we provide an overview of the development, morphology and unique functional features of meningeal lymphatics. An outline of the different factors that affect meningeal lymphatic function, such as growth factor signaling and aging, and their impact on the continuous drainage of brain-derived molecules and meningeal immune cells into the cervical lymph nodes is also provided. We also highlight the most recent discoveries about the roles of the CNS-draining lymphatic vasculature in different pathologies that have a strong neuroinflammatory component, including brain trauma, tumors, and aging-associated neurodegenerative diseases like Alzheimer's and Parkinson's. Lastly, we provide a critical appraisal of the conundrums, challenges and exciting questions involving the meningeal lymphatic system that ought to be investigated in years to come.
Collapse
Affiliation(s)
| | | | - Sandro Da Mesquita
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
46
|
Impact of MMP2 rs243865 and MMP3 rs3025058 Polymorphisms on Clinical Findings in Alzheimer's Disease Patients. Mediators Inflamm 2021; 2021:5573642. [PMID: 33986628 PMCID: PMC8079184 DOI: 10.1155/2021/5573642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease of the central nervous system with higher prevalence in elderly people. Despite numerous research studies, the etiopathogenesis of AD remains unclear. Matrix metalloproteinases (MMPs) are endopeptidases involved in the cleavage of extracellular matrix proteins and basement membrane compounds. In the brain, the pathological role of MMPs includes the disruption of the blood-brain barrier leading to the induction of neuroinflammation. Among various MMPs, MMP-2 and MMP-3 belong to candidate molecules related to AD pathology. In our study, we aimed to evaluate the association of MMP2 rs243865 and MMP3 rs3025058 polymorphisms with AD susceptibility and their influence on age at onset and MoCA score in patients from Slovakia. Both MMP gene promoter polymorphisms were genotyped in 171 AD patients and 308 controls by the PCR-RFLP method. No statistically significant differences in the distribution of MMP2 rs243865 (-1306 C>T) and MMP3 rs3025058 (-1171 5A>6A) alleles/genotypes were found between AD patients and the control group. However, correlation with clinical findings revealed later age at disease onset in MMP2 rs243865 CC carriers in the dominant model as compared to T allele carriers (CC vs. CT+TT: 78.44 ± 6.28 vs. 76.36 ± 6.39, p = 0.036). The results of MMP3 rs3025058 analysis revealed that 5A/6A carriers in the overdominant model tended to have earlier age at disease onset as compared to other MMP3 genotype carriers (5A/6A vs. 5A/5A+6A/6A: 76.61 ± 5.88 vs. 78.57 ± 6.79, p = 0.045). In conclusion, our results suggest that MMP2 rs243865 and MMP3 rs3025058 promoter polymorphisms may have influence on age at onset in AD patients.
Collapse
|
47
|
Parodi‐Rullán R, Ghiso J, Cabrera E, Rostagno A, Fossati S. Alzheimer's amyloid β heterogeneous species differentially affect brain endothelial cell viability, blood-brain barrier integrity, and angiogenesis. Aging Cell 2020; 19:e13258. [PMID: 33155752 PMCID: PMC7681048 DOI: 10.1111/acel.13258] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/02/2020] [Accepted: 09/19/2020] [Indexed: 01/05/2023] Open
Abstract
Impaired clearance in the Alzheimer's Disease (AD) brain is key in the formation of Aβ parenchymal plaques and cerebrovascular deposits known as cerebral amyloid angiopathy (CAA), present in >80% of AD patients and ~50% of non-AD elderly subjects. Aβ deposits are highly heterogeneous, containing multiple fragments mostly derived from catabolism of Aβ40/Aβ42, which exhibit dissimilar aggregation properties. Remarkably, the role of these physiologically relevant Aβ species in cerebrovascular injury and their impact in vascular pathology is unknown. We sought to understand how heterogeneous Aβ species affect cerebral endothelial health and assess whether their diverse effects are associated with the peptides aggregation propensities. We analyzed cerebral microvascular endothelial cell (CMEC) viability, blood-brain barrier (BBB) permeability, and angiogenesis, all relevant aspects of brain microvascular dysfunction. We found that Aβ peptides and fragments exerted differential effects on cerebrovascular pathology. Peptides forming mostly oligomeric structures induced CMEC apoptosis, whereas fibrillar aggregates increased BBB permeability without apoptotic effects. Interestingly, all Aβ species tested inhibited angiogenesis in vitro. These data link the biological effects of the heterogeneous Aβ peptides to their primary structure and aggregation, strongly suggesting that the composition of amyloid deposits influences clinical aspects of the AD vascular pathology. As the presence of predominant oligomeric structures in proximity of the vessel walls may lead to CMEC death and induction of microhemorrhages, fibrillar amyloid is likely responsible for increased BBB permeability and associated neurovascular dysfunction. These results have the potential to unveil more specific therapeutic targets and clarify the multifactorial nature of AD.
Collapse
Affiliation(s)
- Rebecca Parodi‐Rullán
- Alzheimer's Center at Temple Lewis Katz School of Medicine Temple University Philadelphia PA USA
| | - Jorge Ghiso
- Department of Pathology New York University School of Medicine New York NY USA
- Department of Psychiatry New York University School of Medicine New York NY USA
| | - Erwin Cabrera
- Department of Pathology New York University School of Medicine New York NY USA
| | - Agueda Rostagno
- Department of Pathology New York University School of Medicine New York NY USA
| | - Silvia Fossati
- Alzheimer's Center at Temple Lewis Katz School of Medicine Temple University Philadelphia PA USA
| |
Collapse
|
48
|
Kwon S, Moreno-Gonzalez I, Taylor-Presse K, Edwards Iii G, Gamez N, Calderon O, Zhu B, Velasquez FC, Soto C, Sevick-Muraca EM. Impaired Peripheral Lymphatic Function and Cerebrospinal Fluid Outflow in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 69:585-593. [PMID: 31104026 DOI: 10.3233/jad-190013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cerebrospinal fluid (CSF) outflow from the brain occurs through absorption into the arachnoid villi and, more predominantly, through meningeal and olfactory lymphatics that ultimately drain into the peripheral lymphatics. Impaired CSF outflow has been postulated as a contributing mechanism in Alzheimer's disease (AD). Herein we conducted near-infrared fluorescence imaging of CSF outflow into the peripheral lymph nodes (LNs) and of peripheral lymphatic function in a transgenic mouse model of AD (5XFAD) and wild-type (WT) littermates. CSF outflow was assessed from change in fluorescence intensity in the submandibular LNs as a function of time following bolus, an intrathecal injection of indocyanine green (ICG). Peripheral lymphatic function was measured by assessing lymphangion contractile function in lymphatics draining into the popliteal LN following intradermal ICG injection in the dorsal aspect of the hind paw. The results show 1) significantly impaired CSF outflow into the submandibular LNs of 5XFAD mice and 2) reduced contractile frequency in the peripheral lymphatics as compared to WT mice. Impaired CSF clearance was also evidenced by reduction of fluorescence on ventral surfaces of extracted brains of 5XFAD mice at euthanasia. These results support the hypothesis that lymphatic congestion caused by reduced peripheral lymphatic function could limit CSF outflow and may contribute to the cause and/or progression of AD.
Collapse
Affiliation(s)
- Sunkuk Kwon
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Ines Moreno-Gonzalez
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Kathleen Taylor-Presse
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - George Edwards Iii
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Nazaret Gamez
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Olivia Calderon
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Banghe Zhu
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Fred Christian Velasquez
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's disease and Related Brain Disorders, Department of Neurology, The University of Texas Health Science Center, Houston, TX, USA
| | - Eva M Sevick-Muraca
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| |
Collapse
|
49
|
Strunz M, Jarrell JT, Cohen DS, Rosin ER, Vanderburg CR, Huang X. Modulation of SPARC/Hevin Proteins in Alzheimer's Disease Brain Injury. J Alzheimers Dis 2020; 68:695-710. [PMID: 30883351 PMCID: PMC6481539 DOI: 10.3233/jad-181032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is an age-related progressive form of dementia that features neuronal loss, intracellular tau, and extracellular amyloid-β (Aβ) protein deposition. Neurodegeneration is accompanied by neuroinflammation mainly involving microglia, the resident innate immune cell population of the brain. During AD progression, microglia shift their phenotype, and it has been suggested that they express matricellular proteins such as secreted protein acidic and rich in cysteine (SPARC) and Hevin protein, which facilitate the migration of other immune cells, such as blood-derived dendritic cells. We have detected both SPARC and Hevin in postmortem AD brain tissues and confirmed significant alterations in transcript expression using real-time qPCR. We suggest that an infiltration of myeloid-derived immune cells occurs in the areas of diseased tissue. SPARC is highly expressed in AD brain and collocates to Aβ protein deposits, thus contributing actively to cerebral inflammation and subsequent tissue repair, and Hevin may be downregulated in the diseased state. However, further research is needed to reveal the exact roles of SPARC and Hevin proteins and associated signaling pathways in AD-related neuroinflammation. Nevertheless, normalizing SPARC/Hevin protein expression such as interdicting heightened SPARC protein expression may confer a novel therapeutic opportunity for modulating AD progression.
Collapse
Affiliation(s)
- Maximilian Strunz
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliet T Jarrell
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David S Cohen
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eric R Rosin
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Charles R Vanderburg
- Department of Neurology, Harvard NeuroDiscovery Center, Advanced Tissue Resource Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Xudong Huang
- Department of Psychiatry, Neurochemistry Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
50
|
Jäkel L, Kuiperij HB, Gerding LP, Custers EEM, van den Berg E, Jolink WMT, Schreuder FHBM, Küsters B, Klijn CJM, Verbeek MM. Disturbed balance in the expression of MMP9 and TIMP3 in cerebral amyloid angiopathy-related intracerebral haemorrhage. Acta Neuropathol Commun 2020; 8:99. [PMID: 32631441 PMCID: PMC7336459 DOI: 10.1186/s40478-020-00972-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid β (Aβ) protein in the cerebral vasculature and poses a major risk factor for the development of intracerebral haemorrhages (ICH). However, only a minority of patients with CAA develops ICH (CAA-ICH), and to date it is unclear which mechanisms determine why some patients with CAA are more susceptible to haemorrhage than others. We hypothesized that an imbalance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) contributes to vessel wall weakening. MMP9 plays a role in the degradation of various components of the extracellular matrix as well as of Aβ and increased MMP9 expression has been previously associated with CAA. TIMP3 is an inhibitor of MMP9 and increased TIMP3 expression in cerebral vessels has also been associated with CAA. In this study, we investigated the expression of MMP9 and TIMP3 in occipital brain tissue of CAA-ICH cases (n = 11) by immunohistochemistry and compared this to the expression in brain tissue of CAA cases without ICH (CAA-non-haemorrhagic, CAA-NH, n = 18). We showed that MMP9 expression is increased in CAA-ICH cases compared to CAA-NH cases. Furthermore, we showed that TIMP3 expression is increased in CAA cases compared to controls without CAA, and that TIMP3 expression is reduced in a subset of CAA-ICH cases compared to CAA-NH cases. In conclusion, in patients with CAA, a disbalance in cerebrovascular MMP9 and TIMP3 expression is associated with CAA-related ICH.
Collapse
|