1
|
Lee WH, Zygiel EM, Lee CH, Oglesby AG, Nolan EM. Calprotectin-mediated survival of Staphylococcus aureus in coculture with Pseudomonas aeruginosa occurs without nutrient metal sequestration. mBio 2025; 16:e0384624. [PMID: 40152583 PMCID: PMC12077171 DOI: 10.1128/mbio.03846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are bacterial pathogens of major clinical concern that cause polymicrobial infections in diverse patient populations. Human calprotectin (CP; S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) is a host-defense protein that contributes to nutritional immunity by sequestering multiple nutrient metal ions including Mn(II), Fe(II), and Zn(II). Here, we examine the consequences of metal availability and CP treatment on cocultures of P. aeruginosa and S. aureus. We report that CP elicits Fe-starvation responses in both P. aeruginosa and S. aureus in coculture, including the upregulation of genes involved in Fe uptake by both organisms. Moreover, analyses of pseudomonal metabolites in coculture supernatants further demonstrate Fe-starvation responses, showing that CP treatment leads to increased siderophore levels and reduced phenazine levels. Consistent with prior studies, growth under conditions of Fe depletion accelerated P. aeruginosa killing of S. aureus in coculture, but treatment with CP promoted S. aureus survival. Treatment with CP site variants lacking functional transition-metal-binding sites and metalated CP also enhanced S. aureus survival in coculture with P. aeruginosa, revealing that this consequence of CP treatment is independent of its canonical metal-sequestering function. Thus, the protective effects of CP treatment during coculture appear to override the observed Fe-starvation effects that make P. aeruginosa more virulent toward S. aureus. This work highlights an unappreciated facet of how CP contributes to host-pathogen and pathogen-pathogen interactions that are relevant to human infectious disease. IMPORTANCE The current working model that describes how the innate immune protein calprotectin (CP) protects the host against bacterial pathogens focuses on its capacity to sequester multiple essential metal nutrients in a process called nutritional immunity. Our study further explores this function by focusing on the effects of metal availability and CP treatment on the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus grown in coculture. These two bacterial pathogens are of significant clinical concern and colocalize with CP at infection sites. This work reveals that CP modulates P. aeruginosa/S. aureus coculture dynamics in a manner that is independent of its ability to sequester nutrient metal ions. This surprising result is important because it demonstrates that CP has metal-independent function and thus contributes to the host-pathogen and pathogen-pathogen interactions in ways that are not accounted for in the current working model focused on metal sequestration.
Collapse
Affiliation(s)
- Wei H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Celis H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Weiner JM, Lee WH, Nolan EM, Oglesby AG. Calprotectin elicits aberrant iron starvation responses in Pseudomonas aeruginosa under anaerobic conditions. J Bacteriol 2025; 207:e0002925. [PMID: 40135923 PMCID: PMC12004955 DOI: 10.1128/jb.00029-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 03/27/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that uses several mechanisms to survive in the iron-limiting host environment. The innate immune protein calprotectin (CP) sequesters ferrous iron [Fe(II)], among other divalent transition metal ions, to limit its availability to pathogens. CP levels are increased in individuals with cystic fibrosis (CF), a hereditary disease that leads to chronic pulmonary infection by P. aeruginosa. We previously showed that aerobic CP treatment of P. aeruginosa induces a multi-metal starvation response that alters expression of several virulence properties. However, the CF lung is a hypoxic environment due to the growth of P. aeruginosa in dense biofilms. Here, we report that anaerobic CP treatment of P. aeruginosa induces many processes associated with an aerobic iron starvation response, including decreased phenazine production and increased expression of the PrrF small regulatory RNAs (sRNAs). However, the iron starvation response elicited by CP in anaerobic conditions shows characteristics that are distinct from responses observed in aerobic growth, including a lack of siderophore production and increased induction of genes for the FeoAB Fe(II) and Phu heme uptake systems. Also distinct from aerobic conditions, CP treatment induces expression of genes for predicted manganese transporters MntH1 and MntH2 during anaerobic growth while eliciting a less robust zinc starvation response compared to aerobic conditions. Induction of mntH2 is dependent on the PrrF sRNAs, suggesting a novel example of metal regulatory cross-talk. Thus, anaerobic CP treatment results in a multi-metal starvation response with key distinctions from aerobic conditions, revealing differences in P. aeruginosa metal homeostasis during anaerobic growth.IMPORTANCEIron is critical for most microbial pathogens, and the innate immune system sequesters this metal to limit microbial growth. Pathogens must overcome iron sequestration to survive during infection. For many pathogens, iron homeostasis has primarily been studied in aerobic conditions. Nevertheless, some host environments are hypoxic, including chronic lung infection sites in individuals with cystic fibrosis (CF). Here, we use the innate immune protein calprotectin, which sequesters divalent metal ions including Fe(II), to study the anaerobic iron starvation response of a common CF lung pathogen, Pseudomonas aeruginosa. We report several distinctions of this response during anaerobiosis, highlighting the importance of carefully considering the host environment when investigating the role of nutritional immunity in host-pathogen interactions.
Collapse
Affiliation(s)
- Jacob M. Weiner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Wei Hao Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Zhang W, Ma Y, Xie Y, Liu X, Tan L, Zhao J, Ni Y, Wang Z, Li C, Xu B. Interaction and cross-contamination potential of prepared beef steak isolates Pseudomonas weihenstephanensis and Macrococcus caseolyticus in biofilms of dual-species. Food Microbiol 2025; 127:104685. [PMID: 39667856 DOI: 10.1016/j.fm.2024.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024]
Abstract
This study evaluated the interactions between single or dual-species biofilms formed by dominant spoilage bacteria P. weihenstephanensis and M. caseolyticus isolated from refrigerated, spoilage prepared beef steaks at 4 °C and elucidated the interactive behavior of biofilm development in dual species. In addition, the relationship between biofilm formation capacity and cross-contamination was analyzed by simulating surface to food contact transfer. The results showed that the two species exhibited synergism as biofilms developed, which was the main mode of interaction observed. Under aerobic conditions, Pseudomonas weihenstephanensis and Macrococcus caseolyticus co-cultured for 96 h showed obvious biofilm formation ability, resulting in greater cross-contamination. Scanning electron microscopy and Confocal laser scanning microscopy showed the formation of flattened dense biofilms in the co-culture. The significant increase in Fe content and decrease in siderophore content of the dual-species biofilm as determined by ICP-MS was attributed to respiratory inhibition resulting in a decrease in the transcription of genes regulating the two-component regulatory system of Macrococcus tyrolyticus SrrAB and an increase in the expression of cytoplasmic hydrolase leading to the rupture of the release of hemoglobin to provide a source of iron for P. weihenstephanensis. The increase of heme content in the supernatant of dual-species and the results of RT-qPCR showed that the gene expression of the heme transport system of P. weihenstephanensis was significantly up-regulated and the siderophore gene expression was decreased, which further revealed that P. weihenstephanensis preferentially uses the heme uptake system to take up the iron source provided by M. caseolyticus for P. weihenstephanensis. Overall, our results provide insight into the complex dynamics of biofilms formed by P. weihenstephanensis and M. caseolyticus, emphasizing that the iron reaction pathway may be a key factor influencing the growth of P. weihenstephanensis biofilms, and that these results will provide a theoretical basis for the control of spoilage of refrigerated foods.
Collapse
Affiliation(s)
- Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Xiaoyan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Zhaoming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230601, China.
| |
Collapse
|
4
|
Montes N, Wilson T, Krug SA, Mouriño S, Kane MA, Deredge D, Wilks A. The Pseudomonas aeruginosa PhuS proximal ligand His-209 triggers a conformational switch in function from DNA binding to heme transfer. J Biol Chem 2025; 301:108440. [PMID: 40122173 PMCID: PMC12033910 DOI: 10.1016/j.jbc.2025.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Pseudomonas aeruginosa can acquire iron from heme via the heme assimilation system and Pseudomonas heme uptake (Phu) systems. Heme uptake is regulated at the metabolic level by the cytoplasmic protein PhuS that controls heme flux through a heme oxygenase HemO, releasing iron and biliverdin IXβ and IXδ. We have shown PhuS regulates extracellular heme flux, and in its apo-form transcriptionally regulates the iron and heme-dependent small RNAs (sRNAs) PrrF/PrrH. This mutual exclusivity of function is driven by conformational rearrangement of PhuS on heme binding. Herein, we show through a combination of EMSA and fluorescence anisotropy that mutation of the His-209 proximal ligand allows both apo- and holo-PhuS H209A to bind to the prrF1 promoter with significantly lower affinity when compared to PAO1 WT. Hydrogen deuterium exchange coupled to mass spectrometry revealed the apo- and holo-PhuS H209A structures are closer to each other than their WT counterparts and sample a conformational landscape between the apo- and holo-PhuS WT conformations, that is neither optimal for heme transfer nor DNA-binding. Furthermore, quantitative PCR and Western blot analysis of the phuSH209A allelic strain compared to PAO1 WT revealed an uncoupling of the PhuS-HemO dependent regulation of heme flux into the cell that abrogates the heme dependent regulation of the PrrF/PrrH sRNAs. The data supports a model where heme coordination through His-209 drives the conformational switch that determines mutual exclusivity in function of apo- and holo-PhuS. This dual function of PhuS is central to integrating extracellular heme utilization into the PrrF/PrrH sRNA regulatory network critical for P. aeruginosa adaptation within the host.
Collapse
Affiliation(s)
- Nicholas Montes
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Tyree Wilson
- Molecular Pathogenesis and Biomarkers Section, National Institute of Allergy and Infectious Disease, Rockville, Maryland, USA
| | - Samuel A Krug
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Lee M, Armstrong CM, Smith AT. Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2025; 1867:184404. [PMID: 39694085 PMCID: PMC11725443 DOI: 10.1016/j.bbamem.2024.184404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
The acquisition of ferrous iron (Fe2+) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe2+ acquisition mechanism is the ferrous iron transport (Feo) system. In V. cholerae, the Feo system comprises two cytosolic proteins (FeoA, FeoC) and a complex, polytopic transmembrane protein (FeoB) that is regulated by an N-terminal soluble domain (NFeoB) with promiscuous NTPase activity. While the soluble components of the Feo system have been frequently studied, very few reports exist on the intact membrane protein FeoB. Moreover, FeoB has been characterize almost exclusively in detergent micelles that can cause protein misfolding, disrupt protein oligomerization, and even dramatically alter protein function. As many of these characteristics of FeoB remain unclear, there is a critical need to characterize FeoB in a more native-like lipid environment. To address this unmet need, we employ styrene-maleic acid (SMA) copolymers to isolate and to characterize V. cholerae FeoB (VcFeoB) encapsulated by a styrene-maleic acid lipid particle (SMALP). In this work, we describe the development of a workflow for the expression and the purification of VcFeoB in a SMALP. Leveraging mass photometry, we explore the oligomerization of FeoB in a lipid bilayer and show that the VcFeoB-SMALP is mostly monomeric, consistent with our previous oligomerization observations in surfo. Finally, we characterize the NTPase activity of VcFeoB in the SMALP and in a detergent (DDM), revealing higher NTPase activity in the presence of the lipid bilayer. When taken together, this report represents the first characterization of any FeoB in a native-like lipid bilayer and provides a viable approach for the future structural characterization of FeoB.
Collapse
Affiliation(s)
- Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Candice M Armstrong
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
6
|
Lee M, Magante K, Gómez-Garzón C, Payne SM, Smith AT. Structural determinants of Vibrio cholerae FeoB nucleotide promiscuity. J Biol Chem 2024; 300:107663. [PMID: 39128725 PMCID: PMC11406355 DOI: 10.1016/j.jbc.2024.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024] Open
Abstract
Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and the GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surrounding the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.
Collapse
Affiliation(s)
- Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Kate Magante
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA
| | - Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA; John Ring LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
8
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551527. [PMID: 37577460 PMCID: PMC10418163 DOI: 10.1101/2023.08.01.551527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P. Knejski
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
- Present address: Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| | - Satchal K. Erramilli
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Present address: Meso Scale Diagnostics, LLC, Rockville, Maryland 20850, USA
| | - Anthony A. Kossiakoff
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Lee M, Magante K, Gómez-Garzón C, Payne SM, Smith AT. Structural Determinants of Vibrio cholerae FeoB Nucleotide Promiscuity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595361. [PMID: 38826458 PMCID: PMC11142208 DOI: 10.1101/2024.05.22.595361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surround the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.
Collapse
Affiliation(s)
- Mark Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Kate Magante
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| | - Camilo Gómez-Garzón
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712 USA
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712 USA
- John Ring LaMontagne Center for Infectious Disease, University of Texas at Austin, Austin, Texas, 78712 USA
| | - Aaron T. Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland, 21250 USA
| |
Collapse
|
10
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. Structure 2024; 32:411-423.e6. [PMID: 38325368 PMCID: PMC10997469 DOI: 10.1016/j.str.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P Knejski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Shahzad S, Krug SA, Mouriño S, Huang W, Kane MA, Wilks A. Pseudomonas aeruginosa heme metabolites biliverdin IXβ and IXδ are integral to lifestyle adaptations associated with chronic infection. mBio 2024; 15:e0276323. [PMID: 38319089 PMCID: PMC10936436 DOI: 10.1128/mbio.02763-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen requiring iron for its survival and virulence within the host. The ability to switch to heme as an iron source and away from siderophore uptake provides an advantage in chronic infection. We have recently shown the extracellular heme metabolites biliverdin IXβ (BVIXβ) and BVIXδ positively regulate the heme-dependent cell surface signaling cascade. We further investigated the role of BVIXβ and BVIXδ in cell signaling utilizing allelic strains lacking a functional heme oxygenase (hemOin) or one reengineered to produce BVIXα (hemOα). Compared to PAO1, both strains show a heme-dependent growth defect, decreased swarming and twitching, and less robust biofilm formation. Interestingly, the motility and biofilm defects were partially rescued on addition of exogenous BVIXβ and BVIXδ. Utilizing liquid chromatography-tandem mass spectrometry, we performed a comparative proteomics and metabolomics analysis of PAO1 versus the allelic strains in shaking and static conditions. In shaking conditions, the hemO allelic strains showed a significant increase in proteins involved in quorum sensing, phenazine production, and chemotaxis. Metabolite profiling further revealed increased levels of Pseudomonas quinolone signal and phenazine metabolites. In static conditions, we observed a significant repression of chemosensory pathways and type IV pili biogenesis proteins as well as several phosphodiesterases associated with biofilm dispersal. We propose BVIX metabolites function as signaling and chemotactic molecules integrating heme utilization as an iron source into the adaptation of P. aeruginosa from a planktonic to sessile lifestyle. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa causes long-term chronic infection in the airways of cystic fibrosis patients. The ability to scavenge iron and to establish chronic infection within this environment coincides with a switch to utilize heme as the primary iron source. Herein, we show the heme metabolites biliverdin beta and delta are themselves important signaling molecules integrating the switch in iron acquisition systems with cooperative behaviors such as motility and biofilm formation that are essential for long-term chronic infection. These significant findings will enhance the development of viable multi-targeted therapeutics effective against both heme utilization and cooperative behaviors essential for survival and persistence within the host.
Collapse
Affiliation(s)
- Saba Shahzad
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Samuel A. Krug
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Will V, Gasser V, Kuhn L, Fritsch S, Heinrichs DE, Schalk IJ. Siderophore specificities of the Pseudomonas aeruginosa TonB-dependent transporters ChtA and ActA. FEBS Lett 2023; 597:2963-2974. [PMID: 37758521 DOI: 10.1002/1873-3468.14740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Iron is an essential nutrient for the survival and virulence of Pseudomonas aeruginosa. The pathogen expresses at least 15 different iron-uptake pathways, the majority involving small iron chelators called siderophores. P. aeruginosa produces two siderophores, but can also use many produced by other microorganisms. This implies that the bacterium expresses appropriate TonB-dependent transporters (TBDTs) at the outer membrane to import the ferric form of each of the siderophores used. Here, we show that the two α-carboxylate-type siderophores rhizoferrin-Fe and staphyloferrin A-Fe are transported into P. aeruginosa cells by the TBDT ActA. Among the mixed α-carboxylate/hydroxamate-type siderophores, we found aerobactin-Fe to be transported by ChtA and schizokinen-Fe and arthrobactin-Fe by ChtA and another unidentified TBDT. Our findings enhance the understanding of the adaptability of P. aeruginosa and hold significant implications for developing novel strategies to combat antibiotic resistance.
Collapse
Affiliation(s)
- Virginie Will
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Véronique Gasser
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS FR1589, Strasbourg Cedex, France
| | - Sarah Fritsch
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Isabelle J Schalk
- CNRS, University of Strasbourg, UMR7242, ESBS, Strasbourg, France
- University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
13
|
Hoang TM, Huang W, Gans J, Weiner J, Nowak E, Barbier M, Wilks A, Kane MA, Oglesby AG. The heme-responsive PrrH sRNA regulates Pseudomonas aeruginosa pyochelin gene expression. mSphere 2023; 8:e0039223. [PMID: 37800921 PMCID: PMC10597452 DOI: 10.1128/msphere.00392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and virulence, yet this nutrient is sequestered by the innate immune system during infection. When iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small RNAs (sRNAs), which post-transcriptionally repress expression of nonessential iron-containing proteins, thus sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are arranged in tandem on the chromosome, allowing for the transcription of a longer heme-responsive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been extensively studied, the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cultures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to the wild type, while the mRNAs for these proteins were not affected by the prrH mutation. We identified complementarity between the PrrH sRNA and the sequence upstream of the pchE mRNA, suggesting the potential for PrrH to directly regulate the expression of genes for pyochelin synthesis. We further showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not shaking conditions. Moreover, we discovered that controlling for the presence of light was critical for examining the impact of PrrH on pchE expression. As such, our study reports on the first likely target of the PrrH sRNA and highlights key environmental variables that will allow for future characterization of PrrH function. IMPORTANCE In the human host, iron is predominantly in the form of heme, which Pseudomonas aeruginosa can acquire as an iron source during infection. We previously showed that the iron-responsive PrrF small RNAs (sRNAs) are critical for mediating iron homeostasis during P. aeruginosa infection; however, the function of the heme-responsive PrrH sRNA remains unclear. In this study, we identified genes for pyochelin siderophore biosynthesis, which mediates uptake of inorganic iron, as a novel target of PrrH regulation. This study therefore highlights a novel relationship between heme availability and siderophore biosynthesis in P. aeruginosa.
Collapse
Affiliation(s)
- Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jonathan Gans
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jacob Weiner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Evan Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Zeng S, Shi Q, Liu Y, Li M, Lin D, Zhang S, Li Q, Pu J, Shen C, Huang B, Chen C, Zeng J. The small RNA PrrH of Pseudomonas aeruginosa regulates hemolysis and oxidative resistance in bloodstream infection. Microb Pathog 2023; 180:106124. [PMID: 37105322 DOI: 10.1016/j.micpath.2023.106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Small regulatory RNAs (sRNAs) regulate multiple physiological functions in bacteria, and sRNA PrrH can regulate iron homeostasis and virulence. However, the function of PrrH in Pseudomonas aeruginosa (P. aeruginosa) bloodstream infection (BSI) is largely unknown. The aim of this study was to investigate the role of PrrH in P. aeruginosa BSI model. First, P. aeruginosa PAO1 was co-cultured with peripheral blood cells for 6 h qRT-PCR results showed a transient up-regulation of PrrH expression at 1 h. Simultaneously, the expression of iron uptake genes fpvA, pvdS and phuR was upregulated. In addition, the use of iron chelator 2,2'-dipyridyl to create low-iron conditions caused up-regulation of PrrH expression, a result similar to the BSI model. Furthermore, the addition of FeCl3 was found to decrease PrrH expression. These results support the hypothesis that the expression of PrrH is regulated by iron in BSI model. Then, to clarify the effect of PrrH on major cells in the blood, we used PrrH mutant, overexpressing and wild-type strains to act separately on erythrocytes and neutrophils. On one hand, the hemolysis assay revealed that PrrH contributes to the hemolytic activity of PAO1, and its effect was dependent on the T3SS system master regulator gene exsA, yet had no association with the hemolytic phospholipase C (plcH), pldA, and lasB elastase genes. On the other hand, PrrH mutant enhanced the oxidative resistance of PAO1 in the neutrophils co-culture assay, H2O2-treated growth curve and conventional plate spotting assays. Furthermore, the katA was predicted to be a target gene of PrrH by bioinformatics software, and then verified by qPCR and GFP reporter system. In summary, dynamic changes in the expression of prrH are iron-regulated during PAO1 bloodstream infection. In addition, PrrH promotes the hemolytic activity of P. aeruginosa in an exsA-dependent manner and negatively regulates katA to reduce the oxidative tolerance of P. aeruginosa.
Collapse
Affiliation(s)
- Shenghe Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qixuan Shi
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - YinZhen Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Mo Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Dongling Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Shebin Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Qiwei Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Cong Shen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China.
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China.
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
15
|
Brimberry M, Corrigan P, Silakov A, Lanzilotta WN. Evidence for Porphyrin-Mediated Electron Transfer in the Radical SAM Enzyme HutW. Biochemistry 2023; 62:1191-1196. [PMID: 36877586 PMCID: PMC10035031 DOI: 10.1021/acs.biochem.2c00474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Bacteria that infect the human gut must compete for essential nutrients, including iron, under a variety of different metabolic conditions. Several enteric pathogens, including Vibrio cholerae and Escherichia coli O157:H7, have evolved mechanisms to obtain iron from heme in an anaerobic environment. Our laboratory has demonstrated that a radical S-adenosylmethionine (SAM) methyltransferase is responsible for the opening of the heme porphyrin ring and release of iron under anaerobic conditions. Furthermore, the enzyme in V. cholerae, HutW, has recently been shown to accept electrons from NADPH directly when SAM is utilized to initiate the reaction. However, how NADPH, a hydride donor, catalyzes the single electron reduction of a [4Fe-4S] cluster, and/or subsequent electron/proton transfer reactions, was not addressed. In this work, we provide evidence that the substrate, in this case, heme, facilitates electron transfer from NADPH to the [4Fe-4S] cluster. This study uncovers a new electron transfer pathway adopted by radical SAM enzymes and further expands our understanding of these enzymes in bacterial pathogens.
Collapse
Affiliation(s)
- Marley Brimberry
- Department
of Biochemistry and Molecular Biology & Center for Metalloenzyme
Studies, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Corrigan
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department
of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
| | - William N. Lanzilotta
- Department
of Biochemistry and Molecular Biology & Center for Metalloenzyme
Studies, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Hoang TM, Huang W, Gans J, Nowak E, Barbier M, Wilks A, Kane MA, Oglesby AG. The heme-responsive PrrH sRNA regulates Pseudomonas aeruginosa pyochelin gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524833. [PMID: 36712080 PMCID: PMC9882372 DOI: 10.1101/2023.01.19.524833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and virulence, yet this nutrient is sequestered by the innate immune system during infection. When iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small regulatory RNAs (sRNAs), which post-transcriptionally repress expression of non-essential iron-containing proteins thus sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are arranged in tandem on the chromosome, allowing for the transcription of a longer heme-responsive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been studied extensively, the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cultures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to wild type, while the mRNAs for these proteins were not affected by prrH mutation. We identified complementarity between the PrrH sRNA and sequence upstream of the pchE mRNA, suggesting potential for PrrH to directly regulate expression of genes for pyochelin synthesis. We further showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not shaking conditions. Moreover, we discovered controlling for the presence of light was critical for examining the impact of PrrH on pchE expression. As such, our study reports on the first likely target of the PrrH sRNA and highlights key environmental variables that will allow for future characterization of PrrH function.
Collapse
Affiliation(s)
- Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Jonathan Gans
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Evan Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD USA
| |
Collapse
|
17
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
18
|
Hamad AS, Edward EA, Sheta E, Aboushleib HM, Bahey-El-Din M. Iron Acquisition Proteins of Pseudomonas aeruginosa as Potential Vaccine Targets: In Silico Analysis and In Vivo Evaluation of Protective Efficacy of the Hemophore HasAp. Vaccines (Basel) 2022; 11:vaccines11010028. [PMID: 36679873 PMCID: PMC9864456 DOI: 10.3390/vaccines11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is a Gram-negative pathogen responsible for fatal nosocomial infections worldwide. Iron is essential for Gram-negative bacteria to establish an infection. Therefore, iron acquisition proteins (IAPs) of bacteria are attractive vaccine targets. METHODOLOGY A "Reverse Vaccinology" approach was employed in the current study. Expression levels of 37 IAPs in various types of PA infections were analyzed in seven previously published studies. The IAP vaccine candidate was selected based on multiple criteria, including a high level of expression, high antigenicity, solubility, and conservation among PA strains, utilizing suitable bioinformatics analysis tools. The selected IAP candidate was recombinantly expressed in Escherichia coli and purified using metal affinity chromatography. It was further evaluated in vivo for protection efficacy. The novel immune adjuvant, naloxone (NAL), was used. RESULTS AND DISCUSSION HasAp antigen met all the in silico selection criteria, being highly antigenic, soluble, and conserved. In addition, it was the most highly expressed IAP in terms of average fold change compared to control. Although HasAp did excel in the in silico evaluation, subcutaneous immunization with recombinant HasAp alone or recombinant HasAp plus NAL (HasAP-NAL) did not provide the expected protection compared to controls. Immunized mice showed a low IgG2a/IgG1 ratio, indicating a T-helper type 2 (Th2)-oriented immune response that is suboptimal for protection against PA infections. Surprisingly, the bacterial count in livers of both NAL- and HasAp-NAL-immunized mice was significantly lower than the count in the HasAp and saline groups. The same trend was observed in kidneys and lungs obtained from these groups, although the difference was not significant. Such protection could be attributed to the enhancement of innate immunity by NAL. CONCLUSIONS We provided a detailed in silico analysis of IAPs of PA followed by in vivo evaluation of the best IAP, HasAp. Despite the promising in silico results, HasAp did not provide the anticipated vaccine efficacy. HasAp should be further evaluated as a vaccine candidate through varying the immunization regimens, models of infection, and immunoadjuvants. Combination with other IAPs might also improve vaccination efficacy. We also shed light on several highly expressed promising IAPs whose efficacy as vaccine candidates is worthy of further investigation.
Collapse
Affiliation(s)
- Abdelrahman S. Hamad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
| | - Eva A. Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
| | - Eman Sheta
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria P.O. Box 21131, Egypt
| | - Hamida M. Aboushleib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
| | - Mohammed Bahey-El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria P.O. Box 25435, Egypt
- Correspondence:
| |
Collapse
|
19
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
20
|
Zhu Y, Lechardeur D, Bernardet JF, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, Rochat T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum. Virulence 2022; 13:1221-1241. [PMID: 35880611 PMCID: PMC9331221 DOI: 10.1080/21505594.2022.2101197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial pathogens have a critical impact on aquaculture, a sector that accounts for half of the human fish consumption. Flavobacterium psychrophilum (phylum Bacteroidetes) is responsible for bacterial cold-water disease in salmonids worldwide. The molecular factors involved in host invasion, colonization and haemorrhagic septicaemia are mostly unknown. In this study, we identified two new TonB-dependent receptors, HfpR and BfpR, that are required for adaptation to iron conditions encountered during infection and for virulence in rainbow trout. Transcriptional analyses revealed that their expression is tightly controlled and upregulated under specific iron sources and concentrations. Characterization of deletion mutants showed that they act without redundancy: BfpR is required for optimal growth in the presence of high haemoglobin level, while HfpR confers the capacity to acquire nutrient iron from haem or haemoglobin under iron scarcity. The gene hfpY, co-transcribed with hfpR, encodes a protein related to the HmuY family. We demonstrated that HfpY binds haem and contributes significantly to host colonization and disease severity. Overall, these results are consistent with a model in which both BfpR and Hfp systems promote haem uptake and respond to distinct signals to adapt iron acquisition to the different stages of pathogenesis. Our findings give insight into the molecular basis of pathogenicity of a serious pathogen belonging to the understudied family Flavobacteriaceae and point to the newly identified haem receptors as promising targets for antibacterial development.
Collapse
Affiliation(s)
- Yueying Zhu
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Delphine Lechardeur
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | - Cyprien Guérin
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Pierre Nicolas
- INRAE, MaIAGE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Eric Duchaud
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Tatiana Rochat
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
21
|
Donegan RK. The role of host heme in bacterial infection. Biol Chem 2022; 403:1017-1029. [PMID: 36228088 DOI: 10.1515/hsz-2022-0192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022]
Abstract
Heme is an indispensable cofactor for almost all aerobic life, including the human host and many bacterial pathogens. During infection, heme and hemoproteins are the largest source of bioavailable iron, and pathogens have evolved various heme acquisition pathways to satisfy their need for iron and heme. Many of these pathways are regulated transcriptionally by intracellular iron levels, however, host heme availability and intracellular heme levels have also been found to regulate heme uptake in some species. Knowledge of these pathways has helped to uncover not only how these bacteria incorporate host heme into their metabolism but also provided insight into the importance of host heme as a nutrient source during infection. Within this review is covered multiple aspects of the role of heme at the host pathogen interface, including the various routes of heme biosynthesis, how heme is sequestered by the host, and how heme is scavenged by bacterial pathogens. Also discussed is how heme and hemoproteins alter the behavior of the host immune system and bacterial pathogens. Finally, some unanswered questions about the regulation of heme uptake and how host heme is integrated into bacterial metabolism are highlighted.
Collapse
Affiliation(s)
- Rebecca K Donegan
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
| |
Collapse
|
22
|
High-Level Expression of Cell-Surface Signaling System Hxu Enhances Pseudomonas aeruginosa Bloodstream Infection. Infect Immun 2022; 90:e0032922. [PMID: 36169312 PMCID: PMC9584290 DOI: 10.1128/iai.00329-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloodstream infections (BSIs) caused by Pseudomonas aeruginosa are associated with a high mortality rate in the clinic. However, the fitness mechanisms responsible for the evolution of virulence factors that facilitate the dissemination of P. aeruginosa to the bloodstream are poorly understood. In this study, a transcriptomic analysis of the BSI-associated P. aeruginosa clinical isolates showed a high-level expression of cell-surface signaling (CSS) system Hxu. Whole-genome sequencing and comparative genomics of these isolates showed that a mutation in rnfE gene was responsible for the elevated expression of the Hxu-CSS pathway. Most importantly, deletion of the hxuIRA gene cluster in a laboratory strain PAO1 reduced its BSI capability while overexpression of the HxuIRA pathway promoted BSI in a murine sepsis model. We further demonstrated that multiple components in the blood plasma, including heme, hemoglobin, the heme-scavenging proteins haptoglobin, and hemopexin, as well as the iron-delivery protein transferrin, could activate the Hxu system. Together, these studies suggested that the Hxu-CSS system was an important signal transduction pathway contributing to the adaptive pathogenesis of P. aeruginosa in BSI.
Collapse
|
23
|
Gilbert NE, LeCleir GR, Strzepek RF, Ellwood MJ, Twining BS, Roux S, Pennacchio C, Boyd PW, Wilhelm SW. Bioavailable iron titrations reveal oceanic Synechococcus ecotypes optimized for different iron availabilities. ISME COMMUNICATIONS 2022; 2:54. [PMID: 37938659 PMCID: PMC9723758 DOI: 10.1038/s43705-022-00132-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 04/18/2023]
Abstract
The trace metal iron (Fe) controls the diversity and activity of phytoplankton across the surface oceans, a paradigm established through decades of in situ and mesocosm experimental studies. Despite widespread Fe-limitation within high-nutrient, low chlorophyll (HNLC) waters, significant contributions of the cyanobacterium Synechococcus to the phytoplankton stock can be found. Correlations among differing strains of Synechococcus across different Fe-regimes have suggested the existence of Fe-adapted ecotypes. However, experimental evidence of high- versus low-Fe adapted strains of Synechococcus is lacking, and so we investigated the transcriptional responses of microbial communities inhabiting the HNLC, sub-Antarctic region of the Southern Ocean during the Spring of 2018. Analysis of metatranscriptomes generated from on-deck incubation experiments reflecting a gradient of Fe-availabilities reveal transcriptomic signatures indicative of co-occurring Synechococcus ecotypes adapted to differing Fe-regimes. Functional analyses comparing low-Fe and high-Fe conditions point to various Fe-acquisition mechanisms that may allow persistence of low-Fe adapted Synechococcus under Fe-limitation. Comparison of in situ surface conditions to the Fe-titrations indicate ecological relevance of these mechanisms as well as persistence of both putative ecotypes within this region. This Fe-titration approach, combined with transcriptomics, highlights the short-term responses of the in situ phytoplankton community to Fe-availability that are often overlooked by examining genomic content or bulk physiological responses alone. These findings expand our knowledge about how phytoplankton in HNLC Southern Ocean waters adapt and respond to changing Fe supply.
Collapse
Affiliation(s)
- Naomi E Gilbert
- Department of Microbiology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Gary R LeCleir
- Department of Microbiology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Robert F Strzepek
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7004, Australia
- Australian Antarctic Program Partnership (AAPP), Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Michael J Ellwood
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | | | - S Roux
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - C Pennacchio
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7004, Australia
| | - Steven W Wilhelm
- Department of Microbiology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
24
|
de Lima VM, Batista BB, da Silva Neto JF. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for Chromobacterium violaceum Virulence. Front Cell Infect Microbiol 2022; 12:873536. [PMID: 35646721 PMCID: PMC9131926 DOI: 10.3389/fcimb.2022.873536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Chromobacterium violaceum is an environmental Gram-negative beta-proteobacterium that causes systemic infections in humans. C. violaceum uses siderophore-based iron acquisition systems to overcome the host-imposed iron limitation, but its capacity to use other iron sources is unknown. In this work, we characterized ChuPRSTUV as a heme utilization system employed by C. violaceum to explore an important iron reservoir in mammalian hosts, free heme and hemoproteins. We demonstrate that the chuPRSTUV genes comprise a Fur-repressed operon that is expressed under iron limitation. The chu operon potentially encodes a small regulatory protein (ChuP), an outer membrane TonB-dependent receptor (ChuR), a heme degradation enzyme (ChuS), and an inner membrane ABC transporter (ChuTUV). Our nutrition growth experiments using C. violaceum chu deletion mutants revealed that, with the exception of chuS, all genes of the chu operon are required for heme and hemoglobin utilization in C. violaceum. The mutant strains without chuP displayed increased siderophore halos on CAS plate assays. Significantly, we demonstrate that ChuP connects heme and siderophore utilization by acting as a positive regulator of chuR and vbuA, which encode the TonB-dependent receptors for the uptake of heme (ChuR) and the siderophore viobactin (VbuA). Our data favor a model of ChuP as a heme-binding post-transcriptional regulator. Moreover, our virulence data in a mice model of acute infection demonstrate that C. violaceum uses both heme and siderophore for iron acquisition during infection, with a preference for siderophores over the Chu heme utilization system.
Collapse
|
25
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
26
|
Krüger A, Keppel M, Sharma V, Frunzke J. The diversity of heme sensor systems - heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiol Rev 2022; 46:6506450. [PMID: 35026033 DOI: 10.1093/femsre/fuac002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Heme is a versatile molecule that is vital for nearly all cellular life by serving as prosthetic group for various enzymes or as nutritional iron source for diverse microbial species. However, elevated levels of heme molecule are toxic to cells. The complexity of this stimulus has shaped the evolution of diverse heme sensor systems, which are involved in heme-dependent transcriptional regulation in eukaryotes and prokaryotes. The functions of these systems are manifold - ranging from the specific control of heme detoxification or uptake systems to the global integration of heme and iron homeostasis. This review focuses on heme sensor systems, regulating heme homeostasis by transient heme protein interaction. We provide an overview of known heme-binding motifs in prokaryotic and eukaryotic transcription factors. Besides the central ligands, the surrounding amino acid environment was shown to play a pivotal role in heme binding. The diversity of heme-regulatory systems therefore illustrates that prediction based on pure sequence information is hardly possible and requires careful experimental validation. Comprehensive understanding of heme-regulated processes is not only important for our understanding of cellular physiology, but also provides a basis for the development of novel antibacterial drugs and metabolic engineering strategies.
Collapse
Affiliation(s)
- Aileen Krüger
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Marc Keppel
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| |
Collapse
|
27
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Kihn KC, Wilson T, Smith AK, Bradshaw RT, Wintrode PL, Forrest LR, Wilks A, Deredge DJ. Modeling the native ensemble of PhuS using enhanced sampling MD and HDX-ensemble reweighting. Biophys J 2021; 120:5141-5157. [PMID: 34767787 PMCID: PMC8715216 DOI: 10.1016/j.bpj.2021.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
The cytoplasmic heme binding protein from Pseudomonas aeruginosa, PhuS, plays two essential roles in regulating heme uptake and iron homeostasis. First, PhuS shuttles exogenous heme to heme oxygenase (HemO) for degradation and iron release. Second, PhuS binds DNA and modulates the transcription of the prrF/H small RNAs (sRNAs) involved in the iron-sparing response. Heme binding to PhuS regulates this dual function, as the unliganded form binds DNA, whereas the heme-bound form binds HemO. Crystallographic studies revealed nearly identical structures for apo- and holo-PhuS, and yet numerous solution-based measurements indicate that heme binding is accompanied by large conformational rearrangements. In particular, hydrogen-deuterium exchange mass spectrometry (HDX-MS) of apo- versus holo-PhuS revealed large differences in deuterium uptake, notably in α-helices 6, 7, and 8 (α6,7,8), which contribute to the heme binding pocket. These helices were mostly labile in apo-PhuS but largely protected in holo-PhuS. In contrast, in silico-predicted deuterium uptake levels of α6,7,8 from molecular dynamics (MD) simulations of the apo- and holo-PhuS structures are highly similar, consistent only with the holo-PhuS HDX-MS data. To rationalize this discrepancy between crystal structures, simulations, and observed HDX-MS, we exploit a recently developed computational approach (HDXer) that fits the relative weights of conformational populations within an ensemble of structures to conform to a target set of HDX-MS data. Here, a combination of enhanced sampling MD, HDXer, and dimensionality reduction analysis reveals an apo-PhuS conformational landscape in which α6, 7, and 8 are significantly rearranged compared to the crystal structure, including a loss of secondary structure in α6 and the displacement of α7 toward the HemO binding interface. Circular dichroism analysis confirms the loss of secondary structure, and the extracted ensembles of apo-PhuS and of heme-transfer-impaired H212R mutant, are consistent with known heme binding and transfer properties. The proposed conformational landscape provides structural insights into the modulation by heme of the dual function of PhuS.
Collapse
Affiliation(s)
- Kyle C Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Tyree Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Ally K Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | | | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Lucy R Forrest
- Computational Structural Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
29
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
30
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
31
|
Bateman TJ, Shah M, Ho TP, Shin HE, Pan C, Harris G, Fegan JE, Islam EA, Ahn SK, Hooda Y, Gray-Owen SD, Chen W, Moraes TF. A Slam-dependent hemophore contributes to heme acquisition in the bacterial pathogen Acinetobacter baumannii. Nat Commun 2021; 12:6270. [PMID: 34725337 PMCID: PMC8560813 DOI: 10.1038/s41467-021-26545-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Nutrient acquisition systems are often crucial for pathogen growth and survival during infection, and represent attractive therapeutic targets. Here, we study the protein machinery required for heme uptake in the opportunistic pathogen Acinetobacter baumannii. We show that the hemO locus, which includes a gene encoding the heme-degrading enzyme, is required for high-affinity heme acquisition from hemoglobin and serum albumin. The hemO locus includes a gene coding for a heme scavenger (HphA), which is secreted by a Slam protein. Furthermore, heme uptake is dependent on a TonB-dependent receptor (HphR), which is important for survival and/or dissemination into the vasculature in a mouse model of pulmonary infection. Our results indicate that A. baumannii uses a two-component receptor system for the acquisition of heme from host heme reservoirs.
Collapse
Affiliation(s)
- Thomas J Bateman
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Timothy Pham Ho
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Greg Harris
- National Research Council Canada, Human Health Therapeutics (HHT) Research Center, Ottawa, ON, Canada
| | - Jamie E Fegan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Epshita A Islam
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yogesh Hooda
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wangxue Chen
- National Research Council Canada, Human Health Therapeutics (HHT) Research Center, Ottawa, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Ito M, Sugai Y. Nanobubbles activate anaerobic growth and metabolism of Pseudomonas aeruginosa. Sci Rep 2021; 11:16858. [PMID: 34413439 PMCID: PMC8376943 DOI: 10.1038/s41598-021-96503-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
The effect of nanobubbles on anaerobic growth and metabolism of Pseudomonas aeruginosa was investigated. P. aeruginosa grew earlier in the culture medium containing nanobubbles and the bacterial cell concentration in that culture medium was increased a few times higher compared to the medium without nanobubbles under anaerobic condition. Both gas and protein, which are the metabolites of P. aeruginosa, were remarkably produced in the culture medium containing nanobubbles whereas those metabolites were little detected in the medium without nanobubbles, indicating nanobubbles activated anaerobic growth and metabolism of P. aeruginosa. The carbon dioxide nanobubbles came to be positively charged by adsorbing cations and delivered ferrous ions, one of the trace essential elements for bacterial growth, to the microbial cells, which activated the growth and metabolism of P. aeruginosa. The oxygen nanobubbles activated the activities of P. aeruginosa as an oxygen source.
Collapse
Affiliation(s)
- Miu Ito
- Department of Earth Resources Engineering, Graduate School of Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, 8190395, Japan
| | - Yuichi Sugai
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744, Motooka, Nishiku, Fukuoka, 8190395, Japan.
| |
Collapse
|
33
|
Dent AT, Brimberry M, Albert T, Lanzilotta WN, Moënne-Loccoz P, Wilks A. Axial Heme Coordination by the Tyr-His Motif in the Extracellular Hemophore HasAp Is Critical for the Release of Heme to the HasR Receptor of Pseudomonas aeruginosa. Biochemistry 2021; 60:2549-2559. [PMID: 34324310 DOI: 10.1021/acs.biochem.1c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa senses extracellular heme via an extra cytoplasmic function σ factor that is activated upon interaction of the hemophore holo-HasAp with the HasR receptor. Herein, we show Y75H holo-HasAp interacts with HasR but is unable to release heme for signaling and uptake. To understand this inhibition, we undertook a spectroscopic characterization of Y75H holo-HasAp by resonance Raman (RR), electron paramagnetic resonance (EPR), and X-ray crystallography. The RR spectra are consistent with a mixed six-coordinate high-spin (6cHS), six-coordinate low-spin (6cLS) heme configuration and an H218O exchangeable FeIII-O stretching frequency with 16O/18O and H/D isotope shifts that support a two-body Fe-OH2 oscillator with (iron-hydroxy)-like character as both hydrogen atoms are engaged in short hydrogen bond interactions with protein side chains. Further support comes from the EPR spectrum of Y75H holo-HasAp that shows a LS rhombic signal with ligand-field splitting values intermediate between those of His-hydroxy and bis-His ferric hemes. The crystal structure of Y75H holo-HasAp confirmed the coordinated solvent molecule hydrogen bonded through H75 and H83. The long-range conformational rearrangement of HasAp upon heme binding can still take place in Y75H holo-HasAp, because the intercalation of a hydroxy ligand between the heme iron and H75 allows the variant to reproduce the heme binding pocket observed in wild-type holo-HasAp. However, in the absence of a covalent linkage to the Y75 loop combined with the malleability provided by the bracketing H75 and H83 hydrogen bonds, either the hydroxy sixth ligand remains bound after complexation of Y75H holo-HasAp with HasR or rearrangement and coordination of H85 prevent heme transfer.
Collapse
Affiliation(s)
- Alecia T Dent
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Marley Brimberry
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
34
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
35
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
36
|
Robinson EA, Wilks A, Xue F. Repurposing Acitretin as an Antipseudomonal Agent Targeting the Pseudomonas aeruginosa Iron-Regulated Heme Oxygenase. Biochemistry 2021; 60:689-698. [PMID: 33621054 DOI: 10.1021/acs.biochem.0c00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron is an essential micronutrient for the survival and virulence of the bacterial pathogen Pseudomonas aeruginosa. To overcome iron withholding and successfully colonize a host, P. aeruginosa uses a variety of mechanisms to acquire iron, including the secretion of high-affinity iron chelators (siderophores) or the uptake and utilization of heme. P. aeruginosa heme oxygenase (HemO) plays pivotal roles in heme sensing, uptake, and utilization and has emerged as a therapeutic target for the development of antipseudomonal agents. Using a high-throughput fluorescence quenching assay combined with minimum inhibitory concentration measurements, we screened the Selleck Bioactive collection of 2100 compounds and identified acitretin, a Food and Drug Administration-approved oral retinoid, as a potent and selective inhibitor of HemO. Acitretin binds to HemO with a KD value of 0.10 ± 0.02 μM and inhibits the growth of P. aeruginosa PAO1 with an IC50 of 70 ± 18 μg/mL. In addition, acitretin showed good selectivity for HemO, which uniquely generates BVIXβ/δ, over human heme oxygenase (hHO1) and other BVIXα-producing homologues such as the heme oxygenases from Neisseria meningitidis (nmHO) and Acinetobacter baumannii (abHO). The binding of acitretin within the HemO active site was confirmed by 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance, and molecular modeling provided further insight into potential interactions of acitretin with residues specific for orienting heme in the β/δ selective HemO. Moreover, at 20 μM, acitretin inhibited the enzymatic activity of HemO in P. aeruginosa cells by >60% and effectively blocked the ability of P. aeruginosa to sense and acquire heme as demonstrated in the β-galactosidase transcriptional reporter assay.
Collapse
Affiliation(s)
- Elizabeth A Robinson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
37
|
A High-Throughput Method for Identifying Novel Genes That Influence Metabolic Pathways Reveals New Iron and Heme Regulation in Pseudomonas aeruginosa. mSystems 2021; 6:6/1/e00933-20. [PMID: 33531406 PMCID: PMC7857532 DOI: 10.1128/msystems.00933-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Heme is an essential metabolite for most life on earth. Bacterial pathogens almost universally require iron to infect a host, often acquiring this nutrient in the form of heme. The Gram-negative pathogen Pseudomonas aeruginosa is no exception, where heme acquisition and metabolism are known to be crucial for both chronic and acute infections. To unveil unknown genes and pathways that could play a role with heme metabolic flux in this pathogen, we devised an omic-based approach we dubbed “Met-Seq,” for metabolite-coupled transposon sequencing. Met-Seq couples a biosensor with fluorescence-activated cell sorting (FACS) and massively parallel sequencing, allowing for direct identification of genes associated with metabolic changes. In this work, we first construct and validate a heme biosensor for use with P. aeruginosa and exploit Met-Seq to identify 188 genes that potentially influence intracellular heme levels. Identified genes largely consisted of metabolic pathways not previously associated with heme, including many secreted virulence effectors, as well as 11 predicted small RNAs (sRNAs) and riboswitches whose functions are not currently understood. We verify that five Met-Seq hits affect intracellular heme levels; a predicted extracytoplasmic function (ECF) factor, a phospholipid acquisition system, heme biosynthesis regulator Dnr, and two predicted antibiotic monooxygenase (ABM) domains of unknown function (PA0709 and PA3390). Finally, we demonstrate that PA0709 and PA3390 are novel heme-binding proteins. Our data suggest that Met-Seq could be extrapolated to other biological systems and metabolites for which there is an available biosensor, and provides a new template for further exploration of iron/heme regulation and metabolism in P. aeruginosa and other pathogens. IMPORTANCE The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub “Met-Seq” (metabolite-coupled Tn sequencing). Met-Seq uses the powerful combination of fluorescent biosensors, fluorescence-activated cell sorting (FACS), and next-generation sequencing (NGS) to rapidly identify genes that influence the levels of specific intracellular metabolites. For proof of concept, we create and test a heme biosensor and then exploit Met-Seq to identify novel genes involved in the regulation of heme in the pathogen Pseudomonas aeruginosa. Met-Seq-generated data were largely comprised of genes which have not previously been reported to influence heme levels in this pathogen, two of which we verify as novel heme-binding proteins. As heme is a required metabolite for host infection in P. aeruginosa and most other pathogens, our studies provide a new list of targets for potential antimicrobial therapies and shed additional light on the balance between infection, heme uptake, and heme biosynthesis.
Collapse
|
38
|
Wilson T, Mouriño S, Wilks A. The heme-binding protein PhuS transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2 locus. J Biol Chem 2021; 296:100275. [PMID: 33428928 PMCID: PMC7948967 DOI: 10.1016/j.jbc.2021.100275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen requiring iron for its survival and virulence. P. aeruginosa can acquire iron from heme via the nonredundant heme assimilation system and Pseudomonas heme uptake (Phu) systems. Heme transported by either the heme assimilation system or Phu system is sequestered by the cytoplasmic protein PhuS. Furthermore, PhuS has been shown to specifically transfer heme to the iron-regulated heme oxygenase HemO. As the PhuS homolog ShuS from Shigella dysenteriae was observed to bind DNA as a function of its heme status, we sought to further determine if PhuS, in addition to its role in regulating heme flux through HemO, functions as a DNA-binding protein. Herein, through a combination of chromatin immunoprecipitation–PCR, EMSA, and fluorescence anisotropy, we show that apo-PhuS but not holo-PhuS binds upstream of the tandem iron-responsive sRNAs prrF1,F2. Previous studies have shown the PrrF sRNAs are required for sparing iron for essential proteins during iron starvation. Furthermore, under certain conditions, a heme-dependent read through of the prrF1 terminator yields the longer PrrH transcript. Quantitative PCR analysis of P. aeruginosa WT and ΔphuS strains shows that loss of PhuS abrogates the heme-dependent regulation of PrrF and PrrH levels. Taken together, our data show that PhuS, in addition to its role in extracellular heme metabolism, also functions as a transcriptional regulator by modulating PrrF and PrrH levels in response to heme. This dual function of PhuS is central to integrating extracellular heme utilization into the PrrF/PrrH sRNA regulatory network that is critical for P. aeruginosa adaptation and virulence within the host.
Collapse
Affiliation(s)
- Tyree Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
39
|
Abstract
Drug-resistant infections pose a significant risk to global health as pathogenic bacteria become increasingly difficult to treat. The rapid selection of resistant strains through poor antibiotic stewardship has reduced the number of viable treatments and increased morbidity of infections, especially among the immunocompromised. To circumvent such challenges, new strategies are required to stay ahead of emerging resistance trends, yet research and funding for antibiotic development lags other classes of therapeutics. Though the use of metals in therapeutics has been around for centuries, recent strategies have devoted a great deal of effort into the pathways through which bacteria acquire and utilize iron, which is critical for the establishment of infection. To target iron uptake systems, siderophore-drug conjugates have been developed that hijack siderophore-based iron uptake for delivery of antibiotics. While this strategy has produced several potential leads, the use of siderophores in infection is diminished over time when bacteria adapt to utilize heme as an iron source, leading to a need for the development of porphyrin mimetics as therapeutics. The use of such strategies as well as the inclusion of gallium, a redox-inert iron mimic, are herein reviewed.
Collapse
Affiliation(s)
- Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
40
|
Patel N, Swavey S, Robinson J. A Cationic Porphyrin, ZnPor, Disassembles Pseudomonas aeruginosa Biofilm Matrix, Kills Cells Directly, and Enhances Antibiotic Activity of Tobramycin. Antibiotics (Basel) 2020; 9:E875. [PMID: 33291344 PMCID: PMC7762324 DOI: 10.3390/antibiotics9120875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
One of the greatest threats to human health is the rise in antibiotic-resistant bacterial infections. Pseudomonas aeruginosa (PsA) is an "opportunistic" pathogen known to cause life-threatening infections in immunocompromised individuals and is the most common pathogen in adults with cystic fibrosis (CF). We report here a cationic zinc (II) porphyrin, ZnPor, that effectively kills planktonic and biofilm-associated cells of PsA. In standard tests against 16-18 h-old biofilms, concentrations as low as 16 µg/mL resulted in the extensive disruption and detachment of the matrix. The pre-treatment of biofilms for 30 min with ZnPor at minimum inhibitory concentration (MIC) levels (4 µg/mL) substantially enhanced the ability of tobramycin (Tobra) to kill biofilm-associated cells. We demonstrate the rapid uptake and accumulation of ZnPor in planktonic cells even in dedicated heme-uptake system mutants (ΔPhu, ΔHas, and the double mutant). Furthermore, uptake was unaffected by the ionophore carbonyl cyanide m-chlorophenyl hydrazine (CCCP). Cells pre-exposed to ZnPor took up the cell-impermeant dye SYTOXTM Green in a concentration-dependent manner. The accumulation of ZnPor did not result in cell lysis, nor did the cells develop resistance. Taken together, these properties make ZnPor a promising candidate for treating multi-drug-resistant infections, including persistent, antibiotic-resistant biofilms.
Collapse
Affiliation(s)
- Neha Patel
- Department of Biology, University of Dayton, Dayton, OH 45469, USA;
| | - Shawn Swavey
- Department of Chemistry, University of Dayton, Dayton, OH 45469, USA;
| | - Jayne Robinson
- Department of Biology, University of Dayton, Dayton, OH 45469, USA;
- Integrated Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
41
|
Normant V, Josts I, Kuhn L, Perraud Q, Fritsch S, Hammann P, Mislin GLA, Tidow H, Schalk IJ. Nocardamine-Dependent Iron Uptake in Pseudomonas aeruginosa: Exclusive Involvement of the FoxA Outer Membrane Transporter. ACS Chem Biol 2020; 15:2741-2751. [PMID: 32902248 DOI: 10.1021/acschembio.0c00535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron is a key nutrient for almost all living organisms. Paradoxically, it is poorly soluble and consequently poorly bioavailable. Bacteria have thus developed multiple strategies to access this metal. One of the most common consists of the use of siderophores, small compounds that chelate ferric iron with very high affinity. Many bacteria are able to produce their own siderophores or use those produced by other microorganisms (exosiderophores) in a piracy strategy. Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, and is also able to use a large panel of exosiderophores. We investigated the ability of P. aeruginosa to use nocardamine (NOCA) and ferrioxamine B (DFOB) as exosiderophores under iron-limited planktonic growth conditions. Proteomic and RT-qPCR approaches showed induction of the transcription and expression of the outer membrane transporter FoxA in the presence of NOCA or DFOB in the bacterial environment. Expression of the proteins of the heme- or pyoverdine- and pyochelin-dependent iron uptake pathways was not affected by the presence of these two tris-hydroxamate siderophores. 55Fe uptake assays using foxA mutants showed ferri-NOCA to be exclusively transported by FoxA, whereas ferri-DFOB was transported by FoxA and at least one other unidentified transporter. The crystal structure of FoxA complexed with NOCA-Fe revealed very similar siderophore binding sites between NOCA-Fe and DFOB-Fe. We discuss iron uptake by hydroxamate exosiderophores in P. aeruginosa cells in light of these results.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Sarah Fritsch
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Isabelle J. Schalk
- CNRS, UMR7242, ESBS, Université de Strasbourg, Bld Sébastien Brant, F-67412 Illkirch, France
| |
Collapse
|
42
|
Centola G, Deredge DJ, Hom K, Ai Y, Dent AT, Xue F, Wilks A. Gallium(III)-Salophen as a Dual Inhibitor of Pseudomonas aeruginosa Heme Sensing and Iron Acquisition. ACS Infect Dis 2020; 6:2073-2085. [PMID: 32551497 DOI: 10.1021/acsinfecdis.0c00138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a primary iron source and senses the availability of exogenous heme through the heme assimilation system (Has), an extra cytoplasmic function σ-factor system. A secreted hemophore HasAp scavenges heme and, upon interaction with the outer-membrane receptor HasR, activates a signaling cascade, which in turn creates a positive feedback loop critical for sensing and adaptation within the host. The ability to sense and respond to heme as an iron source contributes to virulence. Consequently, the inhibition of this system will lead to a disruption in iron homeostasis, decreasing virulence. We have identified a salophen scaffold that successfully inhibits the activation of the Has signaling system while simultaneously targeting iron uptake via xenosiderophore receptors. We propose this dual mechanism wherein free Ga3+-salophen reduces growth through uptake and iron mimicry. A dual mechanism targeting extracellular heme signaling and uptake together with Ga3+-induced toxicity following active Ga3+salophen uptake provides a significant therapeutic advantage while reducing the propensity to develop resistance.
Collapse
Affiliation(s)
- Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Alecia T. Dent
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
43
|
Zhang Y, Pan X, Liao S, Jiang C, Wang L, Tang Y, Wu G, Dai G, Chen L. Quantitative Proteomics Reveals the Mechanism of Silver Nanoparticles against Multidrug-Resistant Pseudomonas aeruginosa Biofilms. J Proteome Res 2020; 19:3109-3122. [PMID: 32567865 DOI: 10.1021/acs.jproteome.0c00114] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decline of clinically effective antibiotics has made it necessary to develop more effective antimicrobial agents, especially for refractory biofilm-related infections. Silver nanoparticles (AgNPs) are a new type of antimicrobial agent that can eradicate biofilms and reduce bacterial resistance, but its anti-biofilm mechanism has not been elucidated. In this study, we investigated the molecular mechanism of AgNPs against multidrug-resistant Pseudomonas aeruginosa by means of anti-biofilm tests, scanning electron microscopy (SEM), and tandem mass tag (TMT)-labeled quantitative proteomics. The results of anti-biofilm tests demonstrated that AgNPs inhibited the formation of P. aeruginosa biofilm and disrupted its preformed biofilm. SEM showed that when exposed to AgNPs, the structure of the P. aeruginosa biofilm was destroyed, along with significant reduction of its biomass. TMT-labeled quantitative proteomic analysis revealed that AgNPs could defeat the P. aeruginosa biofilm in multiple ways by inhibiting its adhesion and motility, stimulating strong oxidative stress response, destroying iron homeostasis, blocking aerobic and anaerobic respiration, and affecting quorum sensing systems. Our findings offer a new insight into clarifying the mechanism of AgNPs against biofilms, thus providing a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Shijing Liao
- Department of Clinical Laboratory, The First People's Hospital of Yueyang, Yueyang 414000, China
| | - Congyuan Jiang
- Hunan Anson Biotechnology Company Ltd., Changsha 410008, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Yurong Tang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Gan Dai
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
44
|
Atanaskovic I, Mosbahi K, Sharp C, Housden NG, Kaminska R, Walker D, Kleanthous C. Targeted Killing of Pseudomonas aeruginosa by Pyocin G Occurs via the Hemin Transporter Hur. J Mol Biol 2020; 432:3869-3880. [PMID: 32339530 PMCID: PMC7322526 DOI: 10.1016/j.jmb.2020.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
Abstract
Pseudomonas aeruginosa is a priority pathogen for the development of new antibiotics, particularly because multi-drug-resistant strains of this bacterium cause serious nosocomial infections and are the leading cause of death in cystic fibrosis patients. Pyocins, bacteriocins of P. aeruginosa, are potent and diverse protein antibiotics that are deployed during bacterial competition. Pyocins are produced by more than 90% of P. aeruginosa strains and may have utility as last resort antibiotics against this bacterium. In this study, we explore the antimicrobial activity of a newly discovered pyocin called pyocin G (PyoG). We demonstrate that PyoG has broad killing activity against a collection of clinical P. aeruginosa isolates and is active in a Galleria mellonella infection model. We go on to identify cell envelope proteins that are necessary for the import of PyoG and its killing activity. PyoG recognizes bacterial cells by binding to Hur, an outer-membrane TonB-dependent transporter. Both pyocin and Hur interact with TonB1, which in complex with ExbB-ExbD links the proton motive force generated across the inner membrane with energy-dependent pyocin translocation across the outer membrane. Inner-membrane translocation of PyoG is dependent on the conserved inner-membrane AAA+ ATPase/protease, FtsH. We also report a functional exploration of the PyoG receptor. We demonstrate that Hur can bind to hemin in vitro and that this interaction is blocked by PyoG, confirming the role of Hur in hemin acquisition.
Collapse
Affiliation(s)
- Iva Atanaskovic
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Khedidja Mosbahi
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, G12 8QQ Glasgow, UK
| | - Connor Sharp
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel Walker
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, G12 8QQ Glasgow, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
45
|
Dent AT, Wilks A. Contributions of the heme coordinating ligands of the Pseudomonas aeruginosa outer membrane receptor HasR to extracellular heme sensing and transport. J Biol Chem 2020; 295:10456-10467. [PMID: 32522817 DOI: 10.1074/jbc.ra120.014081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa exhibits a high requirement for iron, which it can acquire via several mechanisms, including the acquisition and utilization of heme. The P. aeruginosa genome encodes two heme uptake systems, the heme assimilation system (Has) and the Pseudomonas heme utilization (Phu) system. Extracellular heme is sensed via the Has system, which encodes an extracytoplasmic function (ECF) σ factor system. Previous studies have shown that the transfer of heme from the extracellular hemophore HasAp to the outer membrane receptor HasR is required for activation of the σ factor HasI and upregulation of has operon expression. Here, employing site-directed mutagenesis, allelic exchange, quantitative PCR analyses, immunoblotting, and 13C-heme uptake experiments, we delineated the differential contributions of the extracellular FRAP/PNPNL loop residue His-624 in HasR and of His-221 in its N-terminal plug domain required for heme capture to heme transport and signaling, respectively. Specifically, we show that substitution of the N-terminal plug His-221 disrupts both signaling and transport, leading to dysregulation of both the Has and Phu uptake systems. Our results are consistent with a model wherein heme release from HasAp to the N-terminal plug of HasR is required to initiate signaling, whereas His-624 is required for simultaneously closing off the heme transport channel from the extracellular medium and triggering heme transport. Our results provide critical insight into heme release, signaling, and transport in P. aeruginosa and suggest a functional link between the ECF σ factor and Phu heme uptake system.
Collapse
Affiliation(s)
- Alecia T Dent
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Shi YJ, Fang QJ, Huang HQ, Gong CG, Hu YH. HutZ is required for biofilm formation and contributes to the pathogenicity of Edwardsiella piscicida. Vet Res 2019; 50:76. [PMID: 31578154 PMCID: PMC6775658 DOI: 10.1186/s13567-019-0693-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella piscicida is a severe fish pathogen. Haem utilization systems play an important role in bacterial adversity adaptation and pathogenicity. In this study, a speculative haem utilization protein, HutZEp, was characterized in E. piscicida. hutZEp is encoded with two other genes, hutW and hutX, in an operon that is similar to the haem utilization operon hutWXZ identified in V. cholerae. However, protein activity analysis showed that HutZEp is probably not related to hemin utilization. To explore the biological role of HutZEp, a markerless hutZEp in-frame mutant strain, TX01ΔhutZ, was constructed. Deletion of hutZEp did not significantly affect bacterial growth in normal medium, in iron-deficient conditions, or in the presence of haem but significantly retarded bacterial biofilm growth. The expression of known genes related to biofilm growth was not affected by hutZEp deletion, which indicated that HutZEp was probably a novel factor promoting biofilm formation in E. piscicida. Compared to the wild-type TX01, TX01ΔhutZ exhibited markedly compromised tolerance to acid stress and host serum stress. Pathogenicity analysis showed that inactivation of hutZEp significantly impaired the ability of E. piscicida to invade and reproduce in host cells and to infect host tissue. In contrast to TX01, TX01ΔhutZ was defective in blocking host macrophage activation. The expression of hutZEp was directly regulated by the ferric uptake regulator Fur. This study is the first functional characterization of HutZ in a fish pathogen, and these findings suggested that HutZEp is essential for E. piscicida biofilm formation and contributes to host infection.
Collapse
Affiliation(s)
- Yan-Jie Shi
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China.,Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Jian Fang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui-Qin Huang
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China.,Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Chun-Guang Gong
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China.
| | - Yong-Hua Hu
- Ocean College of Hebei Agricultural University, Qinhuangdao, 066000, China. .,Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
47
|
Otero-Asman JR, García-García AI, Civantos C, Quesada JM, Llamas MA. Pseudomonas aeruginosa possesses three distinct systems for sensing and using the host molecule haem. Environ Microbiol 2019; 21:4629-4647. [PMID: 31390127 DOI: 10.1111/1462-2920.14773] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022]
Abstract
Pathogens have developed several strategies to obtain iron during infection, including the use of iron-containing molecules from the host. Haem accounts for the vast majority of the iron pool in vertebrates and thus represents an important source of iron for pathogens. Using a proteomic approach, we have identified in this work a previously uncharacterized system, which we name Hxu, that together with the known Has and Phu systems, is used by the human pathogen Pseudomonas aeruginosa to respond to haem. We show that the Has and Hxu systems are functional signal transduction pathways of the cell-surface signalling class and report the mechanism triggering the activation of these signalling systems. Both signalling cascades involve an outer membrane receptor (HasR and HxuA respectively) that upon sensing haem in the extracellular medium produces the activation of an σECF factor in the cytosol. HxuA has a major role in signalling and a minor role in haem acquisition in conditions in which the HasR and PhuR receptors or other sources of iron are present. Remarkably, P. aeruginosa compensates the lack of the HasR receptor by increasing the production of HxuA, which underscores the importance of haem signalling for this pathogen.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Ana I García-García
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Cristina Civantos
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - José M Quesada
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| |
Collapse
|
48
|
Giardina BJ, Shahzad S, Huang W, Wilks A. Heme uptake and utilization by hypervirulent Acinetobacter baumannii LAC-4 is dependent on a canonical heme oxygenase (abHemO). Arch Biochem Biophys 2019; 672:108066. [PMID: 31398314 DOI: 10.1016/j.abb.2019.108066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen that causes serious infections in critically ill and immune compromised patients. The ability to acquire iron from the hosts iron and heme containing proteins is critical to their survival and virulence. The majority of A. baumannii hypervirulent strains encode a heme uptake system that includes a putative heme oxygenase (hemO). Despite reports indicating A. baumannii can grow on heme direct evidence of extracellular heme uptake and metabolism has not been shown. Through isotopic labeling (13C-heme) we show the hypervirulent A. baumannii LAC-4 metabolizes heme to biliverdin IXα (BVIXα), whereas ATC 17978 that lacks the hemO gene cluster cannot efficiently utilize heme. Expression and purification of the protein encoded by the A. baumannii LAC-4 hemO gene confirmed catalytic conversion of heme to BVIX. We further show inhibition of abHemO with previously characterized P. aeruginosa HemO inhibitors in a fluorescence based assay that couples HemO catalytic activity to the BVIXα binding phytochrome IFP1.4. Furthermore, the hemO gene cluster encodes genes with homology to heme-dependent extra cytoplasmic function (ECF) σ factor systems. The hemophore-dependent ECF system in Pseudomonas aeruginosa has been shown to play a critical role in heme sensing and virulence within the host. The prevalence of a hemO gene cluster in A. baumannii LAC4 and other hypervirulent strains suggests it is required within the host to adapt and utilize heme and is a major contributor to virulence.
Collapse
Affiliation(s)
- Bennett J Giardina
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Saba Shahzad
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
49
|
Proteomic Analysis of the Pseudomonas aeruginosa Iron Starvation Response Reveals PrrF Small Regulatory RNA-Dependent Iron Regulation of Twitching Motility, Amino Acid Metabolism, and Zinc Homeostasis Proteins. J Bacteriol 2019; 201:JB.00754-18. [PMID: 30962354 DOI: 10.1128/jb.00754-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/31/2019] [Indexed: 12/16/2022] Open
Abstract
Iron is a critical nutrient for most microbial pathogens, and the immune system exploits this requirement by sequestering iron. The opportunistic pathogen Pseudomonas aeruginosa exhibits a high requirement for iron yet an exquisite ability to overcome iron deprivation during infection. Upon iron starvation, P. aeruginosa induces the expression of several high-affinity iron acquisition systems, as well as the PrrF small regulatory RNAs (sRNAs) that mediate an iron-sparing response. Here, we used liquid chromatography-tandem mass spectrometry to conduct proteomics of the iron starvation response of P. aeruginosa Iron starvation increased levels of multiple proteins involved in amino acid catabolism, providing the capacity for iron-independent entry of carbons into the tricarboxylic acid (TCA) cycle. Proteins involved in sulfur assimilation and cysteine biosynthesis were reduced upon iron starvation, while proteins involved in iron-sulfur cluster biogenesis were increased, highlighting the central role of iron in P. aeruginosa metabolism. Iron starvation also resulted in changes in the expression of several zinc-responsive proteins and increased levels of twitching motility proteins. Subsequent analyses provided evidence for the regulation of many of these proteins via posttranscriptional regulatory events, some of which are dependent upon the PrrF sRNAs. Moreover, we showed that iron-regulated twitching motility is partially dependent upon the prrF locus, highlighting a novel link between the PrrF sRNAs and motility. These findings add to the known impacts of iron starvation in P. aeruginosa and outline potentially novel roles for the PrrF sRNAs in iron homeostasis and pathogenesis.IMPORTANCE Iron is central for growth and metabolism of almost all microbial pathogens, and as such, this element is sequestered by the host innate immune system to restrict microbial growth. Here, we used label-free proteomics to investigate the Pseudomonas aeruginosa iron starvation response, revealing a broad landscape of metabolic and metal homeostasis changes that have not previously been described. We further provide evidence that many of these processes, including twitching motility, are regulated through the iron-responsive PrrF small regulatory RNAs. As such, this study demonstrates the power of proteomics for defining stress responses of microbial pathogens.
Collapse
|
50
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|