1
|
Amissah HA, Antwi MH, Amissah TA, Combs SE, Shevtsov M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025; 14:204. [PMID: 39936995 PMCID: PMC11817126 DOI: 10.3390/cells14030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The epichaperome, a dynamic and integrated network of chaperone proteins, extends its roles beyond basic protein folding to protein stabilization and intracellular signal transduction to orchestrating a multitude of cellular processes critical for tumor survival. In this review, we explore the multifaceted roles of the epichaperome, delving into its diverse cellular locations, factors that modulate its formation and function, its liquid-liquid phase separation, and the key signaling and crosstalk pathways it regulates, including cellular metabolism and intracellular signal transduction. We further highlight techniques for isolating and identifying epichaperome networks, pitfalls, and opportunities. Further, we review the profound implications of the epichaperome for cancer treatment and therapy design, underscoring the need for strategic engineering that hinges on a comprehensive insight into the comprehensive structure and workings of the epichaperome across the heterogeneous cell subpopulations in the tumor milieu. By presenting a holistic view of the epichaperome's functions and mechanisms, we aim to underscore its potential as a key target for novel anti-cancer strategies, revealing that the epichaperome is not merely a piece of protein folding machinery but a mastermind that facilitates the malignant phenotype.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, Winneba CE-122-2486, Central Region, Ghana
| | - Maxwell Hubert Antwi
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Tawfeek Ahmed Amissah
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Saint Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
2
|
Svagusa T, Sikiric S, Milavic M, Sepac A, Seiwerth S, Milicic D, Gasparovic H, Biocina B, Rudez I, Sutlic Z, Manola S, Varvodic J, Udovicic M, Urlic M, Ivankovic S, Plestina S, Paic F, Kulic A, Bakovic P, Sedlic F. Heart failure in patients is associated with downregulation of mitochondrial quality control genes. Eur J Clin Invest 2023; 53:e14054. [PMID: 37403271 DOI: 10.1111/eci.14054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/27/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is one of key factors causing heart failure. We performed a comprehensive analysis of expression of mitochondrial quality control (MQC) genes in heart failure. METHODS Myocardial samples were obtained from patients with ischemic and dilated cardiomyopathy in a terminal stage of heart failure and donors without heart disease. Using quantitative real-time PCR, we analysed a total of 45 MQC genes belonging to mitochondrial biogenesis, fusion-fission balance, mitochondrial unfolded protein response (UPRmt), translocase of the inner membrane (TIM) and mitophagy. Protein expression was analysed by ELISA and immunohistochemistry. RESULTS The following genes were downregulated in ischemic and dilated cardiomyopathy: COX1, NRF1, TFAM, SIRT1, MTOR, MFF, DNM1L, DDIT3, UBL5, HSPA9, HSPE1, YME1L, LONP1, SPG7, HTRA2, OMA1, TIMM23, TIMM17A, TIMM17B, TIMM44, PAM16, TIMM22, TIMM9, TIMM10, PINK1, PARK2, ROTH1, PARL, FUNDC1, BNIP3, BNIP3L, TPCN2, LAMP2, MAP1LC3A and BECN1. Moreover, MT-ATP8, MFN2, EIF2AK4 and ULK1 were downregulated in heart failure from dilated, but not ischemic cardiomyopathy. VDAC1 and JUN were only genes that exhibited significantly different expression between ischemic and dilated cardiomyopathy. Expression of PPARGC1, OPA1, JUN, CEBPB, EIF2A, HSPD1, TIMM50 and TPCN1 was not significantly different between control and any form of heart failure. TOMM20 and COX proteins were downregulated in ICM and DCM. CONCLUSIONS Heart failure in patients with ischemic and dilated cardiomyopathy is associated with downregulation of large number of UPRmt, mitophagy, TIM and fusion-fission balance genes. This indicates multiple defects in MQC and represents one of potential mechanisms underlying mitochondrial dysfunction in patients with heart failure.
Collapse
Affiliation(s)
- T Svagusa
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
| | - S Sikiric
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - M Milavic
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - A Sepac
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - S Seiwerth
- Department of Pathology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Pathology and Cytology, University Hospital Center Zagreb, Zagreb, Croatia
| | - D Milicic
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiovascular Diseases, University Hospital Center Zagreb, Zagreb, Croatia
| | - H Gasparovic
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - B Biocina
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - I Rudez
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - Z Sutlic
- Department of Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - S Manola
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
| | - J Varvodic
- Department of Cardiac and Transplant Surgery, Dubrava Clinical Hospital, Zagreb, Croatia
| | - M Udovicic
- Department of Cardiovascular Diseases, Dubrava Clinical Hospital, Zagreb, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - M Urlic
- Department of Cardiac Surgery, University Hospital Center Zagreb, Zagreb, Croatia
| | - S Ivankovic
- Department of Cardiac Surgery, University Hospital Center Split, Split, Croatia
| | - S Plestina
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - F Paic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - A Kulic
- Department of Oncology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - P Bakovic
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - F Sedlic
- Department of Pathophysiology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
3
|
Schwarze J, Carolan JC, Stewart GS, McCabe PF, Kacprzyk J. The boundary of life and death: changes in mitochondrial and cytosolic proteomes associated with programmed cell death of Arabidopsis thaliana suspension culture cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1194866. [PMID: 37593044 PMCID: PMC10431908 DOI: 10.3389/fpls.2023.1194866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023]
Abstract
Introduction Despite the critical role of programmed cell death (PCD) in plant development and defense responses, its regulation is not fully understood. It has been proposed that mitochondria may be important in the control of the early stages of plant PCD, but the details of this regulation are currently unknown. Methods We used Arabidopsis thaliana cell suspension culture, a model system that enables induction and precise monitoring of PCD rates, as well as chemical manipulation of this process to generate a quantitative profile of the alterations in mitochondrial and cytosolic proteomes associated with early stages of plant PCD induced by heat stress. The cells were subjected to PCD-inducing heat levels (10 min, 54°C), with/without the calcium channel inhibitor and PCD blocker LaCl3. The stress treatment was followed by separation of cytosolic and mitochondrial fractions and mass spectrometry-based proteome analysis. Results Heat stress induced rapid and extensive changes in protein abundance in both fractions, with release of mitochondrial proteins into the cytosol upon PCD induction. In our system, LaCl3 appeared to act downstream of cell death initiation signal, as it did not affect the release of mitochondrial proteins, but instead partially inhibited changes occurring in the cytosolic fraction, including upregulation of proteins with hydrolytic activity. Discussion We characterized changes in protein abundance and localization associated with the early stages of heat stress-induced PCD. Collectively, the generated data provide new insights into the regulation of cell death and survival decisions in plant cells.
Collapse
Affiliation(s)
- Johanna Schwarze
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Gavin S. Stewart
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
5
|
Schulte U, den Brave F, Haupt A, Gupta A, Song J, Müller CS, Engelke J, Mishra S, Mårtensson C, Ellenrieder L, Priesnitz C, Straub SP, Doan KN, Kulawiak B, Bildl W, Rampelt H, Wiedemann N, Pfanner N, Fakler B, Becker T. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 2023; 614:153-159. [PMID: 36697829 PMCID: PMC9892010 DOI: 10.1038/s41586-022-05641-w] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.
Collapse
Affiliation(s)
- Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin S Müller
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeannine Engelke
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Swadha Mishra
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christoph Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MTIP, Basel, Switzerland
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Novartis, Basel, Switzerland
| | - Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Sanofi-Aventis (Suisse), Vernier, Switzerland
| | - Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bogusz Kulawiak
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation, Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Álvarez-Córdoba M, Munuera-Cabeza M, Talaverón-Rey M, Povea-Cabello S, Suárez-Carrillo A, Romero-González A, Suárez-Rivero JM, Romero-Domínguez JM, Sánchez-Alcázar JA. mtUPR Modulation as a Therapeutic Target for Primary and Secondary Mitochondrial Diseases. Int J Mol Sci 2023; 24:ijms24021482. [PMID: 36674998 PMCID: PMC9865803 DOI: 10.3390/ijms24021482] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. In this review, we present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.
Collapse
|
7
|
Song J, Steidle L, Steymans I, Singh J, Sanner A, Böttinger L, Winter D, Becker T. The mitochondrial Hsp70 controls the assembly of the F 1F O-ATP synthase. Nat Commun 2023; 14:39. [PMID: 36596815 PMCID: PMC9810599 DOI: 10.1038/s41467-022-35720-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial F1FO-ATP synthase produces the bulk of cellular ATP. The soluble F1 domain contains the catalytic head that is linked via the central stalk and the peripheral stalk to the membrane embedded rotor of the FO domain. The assembly of the F1 domain and its linkage to the peripheral stalk is poorly understood. Here we show a dual function of the mitochondrial Hsp70 (mtHsp70) in the formation of the ATP synthase. First, it cooperates with the assembly factors Atp11 and Atp12 to form the F1 domain of the ATP synthase. Second, the chaperone transfers Atp5 into the assembly line to link the catalytic head with the peripheral stalk. Inactivation of mtHsp70 leads to integration of assembly-defective Atp5 variants into the mature complex, reflecting a quality control function of the chaperone. Thus, mtHsp70 acts as an assembly and quality control factor in the biogenesis of the F1FO-ATP synthase.
Collapse
Affiliation(s)
- Jiyao Song
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.,Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Liesa Steidle
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Isabelle Steymans
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Jasjot Singh
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Anne Sanner
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Lena Böttinger
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
8
|
Panda SP, Prasanth D, Gorla US, Dewanjee S. Interlinked role of ASN, TDP-43 and Miro1 with parkinopathy: Focus on targeted approach against neuropathy in parkinsonism. Ageing Res Rev 2023; 83:101783. [PMID: 36371014 DOI: 10.1016/j.arr.2022.101783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Parkinsonism is a complex neurodegenerative disease that is difficult to differentiate because of its idiopathic and unknown origins. The hereditary parkinsonism known as autosomal recessive-juvenile parkinsonism (AR-JP) is marked by tremors, dyskinesias, dystonic characteristics, and manifestations that improve sleep but do not include dementia. This was caused by deletions and point mutations in PARK2 (chromosome 6q25.2-27). Diminished or unusual sensations (paresthesias), loss of neuron strength both in the CNS and peripheral nerves, and lack of motor coordination are the hallmarks of neuropathy in parkinsonism. The incidence of parkinsonism during oxidative stress and ageing is associated with parkinopathy. Parkinopathy is hypothesized to be triggered by mutation of the parkin (PRKN) gene and loss of normal physiological functions of PRKN proteins, which triggers their pathogenic aggregation due to conformational changes. Two important genes that control mitochondrial health are PRKN and phosphatase and tensin homologue deleted on chromosome 10-induced putative kinase 1 (PINK1). Overexpression of TAR DNA-binding protein-43 (TDP-43) increases the aggregation of insoluble PRKN proteins in OMM. Foreign α-synuclein (ASN) promotes parkinopathy via S-nitrosylation and hence has a neurotoxic effect on dopaminergic nerves. Miro1 (Miro GTPase1), a member of the RAS superfamily, is expressed in nerve cells. Due to PINK1/PRKN and Miro1's functional relationship, an excess of mitochondrial calcium culminates in the destruction of dopaminergic neurons. An interlinked understanding of TDP-43, PINK1/PRKN, ASN, and Miro1 signalling in the communication among astrocytes, microglia, neurons, and immune cells within the brain explored the pathway of neuronal death and shed light on novel strategies for the diagnosis and treatment of parkinsonism.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, India.
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Uma Sankar Gorla
- College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Zhu MX, Ma XF, Niu X, Fan GB, Li Y. Mitochondrial unfolded protein response in ischemia-reperfusion injury. Brain Res 2022; 1797:148116. [PMID: 36209898 DOI: 10.1016/j.brainres.2022.148116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Hainan, China
| | - Xiao-Fei Ma
- Department of ICU, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
10
|
Dang X, Cao D, Zhao J, Schank M, Khanal S, Nguyen LNT, Wu XY, Zhang Y, Zhang J, Jiang Y, Ning S, Wang L, El Gazzar M, Moorman JP, Yao ZQ. Mitochondrial topoisomerase 1 inhibition induces topological DNA damage and T cell dysfunction in patients with chronic viral infection. Front Cell Infect Microbiol 2022; 12:1026293. [PMID: 36405960 PMCID: PMC9669385 DOI: 10.3389/fcimb.2022.1026293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
T cells are crucial for controlling viral infections; however, the mechanisms that dampen their responses during viral infections remain incompletely understood. Here, we studied the role and mechanisms of mitochondrial topoisomerase 1 (Top1mt) inhibition in mitochondrial dysfunction and T cell dysregulation using CD4 T cells from patients infected with HCV or HIV and compared it with CD4 T cells from healthy individuals following treatment with Top1 inhibitor - camptothecin (CPT). We found that Top1mt protein levels and enzymatic activity are significantly decreased, along with Top1 cleavage complex (Top1cc) formation, in mitochondria of CD4 T cells from HCV- and HIV-infected patients. Notably, treatment of healthy CD4 T cells with CPT caused similar changes, including inhibition of Top1mt, accumulation of Top1cc in mitochondria, increase in PARP1 cleavage, and decrease in mtDNA copy numbers. These molecular changes resulted in mitochondrial dysfunction, T cell dysregulation, and programmed cell death through multiple signaling pathways, recapitulating the phenotype we detected in CD4 T cells from HCV- and HIV-infected patients. Moreover, treatment of CD4 T cells from HCV or HIV patients with CPT further increased cellular and mitochondrial reactive oxygen species (ROS) production and cell apoptosis, demonstrating a critical role for Top1 in preventing mtDNA damage and cell death. These results provide new insights into the molecular mechanisms underlying immune dysregulation during viral infection and indicate that Top1 inhibition during chronic HCV or HIV infection can induce mtDNA damage and T cell dysfunction. Thus, reconstituting Top1mt protein may restore the mtDNA topology and T cell functions in humans with chronic viral infection.
Collapse
Affiliation(s)
- Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Xiao Y. Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| |
Collapse
|
11
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
12
|
Choi SE, Hwang Y, Lee SJ, Jung H, Shin TH, Son Y, Park S, Han SJ, Kim HJ, Lee KW, Lee G, Kemper JK, Song HK, Kang Y. Mitochondrial protease ClpP supplementation ameliorates diet-induced NASH in mice. J Hepatol 2022; 77:735-747. [PMID: 35421426 DOI: 10.1016/j.jhep.2022.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Mitochondrial dysfunction is considered a pathogenic linker in the development of non-alcoholic steatohepatitis (NASH). Inappropriate mitochondrial protein-quality control, possibly induced by insufficiency of the mitochondrial matrix caseinolytic protease P (ClpP), can potentially cause mitochondrial dysfunction. Herein, we aimed to investigate hepatic ClpP levels in a diet-induced model of NASH and determine whether supplementation of ClpP can ameliorate diet-induced NASH. METHODS NASH was induced by a high-fat/high-fructose (HF/HFr) diet in C57BL/6J mice. Stress/inflammatory signals were induced in mouse primary hepatocytes (MPHs) by treatment with palmitate/oleate (PA/OA). ClpP levels in hepatocytes were reduced using the RNAi-mediated gene knockdown technique but increased through the viral transduction of ClpP. ClpP activation was induced by administering a chemical activator of ClpP. RESULTS Hepatic ClpP protein levels in C57BL/6J mice fed a HF/HFr diet were lower than the levels in those fed a normal chow diet. PA/OA treatment also decreased the ClpP protein levels in MPHs. Overexpression or activation of ClpP reversed PA/OA-induced mitochondrial dysfunction and stress/inflammatory signal activation in MPHs, whereas ClpP knockdown induced mitochondrial dysfunction and stress/inflammatory signals in these cells. On the other hand, ClpP overexpression or activation improved HF/HFr-induced NASH characteristics such as hepatic steatosis, inflammation, fibrosis, and injury in the C57BL/6J mice, whereas ClpP knockdown further augmented steatohepatitis in mice fed a HF/HFr diet. CONCLUSIONS Reduced ClpP expression and subsequent mitochondrial dysfunction are key to the development of diet-induced NASH. ClpP supplementation through viral transduction or chemical activation represents a potential therapeutic strategy to prevent diet-induced NASH. LAY SUMMARY Western diets, containing high fat and high fructose, often induce non-alcoholic steatohepatitis (NASH). Mitochondrial dysfunction is considered pathogenically linked to diet-induced NASH. We observed that the mitochondrial protease ClpP decreased in the livers of mice fed a western diet and supplementation of ClpP ameliorated western diet-induced NASH.
Collapse
Affiliation(s)
- Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Yoonjung Hwang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Soo-Jin Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Hyunkyung Jung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 61801
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Youngho Son
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 61801
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea 136-701
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749.
| |
Collapse
|
13
|
Seth P. Insights Into the Role of Mortalin in Alzheimer’s Disease, Parkinson’s Disease, and HIV-1-Associated Neurocognitive Disorders. Front Cell Dev Biol 2022; 10:903031. [PMID: 35859895 PMCID: PMC9292388 DOI: 10.3389/fcell.2022.903031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mortalin is a chaperone protein that regulates physiological functions of cells. Its multifactorial role allows cells to survive pathological conditions. Pharmacological, chemical, and siRNA-mediated downregulation of mortalin increases oxidative stress, mitochondrial dysfunction leading to unregulated inflammation. In addition to its well-characterized function in controlling oxidative stress, mitochondrial health, and maintaining physiological balance, recent evidence from human brain autopsies and cell culture–based studies suggests a critical role of mortalin in attenuating the damage seen in several neurodegenerative diseases. Overexpression of mortalin provides an important line of defense against accumulated proteins, inflammation, and neuronal loss, a key characteristic feature observed in neurodegeneration. Neurodegenerative diseases are a group of progressive disorders, sharing pathological features in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and HIV-associated neurocognitive disorder. Aggregation of insoluble amyloid beta-proteins and neurofibrillary tangles in Alzheimer’s disease are among the leading cause of neuropathology in the brain. Parkinson’s disease is characterized by the degeneration of dopamine neurons in substantia nigra pars compacta. A substantial synaptic loss leading to cognitive decline is the hallmark of HIV-associated neurocognitive disorder (HAND). Brain autopsies and cell culture studies showed reduced expression of mortalin in Alzheimer’s, Parkinson’s, and HAND cases and deciphered the important role of mortalin in brain cells. Here, we discuss mortalin and its regulation and describe how neurotoxic conditions alter the expression of mortalin and modulate its functions. In addition, we also review the neuroprotective role of mortalin under neuropathological conditions. This knowledge showcases the importance of mortalin in diverse brain functions and offers new opportunities for the development of therapeutic targets that can modulate the expression of mortalin using chemical compounds.
Collapse
Affiliation(s)
- Pankaj Seth
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
14
|
Kumar R, Chaudhary AK, Woytash J, Inigo JR, Gokhale AA, Bshara W, Attwood K, Wang J, Spernyak JA, Rath E, Yadav N, Haller D, Goodrich DW, Tang DG, Chandra D. A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J Clin Invest 2022; 132:e149906. [PMID: 35653190 PMCID: PMC9246382 DOI: 10.1172/jci149906] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial proteostasis, regulated by the mitochondrial unfolded protein response (UPRmt), is crucial for maintenance of cellular functions and survival. Elevated oxidative and proteotoxic stress in mitochondria must be attenuated by the activation of a ubiquitous UPRmt to promote prostate cancer (PCa) growth. Here we show that the 2 key components of the UPRmt, heat shock protein 60 (HSP60, a mitochondrial chaperonin) and caseinolytic protease P (ClpP, a mitochondrial protease), were required for the development of advanced PCa. HSP60 regulated ClpP expression via c-Myc and physically interacted with ClpP to restore mitochondrial functions that promote cancer cell survival. HSP60 maintained the ATP-producing functions of mitochondria, which activated the β-catenin pathway and led to the upregulation of c-Myc. We identified a UPRmt inhibitor that blocked HSP60's interaction with ClpP and abrogated survival signaling without altering HSP60's chaperonin function. Disruption of HSP60-ClpP interaction with the UPRmt inhibitor triggered metabolic stress and impeded PCa-promoting signaling. Treatment with the UPRmt inhibitor or genetic ablation of Hsp60 inhibited PCa growth and progression. Together, our findings demonstrate that the HSP60-ClpP-mediated UPRmt is essential for prostate tumorigenesis and the HSP60-ClpP interaction represents a therapeutic vulnerability in PCa.
Collapse
Affiliation(s)
| | | | | | | | | | - Wiam Bshara
- Department of Pathology and Laboratory Medicine
| | | | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, and
| | - Joseph A. Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Eva Rath
- Chair of Nutrition and Immunology and
| | | | - Dirk Haller
- Chair of Nutrition and Immunology and
- ZIEL Institute for Food & Health, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
15
|
Djhsp60 Is Required for Planarian Regeneration and Homeostasis. Biomolecules 2022; 12:biom12060808. [PMID: 35740934 PMCID: PMC9221281 DOI: 10.3390/biom12060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
HSP60, a well-known mitochondrial chaperone, is essential for mitochondrial homeostasis. HSP60 deficiency causes dysfunction of the mitochondria and is lethal to animal survival. Here, we used freshwater planarian as a model system to investigate and uncover the roles of HSP60 in tissue regeneration and homeostasis. HSP60 protein is present in all types of cells in planarians, but it is relatively rich in stem cells and head neural cells. Knockdown of HSP60 by RNAi causes head regression and the loss of regenerating abilities, which is related to decrease in mitotic cells and inhibition of stem cell-related genes. RNAi-HSP60 disrupts the structure of the mitochondria and inhibits the mitochondrial-related genes, which mainly occur in intestinal tissues. RNAi-HSP60 also damages the integrity of intestinal tissues and downregulates intestine-expressed genes. More interestingly, RNAi-HSP60 upregulates the expression of the cathepsin L-like gene, which may be the reason for head regression and necrotic-like cell death. Taking these points together, we propose a model illustrating the relationship between neoblasts and intestinal cells, and also highlight the essential role of the intestinal system in planarian regeneration and tissue homeostasis.
Collapse
|
16
|
Wegner A, Ulbricht J, Madea B, Doberentz E. Renal expression of Hsp27, 60, and 70 in cases of fatal hypothermia. Forensic Sci Int 2022; 332:111200. [PMID: 35078040 DOI: 10.1016/j.forsciint.2022.111200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022]
Abstract
Macromorphological findings can be missing in cases of fatal hypothermia when the agonal period is very short because of a large difference between environmental and core body temperatures. Expression of heat shock proteins (Hsps) increases under endogenous and exogenous cellular stresses such as thermal stress. These stress proteins can be revealed by immunohistochemical staining. Forty-five cases of death due to hypothermia and a control group of 100 deaths without any antemortem thermal stress were examined for Hsp27, 60, and 70 expression in renal tissue because renal tissue is sensitive to cellular stress. The results revealed no significant difference between Hsp27, 60, and 70 expression in both groups (28.8% positive staining in the study group and 19.0% positive staining in the control group), which is contradictory to a previous study on expression of Hsp70 in renal tissue in cases of fatal hypothermia. Hence, it is currently unclear whether immunohistochemical staining of Hsps supports a morphological diagnosis of fatal hypothermia.
Collapse
Affiliation(s)
- A Wegner
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111 Bonn, Germany
| | - J Ulbricht
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111 Bonn, Germany
| | - B Madea
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111 Bonn, Germany
| | - E Doberentz
- Institute of Legal Medicine, University Hospital Bonn, Stiftsplatz 12, 53111 Bonn, Germany.
| |
Collapse
|
17
|
Vishwanathan V, D’Silva P. Loss of Function of mtHsp70 Chaperone Variants Leads to Mitochondrial Dysfunction in Congenital Sideroblastic Anemia. Front Cell Dev Biol 2022; 10:847045. [PMID: 35252210 PMCID: PMC8888832 DOI: 10.3389/fcell.2022.847045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital Sideroblastic Anemias (CSA) is a group of rare genetic disorders characterized by the abnormal accumulation of iron in erythrocyte precursors. A common hallmark underlying these pathological conditions is mitochondrial dysfunction due to altered protein homeostasis, heme biosynthesis, and oxidative phosphorylation. A clinical study on congenital sideroblastic anemia has identified mutations in mitochondrial Hsp70 (mtHsp70/Mortalin). Mitochondrial Hsp70 plays a critical role in maintaining mitochondrial function by regulating several pathways, including protein import and folding, and iron-sulfur cluster synthesis. Owing to the structural and functional homology between human and yeast mtHsp70, we have utilized the yeast system to delineate the role of mtHsp70 variants in the etiology of CSA’s. Analogous mutations in yeast mtHsp70 exhibited temperature-sensitive growth phenotypes under non-respiratory and respiratory conditions. In vivo analyses indicate a perturbation in mitochondrial mass and functionality accompanied by an alteration in the organelle network and cellular redox levels. Preliminary in vitro biochemical studies of mtHsp70 mutants suggest impaired import function, altered ATPase activity and substrate interaction. Together, our findings suggest the loss of chaperone activity to be a pivotal factor in the pathophysiology of congenital sideroblastic anemia.
Collapse
|
18
|
Bahr T, Katuri J, Liang T, Bai Y. Mitochondrial chaperones in human health and disease. Free Radic Biol Med 2022; 179:363-374. [PMID: 34780988 PMCID: PMC8893670 DOI: 10.1016/j.freeradbiomed.2021.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 02/03/2023]
Abstract
Molecular chaperones are a family of proteins that maintain cellular protein homeostasis through non-covalent peptide folding and quality control mechanisms. The chaperone proteins found within mitochondria play significant protective roles in mitochondrial biogenesis, quality control, and stress response mechanisms. Defective mitochondrial chaperones have been implicated in aging, neurodegeneration, and cancer. In this review, we focus on the two most prominent mitochondrial chaperones: mtHsp60 and mtHsp70. These proteins demonstrate different cellular localization patterns, interact with different targets, and have different functional activities. We discuss the structure and function of these prominent mitochondrial chaperone proteins and give an update on newly discovered regulatory mechanisms and disease implications.
Collapse
Affiliation(s)
- Tyler Bahr
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Joshua Katuri
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ting Liang
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Yidong Bai
- Department of Cell Systems & Anatomy University of Texas Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| |
Collapse
|
19
|
Lubawy J, Chowański S, Adamski Z, Słocińska M. Mitochondria as a target and central hub of energy division during cold stress in insects. Front Zool 2022; 19:1. [PMID: 34991650 PMCID: PMC8740437 DOI: 10.1186/s12983-021-00448-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 01/08/2023] Open
Abstract
Temperature stress is one of the crucial factors determining geographical distribution of insect species. Most of them are active in moderate temperatures, however some are capable of surviving in extremely high as well as low temperatures, including freezing. The tolerance of cold stress is a result of various adaptation strategies, among others the mitochondria are an important player. They supply cells with the most prominent energy carrier—ATP, needed for their life processes, but also take part in many other processes like growth, aging, protection against stress injuries or cell death. Under cold stress, the mitochondria activity changes in various manner, partially to minimize the damages caused by the cold stress, partially because of the decline in mitochondrial homeostasis by chill injuries. In the response to low temperature, modifications in mitochondrial gene expression, mtDNA amount or phosphorylation efficiency can be observed. So far study also showed an increase or decrease in mitochondria number, their shape and mitochondrial membrane permeability. Some of the changes are a trigger for apoptosis induced via mitochondrial pathway, that protects the whole organism against chill injuries occurring on the cellular level. In many cases, the observed modifications are not unequivocal and depend strongly on many factors including cold acclimation, duration and severity of cold stress or environmental conditions. In the presented article, we summarize the current knowledge about insect response to cold stress focusing on the role of mitochondria in that process considering differences in results obtained in different experimental conditions, as well as depending on insect species. These differentiated observations clearly indicate that it is still much to explore. ![]()
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Szymon Chowański
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zbigniew Adamski
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.,Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Małgorzata Słocińska
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
20
|
Yan LR, Shen SX, Wang A, Ding HX, Liu YN, Yuan Y, Xu Q. Comprehensive Pan-Cancer Analysis of Heat Shock Protein 110, 90, 70, and 60 Families. Front Mol Biosci 2021; 8:726244. [PMID: 34712697 PMCID: PMC8546173 DOI: 10.3389/fmolb.2021.726244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Here we carried out a panoramic analysis of the expression and prognosis of HSP110, HSP90, HSP70, and HSP60 families in 33 types of cancer, with the aim of deepening the systematic understanding of heat shock proteins (HSPs) in cancer. Materials and Methods: Next-generation sequencing data of multiple tumors were downloaded from TCGA, CCLE and Oncomine databases. RStudio 3.6.1 was used to analyze HSP110, HSP90, HSP70 and HSP60 families based on their expression in 33 types of cancer. The validations in vivo (stomach adenocarcinoma and colon adenocarcinoma tissues) were performed by qRT-PCR. Results: HSPs were differentially expressed in different cancers. The results revealed mainly positive correlations among the expressions of HSPs in different cancers. Expressions of HSP family members were generally associated with poor prognosis in respiratory, digestive, urinary and reproductive system tumors and associated with good prognosis in cholangiocarcinoma, pheochromocytoma and paraganglioma. TCGA mutation analysis showed that HSP gene mutation rate in cancers was 0–23%. CCLE mutation analysis indicated that HSP gene mutation rate in 828 cell lines from 15 tumors was 0–17%. CNV analysis revealed that HSPs have different degrees of gene amplifications and deletions in cancers. Gene mutations of 15 HSPs influenced their protein expressions in different cancers. Copy number amplifications and deletions of 22 HSPs also impacted protein expression levels in pan-cancer. HSP gene mutation was generally a poor prognosis factor in cancers, except for uterine corpus endometrial carcinoma. CNVs in 14 HSPs showed varying influences on survival status in different cancers. HSPs may be involved in the activation and inhibition of multiple cancer-related pathways. HSP expressions were closely correlated with 22 immune cell infiltrations in different cancers. The qRT-PCR validation results in vivo showed that HSPA2 was down-regulated in stomach adenocarcinoma and colon adenocarcinoma; HSPA7 and HSPA1A also were down-regulated in colon adenocarcinoma. HSPA2-HSPA7 (r = 0.031, p = 0.009) and HSPA1A-HSPA7 (r = 0.516, p < 0.001) were positive correlation in colon adenocarcinoma. Conclusion: These analysis and validation results show that HSP families play an important role in the occurrence and development of various tumors and are potential tumor diagnostic and prognostic biomarkers as well as anti-cancer therapeutic targets.
Collapse
Affiliation(s)
- Li-Rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Shi-Xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Han-Xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Ying-Nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Education Department, Shenyang, China
| |
Collapse
|
21
|
Mallach A, Gobom J, Arber C, Piers TM, Hardy J, Wray S, Zetterberg H, Pocock J. Differential Stimulation of Pluripotent Stem Cell-Derived Human Microglia Leads to Exosomal Proteomic Changes Affecting Neurons. Cells 2021; 10:cells10112866. [PMID: 34831089 PMCID: PMC8616378 DOI: 10.3390/cells10112866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 01/22/2023] Open
Abstract
Microglial exosomes are an emerging communication pathway, implicated in fulfilling homeostatic microglial functions and transmitting neurodegenerative signals. Gene variants of triggering receptor expressed on myeloid cells-2 (TREM2) are associated with an increased risk of developing dementia. We investigated the influence of the TREM2 Alzheimer’s disease risk variant, R47Hhet, on the microglial exosomal proteome consisting of 3019 proteins secreted from human iPS-derived microglia (iPS-Mg). Exosomal protein content changed according to how the iPS-Mg were stimulated. Thus lipopolysaccharide (LPS) induced microglial exosomes to contain more inflammatory signals, whilst stimulation with the TREM2 ligand phosphatidylserine (PS+) increased metabolic signals within the microglial exosomes. We tested the effect of these exosomes on neurons and found that the exosomal protein changes were functionally relevant and influenced downstream functions in both neurons and microglia. Exosomes from R47Hhet iPS-Mg contained disease-associated microglial (DAM) signature proteins and were less able to promote the outgrowth of neuronal processes and increase mitochondrial metabolism in neurons compared with exosomes from the common TREM2 variant iPS-Mg. Taken together, these data highlight the importance of microglial exosomes in fulfilling microglial functions. Additionally, variations in the exosomal proteome influenced by the R47Hhet TREM2 variant may underlie the increased risk of Alzheimer’s disease associated with this variant.
Collapse
Affiliation(s)
- Anna Mallach
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London WC1N 1PJ, UK; (A.M.); (T.M.P.)
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-43180 Molndal, Sweden; (J.G.); (H.Z.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
| | - Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
| | - Thomas M. Piers
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London WC1N 1PJ, UK; (A.M.); (T.M.P.)
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-43180 Molndal, Sweden; (J.G.); (H.Z.)
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Molndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; (C.A.); (J.H.); (S.W.)
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Jennifer Pocock
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College, London WC1N 1PJ, UK; (A.M.); (T.M.P.)
- Correspondence:
| |
Collapse
|
22
|
Ling W, Krager K, Richardson KK, Warren AD, Ponte F, Aykin-Burns N, Manolagas SC, Almeida M, Kim HN. Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight 2021; 6:146728. [PMID: 33878033 PMCID: PMC8262324 DOI: 10.1172/jci.insight.146728] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Altered mitochondria activity in osteoblasts and osteoclasts has been implicated in the loss of bone mass associated with aging and estrogen deficiency — the 2 most common causes of osteoporosis. However, the mechanisms that control mitochondrial metabolism in bone cells during health or disease remain unknown. The mitochondrial deacetylase sirtuin-3 (Sirt3) has been earlier implicated in age-related diseases. Here, we show that deletion of Sirt3 had no effect on the skeleton of young mice but attenuated the age-related loss of bone mass in both sexes. This effect was associated with impaired bone resorption. Osteoclast progenitors from aged Sirt3-null mice were able to differentiate into osteoclasts, though the differentiated cells exhibited impaired polykaryon formation and resorptive activity, as well as decreased oxidative phosphorylation and mitophagy. The Sirt3 inhibitor LC-0296 recapitulated the effects of Sirt3 deletion in osteoclast formation and mitochondrial function, and its administration to aging mice increased bone mass. Deletion of Sirt3 also attenuated the increase in bone resorption and loss of bone mass caused by estrogen deficiency. These findings suggest that Sirt3 inhibition and the resulting impairment of osteoclast mitochondrial function could be a novel therapeutic intervention for the 2 most important causes of osteoporosis.
Collapse
Affiliation(s)
- Wen Ling
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Kimberly Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kimberly K Richardson
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Aaron D Warren
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Filipa Ponte
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine
| | - Nukhet Aykin-Burns
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Stavros C Manolagas
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Almeida
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA.,Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ha-Neui Kim
- Center for Musculoskeletal Disease Research and Center for Osteoporosis and Metabolic Bone Diseases, Division of Endocrinology, Department of Internal Medicine.,Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
23
|
Kobayashi M, Nezu Y, Tagawa R, Higami Y. Mitochondrial Unfolded Protein Responses in White Adipose Tissue: Lipoatrophy, Whole-Body Metabolism and Lifespan. Int J Mol Sci 2021; 22:ijms22062854. [PMID: 33799894 PMCID: PMC7998111 DOI: 10.3390/ijms22062854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a stress response mediated by the expression of genes such as chaperones, proteases, and mitokines to maintain mitochondrial proteostasis. Certain genetically modified mice, which defect mitochondrial proteins specifically in adipocytes, developed atrophy of the white adipose tissue, resisted diet-induced obesity, and had altered whole-body metabolism. UPRmt, which has beneficial functions for living organisms, is termed "mitohormesis", but its specific characteristics and detailed regulatory mechanism have not been elucidated to date. In this review, we discuss the function of UPRmt in adipose atrophy (lipoatrophy), whole-body metabolism, and lifespan based on the concept of mitohormesis.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yuichiro Nezu
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Ryoma Tagawa
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
| | - Yoshikazu Higami
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (M.K.); (Y.N.); (R.T.)
- Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-8510, Japan
- Correspondence: ; Tel.: +81-4-7121-3676
| |
Collapse
|
24
|
Junprung W, Supungul P, Tassanakajon A. Structure, gene expression, and putative functions of crustacean heat shock proteins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103875. [PMID: 32987013 DOI: 10.1016/j.dci.2020.103875] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones with critical roles in the maintenance of cellular proteostasis. HSPs, which regulate protein folding and refolding, assembly, translocation, and degradation, are induced in response to physiological and environmental stressors. In recent years, HSPs have been recognized for their potential role in immunity; in particular, these proteins elicit a variety of immune responses to infection and modulate inflammation. This review focuses on delineating the structural and functional roles of crustacean HSPs in the innate immune response. Members of crustacean HSPs include high molecular weight HSPs (HSP90, HSP70, and HSP60) and small molecular weight HSPs (HSP21 and HSP10). The sequences and structures of these HSPs are highly conserved across various crustacean species, indicating strong evolutionary links among this group of organisms. The expression of HSP-encoding genes across different crustacean species is significantly upregulated upon exposure to a wide range of pathogens, emphasizing the important role of HSPs in the immune response. Functional studies of crustacean HSPs, particularly HSP70s, have demonstrated their involvement in the activation of several immune pathways, including those mediating anti-bacterial resistance and combating viral infections, upon heat exposure. The immunomodulatory role of HSPs indicates their potential use as an immunostimulant to enhance shrimp health for control of disease in aquaculture.
Collapse
Affiliation(s)
- Wisarut Junprung
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Premruethai Supungul
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Rd, Klong Luang, Pathum Thani, 12120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
25
|
Abstract
Mitochondria contain about 1,000-1,500 proteins that fulfil multiple functions. Mitochondrial proteins originate from two genomes: mitochondrial and nuclear. Hence, proper mitochondrial function requires synchronization of gene expression in the nucleus and in mitochondria and necessitates efficient import of mitochondrial proteins into the organelle from the cytosol. Furthermore, the mitochondrial proteome displays high plasticity to allow the adaptation of mitochondrial function to cellular requirements. Maintenance of this complex and adaptable mitochondrial proteome is challenging, but is of crucial importance to cell function. Defects in mitochondrial proteostasis lead to proteotoxic insults and eventually cell death. Different quality control systems monitor the mitochondrial proteome. The cytosolic ubiquitin-proteasome system controls protein transport across the mitochondrial outer membrane and removes damaged or mislocalized proteins. Concomitantly, a number of mitochondrial chaperones and proteases govern protein folding and degrade damaged proteins inside mitochondria. The quality control factors also regulate processing and turnover of native proteins to control protein import, mitochondrial metabolism, signalling cascades, mitochondrial dynamics and lipid biogenesis, further ensuring proper function of mitochondria. Thus, mitochondrial protein quality control mechanisms are of pivotal importance to integrate mitochondria into the cellular environment.
Collapse
|
26
|
Kolli R, Engstler C, Akbaş Ş, Mower JP, Soll J, Carrie C. The OXA2a Insertase of Arabidopsis Is Required for Cytochrome c Maturation. PLANT PHYSIOLOGY 2020; 184:1042-1055. [PMID: 32759271 PMCID: PMC7536658 DOI: 10.1104/pp.19.01248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/28/2020] [Indexed: 06/02/2023]
Abstract
In yeast (Saccharomyces cerevisiae) and human (Homo sapiens) mitochondria, Oxidase assembly protein1 (Oxa1) is the general insertase for protein insertion from the matrix side into the inner membrane while Cytochrome c oxidase assembly protein18 (Cox18/Oxa2) is specifically involved in the topogenesis of the complex IV subunit, Cox2. Arabidopsis (Arabidopsis thaliana) mitochondria contain four OXA homologs: OXA1a, OXA1b, OXA2a, and OXA2b. OXA2a and OXA2b are unique members of the Oxa1 superfamily, in that they possess a tetratricopeptide repeat (TPR) domain at their C termini. Here, we determined the role of OXA2a by studying viable mutant plants generated by partial complementation of homozygous lethal OXA2a transfer-DNA insertional mutants using the developmentally regulated ABSCISIC ACID INSENSITIVE3 (ABI3) promoter. The ABI3p:OXA2a plants displayed growth retardation due to a reduction in the steady-state abundances of both c-type cytochromes, cytochrome c 1 and cytochrome c The observed reduction in the steady-state abundance of complex III could be attributed to cytochrome c 1 being one of its subunits. Expression of a soluble heme lyase from an organism with cytochrome c maturation system III could functionally complement the lack of OXA2a. This implies that OXA2a is required for the system I cytochrome c maturation of Arabidopsis. Due to the interaction of OXA2a with Cytochrome c maturation protein CcmF C-terminal-like protein (CCMFC) in a yeast split-ubiquitin based interaction assay, we propose that OXA2a aids in the membrane insertion of CCMFC, which is presumed to form the heme lyase component of the cytochrome c maturation pathway. In contrast with the crucial role played by the TPR domain of OXA2b, the TPR domain of OXA2a is not essential for its functionality.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Carina Engstler
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Şebnem Akbaş
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich, 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
27
|
Kang M, Tang B, Li J, Zhou Z, Liu K, Wang R, Jiang Z, Bi F, Patrick D, Kim D, Mitra AK, Yang-Hartwich Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol Cancer 2020; 19:143. [PMID: 32928232 PMCID: PMC7489042 DOI: 10.1186/s12943-020-01248-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133). METHODS We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation. RESULTS miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass. CONCLUSION miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers.
Collapse
Affiliation(s)
- Min Kang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Bo Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Jixi Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ziyan Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Kang Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ziyan Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- The first affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Fangfang Bi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
- Sheng Jing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - David Patrick
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences College of Pharmacy, University of Oklahoma, Oklahoma City, OK, 73117, USA
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Cancer Center, New Haven, CT, 06510, USA.
| |
Collapse
|
28
|
Cai Y, Shen H, Weng H, Wang Y, Cai G, Chen X, Ye Q. Overexpression of PGC-1α influences the mitochondrial unfolded protein response (mtUPR) induced by MPP + in human SH-SY5Y neuroblastoma cells. Sci Rep 2020; 10:10444. [PMID: 32591623 PMCID: PMC7320005 DOI: 10.1038/s41598-020-67229-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is a common dyskinesia disease, the mitochondrial unfolded protein response (mtUPR) may be directly or indirectly involved in the occurrence and development of PD, although the exact mechanism is unclear. We established a dopaminergic neuronal-like cell model of PD, by overexpression of PGC-1α to detect evaluate the expression of proteases and molecular chaperones of involved in the mtUPR, as well as the expression of PGC-1α and LRPPRC, illustrated the distribution of LRPPRC. Remarkably, the mtUPR activation reached maximal at 24 h after MPP+ treatment in SH-SY5Y cells, which the protein and transcription levels of the proteases and molecular chaperones reached maximal. The proteases and molecular chaperones were significantly increased when overexpressed PGC-1α, which indicated that PGC-1α overexpression activated the mtUPR, and PGC-1α had a protective effect on SH-SY5Y cells. The expression levels of PGC-1α and LRPPRC were significantly improved in the PGC-1α overexpression groups. LRPPRC was markedly reduced in the nucleus, suggesting that PGC-1α overexpression may play a protective role to the mitochondria through LRPPRC. Our finding indicates that overexpression of PGC-1α may activate mtUPR, reducing the oxidative stress injury induced by MPP+ through LRPPRC signaling, thus maintain mitochondrial homeostasis.
Collapse
Affiliation(s)
- Yousheng Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Department of Neurology, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli Road, Zhangzhou, 363000, China
| | - Hui Shen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Huidan Weng
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Yingqing Wang
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Guoen Cai
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China
| | - Qinyong Ye
- Department of Neurology, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China. .,Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
29
|
Li Y, Wu Z, Li R, Miao Y, Weng P, Wang L. Integrated transcriptomic and proteomic analysis of the acetic acid stress in Issatchenkia orientalis. J Food Biochem 2020; 44:e13203. [PMID: 32232868 DOI: 10.1111/jfbc.13203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022]
Abstract
Issatchenkia orientalis known as a multi-tolerant non-Saccharomyces yeast, which tolerant environmental stresses, exhibits potential in wine making and bioethanol production. It is essential for the growth of I. orientalis to tolerant acetic acid in the mixed cultures with Saccharomyces cerevisiae. In this work, RNA-sequence and TMT (Tandem Mass Tag) were used to examine the comprehensive transcriptomic and proteomic profiles of I. orientalis in response to acetic acid. The results showed that 876 genes were identified differentially transcribed in I. orientalis genome and 399 proteins expressed in proteome after 4 hr acetic acid (90 mM, pH 4.5). The comprehensive analysis showed a series of determinants of acetic acid tolerance: Glycolysis and TCA cycle provide enough nicotinamide adenine dinucleotide to effectively convert acetic acid. Genes associated with potassium, iron, zinc, and glutathione synthesis were upregulated. The same changes of differentially expressed genes and proteins were mainly concentrated in chaperones, coenzyme, energy production, and transformation. PRACTICAL APPLICATIONS: In addition to the main fermentation products, wine yeast also produces metabolite acetic acid in the fermentation process, and yeast cells are exposed to acetic acid stress, which restrains cell proliferation. Issatchenkia orientalis exhibits great potential in winemaking and bioethanol production. The yeast is known as a multi-tolerant non-Saccharomyces yeast that can tolerate a variety of environmental stresses. In this study, RNA-Seq and TMT were conducted to investigate the changes in transcriptional and proteomic profile of I. orientalis under acetic acid stress. The knowledge of the transcription and expression changes of the I. orientalis is expected to understand the tolerance mechanisms in I. orientalis and to guide traditional fermentation processes by Saccharomyces cerevisiae improving its high resistance to acetic acid stress.
Collapse
Affiliation(s)
- Yingdi Li
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, P.R. China
| | - Ruoyun Li
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yingjie Miao
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Liping Wang
- School of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
30
|
Zheng J, Mao Y, Su Y, Wang J. Cross talk between heat shock protein 10 and a heat shock factor identified from Marsupenaeus japonicus. Int J Biol Macromol 2020; 147:1041-1052. [PMID: 31743718 DOI: 10.1016/j.ijbiomac.2019.10.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/31/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Heat shock factors (HSFs) and heat shock proteins (HSPs) are crucial regulators and effectors of the heat shock response (HSR). In this study, the full-length cDNA sequences of MjHSP10 and MjHSF1 were cloned by rapid amplification of cDNA ends (RACE). The deduced MjHSP10 and MjHSF1 amino acid (aa) sequences exhibited conserved structures and the functional features of HSP10 and HSF1, respectively. The tissue distributions and mRNA expression profiles of the two genes in response to heat stress were analyzed by quantitative real-time PCR (qRT-PCR). MjHSP10 and MjHSF1 were ubiquitously expressed in various tissues. Heat stress induced a significant increase in MjHSP10 expression that tend to positively correlate with temperature. Additionally, MjHSF1 transcription was up-regulated less than MjHSP10 transcription under heat stress. MjHSF1 expression in the hepatopancreas was up-regulated under only long-term (48 h) heat stress, and MjHSF1 transcription in the gill increased under only acute (34 °C) heat stress. MjHSF1 knockdown by RNA interference (RNAi) down-regulated MjHSP10 expression. Glutathione-S-transferase (GST) pull-down assays showed an interaction between MjHSP10 and the DNA-binding domain (DBD) of MjHSF1. This study provided new insights into cross talk between HSP10 and HSF1 in Marsupenaeus japonicus.
Collapse
Affiliation(s)
- Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
31
|
Bei M, Wang Q, Yu W, Han L, Yu J. Effects of heat stress on ovarian development and the expression of HSP genes in mice. J Therm Biol 2020; 89:102532. [PMID: 32364978 DOI: 10.1016/j.jtherbio.2020.102532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 11/16/2022]
Abstract
Heat stress reduces oocyte competence, thereby causing lower fertility in animals. Chronic and acute heat stresses cause extensive morphological damage in animals, but few reports have focused on the effects of chronic and acute heat stresses on ovarian function and heat shock protein (HSP) gene expression during ovarian injury. In this study, we subjected female mice to chronic and acute heat stresses; we then calculated the ovary index, examined ovary microstructure, and measured the expression of multiple HSP family genes. Chronic heat stress reduced whole-body and ovarian growth but had little effect on the ovarian index; acute heat stress did not alter whole-body or ovarian weight. Both chronic and acute heat stresses impaired ovary function by causing the dysfunction of granular cells. Small HSP genes increased rapidly after heat treatment, and members of the HSP40, HSP70, and HSP90 families were co-expressed to function in the regulation of the heat stress response. We suggest that the HSP chaperone machinery may regulate the response to heat stress in the mouse ovary.
Collapse
Affiliation(s)
- Mingyan Bei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou, 311300, China
| | - Qian Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou, 311300, China
| | - Wensai Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou, 311300, China
| | - Lu Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou, 311300, China
| | - Jing Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, 666 Wusu Street, Hangzhou, 311300, China.
| |
Collapse
|
32
|
Poveda-Huertes D, Matic S, Marada A, Habernig L, Licheva M, Myketin L, Gilsbach R, Tosal-Castano S, Papinski D, Mulica P, Kretz O, Kücükköse C, Taskin AA, Hein L, Kraft C, Büttner S, Meisinger C, Vögtle FN. An Early mtUPR: Redistribution of the Nuclear Transcription Factor Rox1 to Mitochondria Protects against Intramitochondrial Proteotoxic Aggregates. Mol Cell 2020; 77:180-188.e9. [PMID: 31630969 PMCID: PMC6941230 DOI: 10.1016/j.molcel.2019.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/20/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense.
Collapse
Affiliation(s)
- Daniel Poveda-Huertes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Stanka Matic
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lukas Habernig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sergi Tosal-Castano
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| | - Daniel Papinski
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, 1030 Vienna, Austria
| | - Patrycja Mulica
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Medicine IV, Medical Center and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Cansu Kücükköse
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden; Institute for Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - F-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
33
|
|
34
|
Opaliński Ł, Song J, Priesnitz C, Wenz LS, Oeljeklaus S, Warscheid B, Pfanner N, Becker T. Recruitment of Cytosolic J-Proteins by TOM Receptors Promotes Mitochondrial Protein Biogenesis. Cell Rep 2019; 25:2036-2043.e5. [PMID: 30463002 PMCID: PMC6280124 DOI: 10.1016/j.celrep.2018.10.083] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondria possess elaborate machineries for the import of proteins from the cytosol. Cytosolic factors like Hsp70 chaperones and their co-chaperones, the J-proteins, guide proteins to the mitochondrial surface. The translocase of the mitochondrial outer membrane (TOM) forms the entry gate for preproteins. How the proteins are delivered to mitochondrial preprotein receptors is poorly understood. We identify the cytosolic J-protein Xdj1 as a specific interaction partner of the central receptor Tom22. Tom22 recruits Xdj1 to the mitochondrial surface to promote import of preproteins and assembly of the TOM complex. Additionally, we find that the receptor Tom70 binds a different cytosolic J-protein, Djp1. Our findings suggest that cytosolic J-proteins target distinct TOM receptors and promote the biogenesis of mitochondrial proteins. The receptor Tom22 recruits the cytosolic J-protein Xdj1 to mitochondria Xdj1 delivers preproteins to Tom22 and promotes biogenesis of the TOM complex The receptor Tom70 recruits a different cytosolic J-protein, Djp1 Mitochondrial receptors selectively recognize cytosolic J-protein co-chaperones
Collapse
Affiliation(s)
- Łukasz Opaliński
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Silke Oeljeklaus
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
35
|
Chasapis CT, Makridakis M, Damdimopoulos AE, Zoidakis J, Lygirou V, Mavroidis M, Vlahou A, Miranda-Vizuete A, Spyrou G, Vlamis-Gardikas A. Implications of the mitochondrial interactome of mammalian thioredoxin 2 for normal cellular function and disease. Free Radic Biol Med 2019; 137:59-73. [PMID: 31018154 DOI: 10.1016/j.freeradbiomed.2019.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
Abstract
Multiple thioredoxin isoforms exist in all living cells. To explore the possible functions of mammalian mitochondrial thioredoxin 2 (Trx2), an interactome of mouse Trx2 was initially created using (i) a monothiol mouse Trx2 species for capturing protein partners from different organs and (ii) yeast two hybrid screens on human liver and rat brain cDNA libraries. The resulting interactome consisted of 195 proteins (Trx2 included) plus the mitochondrial 16S RNA. 48 of these proteins were classified as mitochondrial (MitoCarta2.0 human inventory). In a second step, the mouse interactome was combined with the current four-membered mitochondrial sub-network of human Trx2 (BioGRID) to give a 53-membered human Trx2 mitochondrial interactome (52 interactor proteins plus the mitochondrial 16S RNA). Although thioredoxins are thiol-employing disulfide oxidoreductases, approximately half of the detected interactions were not due to covalent disulfide bonds. This finding reinstates the extended role of thioredoxins as moderators of protein function by specific non-covalent, protein-protein interactions. Analysis of the mitochondrial interactome suggested that human Trx2 was involved potentially in mitochondrial integrity, formation of iron sulfur clusters, detoxification of aldehydes, mitoribosome assembly and protein synthesis, protein folding, ADP ribosylation, amino acid and lipid metabolism, glycolysis, the TCA cycle and the electron transport chain. The oxidoreductase functions of Trx2 were verified by its detected interactions with mitochondrial peroxiredoxins and methionine sulfoxide reductase. Parkinson's disease, triosephosphate isomerase deficiency, combined oxidative phosphorylation deficiency, and lactate dehydrogenase b deficiency are some of the diseases where the proposed mitochondrial network of Trx2 may be implicated.
Collapse
Affiliation(s)
- Christos T Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology, Hellas (FORTH), Platani 26504, Greece
| | | | - Anastassios E Damdimopoulos
- Department of Biosciences and Nutrition, Center for Innovative Medicine (CIMED), Karolinska Institutet, Huddinge, Sweden
| | - Jerome Zoidakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Vasiliki Lygirou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Manolis Mavroidis
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Giannis Spyrou
- Department of Clinical and Experimental Medicine, Division of Clinical Chemistry, Linköping University, S-581 85 Linköping, Sweden
| | | |
Collapse
|
36
|
Kolli R, Soll J, Carrie C. OXA2b is Crucial for Proper Membrane Insertion of COX2 during Biogenesis of Complex IV in Plant Mitochondria. PLANT PHYSIOLOGY 2019; 179:601-615. [PMID: 30487140 PMCID: PMC6426407 DOI: 10.1104/pp.18.01286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/10/2018] [Indexed: 05/07/2023]
Abstract
The evolutionarily conserved YidC/Oxa1/Alb3 proteins are involved in the insertion of membrane proteins in all domains of life. In plant mitochondria, individual knockouts of OXA1a, OXA2a, and OXA2b are embryo-lethal. In contrast to other members of the protein family, OXA2a and OXA2b contain a tetratricopeptide repeat (TPR) domain at the C-terminus. Here, the role of Arabidopsis (Arabidopsis thaliana) OXA2b was determined by using viable mutant plants that were generated by complementing homozygous lethal OXA2b T-DNA insertional mutants with a C-terminally truncated OXA2b lacking the TPR domain. The truncated-OXA2b-complemented plants displayed severe growth retardation due to a strong reduction in the steady-state abundance and enzyme activity of the mitochondrial respiratory chain complex IV. The TPR domain of OXA2b directly interacts with cytochrome c oxidase subunit 2, aiding in efficient membrane insertion and translocation of its C-terminus. Thus, OXA2b is crucial for the biogenesis of complex IV in plant mitochondria.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
37
|
Yi HS, Chang JY, Shong M. The mitochondrial unfolded protein response and mitohormesis: a perspective on metabolic diseases. J Mol Endocrinol 2018; 61:R91-R105. [PMID: 30307158 PMCID: PMC6145237 DOI: 10.1530/jme-18-0005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria perform essential roles as crucial organelles for cellular and systemic energy homeostasis, and as signaling hubs, which coordinate nuclear transcriptional responses to the intra- and extra-cellular environment. Complex human diseases, including diabetes, obesity, fatty liver disease and aging-related degenerative diseases are associated with alterations in mitochondrial oxidative phosphorylation (OxPhos) function. However, a recent series of studies in animal models have revealed that an integrated response to tolerable mitochondrial stress appears to render cells less susceptible to subsequent aging processes and metabolic stresses, which is a key feature of mitohormesis. The mitochondrial unfolded protein response (UPRmt) is a central part of the mitohormetic response and is a retrograde signaling pathway, which utilizes the mitochondria-to-nucleus communication network. Our understanding of the UPRmt has contributed to elucidating the role of mitochondria in metabolic adaptation and lifespan regulation. In this review, we discuss and integrate recent data from the literature on the present status of mitochondrial OxPhos function in the development of metabolic diseases, relying on evidence from human and other animal studies, which points to alterations in mitochondrial function as a key factor in the regulation of metabolic diseases and conclude with a discussion on the specific roles of UPRmt and mitohormesis as a novel therapeutic strategy for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Hyon-Seung Yi
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Department of Medical ScienceChungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic DiseasesChungnam National University School of Medicine, Daejeon, Korea
- Correspondence should be addressed to M Shong:
| |
Collapse
|
38
|
Tan Y, Zhang Y, Huo ZJ, Zhou XR, Pang BP. Molecular cloning of heat shock protein 10 (Hsp10) and 60 (Hsp60) cDNAs from Galeruca daurica (Coleoptera: Chrysomelidae) and their expression analysis. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:510-522. [PMID: 29081303 DOI: 10.1017/s0007485317001079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Galeruca daurica (Joannis) is a new outbreak pest in the Inner Mongolia grasslands in northern China. Heat shock protein 10 and 60 (Hsp10 and Hsp60) genes of G. daurica, designated as GdHsp10 and GdHsp60, were cloned by rapid amplification of cDNA ends techniques. Sequence analysis showed that GdHsp10 and GdHsp60 encoded polypeptides of 104 and 573 amino acids, respectively. Sequence alignment and phylogenetic analysis clearly revealed that the amino acids of GdHsp10 and GdHsp60 had high homology and were clustered with other Hsp10 and Hsp60 genes in insects which are highly relative with G. daurica based on morphologic taxonomy. The mRNA expression analysis by real-time PCR revealed that GdHsp10 and GdHsp60 were expressed at all development stages and in all tissues examined, but expressed highest in eggs and in adults' abdomen; both heat and cold stresses could induce mRNA expression of GdHsp10 and GdHsp60 in the 2nd instar larvae; the two Hsp genes were expressed from high to low with the extension of treatment time in G. daurica eggs exposed to freezing point. Overall, our study provides useful information to understand temperature stress responses of Hsp60 and Hsp10 in G. daurica, and provides a basis to further study functions of Hsp60/Hsp10 relative to thermotolerance and cold hardiness mechanism.
Collapse
Affiliation(s)
- Y Tan
- Research Center for Grassland Entomology,Inner Mongolian Agricultural University,Hohhot,010019,China
| | - Y Zhang
- Research Center for Grassland Entomology,Inner Mongolian Agricultural University,Hohhot,010019,China
| | - Z-J Huo
- Research Center for Grassland Entomology,Inner Mongolian Agricultural University,Hohhot,010019,China
| | - X-R Zhou
- Research Center for Grassland Entomology,Inner Mongolian Agricultural University,Hohhot,010019,China
| | - B-P Pang
- Research Center for Grassland Entomology,Inner Mongolian Agricultural University,Hohhot,010019,China
| |
Collapse
|
39
|
Böttinger L, Mårtensson CU, Song J, Zufall N, Wiedemann N, Becker T. Respiratory chain supercomplexes associate with the cysteine desulfurase complex of the iron-sulfur cluster assembly machinery. Mol Biol Cell 2018; 29:776-785. [PMID: 29386296 PMCID: PMC5905291 DOI: 10.1091/mbc.e17-09-0555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial cytochrome bc1 complex and cytochrome c oxidase associate in respiratory chain supercomplexes. We identified a specific association of the iron–sulfur cluster biogenesis desulfurase with the respiratory chain supercomplexes. Our finding reveals a novel link between respiration and iron–sulfur cluster formation. Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity.
Collapse
Affiliation(s)
- Lena Böttinger
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
40
|
Zhang J, Zhou X, Chang H, Huang X, Guo X, Du X, Tian S, Wang L, Lyv Y, Yuan P, Xing J. Hsp60 exerts a tumor suppressor function by inducing cell differentiation and inhibiting invasion in hepatocellular carcinoma. Oncotarget 2018; 7:68976-68989. [PMID: 27677587 PMCID: PMC5356605 DOI: 10.18632/oncotarget.12185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Heat shock protein 60 (Hsp60), a typical mitochondrial chaperone, is associated with progression of various cancers. However, its expression and significance in hepatocellular carcinoma (HCC) remain largely unclear. In the present study, the mRNA and protein expression of Hsp60 in HCC tissues were detected by quantitative RT-PCR (n=24), western blot (n=7), and immunohistochemical staining (n=295), respectively. The correlation between Hsp60 expression and clinicopathological characteristics of HCC patient was also analyzed. Meanwhile, the influence of Hsp60 on malignant phenotype of HCC cells was further investigated. We found that expression of Hsp60 was significantly downregulated in HCC tissues compared to peritumor tissues. Hsp60 expression was significantly correlated with serum alpha -foetoprotein (AFP) level and tumor differentiation grade. Moreover, high Hsp60 expression cancer/pericancer (C/P) ratio was associated with a better overall survival rate (P=0.035, n=295). The prognostic implication of Hsp60 in HCC was further confirmed in another cohort of 107 HCC patients (P=0.027). Up-regulation of Hsp60 remarkably induced the cell differentiation and inhibited the invasive potential of HCC in vitro and in vivo. Intriguingly, the down-regulation of Hsp60 significantly impaired mitochondrial biogenesis. Although more data are required to clarify the underling mechanism responsible for function of Hsp60, our results suggested that the effect of Hsp60 on differentiation and invasion of HCC cells might be associated with mitochondrial biogenesis. Collectively, our findings indicated that Hsp60 exerted a tumor suppressor function, and might serve as a potential therapeutic target in the treatment of HCC.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xingchun Zhou
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xiaojun Huang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xu Guo
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaohong Du
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siyuan Tian
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lexiao Wang
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yinghua Lyv
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Yuan
- Department of Pain Treatment, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Zhou C, Sun H, Zheng C, Gao J, Fu Q, Hu N, Shao X, Zhou Y, Xiong J, Nie K, Zhou H, Shen L, Fang H, Lyu J. Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth. Cell Death Dis 2018; 9:161. [PMID: 29415987 PMCID: PMC5833694 DOI: 10.1038/s41419-017-0196-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/05/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022]
Abstract
HSP60 is a mitochondrial localized quality control protein responsible for maintaining mitochondrial function. Although HSP60 is considered both a tumor suppressor and promoter in different types of cancer, the role of HSP60 in human pancreatic ductal adenocarcinoma (PDAC) remains unknown. In this study, we demonstrated that HSP60 was aberrantly expressed in human pancreatic cancer tissues and cell lines. Analysis of the Cancer Genome Atlas database revealed that HSP60 expression is positively correlated with pancreatic cancer. Further, knockdown of HSP60 attenuated pancreatic ductal cancer cell proliferation and migration/invasion, whereas ectopic expression of HSP60 increased tumorigenesis. Using an in vivo tumorigenicity assay, we confirmed that HSP60 promoted the growth of pancreatic ductal cancer cells. Functional analyses demonstrated that HSP60 plays a key role in the regulation of mitochondrial function. Mechanistically, both HSP60 knockdown and oxidative phosphorylation (OXPHOS) inhibition by metformin decreased Erk1/2 phosphorylation and induced apoptosis and cell cycle arrest, whereas Erk1/2 reactivation with EGF promoted cell proliferation. Intriguingly, in vitro ATP supplementation partially restored Erk1/2 phosphorylation and promoted proliferation in PDAC cells with HSP60 knockdown and OXPHOS inhibition. These results suggest that mitochondrial ATP is an important sensor of Erk1/2 regulated apoptosis and the cell cycle in PDAC cells. Thus, our findings indicate for the first time that HSP60 may serve as a novel diagnostic target of human pancreatic cancer, and that inhibition of mitochondrial function using drugs such as metformin may be a beneficial therapeutic strategy targeting pancreatic cancer cells with aberrant function of the HSP60/OXPHOS/Erk1/2 phosphorylation axis.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Clinical Laboratory, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Zheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingzi Fu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nianqi Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoli Shao
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingting Xiong
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ke Nie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Castro JP, Wardelmann K, Grune T, Kleinridders A. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism? Front Endocrinol (Lausanne) 2018; 9:196. [PMID: 29755410 PMCID: PMC5932182 DOI: 10.3389/fendo.2018.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.
Collapse
Affiliation(s)
- José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| | - Kristina Wardelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| |
Collapse
|
43
|
Magesky A, de Oliveira Ribeiro CA, Beaulieu L, Pelletier É. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1872-1886. [PMID: 27943424 DOI: 10.1002/etc.3709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/14/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Using immune cells of sea urchin Strongylocentrotus droebachiensis in early development as a model, the cellular protective mechanisms against ionic and poly(allylamine)-coated silver nanoparticle (AgNPs; 14 ± 6 nm) treatments at 100 μg L-1 were investigated. Oxidative stress, heat shock protein expression, and pigment production by spherulocytes were determined as well as AgNP translocation pathways and their multiple effects on circulating coelomocytes. Sea urchins showed an increasing resilience to Ag over time because ionic Ag is accumulated in a steady way, although nanoAg levels dropped between 48 h and 96 h. A clotting reaction emerged on tissues injured by dissolved Ag (present as chloro-complexes in seawater) between 12 h and 48 h. Silver contamination and nutritional state influenced the production of reactive oxygen species. After passing through coelomic sinuses and gut, AgNPs were found in coelomocytes. Inside blood vessels, apoptosis-like processes appeared in coelomocytes highly contaminated by poly(allylamine)-coated AgNPs. Increasing levels of Ag accumulated by urchins once exposed to AgNPs pointed to a Trojan-horse mechanism operating over 12-d exposure. However, under short-term treatments, physical interactions of poly(allylamine)-coated AgNPs with cell structures might be, at some point, predominant and responsible for the highest levels of stress-related proteins detected. The present study is the first report detailing nano-translocation in a marine organism and multiple mechanisms by which sea urchin cells can deal with toxic AgNPs. Environ Toxicol Chem 2017;36:1872-1886. © 2016 SETAC.
Collapse
Affiliation(s)
- Adriano Magesky
- Institut de sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | | | - Lucie Beaulieu
- Département des sciences des aliments, Université Laval, Québec, Québec, Canada
| | - Émilien Pelletier
- Institut de sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| |
Collapse
|
44
|
The proteome of baker's yeast mitochondria. Mitochondrion 2017; 33:15-21. [DOI: 10.1016/j.mito.2016.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 01/29/2023]
|
45
|
Kim W, Cheon MG, Kim JE. Mitochondrial CCAR2/DBC1 is required for cell survival against rotenone-induced mitochondrial stress. Biochem Biophys Res Commun 2017; 485:782-789. [PMID: 28254432 DOI: 10.1016/j.bbrc.2017.02.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 11/24/2022]
Abstract
CCAR2 (cell cycle and apoptosis regulator protein 2; formerly DBC1, deleted in breast cancer 1) functions in diverse cellular processes including responses to genotoxic and metabolic stresses. However, its role in the mitochondrial stress response has not been fully elucidated. To investigate how CCAR2 regulates stress response, we purified CCAR2-containing complexes. Interestingly, the results revealed that CCAR2 localized to the mitochondria, and also bound Hsp60 (heat shock protein 60), a mitochondrial chaperone. The binding of CCAR2 to Hsp60 increased following rotenone-induced mitochondrial stress. The deficiencies in CCAR2 and Hsp60 also disrupted the mitochondrial membrane potential, thereby promoting apoptosis following mitochondrial stress. In summary, the CCAR2-Hsp60 complex promoted cell survival during mitochondrial stress-induced apoptosis. These data suggest that CCAR2 is critical for maintaining mitochondrial homeostasis in response to stress.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Gyeong Cheon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
46
|
Heat Shock Proteins in Aquaculture Disease Immunology and Stress Response of Crustaceans. HEAT SHOCK PROTEINS 2017. [DOI: 10.1007/978-3-319-73377-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
47
|
Ribosome-Associated Mba1 Escorts Cox2 from Insertion Machinery to Maturing Assembly Intermediates. Mol Cell Biol 2016; 36:2782-2793. [PMID: 27550809 PMCID: PMC5086520 DOI: 10.1128/mcb.00361-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/08/2016] [Accepted: 08/17/2016] [Indexed: 01/25/2023] Open
Abstract
The three conserved core subunits of the cytochrome c oxidase are encoded by mitochondria in close to all eukaryotes. The Cox2 subunit spans the inner membrane twice, exposing the N and C termini to the intermembrane space. For this, the N terminus is exported cotranslationally by Oxa1 and subsequently undergoes proteolytic maturation in Saccharomyces cerevisiae. Little is known about the translocation of the C terminus, but Cox18 has been identified to be a critical protein in this process. Here we find that the scaffold protein Cox20, which promotes processing of Cox2, is in complex with the ribosome receptor Mba1 and translating mitochondrial ribosomes in a Cox2-dependent manner. The Mba1-Cox20 complex accumulates when export of the C terminus of Cox2 is blocked by the loss of the Cox18 protein. While Cox20 engages with Cox18, Mba1 is no longer present at this stage. Our analyses indicate that Cox20 associates with nascent Cox2 and Mba1 to promote Cox2 maturation cotranslationally. We suggest that Mba1 stabilizes the Cox20-ribosome complex and supports the handover of Cox2 to the Cox18 tail export machinery.
Collapse
|
48
|
Wadhwa R, Priyandoko D, Gao R, Widodo N, Nigam N, Li L, Ahn HM, Yun CO, Ando N, Mahe C, Kaul SC. Stress chaperone mortalin regulates human melanogenesis. Cell Stress Chaperones 2016; 21:631-44. [PMID: 27056733 PMCID: PMC4907994 DOI: 10.1007/s12192-016-0688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023] Open
Abstract
In order to identify the cellular factors involved in human melanogenesis, we carried out shRNA-mediated loss-of-function screening in conjunction with induction of melanogenesis by 1-oleoyl-2-acetyl-glycerol (OAG) in human melanoma cells using biochemical and visual assays. Gene targets of the shRNAs (that caused loss of OAG-induced melanogenesis) and their pathways, as determined by bioinformatics, revealed involvement of proteins that regulate cell stress response, mitochondrial functions, proliferation, and apoptosis. We demonstrate, for the first time, that the mitochondrial stress chaperone mortalin is crucial for melanogenesis. Upregulation of mortalin was closely associated with melanogenesis in in vitro cell-based assays and clinical samples of keloids with hyperpigmentation. Furthermore, its knockdown resulted in compromised melanogenesis. The data proposed mortalin as an important protein that may be targeted to manipulate pigmentation for cosmetic and related disease therapeutics.
Collapse
Affiliation(s)
- Renu Wadhwa
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Didik Priyandoko
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Biology, Universitas Pendidikan Indonesia, Bandung, Indonesia
| | - Ran Gao
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nashi Widodo
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Nupur Nigam
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Ling Li
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hyo Min Ahn
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 133-791, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul, 133-791, South Korea
| | - Nobuhiro Ando
- KK Chanel Research and Technology Development Laboratory, 1-1-5, Yamate, Funabashi-Chiba, 273-0045, Japan
| | - Christian Mahe
- KK Chanel Research and Technology Development Laboratory, 1-1-5, Yamate, Funabashi-Chiba, 273-0045, Japan
| | - Sunil C Kaul
- DAILAB, National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
49
|
Lahtvee PJ, Kumar R, Hallström BM, Nielsen J. Adaptation to different types of stress converge on mitochondrial metabolism. Mol Biol Cell 2016; 27:2505-14. [PMID: 27307591 PMCID: PMC4966989 DOI: 10.1091/mbc.e16-03-0187] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
Yeast cell factories encounter physical and chemical stresses when used for industrial production of fuels and chemicals. These stresses reduce productivity and increase bioprocess costs. Understanding the mechanisms of the stress response is essential for improving cellular robustness in platform strains. We investigated the three most commonly encountered industrial stresses for yeast (ethanol, salt, and temperature) to identify the mechanisms of general and stress-specific responses under chemostat conditions in which specific growth rate-dependent changes are eliminated. By applying systems-level analysis, we found that most stress responses converge on mitochondrial processes. Our analysis revealed that stress-specific factors differ between applied stresses; however, they are underpinned by an increased ATP demand. We found that when ATP demand increases to high levels, respiration cannot provide sufficient ATP, leading to onset of respirofermentative metabolism. Although stress-specific factors increase ATP demand for cellular growth under stressful conditions, increased ATP demand for cellular maintenance underpins a general stress response and is responsible for the onset of overflow metabolism.
Collapse
Affiliation(s)
- Petri-Jaan Lahtvee
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Rahul Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Björn M Hallström
- Science for Life Laboratory, Royal Institute of Technology, 171 21, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| |
Collapse
|
50
|
Shi J, Fu M, Zhao C, Zhou F, Yang Q, Qiu L. Characterization and function analysis of Hsp60 and Hsp10 under different acute stresses in black tiger shrimp, Penaeus monodon. Cell Stress Chaperones 2016; 21:295-312. [PMID: 26637414 PMCID: PMC4786529 DOI: 10.1007/s12192-015-0660-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/05/2015] [Accepted: 11/15/2015] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins (Hsps) are a class of highly conserved proteins produced in virtually all living organisms from bacteria to humans. Hsp60 and Hsp10, the most important mitochondrial chaperones, participate in environmental stress responses. In this study, the full-length complementary DNAs (cDNAs) of Hsp60 (PmHsp60) and Hsp10 (PmHsp10) were cloned from Penaeus monodon. Sequence analysis showed that PmHsp60 and PmHsp10 encoded polypeptides of 578 and 102 amino acids, respectively. The expression profiles of PmHsp60 and PmHsp10 were detected in the gills and hepatopancreas of the shrimps under pH challenge, osmotic stress, and heavy metal exposure, and results suggested that PmHsp60 and PmHsp10 were involved in the responses to these stimuli. ATPase and chaperone activity assay indicated that PmHsp60 could slow down protein denaturation and that Hsp60/Hsp10 may be combined to produce a chaperone complex with effective chaperone and ATPase activities. Overall, this study provides useful information to help further understand the functional mechanisms of the environmental stress responses of Hsp60 and Hsp10 in shrimp.
Collapse
Affiliation(s)
- Jinxuan Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Mingjun Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China
| | - Falin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China
| | - Qibin Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China
- Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Sanya, 572000, China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, 510300, China.
| |
Collapse
|