1
|
Stentz R, Jones E, Gul L, Latousakis D, Parker A, Brion A, Goldson AJ, Gotts K, Carding SR. Proteomics of Bacterial and Mouse Extracellular Vesicles Released in the Gastrointestinal Tracts of Nutrient-Stressed Animals Reveals an Interplay Between Microbial Serine Proteases and Mammalian Serine Protease Inhibitors. Int J Mol Sci 2025; 26:4080. [PMID: 40362319 PMCID: PMC12071298 DOI: 10.3390/ijms26094080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Bacterial extracellular vesicles (BEVs) produced by members of the intestinal microbiota can not only contribute to digestion but also mediate microbe-host cell communication via the transfer of functional biomolecules to mammalian host cells. An unresolved question is which host factors and conditions influence BEV cargo and how they impact host cell function. To address this question, we analysed and compared the proteomes of BEVs released by the major human gastrointestinal tract (GIT) symbiont Bacteroides thetaiotaomicron (Bt) in vivo in fed versus fasted animals using nano-liquid chromatography with tandem mass spectrometry (LC-MSMS). Among the proteins whose abundance was negatively affected by fasting, nine of ten proteins of the serine protease family, including the regulatory protein dipeptidyl peptidase-4 (DPP-4), were significantly decreased in BEVs produced in the GITs of fasted animals. Strikingly, in extracellular vesicles produced by the intestinal epithelia of the same fasted mice, the proteins with the most increased abundance were serine protease inhibitors (serpins). Together, these findings suggest a dynamic interaction between GI bacteria and the host. Additionally, they indicate a regulatory role for the host in determining the balance between bacterial serine proteases and host serpins exported in bacterial and host extracellular vesicles.
Collapse
Affiliation(s)
- Régis Stentz
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Emily Jones
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Lejla Gul
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Dimitrios Latousakis
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Aimee Parker
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
| | - Arlaine Brion
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK (A.J.G.); (K.G.)
| | - Andrew J. Goldson
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK (A.J.G.); (K.G.)
| | - Kathryn Gotts
- Core Science Resources, Quadram Institute Bioscience, Norwich NR4 7UQ, UK (A.J.G.); (K.G.)
| | - Simon R. Carding
- Food, Microbiome and Health Research Programme, Quadram Institute Bioscience, Norwich NR4 7UQ, UK; (E.J.); (L.G.); (D.L.); (A.P.); (S.R.C.)
- Norwich Medical School, University East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
2
|
Del Castillo Alferez J, Kooiker A, van Alphen FPJ, van der Zwaan C, Brinkman HJ, Meijers JCM, Meijer AB, van den Biggelaar M, van Duijl TT, SYMPHONY Consortium. Proteolytic signatures of coagulation identified by plasma peptidomics. J Thromb Haemost 2025:S1538-7836(25)00267-3. [PMID: 40286914 DOI: 10.1016/j.jtha.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Coagulation entails sequential proteolytic events in plasma, ultimately leading to fibrin clot formation. OBJECTIVES In this study, we employed a mass spectrometry-based peptidomics approach to characterize the molecular events of coagulation-induced limited proteolysis. METHODS Citrated plasma from healthy donors was in vitro-coagulated by recalcification combined with the addition of tissue factor (TF) in the absence or presence of hirudin. The formation of endogenous peptide products over time was monitored using a mass spectrometry approach with a de novo algorithm for peptide identification. RESULTS Plasma coagulation resulted in a distinct peptidome enriched with activation peptides of prothrombin and FXIIIA, fibrinopeptides A and B, reactive center loops of protease inhibitors, the bait region of α2-macroglobulin, and additional proteolytic hotspots outside the coagulation system. While thrombin inhibition blocked almost all TF-initiated limited proteolysis, most events were TF concentration-independent, with the exception of prothrombin, fibrinogen, FV, FXIIIA, α2-macroglobulin, protein C inhibitor, complement C3, and plexin domain-containing 2. The order of events of fibrinopeptide A and B formation-prothrombin conversion, FXIIIA activation, and protease inhibitor proteolysis-followed the kinetics of thrombin generation. CONCLUSION Plasma peptidomics of coagulation-initiated limited proteolysis captures peptide products derived from pro- and anticoagulant events and proteolytic signatures beyond the classical coagulation system. We envision that this peptidomics strategy enables the assessment of functional aspects of coagulation in bleeding and thrombotic disorders at the molecular level.
Collapse
Affiliation(s)
| | - Alette Kooiker
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Herm-Jan Brinkman
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Joost C M Meijers
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Alexander B Meijer
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Tirsa T van Duijl
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| | | |
Collapse
Collaborators
Emile van den Akker, Wala Al Arashi, Ryanne Arisz, Lieke Baas, Ruben Bierings, Maartje van den Biggelaar, Johan Boender, Anske van der Bom, Mettine Bos, Martijn Brands, Annelien Bredenoord, Laura Bukkems, Lex Burdorf, Jessica Del Castillo Alferez, Michael Cloesmeijer, Marjon Cnossen, Mariëtte Driessens, Jeroen Eikenboom, Karin Fijnvandraat, Kathelijn Fischer, Geertje Goedhart, Tine Goedhart, Samantha Gouw, Rieke van der Graaf, Masja de Haas, Lotte Haverman, Jan Hazelzet, Shannon van Hoorn, Elise Huisman, Nathalie Jansen, Alexander Janssen, Sean de Jong, Sjoerd Koopman, Marieke Kruip, Sebastiaan Laan, Frank Leebeek, Nikki van Leeuwen, Hester Lingsma, Moniek de Maat, Ron Mathôt, Felix van der Meer, Karina Meijer, Sander Meijer, Stephan Meijer, Iris van Moort, Caroline Mussert, Hans Kristian Ploos van Amstel, Suzanne Polinder, Diaz Prameyllawati, Simone Reitsma, Eliza Roest, Lorenzo Romano, Saskia Schols, Roger Schutgens, Rolf Urbanus, Carin Uyl, Jan Voorberg, Huan Zhang, Minka Zivkovic,
Collapse
|
3
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
4
|
Cheng C, Qi J, Zhang L, Li H, Lu J, Li S, Zhang Z, Qiu Y, Zhang C, Jiang L, Yu C, Gao X, Bird PI, Chai R. Absence of Serpinb6a causes progressive hair cell apoptosis and hearing loss in mice. J Genet Genomics 2023; 50:122-125. [PMID: 36087923 DOI: 10.1016/j.jgg.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No.321 Zhongshan Road, Nanjing, Jiangsu 210008, China; Research Institute of Otolaryngology, No.321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - Liyan Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325015, China
| | - Jie Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Siyu Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No.321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Zhong Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yue Qiu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No.321 Zhongshan Road, Nanjing, Jiangsu 210008, China
| | - Chen Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Lulu Jiang
- Suzhou Otovia Therapeutics Inc., Suzhou, Jiangsu 215021, China
| | - Chaorong Yu
- Suzhou Otovia Therapeutics Inc., Suzhou, Jiangsu 215021, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No.321 Zhongshan Road, Nanjing, Jiangsu 210008, China; Research Institute of Otolaryngology, No.321 Zhongshan Road, Nanjing, Jiangsu 210008, China.
| | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210009, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China; Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100086, China.
| |
Collapse
|
5
|
An J, Tsopmejio ISN, Wang Z, Li W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023; 28:molecules28020908. [PMID: 36677965 PMCID: PMC9863410 DOI: 10.3390/molecules28020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Peptides, functional nutrients with a size between those of large proteins and small amino acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical medicine and have revealed immunomodulatory and anti-inflammatory properties which could make them effective in healing skin wounds. This review sorted and summarized the relevant literature about peptides during the past decade. Recent works on the extraction, modification and synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the skin were extensively explored, providing ideas for the development and innovation of peptides and laying a knowledge foundation for the clinical application of peptides.
Collapse
Affiliation(s)
- Jiabing An
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| |
Collapse
|
6
|
Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022; 350:716-733. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 02/06/2023]
Abstract
Peptides, short stretches of amino acids or small proteins that occupy a strategic position between proteins and amino acids, are readily accessible by chemical and biological methods. With ideal properties for forming high-affinity and specific interactions with host target proteins, they have established an important niche in the drug development spectrum complementing small molecule and biological therapeutics. Among the most successful biomedicines in use today, peptide-based drugs show great promise. This, coupled with recent advances in synthetic and nanochemical biology, has led to the creation of tailor-made peptide therapeutics for improved biocompatibility. This review presents an overview of the latest research on pathogen-derived, host-cell-interacting peptides. It also highlights strategies for using peptide-based therapeutics that address cellular transport challenges through the introduction of nanoparticles that serve as platforms to facilitate the delivery of peptide biologics and therapeutics for treating various inflammatory diseases. Finally, this paper describes future perspectives, specific pathogen-based peptides that can enhance specificity, efficiency, and capacity in functional peptide-based therapeutics, which are in the spotlight as new treatment alternatives for various diseases, and also presents verified sequences and targets that can increase chemical and pharmacological value.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea; Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
7
|
Forrester S, Goundry A, Dias BT, Leal-Calvo T, Moraes MO, Kaye PM, Mottram JC, Lima APCA. Tissue Specific Dual RNA-Seq Defines Host-Parasite Interplay in Murine Visceral Leishmaniasis Caused by Leishmania donovani and Leishmania infantum. Microbiol Spectr 2022; 10:e0067922. [PMID: 35384718 PMCID: PMC9045295 DOI: 10.1128/spectrum.00679-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023] Open
Abstract
Visceral leishmaniasis is associated with hepato-splenomegaly and altered immune and hematological parameters in both preclinical animal models and humans. We studied mouse experimental visceral leishmaniasis caused by Leishmania infantum and Leishmania donovani in BALB/c mice using dual RNA-seq to investigate the transcriptional response of host and parasite in liver and spleen. We identified only 4 species-specific parasite expressed genes (SSPEGs; log2FC >1, FDR <0.05) in the infected spleen, and none in the infected liver. For the host transcriptome, we found 789 differentially expressed genes (DEGs; log2FC >1, FDR <0.05) in the spleen that were common to both infections, with IFNγ signaling and complement and coagulation cascade pathways highly enriched, and an additional 286 and 186 DEGs that were selective to L. donovani and L. infantum infection, respectively. Among those, there were network interactions between genes of amino acid metabolism and PPAR signaling in L. donovani infection and increased IL1β and positive regulation of fatty acid transport in L. infantum infection, although no pathway enrichment was observed. In the liver, there were 1,939 DEGs in mice infected with either L. infantum or L. donovani in comparison to uninfected mice, and the most enriched pathways were IFNγ signaling, neutrophil mediated immunity, complement and coagulation, cytokine-chemokine responses, and hemostasis. Additionally, 221 DEGs were selective in L. donovani and 429 DEGs in L. infantum infections. These data show that the host response for these two visceral leishmaniasis infection models is broadly similar, and ∼10% of host DEGs vary in infections with either parasite species. IMPORTANCE Visceral leishmaniasis (VL) is caused by two species of Leishmania parasites, L. donovani in the Old World and L. infantum in the New World and countries bordering the Mediterranean. Although cardinal features such as hepato-splenomegaly and alterations in blood and immune function are evident, clinical presentation may vary by geography, with for example severe bleeding often associated with VL in Brazil. Although animal models of both L. donovani and L. infantum have been widely used to study disease pathogenesis, a direct side-by-side comparison of how these parasites species impact the infected host and/or how they might respond to the stresses of mammalian infection has not been previously reported. Identifying common and distinct pathways to pathogenesis will be important to ensure that new therapeutic or prophylactic approaches will be applicable across all forms of VL.
Collapse
Affiliation(s)
- Sarah Forrester
- York Biomedical Research Institute, Department of Biology, University of York, York, England, United Kingdom
| | - Amy Goundry
- York Biomedical Research Institute, Department of Biology, University of York, York, England, United Kingdom
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Torres Dias
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, England, United Kingdom
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, England, United Kingdom
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
D'Acunto E, Fra A, Visentin C, Manno M, Ricagno S, Galliciotti G, Miranda E. Neuroserpin: structure, function, physiology and pathology. Cell Mol Life Sci 2021; 78:6409-6430. [PMID: 34405255 PMCID: PMC8558161 DOI: 10.1007/s00018-021-03907-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.
Collapse
Affiliation(s)
- Emanuela D'Acunto
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Visentin
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Molecular and Translational Cardiology, I.R.C.C.S. Policlinico San Donato, Milan, Italy
| | - Mauro Manno
- Institute of Biophysics, National Research Council of Italy, Palermo, Italy
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Maas C, de Maat S. Therapeutic SERPINs: Improving on Nature. Front Cardiovasc Med 2021; 8:648349. [PMID: 33869308 PMCID: PMC8044344 DOI: 10.3389/fcvm.2021.648349] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/10/2021] [Indexed: 01/22/2023] Open
Abstract
Serine proteases drive important physiological processes such as coagulation, fibrinolysis, inflammation and angiogenesis. These proteases are controlled by serine protease inhibitors (SERPINs) that neutralize their activity. Currently, over 1,500 SERPINs are known in nature, but only 37 SERPINs are found in humans. Thirty of these are functional protease inhibitors. The inhibitory potential of SERPINs is in perfect balance with the proteolytic activities of its targets to enable physiological protease activity. Hence, SERPIN deficiency (either qualitative or quantitative) can lead to disease. Several SERPIN resupplementation strategies have been developed to treat SERPIN deficiencies, including concentrates derived from plasma and recombinant SERPINs. SERPINs usually inhibit multiple proteases, but only in their active state. Over the past decades, considerable insights have been acquired in the identification of SERPIN biological functions, their inhibitory mechanisms and specificity determinants. This paves the way for the development of therapeutic SERPINs. Through rational design, the inhibitory properties (selectivity and inhibitory potential) of SERPINs can be reformed and optimized. This review explores the current state of SERPIN engineering with a focus on reactive center loop modifications and backbone stabilization. We will discuss the lessons learned from these recombinant SERPINs and explore novel techniques and strategies that will be essential for the creation and application of the future generation of therapeutic SERPINs.
Collapse
Affiliation(s)
- Coen Maas
- CDL Research, University Medical Center Utrecht, Utrecht, Netherlands
| | - Steven de Maat
- CDL Research, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
10
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
11
|
Yaron JR, Zhang L, Guo Q, Haydel SE, Lucas AR. Fibrinolytic Serine Proteases, Therapeutic Serpins and Inflammation: Fire Dancers and Firestorms. Front Cardiovasc Med 2021; 8:648947. [PMID: 33869309 PMCID: PMC8044766 DOI: 10.3389/fcvm.2021.648947] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The making and breaking of clots orchestrated by the thrombotic and thrombolytic serine protease cascades are critical determinants of morbidity and mortality during infection and with vascular or tissue injury. Both the clot forming (thrombotic) and the clot dissolving (thrombolytic or fibrinolytic) cascades are composed of a highly sensitive and complex relationship of sequentially activated serine proteases and their regulatory inhibitors in the circulating blood. The proteases and inhibitors interact continuously throughout all branches of the cardiovascular system in the human body, representing one of the most abundant groups of proteins in the blood. There is an intricate interaction of the coagulation cascades with endothelial cell surface receptors lining the vascular tree, circulating immune cells, platelets and connective tissue encasing the arterial layers. Beyond their role in control of bleeding and clotting, the thrombotic and thrombolytic cascades initiate immune cell responses, representing a front line, "off-the-shelf" system for inducing inflammatory responses. These hemostatic pathways are one of the first response systems after injury with the fibrinolytic cascade being one of the earliest to evolve in primordial immune responses. An equally important contributor and parallel ancient component of these thrombotic and thrombolytic serine protease cascades are the serine protease inhibitors, termed serpins. Serpins are metastable suicide inhibitors with ubiquitous roles in coagulation and fibrinolysis as well as multiple central regulatory pathways throughout the body. Serpins are now known to also modulate the immune response, either via control of thrombotic and thrombolytic cascades or via direct effects on cellular phenotypes, among many other functions. Here we review the co-evolution of the thrombolytic cascade and the immune response in disease and in treatment. We will focus on the relevance of these recent advances in the context of the ongoing COVID-19 pandemic. SARS-CoV-2 is a "respiratory" coronavirus that causes extensive cardiovascular pathogenesis, with microthrombi throughout the vascular tree, resulting in severe and potentially fatal coagulopathies.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School for Engineering of Matter, Transport and Energy, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, United States
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Shelley E. Haydel
- Center for Bioelectronics and Biosensors, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
12
|
A Novel Mouse Monoclonal Antibody C42 against C-Terminal Peptide of Alpha-1-Antitrypsin. Int J Mol Sci 2021; 22:ijms22042141. [PMID: 33670003 PMCID: PMC7926790 DOI: 10.3390/ijms22042141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
The C-terminal-fragments of alpha1-antitrypsin (AAT) have been identified and their diverse biological roles have been reported in vitro and in vivo. These findings prompted us to develop a monoclonal antibody that specifically recognizes C-36 peptide (corresponding to residues 359–394) resulting from the protease-associated cleavage of AAT. The C-36-targeting mouse monoclonal Immunoglobulin M (IgM) antibody (containing κ light chains, clone C42) was generated and enzyme-linked immunosorbent assay (ELISA)-tested by Davids Biotechnologie GmbH, Germany. Here, we addressed the effectiveness of the novel C42 antibody in different immunoassay formats, such as dot- and Western blotting, confocal laser microscopy, and flow cytometry. According to the dot-blot results, our novel C42 antibody detects the C-36 peptide at a range of 0.1–0.05 µg and shows no cross-reactivity with native, polymerized, or oxidized forms of full-length AAT, the AAT-elastase complex mixture, as well as with shorter C-terminal fragments of AAT. However, the C42 antibody does not detect denatured peptide in SDS-PAGE/Western blotting assays. On the other hand, our C42 antibody, unconjugated as well as conjugated to DyLight488 fluorophore, when applied for immunofluorescence microscopy and flow cytometry assays, specifically detected the C-36 peptide in human blood cells. Altogether, we demonstrate that our novel C42 antibody successfully recognizes the C-36 peptide of AAT in a number of immunoassays and has potential to become an important tool in AAT-related studies.
Collapse
|
13
|
Jang M, Hara S, Kim GH, Kim SM, Son S, Kwon M, Ryoo IJ, Seo H, Kim MJ, Kim ND, Soung NK, Kwon YT, Kim BY, Osada H, Jang JH, Ko SK, Ahn JS. Dutomycin Induces Autophagy and Apoptosis by Targeting the Serine Protease Inhibitor SERPINB6. ACS Chem Biol 2021; 16:360-370. [PMID: 33517652 DOI: 10.1021/acschembio.0c00889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autophagy plays an important role in maintaining tumor cell progression and survival in response to metabolic stress. Thus, the regulation of autophagy can be used as a strategy for anticancer therapy. Here, we report dutomycin (DTM) as a novel autophagy enhancer that eventually induces apoptosis due to excessive autophagy. Also, human serine protease inhibitor B6 (SERPINB6) was identified as a target protein of DTM, and its novel function which is involved in autophagy was studied for the first time. We show that DTM directly binds SERPINB6 and then activates intracellular serine proteases, resulting in autophagy induction. Inhibitory effects of DTM on the function of SERPINB6 were confirmed through enzyme- and cell-based approaches, and SERPINB6 was validated as a target protein using siRNA-mediated knockdown and an overexpression test. In a zebrafish xenograft model, DTM showed a significant decrease in tumor area. Furthermore, the present findings will be expected to contribute to the expansion of novel basic knowledge about the correlation of cancer and autophagy by promoting active further research on SERPINB6, which was not previously considered the subject of cancer biology.
Collapse
Affiliation(s)
- Mina Jang
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Shuta Hara
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Gun-Hee Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Seung Min Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sangkeun Son
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Mincheol Kwon
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - In-Ja Ryoo
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Hyemin Seo
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
| | - Nam-Doo Kim
- VORONOIBIO Inc., 32 Songdogwahak-ro, Yeonsu-gu, Incheon 21984, Korea
| | - Nak-Kyun Soung
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Bo Yeon Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Research Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jae-Hyuk Jang
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Sung-Kyun Ko
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
| | - Jong Seog Ahn
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| |
Collapse
|
14
|
Yaron JR, Zhang L, Burgin M, Schutz LN, Awo EA, Keinan S, McFadden G, Ambadapadi S, Guo Q, Chen H, Lucas AR. Deriving Immune-Modulating Peptides from Viral Serine Protease Inhibitors (Serpins). Methods Mol Biol 2021; 2225:107-123. [PMID: 33108660 DOI: 10.1007/978-1-0716-1012-1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Viruses have devised highly effective approaches that modulate the host immune response, blocking immune responses that are designed to eradicate viral infections. Over millions of years of evolution, virus-derived immune-modulating proteins have become extraordinarily potent, in some cases working at picomolar concentrations when expressed into surrounding tissues and effectively blocking host defenses against viral invasion and replication. The marked efficiency of these immune-modulating proteins is postulated to be due to viral engineering of host immune modulators as well as design and development of new strategies (i.e., some derived from host proteins and some entirely unique). Two key characteristics of viral immune modulators confer both adaptive advantages and desirable functions for therapeutic translation. First, many virus-derived immune modulators have evolved structures that are not readily recognized or regulated by mammalian immune pathways, ensuring little to no neutralizing antibody responses or proteasome-mediated degradation. Second, these immune modulators tend to target early steps in central immune responses, producing a powerful downstream inhibitory "domino effect" which may alter cell activation and gene expression.We have proposed that peptide metabolites of these immune-modulating proteins can enhance and extend protein function. Active immunomodulating peptides have been derived from both mammalian and viral proteins. We previously demonstrated that peptides derived from computationally predicted cleavage sites in the reactive center loop (RCL) of a viral serine proteinase inhibitor (serpin ) from myxoma virus, Serp-1 , can modify immune response activation. We have also demonstrated modulation of host gut microbiota produced by Serp-1 and RCL-derived peptide , S7, in a vascular inflammation model. Of interest, generation of derived peptides that maintain therapeutic function from a serpin can act by a different mechanism. Whereas Serp-1 has canonical serpin-like function to inhibit serine proteases, S7 instead targets mammalian serpins. Here we describe the derivation of active Serp- RCL peptides and their testing in inflammatory vasculitis models.
Collapse
Affiliation(s)
- Jordan R Yaron
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Liqiang Zhang
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Michelle Burgin
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Lauren N Schutz
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Enkidia A Awo
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | | | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Sriram Ambadapadi
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Qiuyun Guo
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou, China
| | - Alexandra R Lucas
- Centers for Personalized Diagnostics and for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA.
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ, USA.
| |
Collapse
|
15
|
Yaron JR, Zhang L, Guo Q, Awo EA, Burgin M, Schutz LN, Zhang N, Kilbourne J, Daggett-Vondras J, Lowe KM, Lucas AR. Recombinant Myxoma Virus-Derived Immune Modulator M-T7 Accelerates Cutaneous Wound Healing and Improves Tissue Remodeling. Pharmaceutics 2020; 12:E1003. [PMID: 33105865 PMCID: PMC7690590 DOI: 10.3390/pharmaceutics12111003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
Complex dermal wounds represent major medical and financial burdens, especially in the context of comorbidities such as diabetes, infection and advanced age. New approaches to accelerate and improve, or "fine tune" the healing process, so as to improve the quality of cutaneous wound healing and management, are the focus of intense investigation. Here, we investigate the topical application of a recombinant immune modulating protein which inhibits the interactions of chemokines with glycosaminoglycans, reducing damaging or excess inflammation responses in a splinted full-thickness excisional wound model in mice. M-T7 is a 37 kDa-secreted, virus-derived glycoprotein that has demonstrated therapeutic efficacy in numerous animal models of inflammatory immunopathology. Topical treatment with recombinant M-T7 significantly accelerated wound healing when compared to saline treatment alone. Healed wounds exhibited properties of improved tissue remodeling, as determined by collagen maturation. M-T7 treatment accelerated the rate of peri-wound angiogenesis in the healing wounds with increased levels of TNF, VEGF and CD31. The immune cell response after M-T7 treatment was associated with a retention of CCL2 levels, and increased abundances of arginase-1-expressing M2 macrophages and CD4 T cells. Thus, topical treatment with recombinant M-T7 promotes a pro-resolution environment in healing wounds, and has potential as a novel treatment approach for cutaneous tissue repair.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Enkidia A. Awo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Michelle Burgin
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Nathan Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| | - Jacquelyn Kilbourne
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (J.K.); (J.D.-V.); (K.M.L.)
| | - Juliane Daggett-Vondras
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (J.K.); (J.D.-V.); (K.M.L.)
| | - Kenneth M. Lowe
- Department of Animal Care and Technologies, Arizona State University, Tempe, AZ 85287, USA; (J.K.); (J.D.-V.); (K.M.L.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.R.Y.); (Q.G.); (E.A.A.); (M.B.); (L.N.S.); (N.Z.)
| |
Collapse
|
16
|
Upadhyay D, Kaur T, Kapila R, Kapila S. Repertoire of Structure-Activity-Based Novel Modified Peptides Elicits Enhanced Osteogenic Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8308-8320. [PMID: 32628843 DOI: 10.1021/acs.jafc.0c03385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biologically active peptides in milk proteins can be used as effective dietary supplements for management of bone-associated issues including osteoporosis. A bioactive peptide derived from milk, viz. VLPVPQK/PepC, has been validated previously from our lab for its osteoanabolic action. In this study, we report 14 novel variants of PepC, designed in silico, based on the structure-activity relationship, aiming to enhance its osteogenic effect that holds tremendous therapeutic utility for bone-related injuries. PepC was computationally modified at seven positions of its original sequence, resulting in 14 modified synthetic peptides for functional predictions and in vitro assessment by comparative analysis of modified peptides by PepC for improved ability in osteogenic functional assays (proliferation potential, antioxidant ability, gene and protein expression, cytotoxic effect, bone mineralization) using calvarial osteoblasts. For most peptides with the highest Peptide7 response relative to PepC (p < 0.05), enhanced osteoanabolic response was observed. Further observations on Peptide7 have therefore been investigated in depth (qPCR, immunoblotting, LCMS/MS, and PCA analysis). Peptide7 displayed a rise in the expression of osteogenes (Osterix, Opg, Bmp2, and Runx2, p < 0.05) and protein (Runx2 and Bmp2, p < 0.05). Besides, LCMS/MS findings suggest Peptide7 escapes intestinal peptidases degradation. Experimental evidence supports an improved osteological reaction to newly modified peptides and hence exploitation in the preparation of functional foods or supplements.
Collapse
Affiliation(s)
- Divya Upadhyay
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Taruneet Kaur
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana 132001, India
| |
Collapse
|
17
|
Li M, Takahashi D, Kanost MR. Peptides based on the reactive center loop of Manduca sexta serpin-3 block its protease inhibitory function. Sci Rep 2020; 10:11497. [PMID: 32661389 PMCID: PMC7359039 DOI: 10.1038/s41598-020-68316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/23/2020] [Indexed: 11/11/2022] Open
Abstract
One innate immune response in insects is the proteolytic activation of hemolymph prophenoloxidase (proPO), regulated by protease inhibitors called serpins. In the inhibition reaction of serpins, a protease cleaves a peptide bond in a solvent-exposed reactive center loop (RCL) of the serpin, and the serpin undergoes a conformational change, incorporating the amino-terminal segment of the RCL into serpin β-sheet A as a new strand. This results in an irreversible inhibitory complex of the serpin with the protease. We synthesized four peptides with sequences from the hinge region in the RCL of Manduca sexta serpin-3 and found they were able to block serpin-3 inhibitory activity, resulting in suppression of inhibitory protease-serpin complex formation. An RCL-derived peptide with the sequence Ser-Val-Ala-Phe-Ser (SVAFS) displayed robust blocking activity against serpin-3. Addition of acetyl-SVAFS-amide to hemolymph led to unregulated proPO activation. Serpin-3 associated with Ac-SVAFS-COO− had an altered circular dichroism spectrum and enhanced thermal resistance to change in secondary structure, indicating that these two molecules formed a binary complex, most likely by insertion of the peptide into β-sheet A. The interference of RCL-derived peptides with serpin activity may lead to new possibilities of “silencing” arthropod serpins with unknown functions for investigation of their physiological roles.
Collapse
Affiliation(s)
- Miao Li
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
18
|
Kwiecien JM, Zhang L, Yaron JR, Schutz LN, Kwiecien-Delaney CJ, Awo EA, Burgin M, Dabrowski W, Lucas AR. Local Serpin Treatment via Chitosan-Collagen Hydrogel after Spinal Cord Injury Reduces Tissue Damage and Improves Neurologic Function. J Clin Med 2020; 9:E1221. [PMID: 32340262 PMCID: PMC7230793 DOI: 10.3390/jcm9041221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/12/2020] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury (SCI) results in massive secondary damage characterized by a prolonged inflammation with phagocytic macrophage invasion and tissue destruction. In prior work, sustained subdural infusion of anti-inflammatory compounds reduced neurological deficits and reduced pro-inflammatory cell invasion at the site of injury leading to improved outcomes. We hypothesized that implantation of a hydrogel loaded with an immune modulating biologic drug, Serp-1, for sustained delivery after crush-induced SCI would have an effective anti-inflammatory and neuroprotective effect. Rats with dorsal column SCI crush injury, implanted with physical chitosan-collagen hydrogels (CCH) had severe granulomatous infiltration at the site of the dorsal column injury, which accumulated excess edema at 28 days post-surgery. More pronounced neuroprotective changes were observed with high dose (100 µg/50 µL) Serp-1 CCH implanted rats, but not with low dose (10 µg/50 µL) Serp-1 CCH. Rats treated with Serp-1 CCH implants also had improved motor function up to 20 days with recovery of neurological deficits attributed to inhibition of inflammation-associated tissue damage. In contrast, prolonged low dose Serp-1 infusion with chitosan did not improve recovery. Intralesional implantation of hydrogel for sustained delivery of the Serp-1 immune modulating biologic offers a neuroprotective treatment of acute SCI.
Collapse
Affiliation(s)
- Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | | | - Enkidia A. Awo
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Michelle Burgin
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| | - Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, 20-400 Lublin, Poland;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (L.Z.); (J.R.Y.); (L.N.S.); (E.A.A.); (M.B.)
| |
Collapse
|
19
|
Yaron JR, Zhang L, Guo Q, Burgin M, Schutz LN, Awo E, Wise L, Krause KL, Ildefonso CJ, Kwiecien JM, Juby M, Rahman MM, Chen H, Moyer RW, Alcami A, McFadden G, Lucas AR. Deriving Immune Modulating Drugs from Viruses-A New Class of Biologics. J Clin Med 2020; 9:E972. [PMID: 32244484 PMCID: PMC7230489 DOI: 10.3390/jcm9040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Viruses are widely used as a platform for the production of therapeutics. Vaccines containing live, dead and components of viruses, gene therapy vectors and oncolytic viruses are key examples of clinically-approved therapeutic uses for viruses. Despite this, the use of virus-derived proteins as natural sources for immune modulators remains in the early stages of development. Viruses have evolved complex, highly effective approaches for immune evasion. Originally developed for protection against host immune responses, viral immune-modulating proteins are extraordinarily potent, often functioning at picomolar concentrations. These complex viral intracellular parasites have "performed the R&D", developing highly effective immune evasive strategies over millions of years. These proteins provide a new and natural source for immune-modulating therapeutics, similar in many ways to penicillin being developed from mold or streptokinase from bacteria. Virus-derived serine proteinase inhibitors (serpins), chemokine modulating proteins, complement control, inflammasome inhibition, growth factors (e.g., viral vascular endothelial growth factor) and cytokine mimics (e.g., viral interleukin 10) and/or inhibitors (e.g., tumor necrosis factor) have now been identified that target central immunological response pathways. We review here current development of virus-derived immune-modulating biologics with efficacy demonstrated in pre-clinical or clinical studies, focusing on pox and herpesviruses-derived immune-modulating therapeutics.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Michelle Burgin
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Enkidia Awo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lyn Wise
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | - Kurt L. Krause
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | | | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Michael Juby
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China;
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA;
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ 85013, USA
| |
Collapse
|
20
|
Yaron JR, Ambadapadi S, Zhang L, Chavan RN, Tibbetts SA, Keinan S, Varsani A, Maldonado J, Kraberger S, Tafoya AM, Bullard WL, Kilbourne J, Stern-Harbutte A, Krajmalnik-Brown R, Munk BH, Koppang EO, Lim ES, Lucas AR. Immune protection is dependent on the gut microbiome in a lethal mouse gammaherpesviral infection. Sci Rep 2020; 10:2371. [PMID: 32047224 PMCID: PMC7012916 DOI: 10.1038/s41598-020-59269-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
Immunopathogenesis in systemic viral infections can induce a septic state with leaky capillary syndrome, disseminated coagulopathy, and high mortality with limited treatment options. Murine gammaherpesvirus-68 (MHV-68) intraperitoneal infection is a gammaherpesvirus model for producing severe vasculitis, colitis and lethal hemorrhagic pneumonia in interferon gamma receptor-deficient (IFNγR-/-) mice. In prior work, treatment with myxomavirus-derived Serp-1 or a derivative peptide S-7 (G305TTASSDTAITLIPR319) induced immune protection, reduced disease severity and improved survival after MHV-68 infection. Here, we investigate the gut bacterial microbiome in MHV-68 infection. Antibiotic suppression markedly accelerated MHV-68 pathology causing pulmonary consolidation and hemorrhage, increased mortality and specific modification of gut microbiota. Serp-1 and S-7 reduced pulmonary pathology and detectable MHV-68 with increased CD3 and CD8 cells. Treatment efficacy was lost after antibiotic treatments with associated specific changes in the gut bacterial microbiota. In summary, transkingdom host-virus-microbiome interactions in gammaherpesvirus infection influences gammaherpesviral infection severity and reduces immune modulating therapeutic efficacy.
Collapse
Affiliation(s)
- Jordan R Yaron
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sriram Ambadapadi
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ramani N Chavan
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shahar Keinan
- Cloud Pharmaceuticals, Research Triangle Park (RTP), North Carolina, USA
| | - Arvind Varsani
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center of Evolution and Medicine Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Juan Maldonado
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- KED Genomics Core, Arizona State University, Tempe, Arizona, USA
| | - Simona Kraberger
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Amanda M Tafoya
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Whitney L Bullard
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jacquelyn Kilbourne
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alison Stern-Harbutte
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Rosa Krajmalnik-Brown
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
| | - Barbara H Munk
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erling O Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
| | - Alexandra R Lucas
- Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
21
|
C-terminal sequence deletion effect on antioxidative characteristics of VLPVPQK bioactive peptide from buffalo milk casein. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Dacrory S, Fahim AM. Synthesis, anti-proliferative activity, computational studies of tetrazole cellulose utilizing different homogenous catalyst. Carbohydr Polym 2020; 229:115537. [DOI: 10.1016/j.carbpol.2019.115537] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022]
|
23
|
Jacobson RA, Wienholts K, Williamson AJ, Gaines S, Hyoju S, van Goor H, Zaborin A, Shogan BD, Zaborina O, Alverdy JC. Enterococcus faecalis exploits the human fibrinolytic system to drive excess collagenolysis: implications in gut healing and identification of druggable targets. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1-G9. [PMID: 31604031 PMCID: PMC6985841 DOI: 10.1152/ajpgi.00236.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Perforations, anastomotic leak, and subsequent intra-abdominal sepsis are among the most common and feared complications of invasive interventions in the colon and remaining intestinal tract. During physiological healing, tissue protease activity is finely orchestrated to maintain the strength and integrity of the submucosa collagen layer in the wound. We (Shogan, BD et al. Sci Trans Med 7: 286ra68, 2015.) have previously demonstrated in both mice and humans that the commensal microbe Enterococcus faecalis selectively colonizes wounded colonic tissues and disrupts the healing process by amplifying collagenolytic matrix-metalloprotease activity toward excessive degradation. Here, we demonstrate for the first time, to our knowledge, a novel collagenolytic virulence mechanism by which E. faecalis is able to bind and locally activate the human fibrinolytic protease plasminogen (PLG), a protein present in high concentrations in healing colonic tissue. E. faecalis-mediated PLG activation leads to supraphysiological collagen degradation; in this study, we demonstrate this concept both in vitro and in vivo. This pathoadaptive response can be mitigated with the PLG inhibitor tranexamic acid (TXA) in a fashion that prevents clinically significant complications in validated murine models of both E. faecalis- and Pseudomonas aeruginosa-mediated colonic perforation. TXA has a proven clinical safety record and is Food and Drug Administration approved for topical application in invasive procedures, albeit for the prevention of bleeding rather than infection. As such, the novel pharmacological effect described in this study may be translatable to clinical trials for the prevention of infectious complications in colonic healing.NEW & NOTEWORTHY This paper presents a novel mechanism for virulence in a commensal gut microbe that exploits the human fibrinolytic system and its principle protease, plasminogen. This mechanism is targetable by safe and effective nonantibiotic small molecules for the prevention of infectious complications in the healing gut.
Collapse
Affiliation(s)
- Richard A. Jacobson
- 1Department of Surgery, Rush University Medical Center, Chicago, Illinois,2Pritzker School of Medicine, University of Chicago, Illinois,3Department of Surgery, John H. Stroger Hospital of Cook County, Chicago, Illinois
| | - Kiedo Wienholts
- 4Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Sara Gaines
- 2Pritzker School of Medicine, University of Chicago, Illinois
| | - Sanjiv Hyoju
- 2Pritzker School of Medicine, University of Chicago, Illinois
| | - Harry van Goor
- 4Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | - Olga Zaborina
- 2Pritzker School of Medicine, University of Chicago, Illinois
| | - John C. Alverdy
- 2Pritzker School of Medicine, University of Chicago, Illinois
| |
Collapse
|
24
|
Prevention of Anastomotic Leak Via Local Application of Tranexamic Acid to Target Bacterial-mediated Plasminogen Activation: A Practical Solution to a Complex Problem. Ann Surg 2019; 274:e1038-e1046. [PMID: 31851007 DOI: 10.1097/sla.0000000000003733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the role of bacterial- mediated plasminogen (PLG) activation in the pathogenesis of anastomotic leak (AL) and its mitigation by tranexamic acid (TXA). BACKGROUND AL is the most feared complication of colorectal resections. The pathobiology of AL in the setting of a technically optimal procedure involves excessive submucosal collagen degradation by resident microbes. We hypothesized that activation of the host PLG system by pathogens is a central and targetable pathway in AL. METHODS We employed kinetic analysis of binding and activation of human PLG by microbes known to cause AL, and collagen degradation assays to test the impact of PLG on bacterial collagenolysis. Further, we measured the ability of the antifibrinolytic drug TXA to inhibit this process. Finally, using mouse models of pathogen-induced AL, we locally applied TXA via enema and measured its ability to prevent a clinically relevant AL. RESULTS PLG is deposited rapidly and specifically at the site of colorectal anastomoses. TXA inhibited PLG activation and downstream collagenolysis by pathogens known to have a causal role in AL. TXA enema reduced collagenolytic bacteria counts and PLG deposition at anastomotic sites. Postoperative PLG inhibition with TXA enema prevented clinically and pathologically apparent pathogen-mediated AL in mice. CONCLUSIONS Bacterial activation of host PLG is central to collagenolysis and pathogen-mediated AL. TXA inhibits this process both in vitro and in vivo. TXA enema represents a promising method to prevent AL in high-risk sites such as the colorectal anastomoses.
Collapse
|
25
|
Wang F, Song Z, Chen J, Wu Q, Zhou X, Ni X, Dai J. The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunology 2019; 159:109-120. [PMID: 31606893 DOI: 10.1111/imm.13130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Serpins are evolutionarily conserved serine protease inhibitors that are widely distributed in animals, plants and microbes. In this study, we reported the cloning and functional characterizations of two novel serpin genes, HlSerpin-a and HlSerpin-b, from the hard tick Haemaphysalis longicornis of China. Recombinant HlSerpin-a and HlSerpin-b displayed protease inhibitory activities against multiple mammalian proteases. Similar to other tick serpins, HlSerpin-a and HlSerpin-b suppressed the expression of inflammatory cytokines such as TNF-α, interleukin (IL)-6 and IL-1β from lipopolysaccharide-stimulated mouse bone-marrow-derived macrophages (BMDMs) or mouse bone-marrow-derived dendritic cells (BMDCs). The minimum active region (reaction centre loop) of HlSerpin-a, named SA-RCL, showed similar biological activities as HlSerpin-a in the protease inhibition and immune suppression assays. The immunosuppressive activities of full-length HlSerpin-a and SA-RCL are impaired in Cathepsin G or Cathepsin B knockout mouse macrophages, suggesting that the immunomodulation functions of SA and SA-RCL are dependent on their protease inhibitory activity. Finally, we showed that both full-length HlSerpins and SA-RCL can relieve the joint swelling and inflammatory response in collagen-induced mouse arthritis models. These results suggested that HlSerpin-a and HlSerpin-b are two functional arthropod serpins, and the minimal reactive peptide SA-RCL is a potential candidate for drug development against inflammatory diseases.
Collapse
Affiliation(s)
- Fanqi Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Zhenyu Song
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jing Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Qihan Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xia Zhou
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaohua Ni
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Saikhedkar NS, Joshi RS, Yadav AK, Seal S, Fernandes M, Giri AP. Phyto-inspired cyclic peptides derived from plant Pin-II type protease inhibitor reactive center loops for crop protection from insect pests. Biochim Biophys Acta Gen Subj 2019; 1863:1254-1262. [DOI: 10.1016/j.bbagen.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
|
27
|
Yaron JR, Chen H, Ambadapadi S, Zhang L, Tafoya AM, Munk BH, Wakefield DN, Fuentes J, Marques BJ, Harripersaud K, Bartee MY, Davids JA, Zheng D, Rand K, Dixon L, Moyer RW, Clapp WL, Lucas AR. Serp-2, a virus-derived apoptosis and inflammasome inhibitor, attenuates liver ischemia-reperfusion injury in mice. J Inflamm (Lond) 2019; 16:12. [PMID: 31160886 PMCID: PMC6542089 DOI: 10.1186/s12950-019-0215-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is an antigen-independent, innate immune response to arterial occlusion and ischemia with subsequent paradoxical exacerbation after reperfusion. IRI remains a critical problem after vessel occlusion and infarction or during harvest and surgery in transplants. After transplant, liver IRI (LIRI) contributes to increased acute and chronic rejection and graft loss. Tissue loss during LIRI has been attributed to local macrophage activation and invasion with excessive inflammation together with hepatocyte apoptosis and necrosis. Inflammatory and apoptotic signaling are key targets for reducing post-ischemic liver injury.Myxomavirus is a rabbit-specific leporipoxvirus that encodes a suite of immune suppressing proteins, often with extensive function in other mammalian species. Serp-2 is a cross-class serine protease inhibitor (serpin) which inhibits the inflammasome effector protease caspase-1 as well as the apoptotic proteases granzyme B and caspases 8 and 10. In prior work, Serp-2 reduced inflammatory cell invasion after angioplasty injury and after aortic transplantation in rodents. In this report, we explore the potential for therapeutic treatment with Serp-2 in a mouse model of LIRI. METHODS Wildtype (C57BL/6 J) mice were subjected to warm, partial (70%) hepatic ischemia for 90 min followed by treatment with saline or Serp-2 or M-T7, 100 ng/g/day given by intraperitoneal injection on alternate days for 5 days. M-T7 is a Myxomavirus-derived inhibitor of chemokine-GAG interactions and was used in this study for comparative analysis of an unrelated viral protein with an alternative immunomodulating mechanism of action. Survival, serum ALT levels and histopathology were assessed 24 h and 10 days post-LIRI. RESULTS Serp-2 treatment significantly improved survival to 85.7% percent versus saline-treated wildtype mice (p = 0.0135), while M-T7 treatment did not significantly improve survival (p = 0.2584). Liver viability was preserved by Serp-2 treatment with a significant reduction in serum ALT levels (p = 0.0343) and infarct scar thickness (p = 0.0016), but with no significant improvement with M-T7 treatment. Suzuki scoring by pathologists blinded with respect to treatment group indicated that Serp-2 significantly reduced hepatocyte necrosis (p = 0.0057) and improved overall pathology score (p = 0.0046) compared to saline. Immunohistochemistry revealed that Serp-2 treatment reduced macrophage infiltration into the infarcted liver tissue (p = 0.0197). CONCLUSIONS Treatment with Serp-2, a virus-derived inflammasome and apoptotic pathway inhibitor, improves survival after liver ischemia-reperfusion injury in mouse models. Treatment with a cross-class immune modulator provides a promising new approach designed to reduce ischemia-reperfusion injury, improving survival and reducing chronic transplant damage.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University and The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Sriram Ambadapadi
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Amanda M. Tafoya
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Barbara H. Munk
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | | | - Jorge Fuentes
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Bruno J. Marques
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Krishna Harripersaud
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Mee Yong Bartee
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Jennifer A. Davids
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
| | - Donghang Zheng
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL USA
| | - Kenneth Rand
- Department of Pathology, University of Florida, Gainesville, FL USA
| | - Lisa Dixon
- Department of Pathology, University of Florida, Gainesville, FL USA
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL USA
| | - William L. Clapp
- Department of Pathology, University of Florida, Gainesville, FL USA
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ USA
- Divisions of Cardiovascular Medicine and Rheumatology, Department of Medicine, University of Florida, Gainesville, FL USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL USA
| |
Collapse
|
28
|
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018; 49:801-818. [PMID: 30462997 PMCID: PMC6269126 DOI: 10.1016/j.immuni.2018.10.016] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 02/09/2023]
Abstract
Helminths are extraordinarily successful parasites due to their ability to modulate the host immune response. They have evolved a spectrum of immunomodulatory molecules that are now beginning to be defined, heralding a molecular revolution in parasite immunology. These discoveries have the potential both to transform our understanding of parasite adaptation to the host and to develop possible therapies for immune-mediated disease. In this review we will summarize the current state of the art in parasite immunomodulation and discuss perspectives on future areas for research and discovery.
Collapse
Affiliation(s)
- Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | | | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Methods for Determining and Understanding Serpin Structure and Function: X-Ray Crystallography. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1826:9-39. [PMID: 30194591 DOI: 10.1007/978-1-4939-8645-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Deciphering the X-ray crystal structures of serine protease inhibitors (serpins) and serpin complexes has been an integral part of understanding serpin function and inhibitory mechanisms. In addition, high-resolution structural information of serpins derived from the three domains of life (bacteria, archaea, and eukaryotic) and viruses has provided valuable insights into the hereditary and evolutionary history of this unique superfamily of proteins. This chapter will provide an overview of the predominant biophysical method that has yielded this information, X-ray crystallography. In addition, details of up-and-coming methods, such as neutron crystallography, cryo-electron microscopy, and small- and wide-angle solution scattering, and their potential applications to serpin structural biology will be briefly discussed. As serpins remain important both biologically and medicinally, the information provided in this chapter will aid in future experiments to expand our knowledge of this family of proteins.
Collapse
|
30
|
Bao J, Pan G, Poncz M, Wei J, Ran M, Zhou Z. Serpin functions in host-pathogen interactions. PeerJ 2018; 6:e4557. [PMID: 29632742 PMCID: PMC5889911 DOI: 10.7717/peerj.4557] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/09/2018] [Indexed: 01/20/2023] Open
Abstract
Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Mortimer Poncz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.,Division of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
31
|
Mahon BP, Ambadapadi S, Yaron JR, Lomelino CL, Pinard MA, Keinan S, Kurnikov I, Macaulay C, Zhang L, Reeves W, McFadden G, Tibbetts S, McKenna R, Lucas AR. Crystal Structure of Cleaved Serp-1, a Myxomavirus-Derived Immune Modulating Serpin: Structural Design of Serpin Reactive Center Loop Peptides with Improved Therapeutic Function. Biochemistry 2018; 57:1096-1107. [PMID: 29227673 DOI: 10.1021/acs.biochem.7b01171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Myxomavirus-derived protein Serp-1 has potent anti-inflammatory activity in models of vasculitis, lupus, viral sepsis, and transplant. Serp-1 has also been tested successfully in a Phase IIa clinical trial in unstable angina, representing a "first-in-class" therapeutic. Recently, peptides derived from the reactive center loop (RCL) have been developed as stand-alone therapeutics for reducing vasculitis and improving survival in MHV68-infected mice. However, both Serp-1 and the RCL peptides lose activity in MHV68-infected mice after antibiotic suppression of intestinal microbiota. Here, we utilize a structure-guided approach to design and test a series of next-generation RCL peptides with improved therapeutic potential that is not reduced when the peptides are combined with antibiotic treatments. The crystal structure of cleaved Serp-1 was determined to 2.5 Å resolution and reveals a classical serpin structure with potential for serpin-derived RCL peptides to bind and inhibit mammalian serpins, plasminogen activator inhibitor 1 (PAI-1), anti-thrombin III (ATIII), and α-1 antitrypsin (A1AT), and target proteases. Using in silico modeling of the Serp-1 RCL peptide, S-7, we designed several modified RCL peptides that were predicted to have stronger interactions with human serpins because of the larger number of stabilizing hydrogen bonds. Two of these peptides (MPS7-8 and -9) displayed extended activity, improving survival where activity was previously lost in antibiotic-treated MHV68-infected mice (P < 0.0001). Mass spectrometry and kinetic assays suggest interaction of the peptides with ATIII, A1AT, and target proteases in mouse and human plasma. In summary, we present the next step toward the development of a promising new class of anti-inflammatory serpin-based therapeutics.
Collapse
Affiliation(s)
- Brian P Mahon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States.,Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Sriram Ambadapadi
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida , Gainesville, Florida 32610-0277, United States
| | | | - Carrie L Lomelino
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Melissa A Pinard
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Shahar Keinan
- Cloud Pharmaceuticals , 6 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | - Igor Kurnikov
- Cloud Pharmaceuticals , 6 Davis Drive, Research Triangle Park, North Carolina 27709, United States
| | | | | | - Westley Reeves
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida , Gainesville, Florida 32610-0277, United States
| | | | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine , Gainesville, Florida 32610-0277, United States
| | - Alexandra R Lucas
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida , Gainesville, Florida 32610-0277, United States.,Saint Joseph's Hospital, Dignity Health , Phoenix, Arizona 85013, United States
| |
Collapse
|
32
|
Lucas A, Yaron JR, Zhang L, Macaulay C, McFadden G. Serpins: Development for Therapeutic Applications. Methods Mol Biol 2018; 1826:255-265. [PMID: 30194606 DOI: 10.1007/978-1-4939-8645-3_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Serine protease inhibitors, or serpins, function as central regulators for many vital processes in the mammalian body, maintaining homeostasis for clot formation and breakdown, immune responses, lung function, and hormone or central nervous system activity, among many others. When serine protease activity or serpin-mediated regulation becomes unbalanced or dysfunctional, then severe disease states and pathogenesis can ensue. With serpinopathies, genetic mutations lead to inactive serpins or protein aggregation with loss of function. With other disorders, such as sepsis, atherosclerosis, cancer, obesity, and the metabolic syndrome, the thrombotic and thrombolytic cascades and/or inflammatory responses become unbalanced, with excess bleeding and clotting and upregulation of adverse immune responses. Returning overall balance can be engineered through introduction of a beneficial serpin replacement as a therapeutic or through blockade of serpins that are detrimental. Several drugs have been developed and are currently in use and/or in development both to replace dysfunctional serpins and to block adverse effects induced by aberrant protease or serpin actions.With this chapter, we provide a general overview of the development of a virus-derived serpin, Serp-1, and serpin reactive center loop (RCL) peptides, as therapeutics. Serp-1 is a virus-derived serpin developed as a new class of immune modulator. We will use the development of Serp-1 as a general introduction to serpin-based drug development.
Collapse
Affiliation(s)
- Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, USA.
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, USA
| | - Colin Macaulay
- CGMBio Consulting, TechAlliance of Southwestern Ontario, London, ON, Canada
| | - Grant McFadden
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, USA
| |
Collapse
|
33
|
Chen H, Ambadapadi S, Dai E, Liu L, Yaron JR, Zhang L, Lucas A. Analysis of In Vivo Serpin Functions in Models of Inflammatory Vascular Disease. Methods Mol Biol 2018; 1826:157-182. [PMID: 30194600 DOI: 10.1007/978-1-4939-8645-3_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Serpins have a wide range of functions in regulation of serine proteases in the thrombotic cascade and in immune responses, representing up to 2-10% of circulating proteins in the blood. Selected serpins also have cross-class inhibitory actions for cysteine proteases in inflammasome and apoptosis pathways. The arterial and venous systems transport blood throughout the mammalian body representing a central site for interactions between coagulation proteases and circulating blood cells (immune cells) and target tissues, a very extensive and complex interaction. While analysis of serpin functions in vitro in kinetics or gel shift assays or in tissue culture provides very necessary information on molecular mechanisms, the penultimate assessment of biological or physiological functions and efficacy for serpins as therapeutics requires study in vivo in whole animal models (some also consider cell culture to be an in vivo approach).Mouse models of arterial transplant with immune rejection as well as models of inflammatory vasculitis induced by infection have been used to study the interplay between the coagulation and immune response pathways. We describe here three in vivo vasculitis models that are used to study the roles of serpins in disease and as therapeutics. The models described include (1) mouse aortic allograft transplantation, (2) human temporal artery (TA) xenograft into immunodeficient mouse aorta, and (3) mouse herpes virus (MHV68)-induced inflammatory vasculitis in interferon-gamma receptor (IFNγR) knockout mice.
Collapse
Affiliation(s)
- Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou, China.
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, Gansu, China.
| | - Sriram Ambadapadi
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida, Gainesville, FL, USA
| | - Erbin Dai
- Department of Surgery, BIDMC, Harvard Medical School, Boston, MA, USA
| | - Liying Liu
- Department of Surgery, BIDMC, Harvard Medical School, Boston, MA, USA
| | - Jordan R Yaron
- Centers for Personalized Diagnostics and Immunology, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, 85287, USA
| | - Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Medicine, Divisions of Cardiovascular Medicine and Rheumatology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Zhang L, Yaron JR, Ambadapadi S, Lucas A. Viral Serpin Reactive Center Loop (RCL) Peptides: Design and Testing. Methods Mol Biol 2018; 1826:133-142. [PMID: 30194598 DOI: 10.1007/978-1-4939-8645-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Serpins function as a trap for serine proteases, presenting the reactive center loop (RCL) as a target for individual proteases. When the protease cleaves the RCL, the serpin and protease become covalently linked leading to a loss of function of both the protease and the serpin; this suicide inhibition is often referred to as a "mouse trap." When the RCL P1-P1' scissile bond is cut by the protease, the resulting bond between the protease and the RCL leads to insertion of the cleaved RCL into the β-sheet A and relocation of the protease to the opposite pole of the serpin, forming a suicide complex. Only a relatively small part of the serpin molecule can be removed in deletion mutations before the serpin RCL inhibitory function is lost. Serpin RCL peptides have been developed to block formation of serpin aggregates in serpinopathies, genetic serpin mutations wherein the abnormal serpins insert their RCL into adjacent serpins forming aggregates of inactive serpins.We have further posited that this natural cleavage site in the serpin RCL may form active serpin metabolites with potential to add to the serpin's inhibitory functions. We have developed RCL peptides based upon predicted serpin RCL cleavage (or metabolism) sites and tested these serpins for inhibitory function. In this chapter we describe the development of RCL-derived peptides, peptides derived based upon the RCL sequences of two myxomaviral serpins. Methods used to develop peptides are described for RCL-derived peptides from Serp-1, a thrombotic and thrombolytic serine protease inhibitor, and Serp-2, a cross class serine and cysteine protease inhibitor (Subheadings 2.1 and 3.1). Approaches to testing RCL peptide functions, in vitro by molecular assays and in vivo in models of cell migration, MHV-68 infection, and aortic allograft transplant are described (Subheadings 2.2 and 3.2).
Collapse
Affiliation(s)
- Liqiang Zhang
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, 85287, USA.
| | - Jordan R Yaron
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, 85287, USA
| | - Sriram Ambadapadi
- Drug Metabolism and Pharmacokinetics, Pharmacyclics LLC, Sunnyvale, CA, USA
| | - Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy Vaccines and Virotherapy, Biodesign Institute, Arizona State University, 727 E Tyler St, Tempe, AZ, 85287, USA
- Department of Medicine, Division of Cardiovascular Medicine, Saint Joseph's Hospital, Dignity Health, Phoenix, AZ, USA
| |
Collapse
|
35
|
Rabieian R, Boshtam M, Zareei M, Kouhpayeh S, Masoudifar A, Mirzaei H. Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis. J Cell Biochem 2017; 119:17-27. [PMID: 28520219 DOI: 10.1002/jcb.26146] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
Fibrosis is known as a frequent and irreversible pathological condition which is associated with organ failure. Tissue fibrosis is a central process in a variety of chronic progressive diseases such as diabetes, hypertension, and persistent inflammation. This state could contribute to chronic injury and the initiation of tissue repair. Fibrotic disorders represent abnormal wound healing with defective matrix turnover and clearance that lead to excessive accumulation of extracellular matrix components. A variety of identified growth factors, cytokines, and persistently activated myofibroblasts have critical roles in the pathogenesis of fibrosis. Irrespective of etiology, the transforming growth factor-β pathway is the major driver of fibrotic response. Plasminogen activator inhibitor-1 (PAI-1) is a crucial downstream target of this pathway. Transforming growth factor-β positively regulates PAI-1 gene expression via two main pathways including Smad-mediated canonical and non-canonical pathways. Overexpression of PAI-1 reduces extracellular matrix degradation via perturbing the plasminogen activation system. Indeed, elevated PAI-1 levels inhibit proteolytic activity of tissue plasminogen activator and urokinase plasminogen activator which could contribute to a variety of inflammatory elements in the injury site and to excessive matrix deposition. This review summarizes the current knowledge of critical pathways that regulate PAI-1 gene expression and suggests effective approaches for the treatment of fibrotic disease. J. Cell. Biochem. 119: 17-27, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Reyhaneh Rabieian
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Zareei
- Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Lee TW, Tsang VWK, Loef EJ, Birch NP. Physiological and pathological functions of neuroserpin: Regulation of cellular responses through multiple mechanisms. Semin Cell Dev Biol 2017; 62:152-159. [PMID: 27639894 DOI: 10.1016/j.semcdb.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
It is 27 years since neuroserpin was first discovered in the nervous system and identified as a member of the serpin superfamily. Since that time potential roles for this serine protease inhibitor have been identified in neuronal and non-neuronal systems. Many are linked to inhibition of neuroserpin's principal enzyme target, tissue plasminogen activator (tPA), although some have been suggested to involve alternate non-inhibitory mechanisms. This review focuses mainly on the inhibitory roles of neuroserpin and discusses the evidence supporting tPA as the physiological target. While the major sites of neuroserpin expression are neural, endocrine and immune tissues, most progress on characterizing functional roles for neuroserpin have been in the brain. Roles in emotional behaviour, synaptic plasticity and neuroprotection in stroke and excitotoxicity models are discussed. Current knowledge on three neurological diseases associated with neuroserpin mutation or activity, Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), Alzheimer's disease and brain metastasis is presented. Finally, we consider mechanistic studies that have revealed a distinct inhibitory mechanism for neuroserpin and its possible implications for neuroserpin function.
Collapse
Affiliation(s)
- Tet Woo Lee
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| | - Vicky W K Tsang
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Evert Jan Loef
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Nigel P Birch
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand; Brain Research New Zealand, Rangahau Roro Aotearoa, Auckland, New Zealand.
| |
Collapse
|
37
|
Identification of novel peptide motifs in the serpin maspin that affect vascular smooth muscle cell function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:336-344. [PMID: 27888098 DOI: 10.1016/j.bbamcr.2016.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/30/2016] [Accepted: 11/19/2016] [Indexed: 11/20/2022]
Abstract
Maspin is a non-inhibitory member of the serpin family that affects cell behaviours related to migration and survival. We have previously shown that peptides of the isolated G α-helix (G-helix) domain of maspin show bioactivity. Migration, invasion, adhesion and proliferation of vascular smooth muscle cells (VSMC) are important processes that contribute to the build-up of atherosclerotic plaques. Here we report the use of functional assays of these behaviours to investigate whether other maspin-derived peptides impact directly on VSMC; focusing on potential anti-atherogenic properties. We designed 18 new peptides from the structural moieties of maspin above ten amino acid residues in length and considered them beside the existing G-helix peptides. Of the novel peptides screened those with the sequences of maspin strand 4 and 5 of beta sheet B (S4B and S5B) reduced VSMC migration, invasion and proliferation, as well as increasing cell adhesion. A longer peptide combining these consecutive sequences showed a potentiation of responses, and a 7-mer contained all essential elements for functionality. This is the first time that these parts of maspin have been highlighted as having key roles affecting cell function. We present evidence for a mechanism whereby S4B and S5B act through ERK1/2 and AMP-activated protein kinase (AMPK) to influence VSMC responses.
Collapse
|