1
|
Guo S, Zhao Y, Yuan Y, Liao Y, Jiang X, Wang L, Lu W, Shi J. Progress in the development of macrophage migration inhibitory factor small-molecule inhibitors. Eur J Med Chem 2025; 286:117280. [PMID: 39854942 DOI: 10.1016/j.ejmech.2025.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Macrophage migration inhibitory factor (MIF) functions as a critical cytokine regulating inflammatory and immune responses. Extensive research has demonstrated its involvement in the progression of various cancers, autoimmune diseases, and inflammatory disorders, establishing it as a pivotal target for anti-inflammatory and anticancer interventions. Therapeutic strategies aimed at MIF primarily focus on suppressing its activity through small molecule inhibitors and natural compounds. This review synthesizes current knowledge on MIF, encompassing its structural characteristics, enzymatic functions, signaling pathways, and roles in disease pathogenesis. Additionally, it provides an in-depth analysis of recent advancements in MIF inhibitor development, including design methodologies, structure-activity relationships, advanced eutectic analysis techniques, and key experimental findings. The discussion aims to support the development of safer, more effective, and highly selective small molecule inhibitors targeting MIF.
Collapse
Affiliation(s)
- Shujin Guo
- Department of Health Management Center, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Yuan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 611756, China
| | - Yang Liao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuepan Jiang
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Wei Lu
- Department of Dermatology and Venereology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
El Bounkari O, Zan C, Yang B, Ebert S, Wagner J, Bugar E, Kramer N, Bourilhon P, Kontos C, Zarwel M, Sinitski D, Milic J, Jansen Y, Kempf WE, Sachs N, Maegdefessel L, Ji H, Gokce O, Riols F, Haid M, Gerra S, Hoffmann A, Brandhofer M, Avdic M, Bucala R, Megens RTA, Willemsen N, Messerer D, Schulz C, Bartelt A, Harm T, Rath D, Döring Y, Gawaz M, Weber C, Kapurniotu A, Bernhagen J. An atypical atherogenic chemokine that promotes advanced atherosclerosis and hepatic lipogenesis. Nat Commun 2025; 16:2297. [PMID: 40055309 PMCID: PMC11889166 DOI: 10.1038/s41467-025-57540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Atherosclerosis is the underlying cause of myocardial infarction and ischemic stroke. It is a lipid-triggered and cytokine/chemokine-driven arterial inflammatory condition. We identify D-dopachrome tautomerase/macrophage migration-inhibitory factor-2 (MIF-2), a paralog of the cytokine MIF, as an atypical chemokine promoting both atherosclerosis and hepatic lipid accumulation. In hyperlipidemic Apoe-/- mice, Mif-2-deficiency and pharmacological MIF-2-blockade protect against lesion formation and vascular inflammation in early and advanced atherogenesis. MIF-2 promotes leukocyte migration, endothelial arrest, and foam-cell formation, and we identify CXCR4 as a receptor for MIF-2. Mif-2-deficiency in Apoe-/- mice leads to decreased plasma lipid levels and suppressed hepatic lipid accumulation, characterized by reductions in lipogenesis-related pathways, tri-/diacylglycerides, and cholesterol-esters, as revealed by hepatic transcriptomics/lipidomics. Hepatocyte cultures and FLIM-FRET-microscopy suggest that MIF-2 activates SREBP-driven lipogenic genes, mechanistically involving MIF-2-inducible CD74/CXCR4 complexes and PI3K/AKT but not AMPK signaling. MIF-2 is upregulated in unstable carotid plaques from atherosclerotic patients and its plasma concentration correlates with disease severity in patients with coronary artery disease. These findings establish MIF-2 as an atypical chemokine linking vascular inflammation to metabolic dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
| | - Chunfang Zan
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Simon Ebert
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jonas Wagner
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Elina Bugar
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Naomi Kramer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Marlies Zarwel
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jelena Milic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang E Kempf
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
| | - Nadja Sachs
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Hao Ji
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn Venusberg-Campus 1, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Munich, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Anaesthesiology, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Maida Avdic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | | | - Remco T A Megens
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Denise Messerer
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
3
|
Döring Y, van der Vorst EPC, Weber C. Targeting immune cell recruitment in atherosclerosis. Nat Rev Cardiol 2024; 21:824-840. [PMID: 38664575 DOI: 10.1038/s41569-024-01023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 10/17/2024]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction and stroke. Atherosclerotic cardiovascular disease is characterized by a chronic inflammatory reaction in medium-to-large-sized arteries, with its onset and perpetuation driven by leukocytes infiltrating the subendothelial space. Activation of endothelial cells triggered by hyperlipidaemia and lipoprotein retention in the arterial intima initiates the accumulation of pro-inflammatory leukocytes in the arterial wall, fostering the progression of atherosclerosis. This inflammatory response is coordinated by an array of soluble mediators, namely cytokines and chemokines, that amplify inflammation both locally and systemically and are complemented by tissue-specific molecules that regulate the homing, adhesion and transmigration of leukocytes. Despite abundant evidence from mouse models, only a few therapies targeting leukocytes in atherosclerosis have been assessed in humans. The major challenges for the clinical translation of these therapies include the lack of tissue specificity and insufficient selectivity of inhibition strategies. In this Review, we discuss the latest research on receptor-ligand pairs and interactors that regulate leukocyte influx into the inflamed artery wall, primarily focusing on studies that used pharmacological interventions. We also discuss mechanisms that promote the resolution of inflammation and highlight how major findings from these research areas hold promise as potential therapeutic strategies for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany.
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
4
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Zhang F, Cui Y, Zhang T, Yin W. Epigenetic regulation of macrophage activation in chronic obstructive pulmonary disease. Front Immunol 2024; 15:1445372. [PMID: 39206196 PMCID: PMC11349576 DOI: 10.3389/fimmu.2024.1445372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Tiejun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
7
|
Sanchis-Pascual D, Del Olmo-García MI, Prado-Wohlwend S, Zac-Romero C, Segura Huerta Á, Hernández-Gil J, Martí-Bonmatí L, Merino-Torres JF. CXCR4: From Signaling to Clinical Applications in Neuroendocrine Neoplasms. Cancers (Basel) 2024; 16:1799. [PMID: 38791878 PMCID: PMC11120359 DOI: 10.3390/cancers16101799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
There are several well-described molecular mechanisms that influence cell growth and are related to the development of cancer. Chemokines constitute a fundamental element that is not only involved in local growth but also affects angiogenesis, tumor spread, and metastatic disease. Among them, the C-X-C motif chemokine ligand 12 (CXCL12) and its specific receptor the chemokine C-X-C motif receptor 4 (CXCR4) have been widely studied. The overexpression in cell membranes of CXCR4 has been shown to be associated with the development of different kinds of histological malignancies, such as adenocarcinomas, epidermoid carcinomas, mesenchymal tumors, or neuroendocrine neoplasms (NENs). The molecular synapsis between CXCL12 and CXCR4 leads to the interaction of G proteins and the activation of different intracellular signaling pathways in both gastroenteropancreatic (GEP) and bronchopulmonary (BP) NENs, conferring greater capacity for locoregional aggressiveness, the epithelial-mesenchymal transition (EMT), and the appearance of metastases. Therefore, it has been hypothesized as to how to design tools that target this receptor. The aim of this review is to focus on current knowledge of the relationship between CXCR4 and NENs, with a special emphasis on diagnostic and therapeutic molecular targets.
Collapse
Affiliation(s)
- David Sanchis-Pascual
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
| | - María Isabel Del Olmo-García
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Stefan Prado-Wohlwend
- Nuclear Medicine Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Carlos Zac-Romero
- Patholoy Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Ángel Segura Huerta
- Medical Oncology Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain;
| | - Javier Hernández-Gil
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| | - Luis Martí-Bonmatí
- Medical Imaging Department, Biomedical Imaging Research Group, Health Research Institute, University and Politecnic Hospital La Fe, 46026 Valencia, Spain;
| | - Juan Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Politecnic Hospital La Fe (Valencia), 46026 Valencia, Spain; (M.I.D.O.-G.); (J.F.M.-T.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
8
|
Wang L, He Y, Bai Y, Zhang S, Pang B, Chen A, Wu X. Construction and validation of a folate metabolism-related gene signature for predicting prognosis in HNSCC. J Cancer Res Clin Oncol 2024; 150:198. [PMID: 38625586 PMCID: PMC11021263 DOI: 10.1007/s00432-024-05731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE Metabolic reprogramming is currently considered a hallmark of tumor and immune development. It is obviously of interest to identify metabolic enzymes that are associated with clinical prognosis in head and neck squamous cell carcinomas (HNSCC). METHODS Candidate genes were screened to construct folate metabolism scores by Cox regression analysis. Functional enrichment between high- and low-folate metabolism groups was explored by GO, KEGG, GSVA, and ssGSEA. EPIC, MCPcounter, and xCell were utilized to explore immune cell infiltration between high- and low-folate metabolism groups. Relevant metabolic scores were calculated and visually analyzed by the "IOBR" software package. RESULTS To investigate the mechanism behind metabolic reprogramming of HNSCC, 2886 human genes associated with 86 metabolic pathways were selected. Folate metabolism is significantly enriched in HNSCC, and that the six-gene (MTHFD1L, MTHFD2, SHMT2, ATIC, MTFMT, and MTHFS) folate score accurately predicts and differentiates folate metabolism levels. Reprogramming of folate metabolism affects CD8T cell infiltration and induces immune escape through the MIF signaling pathway. Further research found that SHMT2, an enzyme involved in folate metabolism, inhibits CD8T cell infiltration and induces immune escape by regulating the MIF/CD44 signaling axis, which in turn promotes HNSCC progression. CONCLUSIONS Our study identified a novel and robust folate metabolic signature. A folate metabolic signature comprising six genes was effective in assessing the prognosis and reflecting the immune status of HNSCC patients. The target molecule of folate metabolic reprogramming, SHMT2, probably plays a very important role in HNSCC development and immune escape.
Collapse
Affiliation(s)
- Lu Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Ye He
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Yijiang Bai
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Bo Pang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Anhai Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Zhu Q, Lu YC, Xiong JL, Yang YH, Yang JL, Yang SC, Zhang GH, Sha BC, He SM. Development of a stable genetic transformation system in Erigeron breviscapus: a case study with EbYUC2 in relation to leaf number and flowering time. PLANTA 2024; 259:98. [PMID: 38522041 DOI: 10.1007/s00425-024-04351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/26/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.
Collapse
Affiliation(s)
- Qin Zhu
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Ying-Chun Lu
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing-Lei Xiong
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yun-Hui Yang
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Jian-Li Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, China
| | - Sheng-Chao Yang
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Guang-Hui Zhang
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Ben-Cai Sha
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| | - Si-Mei He
- National-Local Joint Engineering Research Center On Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
10
|
Prokopovich AK, Litvinova IS, Zubkova AE, Yudkin DV. CXCR4 Is a Potential Target for Anti-HIV Gene Therapy. Int J Mol Sci 2024; 25:1187. [PMID: 38256260 PMCID: PMC10816112 DOI: 10.3390/ijms25021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The human immunodeficiency virus (HIV) epidemic is a global issue. The estimated number of people with HIV is 39,000,000 to date. Antiviral therapy is the primary approach to treat the infection. However, it does not allow for a complete elimination of the pathogen. The advances in modern gene therapy methods open up new possibilities of effective therapy. One of these areas of possibility is the development of technologies to prevent virus penetration into the cell. Currently, a number of technologies aimed at either the prevention of virus binding to the CCR5 coreceptor or its knockout are undergoing various stages of clinical trials. Since HIV can also utilize the CXCR4 coreceptor, technologies to modify this receptor are also required. Standard knockout of CXCR4 is impossible due to its physiological significance. This review presents an analysis of interactions between individual amino acids in CXCR4 and physiological ligands and HIV gp120. It also discusses potential targets for gene therapy approaches aimed at modifying the coreceptor.
Collapse
Affiliation(s)
- Appolinaria K. Prokopovich
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Irina S. Litvinova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| | - Alexandra E. Zubkova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - Dmitry V. Yudkin
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Well-Being (FBRI SRC VB “Vector”, Rospotrebnadzor), 630559 Koltsovo, Russia; (A.K.P.); (I.S.L.); (A.E.Z.)
| |
Collapse
|
11
|
Spiller L, Manjula R, Leissing F, Basquin J, Bourilhon P, Sinitski D, Brandhofer M, Levecque S, Gerra S, Sabelleck B, Zhang L, Feederle R, Flatley A, Hoffmann A, Panstruga R, Bernhagen J, Lolis E. Plant MDL proteins synergize with the cytokine MIF at CXCR2 and CXCR4 receptors in human cells. Sci Signal 2023; 16:eadg2621. [PMID: 37988455 DOI: 10.1126/scisignal.adg2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.
Collapse
Affiliation(s)
- Lukas Spiller
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Ramu Manjula
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology and Crystallization Facility, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Sophie Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Leberzammer J, von Hundelshausen P. Chemokines, molecular drivers of thromboinflammation and immunothrombosis. Front Immunol 2023; 14:1276353. [PMID: 37954596 PMCID: PMC10637585 DOI: 10.3389/fimmu.2023.1276353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Blood clotting is a finely regulated process that is essential for hemostasis. However, when dysregulated or spontaneous, it promotes thrombotic disorders. The fact that these are triggered, accompanied and amplified by inflammation is reflected in the term thromboinflammation that includes chemokines. The role of chemokines in thrombosis is therefore illuminated from a cellular perspective, where endothelial cells, platelets, red blood cells, and leukocytes may be both the source and target of chemokines. Chemokine-dependent prothrombotic processes may thereby occur independently of chemokine receptors or be mediated by chemokine receptors, although the binding and activation of classical G protein-coupled receptors and their signaling pathways differ from those of atypical chemokine receptors, which do not function via cell activation and recruitment. Regardless of binding to their receptors, chemokines can induce thrombosis by forming platelet-activating immune complexes with heparin or other polyanions that are pathognomonic for HIT and VITT. In addition, chemokines can bind to NETs and alter their structure. They also change the electrical charge of the cell surface of platelets and interact with coagulation factors, thereby modulating the balance of fibrinolysis and coagulation. Moreover, CXCL12 activates CXCR4 on platelets independently of classical migratory chemokine activity and causes aggregation and thrombosis via the PI3Kβ and Btk signaling pathways. In contrast, typical chemokine-chemokine receptor interactions are involved in the processes that contribute to the adhesiveness of the endothelium in the initial phase of venous thrombosis, where neutrophils and monocytes subsequently accumulate in massive numbers. Later, the reorganization and resolution of a thrombus require coordinated cell migration and invasion of the thrombus, and, as such, indeed, chemokines recruit leukocytes to existing thrombi. Therefore, chemokines contribute in many independent ways to thrombosis.
Collapse
Affiliation(s)
- Julian Leberzammer
- Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- Department of Cardiology and Angiology, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Philipp von Hundelshausen
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention, Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
13
|
Ebert S, Zang L, Ismail N, Otabil M, Fröhlich A, Egea V, Ács S, Hoeberg M, Berres ML, Weber C, Moreira JMA, Ries C, Bernhagen J, El Bounkari O. Tissue Inhibitor of Metalloproteinases-1 Interacts with CD74 to Promote AKT Signaling, Monocyte Recruitment Responses, and Vascular Smooth Muscle Cell Proliferation. Cells 2023; 12:1899. [PMID: 37508563 PMCID: PMC10378328 DOI: 10.3390/cells12141899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1), an important regulator of matrix metalloproteinases (MMPs), has recently been shown to interact with CD74, a receptor for macrophage migration inhibitory factor (MIF). However, the biological effects mediated by TIMP-1 through CD74 remain largely unexplored. Using sequence alignment and in silico protein-protein docking analysis, we demonstrated that TIMP-1 shares residues with both MIF and MIF-2, crucial for CD74 binding, but not for CXCR4. Subcellular colocalization, immunoprecipitation, and internalization experiments supported these findings, demonstrating that TIMP-1 interacts with surface-expressed CD74, resulting in its internalization in a dose-dependent manner, as well as with a soluble CD74 ectodomain fragment (sCD74). This prompted us to study the effects of the TIMP-1-CD74 axis on monocytes and vascular smooth muscle cells (VSCMs) to assess its impact on vascular inflammation. A phospho-kinase array revealed the activation of serine/threonine kinases by TIMP-1 in THP-1 pre-monocytes, in particular AKT. Similarly, TIMP-1 dose-dependently triggered the phosphorylation of AKT and ERK1/2 in primary human monocytes. Importantly, Transwell migration, 3D-based Chemotaxis, and flow adhesion assays demonstrated that TIMP-1 engagement of CD74 strongly promotes the recruitment response of primary human monocytes, while live cell imaging studies revealed a profound activating effect on VSMC proliferation. Finally, re-analysis of scRNA-seq data highlighted the expression patterns of TIMP-1 and CD74 in human atherosclerotic lesions, thus, together with our experimental data, indicating a role for the TIMP-1-CD74 axis in vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Simon Ebert
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Lan Zang
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Noor Ismail
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Michael Otabil
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Adrian Fröhlich
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| | - Virginia Egea
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Susann Ács
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Mikkel Hoeberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marie-Luise Berres
- Department of Internal Medicine III, RWTH Aachen University, 52074 Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Munich Heart Alliance, 80802 Munich, Germany
| | - José M A Moreira
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christian Ries
- Institute for Cardiovascular Prevention (IPEK), Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 80336 Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Munich Heart Alliance, 80802 Munich, Germany
| | - Omar El Bounkari
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilian-University (LMU) Munich, 81377 Munich, Germany
| |
Collapse
|
14
|
Wang H, Han G, Chen J. Heterogeneity of tumor immune microenvironment in malignant and metastatic change in LUAD is revealed by single-cell RNA sequencing. Aging (Albany NY) 2023; 15:5339-5354. [PMID: 37335089 PMCID: PMC10333068 DOI: 10.18632/aging.204752] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer and accounts for approximately 40% of all lung cancer cases. Multiple distant metastases are the major cause of mortality in lung cancer. In this study, single-cell sequencing datasets of LUAD were utilized to depict the transcriptome characteristic of LUAD based on the bioinformatic method. Firstly, the transcriptome landscape of heterogeneous cell types in LUAD was analyzed and memory T cells, NK cells, and helper T cells were revealed to be the common immune cells in tumor, normal, and metastasis tissue, respectively. Then, marker genes were calculated and 709 genes were identified to play a vital role in the microenvironment of LUAD. While macrophages were reported to act as one of the cells in LUAD, enrichment analysis of macrophage marker genes revealed the important role of macrophages in the activation of neutrophils. Next, the results of cell-cell communication analysis suggested that pericytes interact with broad immune cells via MDK-NCL pathways in metastasis samples, MIF-(CD74+CXCR4) and MIF-(CD74+CC44) interaction especially occurred between different cell types in tumor and normal samples. Finally, bulk RNA-seq was integrated to validate the prognosis effect of the marker gene and the maker gene of M2 macrophage, CCL20, showed the most related to LUAD prognosis. Besides, ZNF90 (Helper T cells), FKBP4 (memory T, helper T, Cytotoxic T, and B cells), CD79A (B cells), TPI1 (pericyte), and HOPX (epithelial cells, pericytes) were also pivotal in the pathology of LUAD, helping researchers understand the molecular insight of microenvironment in LUAD.
Collapse
Affiliation(s)
- Haiqiang Wang
- Department of Thoracic Surgery, Tangdu Hospital Air Force Medical University, Fourth Military Medical University, Xian, Shanxi, China
| | - Guoliang Han
- Department of Thoracic Surgery, Tangdu Hospital Air Force Medical University, Fourth Military Medical University, Xian, Shanxi, China
| | - Jiakuan Chen
- Department of Thoracic Surgery, Tangdu Hospital Air Force Medical University, Fourth Military Medical University, Xian, Shanxi, China
| |
Collapse
|
15
|
Weber C, Habenicht AJR, von Hundelshausen P. Novel mechanisms and therapeutic targets in atherosclerosis: inflammation and beyond. Eur Heart J 2023:7175015. [PMID: 37210082 DOI: 10.1093/eurheartj/ehad304] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 05/22/2023] Open
Abstract
This review based on the ESC William Harvey Lecture in Basic Science 2022 highlights recent experimental and translational progress on the therapeutic targeting of the inflammatory components in atherosclerosis, introducing novel strategies to limit side effects and to increase efficacy. Since the validation of the inflammatory paradigm in CANTOS and COLCOT, efforts to control the residual risk conferred by inflammation have centred on the NLRP3 inflammasome-driven IL-1β-IL6 axis. Interference with the co-stimulatory dyad CD40L-CD40 and selective targeting of tumour necrosis factor-receptor associated factors (TRAFs), namely the TRAF6-CD40 interaction in macrophages by small molecule inhibitors, harbour intriguing options to reduce established atherosclerosis and plaque instability without immune side effects. The chemokine system crucial for shaping immune cell recruitment and homoeostasis can be fine-tuned and modulated by its heterodimer interactome. Structure-function analysis enabled the design of cyclic, helical, or linked peptides specifically targeting or mimicking these interactions to limit atherosclerosis or thrombosis by blunting myeloid recruitment, boosting regulatory T cells, inhibiting platelet activity, or specifically blocking the atypical chemokine MIF without notable side effects. Finally, adventitial neuroimmune cardiovascular interfaces in advanced atherosclerosis show robust restructuring of innervation from perivascular ganglia and employ sensory neurons of dorsal root ganglia to enter the central nervous system and to establish an atherosclerosis-brain circuit sensor, while sympathetic and vagal efferents project to the celiac ganglion to create an atherosclerosis-brain circuit effector. Disrupting this circuitry by surgical or chemical sympathectomy limited disease progression and enhanced plaque stability, opening exciting perspectives for selective and tailored intervention beyond anti-inflammatory strategies.
Collapse
Affiliation(s)
- Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Pettenkoferstraße 9, 80336 München, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 9, 80336 München, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Pettenkoferstraße 9, 80336 München, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 9, 80336 München, Germany
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Pettenkoferstraße 9, 80336 München, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstraße 9, 80336 München, Germany
| |
Collapse
|
16
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
17
|
HIV-1 gp120-CXCR4 recognition probed with synthetic nanomolar affinity D-peptides containing fragments of gp120 V3 loop. Eur J Med Chem 2022; 244:114797. [PMID: 36270088 PMCID: PMC10150781 DOI: 10.1016/j.ejmech.2022.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) recognizes one of its principal coreceptors, the CXC chemokine receptor 4 (CXCR4) on the host cell via the third variable loop (V3 loop) of HIV-1 envelope glycoprotein gp120 during the viral entry process. Here, we investigated the stereochemical mechanism of the molecular recognition of HIV-1 gp120 V3 loop with coreceptor CXCR4 by using peptide probes containing important fragments of the V3 loop. The tip and base/stem fragments of the V3 loop critical for V3 loop function were linked individually with the fragment derived from another CXCR4's chemokine ligand, vMIP-II to generate nanomolar affinity peptide probes of the interactions of CXCR4-V3 loop fragments. When the amino acid residues of the V3 loop fragments in these combinational peptides were changed from L-to D-configurations, the resulting peptides remarkably retained or had even enhanced recognition by CXCR4 as shown by competitive ligand-receptor binding. The ability of these peptides, regardless of the different l- or d-amino acids used, in binding CXCR4 and antagonizing CXCR4 functions was demonstrated by their blockade of calcium influx, cell migration, and CXCR4 internalization triggered by the activation of CXCR4 signaling by its endogenous ligand SDF-1α. The structural mechanisms of CXCR4 interactions with these peptides were examined with site-directed mutagenesis and molecular modeling. These results indicate that CXCR4's interface with key segments of HIV-1 gp120 V3 loop is flexible in terms of stereospecificity of ligand-receptor interaction which may have implication on understanding the viral entry mechanism and how the virus evades immune detection with V3 loop mutations and retains effective recognition of the host cell's coreceptor.
Collapse
|
18
|
Zan C, Yang B, Brandhofer M, El Bounkari O, Bernhagen J. D-dopachrome tautomerase in cardiovascular and inflammatory diseases-A new kid on the block or just another MIF? FASEB J 2022; 36:e22601. [PMID: 36269019 DOI: 10.1096/fj.202201213r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) as well as its more recently described structural homolog D-dopachrome tautomerase (D-DT), now also termed MIF-2, are atypical cytokines and chemokines with key roles in host immunity. They also have an important pathogenic role in acute and chronic inflammatory conditions, cardiovascular diseases, lung diseases, adipose tissue inflammation, and cancer. Although our mechanistic understanding of MIF-2 is relatively limited compared to the extensive body of evidence available for MIF, emerging data suggests that MIF-2 is not only a functional phenocopy of MIF, but may have differential or even oppositional activities, depending on the disease and context. In this review, we summarize and discuss the similarities and differences between MIF and MIF-2, with a focus on their structures, receptors, signaling pathways, and their roles in diseases. While mainly covering the roles of the MIF homologs in cardiovascular, inflammatory, autoimmune, and metabolic diseases, we also discuss their involvement in cancer, sepsis, and chronic obstructive lung disease (COPD). A particular emphasis is laid upon potential mechanistic explanations for synergistic or cooperative activities of the MIF homologs in cancer, myocardial diseases, and COPD as opposed to emerging disparate or antagonistic activities in adipose tissue inflammation, metabolic diseases, and atherosclerosis. Lastly, we discuss potential future opportunities of jointly targeting MIF and MIF-2 in certain diseases, whereas precision targeting of only one homolog might be preferable in other conditions. Together, this article provides an update of the mechanisms and future therapeutic avenues of human MIF proteins with a focus on their emerging, surprisingly disparate activities, suggesting that MIF-2 displays a variety of activities that are distinct from those of MIF.
Collapse
Affiliation(s)
- Chunfang Zan
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Bishan Yang
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Markus Brandhofer
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Omar El Bounkari
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany.,Deutsches Zentrum für Herz-Kreislauferkrankungen (DZHK), Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
19
|
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022; 79:512. [PMID: 36094626 PMCID: PMC9468113 DOI: 10.1007/s00018-022-04539-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine–chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany
| | - Elena Siminkovitch
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jeremy A Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Vanessa Rohde
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Fröhlich
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jona Golemi
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Michael K Otabil
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Junfu Luo
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kevin H Mayo
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Biochemistry, Molecular Biology and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
20
|
Recent Advances in the Molecular and Cellular Mechanisms of gp120-Mediated Neurotoxicity. Cells 2022; 11:cells11101599. [PMID: 35626635 PMCID: PMC9139548 DOI: 10.3390/cells11101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Axonal degeneration and loss of synapses are often seen in different brain areas of people living with human immunodeficiency virus (HIV). Nevertheless, the underlying causes of the pathological alterations observed in these individuals are poorly comprehended, considering that HIV does not infect neurons. Experimental data have shown that viral proteins, including the envelope protein gp120, cause synaptic pathology followed by neuronal cell death. These neurotoxic effects on synapses could be the result of a variety of mechanisms that decrease synaptic plasticity. In this paper, we will briefly present new emerging concepts connected with the ability of gp120 to promote the degeneration of synapses by either directly damaging the axonal cytoskeleton and/or the indirect activation of the p75 neurotrophin receptor death domain in dendrites.
Collapse
|
21
|
Skeens E, Pantouris G, Shah D, Manjula R, Ombrello MJ, Maluf NK, Bhandari V, Lisi GP, Lolis EJ. A Cysteine Variant at an Allosteric Site Alters MIF Dynamics and Biological Function in Homo- and Heterotrimeric Assemblies. Front Mol Biosci 2022; 9:783669. [PMID: 35252348 PMCID: PMC8893199 DOI: 10.3389/fmolb.2022.783669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory protein with various non-overlapping functions. It is not only conserved in mammals, but it is found in parasites, fish, and plants. Human MIF is a homotrimer with an enzymatic cavity between two subunits with Pro1 as a catalytic base, activates the receptors CD74, CXCR2, and CXCR4, has functional interactions in the cytosol, and is reported to be a nuclease. There is a solvent channel down its 3-fold axis with a recently identified gating residue as an allosteric site important for regulating, to different extents, the enzymatic activity and CD74 binding and signaling. In this study we explore the consequence of converting the allosteric residue Tyr99 to cysteine (Y99C) and characterize its crystallographic structure, NMR dynamics, stability, CD74 function, and enzymatic activity. In addition to the homotrimeric variant, we develop strategies for expressing and purifying a heterotrimeric variant consisting of mixed wild type and Y99C for characterization of the allosteric site to provide more insight.
Collapse
Affiliation(s)
- Erin Skeens
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Chemistry, University of the Pacific, Stockton, CA, United States
| | - Dilip Shah
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - Ramu Manjula
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Michael J. Ombrello
- Translational Genetics and Genomic Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | | | - Vineet Bhandari
- Section of Neonatology, Department of Pediatrics, Cooper University Hospital, Camden, NJ, United States
| | - George P. Lisi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| | - Elias J. Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: George P. Lisi, ; Elias J. Lolis,
| |
Collapse
|
22
|
Song S, Xiao Z, Dekker FJ, Poelarends GJ, Melgert BN. Macrophage migration inhibitory factor family proteins are multitasking cytokines in tissue injury. Cell Mol Life Sci 2022; 79:105. [PMID: 35091838 PMCID: PMC8799543 DOI: 10.1007/s00018-021-04038-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The family of macrophage migration inhibitory factor (MIF) proteins in humans consist of MIF, its functional homolog D-dopachrome tautomerase (D-DT, also known as MIF-2) and the relatively unknown protein named DDT-like (DDTL). MIF is a pleiotropic cytokine with multiple properties in tissue homeostasis and pathology. MIF was initially found to associate with inflammatory responses and therefore established a reputation as a pro-inflammatory cytokine. However, increasing evidence demonstrates that MIF influences many different intra- and extracellular molecular processes important for the maintenance of cellular homeostasis, such as promotion of cellular survival, antioxidant signaling, and wound repair. In contrast, studies on D-DT are scarce and on DDTL almost nonexistent and their functions remain to be further investigated as it is yet unclear how similar they are compared to MIF. Importantly, the many and sometimes opposing functions of MIF suggest that targeting MIF therapeutically should be considered carefully, taking into account timing and severity of tissue injury. In this review, we focus on the latest discoveries regarding the role of MIF family members in tissue injury, inflammation and repair, and highlight the possibilities of interventions with therapeutics targeting or mimicking MIF family proteins.
Collapse
|
23
|
Murad HAS, Rafeeq MM, Alqurashi TMA. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. Ann Med 2021; 53:1598-1612. [PMID: 34494495 PMCID: PMC8439212 DOI: 10.1080/07853890.2021.1974084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is one of the leading causes of mortality and morbidity worldwide. Chemokines and their receptors are implicated in the pathogenesis of atherosclerosis. CXCL12 is a member of the chemokine family exerting a myriad role in atherosclerosis through its classical CXCR4 and atypical ACKR3 (CXCR7) receptors. The modulatory and regulatory functional spectrum of CXCL12/CXCR4/ACKR3 axis in atherosclerosis spans from proatherogenic, prothrombotic and proinflammatory to atheroprotective, plaque stabilizer and dyslipidemia rectifier. This diverse continuum is executed in a wide range of biological units including endothelial cells (ECs), progenitor cells, macrophages, monocytes, platelets, lymphocytes, neutrophils and vascular smooth muscle cells (VSMCs) through complex heterogeneous and homogenous coupling of CXCR4 and ACKR3 receptors, employing different downstream signalling pathways, which often cross-talk among themselves and with other signalling interactomes. Hence, a better understanding of this structural and functional heterogeneity and complex phenomenon involving CXCL12/CXCR4/ACKR3 axis in atherosclerosis would not only help in formulation of novel therapeutics, but also in elucidation of the CXCL12 ligand and its receptors, as possible diagnostic and prognostic biomarkers.Key messagesThe role of CXCL12 per se is proatherogenic in atherosclerosis development and progression.The CXCL12 receptors, CXCR4 and ACKR3 perform both proatherogenic and athero-protective functions in various cell typesDue to functional heterogeneity and cross talk of CXCR4 and ACKR3 at receptor level and downstream pathways, regional boosting with specific temporal and spatial modulators of CXCL12, CXCR4 and ACKR3 need to be explored.
Collapse
Affiliation(s)
- Hussam A. S. Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Characterization of Plasmodium falciparum macrophage migration inhibitory factor homologue and its cysteine deficient mutants. Parasitol Int 2021; 87:102513. [PMID: 34785370 DOI: 10.1016/j.parint.2021.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Plasmodium falciparum macrophage migration inhibitory factor (PfMIF) is a homologue of the multifunctional human host cytokine MIF (HsMIF). Upon schizont rupture it is released into the human blood stream where it acts as a virulence factor, modulating the host immune system. Whereas for HsMIF a tautomerase, an oxidoreductase, and a nuclease activity have been identified, the latter has not yet been studied for PfMIF. Furthermore, previous studies identified PfMIF as a target for several redox post-translational modifications. Therefore, we analysed the impact of S-glutathionylation and S-nitrosation on the protein's functions. To determine the impact of the four cysteines of PfMIF we produced His-tagged cysteine to alanine mutants of PfMIF via site-directed mutagenesis. Recombinant proteins were analysed via mass spectrometry, and enzymatic assays. Here we show for the first time that PfMIF acts as a DNase of human genomic DNA and that this activity is greater than that shown by HsMIF. Moreover, we observed a significant decrease in the maximum velocity of the DCME tautomerase activity of PfMIF upon alanine replacement of Cys3, and Cys3/Cys4 double mutant. Lastly, using a yeast reporter system, we were able to verify binding of PfMIF to the human chemokine receptors CXCR4, and demonstrate a so-far overlooked binding to CXCR2, both of which function as non-cognate receptors for HsMIF. While S-glutathionylation and S-nitrosation of PfMIF did not impair the tautomerase activity of PfMIF, activation of these receptors was significantly decreased.
Collapse
|
25
|
Repurposing Old Drugs as Novel Inhibitors of Human MIF from Structural and Functional Analysis. Bioorg Med Chem Lett 2021; 55:128445. [PMID: 34758374 DOI: 10.1016/j.bmcl.2021.128445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
Human macrophage migration inhibitory factor (MIF) is an important pro-inflammatory cytokine that plays multiple pleiotropic functions. It is considered as a promising therapeutic target for the infectious, autoimmune, and cardiovascular diseases and cancers. The development of MIF inhibitors has not been translated into clinical success despite decades of research. Given the time and cost of developing new drugs, existing drugs with clarified safety and pharmacokinetics are explored for their potential as novel MIF inhibitors. This study identified five known drugs that could inhibit MIF's tautomerase activity and MIF-mediated cell chemotaxis in RAW264.7 cells. It was found that compounds D2 (histamine), D5 (metaraminol), and D8 (nebivolol) exhibited micromolar-range inhibition potency close to the positive control ISO-1. Kinetics and the mechanism for inhibition were subsequently determined. Moreover, the detailed inhibitor-binding patterns were investigated by X-ray crystallography, computational molecular docking, and structure-based analysis. Therefore, this study elucidates the molecular mechanism of repurposed drugs acting on MIF and provides a structural foundation for lead optimization to promote the clinical development of MIF-targeted drugs.
Collapse
|
26
|
Xiao Z, Song S, Chen D, van Merkerk R, van der Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti-Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021; 60:17514-17521. [PMID: 34018657 PMCID: PMC8362126 DOI: 10.1002/anie.202101864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in protein-protein interactions that play key roles in inflammation and cancer. Current strategies to develop small molecule modulators of MIF functions are mainly restricted to the MIF tautomerase active site. Here, we use this site to develop proteolysis targeting chimera (PROTAC) in order to eliminate MIF from its protein-protein interaction network. We report the first potent MIF-directed PROTAC, denoted MD13, which induced almost complete MIF degradation at low micromolar concentrations with a DC50 around 100 nM in A549 cells. MD13 suppresses the proliferation of A549 cells, which can be explained by deactivation of the MAPK pathway and subsequent induction of cell cycle arrest at the G2/M phase. MD13 also exhibits antiproliferative effect in a 3D tumor spheroid model. In conclusion, we describe the first MIF-directed PROTAC (MD13) as a research tool, which also demonstrates the potential of PROTACs in cancer therapy.
Collapse
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | | | - Petra E. van der Wouden
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| | - Barbro N. Melgert
- Molecular PharmacologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
- University Medical Center GroningenGroningen Research Institute of Asthma and COPDUniversity of GroningenHanzeplein 19713 GZGroningenThe Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy (GRIP)University of GroningenAntonius Deusinglaan 19713AVGroningenThe Netherlands
| |
Collapse
|
27
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
28
|
Xiao Z, Song S, Chen D, Merkerk R, Wouden PE, Cool RH, Quax WJ, Poelarends GJ, Melgert BN, Dekker FJ. Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti‐Proliferative Activity in Lung Cancer Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhangping Xiao
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Deng Chen
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | | | - Petra E. Wouden
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Robbert H. Cool
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Wim J. Quax
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Gerrit J. Poelarends
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N. Melgert
- Molecular Pharmacology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
- University Medical Center Groningen Groningen Research Institute of Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Frank J. Dekker
- Department Chemical and Pharmaceutical Biology Groningen Research Institute of Pharmacy (GRIP) University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
29
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
30
|
De Groof TWM, Elder EG, Siderius M, Heukers R, Sinclair JH, Smit MJ. Viral G Protein-Coupled Receptors: Attractive Targets for Herpesvirus-Associated Diseases. Pharmacol Rev 2021; 73:828-846. [PMID: 33692148 DOI: 10.1124/pharmrev.120.000186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Herpesviruses are ubiquitous pathogens that establish lifelong, latent infections in their host. Spontaneous reactivation of herpesviruses is often asymptomatic or clinically manageable in healthy individuals, but reactivation events in immunocompromised or immunosuppressed individuals can lead to severe morbidity and mortality. Moreover, herpesvirus infections have been associated with multiple proliferative cardiovascular and post-transplant diseases. Herpesviruses encode viral G protein-coupled receptors (vGPCRs) that alter the host cell by hijacking cellular pathways and play important roles in the viral life cycle and these different disease settings. In this review, we discuss the pharmacological and signaling properties of these vGPCRs, their role in the viral life cycle, and their contribution in different diseases. Because of their prominent role, vGPCRs have emerged as promising drug targets, and the potential of vGPCR-targeting therapeutics is being explored. Overall, these vGPCRs can be considered as attractive targets moving forward in the development of antiviral, cancer, and/or cardiovascular disease treatments. SIGNIFICANCE STATEMENT: In the last decade, herpesvirus-encoded G protein-coupled receptors (GPCRs) have emerged as interesting drug targets with the growing understanding of their critical role in the viral life cycle and in different disease settings. This review presents the pharmacological properties of these viral receptors, their role in the viral life cycle and different diseases, and the emergence of therapeutics targeting viral GPCRs.
Collapse
Affiliation(s)
- Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Elizabeth G Elder
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Marco Siderius
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Raimond Heukers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - John H Sinclair
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| | - Martine J Smit
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium (T.W.M.D.G.); Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (E.G.E., J.H.S.); Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (M.S., R.H., M.J.S.); and QVQ Holding B.V., Utrecht, The Netherlands (R.H.)
| |
Collapse
|
31
|
Macrophage migration inhibitory factor (MIF) enhances hypochlorous acid production in phagocytic neutrophils. Redox Biol 2021; 41:101946. [PMID: 33823474 PMCID: PMC8047225 DOI: 10.1016/j.redox.2021.101946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important immuno-regulatory cytokine and is elevated in inflammatory conditions. Neutrophils are the first immune cells to migrate to sites of infection and inflammation, where they generate, among other mediators, the potent oxidant hypochlorous acid (HOCl). Here, we investigated the impact of MIF on HOCl production in neutrophils in response to phagocytic stimuli. METHODS Production of HOCl during phagocytosis of zymosan was determined using the specific fluorescent probe R19-S in combination with flow cytometry and live cell microscopy. The rate of phagocytosis was monitored using fluorescently-labeled zymosan. Alternatively, HOCl production was assessed during phagocytosis of Pseudomonas aeruginosa by measuring the oxidation of bacterial glutathione to the HOCl-specific product glutathione sulfonamide. Formation of neutrophil extracellular traps (NETs), an oxidant-dependent process, was quantified using a SYTOX Green plate assay. RESULTS Exposure of human neutrophils to MIF doubled the proportion of neutrophils producing HOCl during early stages of zymosan phagocytosis, and the concentration of HOCl produced was greater. During phagocytosis of P. aeruginosa, a greater fraction of bacterial glutathione was oxidized to glutathione sulfonamide in MIF-treated compared to control neutrophils. The ability of MIF to increase neutrophil HOCl production was independent of the rate of phagocytosis and could be blocked by the MIF inhibitor 4-IPP. Neutrophils pre-treated with MIF produced more NETs than control cells in response to PMA. CONCLUSION Our results suggest a role for MIF in potentiating HOCl production in neutrophils in response to phagocytic stimuli. We propose that this newly discovered activity of MIF contributes to its role in mediating the inflammatory response and enhances host defence.
Collapse
|
32
|
Schindler L, Zwissler L, Krammer C, Hendgen-Cotta U, Rassaf T, Hampton MB, Dickerhof N, Bernhagen J. Macrophage migration inhibitory factor inhibits neutrophil apoptosis by inducing cytokine release from mononuclear cells. J Leukoc Biol 2021; 110:893-905. [PMID: 33565160 DOI: 10.1002/jlb.3a0420-242rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
The chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) is a pivotal driver of acute and chronic inflammatory conditions, cardiovascular disease, autoimmunity, and cancer. MIF modulates the early inflammatory response through various mechanisms, including regulation of neutrophil recruitment and fate, but the mechanisms and the role of the more recently described MIF homolog MIF-2 (D-dopachrome tautomerase; D-DT) are incompletely understood. Here, we show that both MIF and MIF-2/D-DT inhibit neutrophil apoptosis. This is not a direct effect, but involves the activation of mononuclear cells, which secrete CXCL8 and other prosurvival mediators to promote neutrophil survival. Individually, CXCL8 and MIF (or MIF-2) did not significantly inhibit neutrophil apoptosis, but in combination they elicited a synergistic response, promoting neutrophil survival even in the absence of mononuclear cells. The use of receptor-specific inhibitors provided evidence for a causal role of the noncognate MIF receptor CXCR2 expressed on both monocytes and neutrophils in MIF-mediated neutrophil survival. We suggest that the ability to inhibit neutrophil apoptosis contributes to the proinflammatory role ascribed to MIF, and propose that blocking the interaction between MIF and CXCR2 could be an important anti-inflammatory strategy in the early inflammatory response.
Collapse
Affiliation(s)
- Lisa Schindler
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Leon Zwissler
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christine Krammer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Ulrike Hendgen-Cotta
- Department of Cardiology and Angiology, University Hospital Essen, Westdeutsches Herz- und Gefäßzentrum, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Angiology, University Hospital Essen, Westdeutsches Herz- und Gefäßzentrum, Essen, Germany
| | - Mark B Hampton
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,German Center for Cardiovascular Diseases (DZHK), Munich Heart Alliance (MHA), Munich, Germany
| |
Collapse
|
33
|
Li L, Xu M, Rowan SC, Howell K, Russell-Hallinan A, Donnelly SC, McLoughlin P, Baugh JA. The effects of genetic deletion of Macrophage migration inhibitory factor on the chronically hypoxic pulmonary circulation. Pulm Circ 2021; 10:2045894020941352. [PMID: 33447370 PMCID: PMC7780187 DOI: 10.1177/2045894020941352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
While it is well established that the haemodynamic cause of hypoxic pulmonary hypertension is increased pulmonary vascular resistance, the molecular pathogenesis of the increased resistance remains incompletely understood. Macrophage migration inhibitory factor is a pleiotropic cytokine with endogenous tautomerase enzymatic activity as well as both intracellular and extracellular signalling functions. In several diseases, macrophage migration inhibitory factor has pro-inflammatory roles that are dependent upon signalling through the cell surface receptors CD74, CXCR2 and CXCR4. Macrophage migration inhibitory factor expression is increased in animal models of hypoxic pulmonary hypertension and macrophage migration inhibitory factor tautomerase inhibitors, which block some of the functions of macrophage migration inhibitory factor, and have been shown to attenuate hypoxic pulmonary hypertension in mice and monocrotaline-induced pulmonary hypertension in rats. However, because of the multiple pathways through which it acts, the integrated actions of macrophage migration inhibitory factor during the development of hypoxic pulmonary hypertension were unclear. We report here that isolated lungs from adult macrophage migration inhibitory factor knockout (MIF-/- ) mice maintained in normoxic conditions showed greater acute hypoxic vasoconstriction than the lungs of wild type mice (MIF+/+ ). Following exposure to hypoxia for three weeks, isolated lungs from MIF-/- mice had significantly higher pulmonary vascular resistance than those from MIF+/+ mice. The major mechanism underlying the greater increase in pulmonary vascular resistance in the hypoxic MIF-/- mice was reduction of the pulmonary vascular bed due to an impairment of the normal hypoxia-induced expansion of the alveolar capillary network. Taken together, these results demonstrate that macrophage migration inhibitory factor plays a central role in the development of the pulmonary vascular responses to chronic alveolar hypoxia.
Collapse
Affiliation(s)
- Lili Li
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Maojia Xu
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Simon C Rowan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Katherine Howell
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Adam Russell-Hallinan
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Portella L, Bello AM, Scala S. CXCL12 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:51-70. [PMID: 34286441 DOI: 10.1007/978-3-030-62658-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor microenvironment (TME) is the local environment of tumor, composed of tumor cells and blood vessels, extracellular matrix (ECM), immune cells, and metabolic and signaling molecules. Chemokines and their receptors play a fundamental role in the crosstalk between tumor cells and TME, regulating tumor-related angiogenesis, specific leukocyte infiltration, and activation of the immune response and directly influencing tumor cell growth, invasion, and cancer progression. The chemokine CXCL12 is a homeostatic chemokine that regulates physiological and pathological process such as inflammation, cell proliferation, and specific migration. CXCL12 activates CXCR4 and CXCR7 chemokine receptors, and the entire axis has been shown to be dysregulated in more than 20 different tumors. CXCL12 binding to CXCR4 triggers multiple signal transduction pathways that regulate intracellular calcium flux, chemotaxis, transcription, and cell survival. CXCR7 binds with high-affinity CXCL12 and with lower-affinity CXCL11, which binds also CXCR3. Although CXCR7 acts as a CXCL12 scavenger through ligand internalization and degradation, it transduces the signal mainly through β-arrestin with a pivotal role in endothelial and neural cells. Recent studies demonstrate that TME rich in CXCL12 leads to resistance to immune checkpoint inhibitors (ICI) therapy and that CXCL12 axis inhibitors sensitize resistant tumors to ICI effect. Thus targeting the CXCL12-mediated axis may control tumor and tumor microenvironment exerting an antitumor dual action. Herein CXCL12 physiology, role in cancer biology and in composite TME, prognostic role, and the relative inhibitors are addressed.
Collapse
Affiliation(s)
- Luigi Portella
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Anna Maria Bello
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy
| | - Stefania Scala
- Microenvironment Molecular Targets, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
35
|
Kontos C, El Bounkari O, Krammer C, Sinitski D, Hille K, Zan C, Yan G, Wang S, Gao Y, Brandhofer M, Megens RTA, Hoffmann A, Pauli J, Asare Y, Gerra S, Bourilhon P, Leng L, Eckstein HH, Kempf WE, Pelisek J, Gokce O, Maegdefessel L, Bucala R, Dichgans M, Weber C, Kapurniotu A, Bernhagen J. Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting. Nat Commun 2020; 11:5981. [PMID: 33239628 PMCID: PMC7689490 DOI: 10.1038/s41467-020-19764-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/28/2020] [Indexed: 11/22/2022] Open
Abstract
Targeting a specific chemokine/receptor axis in atherosclerosis remains challenging. Soluble receptor-based strategies are not established for chemokine receptors due to their discontinuous architecture. Macrophage migration-inhibitory factor (MIF) is an atypical chemokine that promotes atherosclerosis through CXC-motif chemokine receptor-4 (CXCR4). However, CXCR4/CXCL12 interactions also mediate atheroprotection. Here, we show that constrained 31-residue-peptides ('msR4Ms') designed to mimic the CXCR4-binding site to MIF, selectively bind MIF with nanomolar affinity and block MIF/CXCR4 without affecting CXCL12/CXCR4. We identify msR4M-L1, which blocks MIF- but not CXCL12-elicited CXCR4 vascular cell activities. Its potency compares well with established MIF inhibitors, whereas msR4M-L1 does not interfere with cardioprotective MIF/CD74 signaling. In vivo-administered msR4M-L1 enriches in atherosclerotic plaques, blocks arterial leukocyte adhesion, and inhibits atherosclerosis and inflammation in hyperlipidemic Apoe-/- mice in vivo. Finally, msR4M-L1 binds to MIF in plaques from human carotid-endarterectomy specimens. Together, we establish an engineered GPCR-ectodomain-based mimicry principle that differentiates between disease-exacerbating and -protective pathways and chemokine-selectively interferes with atherosclerosis.
Collapse
MESH Headings
- Aged
- Animals
- Antigens, CD/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/surgery
- Binding Sites
- Carotid Artery, Common/pathology
- Carotid Artery, Common/surgery
- Chemokine CXCL12/metabolism
- Crystallography, X-Ray
- Disease Models, Animal
- Drug Design
- Drug Evaluation, Preclinical
- Endarterectomy, Carotid
- Female
- Humans
- Intramolecular Oxidoreductases/antagonists & inhibitors
- Intramolecular Oxidoreductases/metabolism
- Macrophage Migration-Inhibitory Factors/antagonists & inhibitors
- Macrophage Migration-Inhibitory Factors/metabolism
- Male
- Mice
- Mice, Knockout, ApoE
- Middle Aged
- Peptide Fragments/pharmacology
- Peptide Fragments/therapeutic use
- Receptors, CXCR4/chemistry
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/ultrastructure
- Sialyltransferases/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Omar El Bounkari
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Christine Krammer
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Dzmitry Sinitski
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Chunfang Zan
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Guangyao Yan
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Sijia Wang
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ying Gao
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Markus Brandhofer
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 80336, Munich, Germany
| | - Adrian Hoffmann
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
- Department of Anaesthesiology, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Yaw Asare
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Simona Gerra
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Priscila Bourilhon
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Lin Leng
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Jaroslav Pelisek
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), 81675, Munich, Germany
- Department of Vascular Surgery, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Richard Bucala
- Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 80336, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- Munich Heart Alliance, 80802, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229, Maastricht, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany.
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.
- Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
36
|
Jäger B, Klatt D, Plappert L, Golpon H, Lienenklaus S, Barbosa PD, Schambach A, Prasse A. CXCR4/MIF axis amplifies tumor growth and epithelial-mesenchymal interaction in non-small cell lung cancer. Cell Signal 2020; 73:109672. [DOI: 10.1016/j.cellsig.2020.109672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
|
37
|
Bianchi ME, Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front Immunol 2020; 11:2109. [PMID: 32983169 PMCID: PMC7484992 DOI: 10.3389/fimmu.2020.02109] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCR4 receptor upon binding its ligands triggers multiple signaling pathways that orchestrate cell migration, hematopoiesis and cell homing, and retention in the bone marrow. However, CXCR4 also directly controls cell proliferation of non-hematopoietic cells. This review focuses on recent reports pointing to its pivotal role in tissue regeneration and stem cell activation, and discusses the connection to the known role of CXCR4 in promoting tumor growth. The mechanisms may be similar in all cases, since regeneration often recapitulates developmental processes, and cancer often exploits developmental pathways. Moreover, cell migration and cell proliferation appear to be downstream of the same signaling pathways. A deeper understanding of the complex signaling originating from CXCR4 is needed to exploit the opportunities to repair damaged organs safely and effectively.
Collapse
Affiliation(s)
- Marco E Bianchi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Rosanna Mezzapelle
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
38
|
Identification of a novel signaling complex containing host chemokine receptor CXCR4, Interleukin-10 receptor, and human cytomegalovirus US27. Virology 2020; 548:49-58. [PMID: 32838946 DOI: 10.1016/j.virol.2020.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Human cytomegalovirus (HCMV) is a widespread herpesvirus that establishes latency in myeloid cells and persists by manipulating immune signaling. Chemokine receptor CXCR4 and its ligand CXCL12 regulate movement of myeloid progenitors into bone marrow and out into peripheral tissues. HCMV amplifies CXCL12-CXCR4 signaling through viral chemokine receptor US27 and cmvIL-10, a viral cytokine that binds the cellular IL-10 receptor (IL-10R), but precisely how these viral proteins influence CXCR4 is unknown. We used the proximity ligation assay (PLA) to examine association of CXCR4, IL-10R, and US27 in both transfected and HCMV-infected cells. CXCR4 and IL-10R colocalized to discrete clusters, and treatment with CXCL12 and cmvIL-10 dramatically increased receptor clustering and calcium flux. US27 was associated with CXCR4 and IL-10R in PLA clusters and further enhanced cluster formation and calcium signaling. These results indicate that CXCR4, IL-10R, and US27 form a novel virus-host signaling complex that enhances CXCL12 signaling during HCMV infection.
Collapse
|
39
|
Perpiñá-Viciano C, Işbilir A, Zarca A, Caspar B, Kilpatrick LE, Hill SJ, Smit MJ, Lohse MJ, Hoffmann C. Kinetic Analysis of the Early Signaling Steps of the Human Chemokine Receptor CXCR4. Mol Pharmacol 2020; 98:72-87. [PMID: 32474443 PMCID: PMC7330677 DOI: 10.1124/mol.119.118448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/06/2020] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are biologic switches that transduce extracellular stimuli into intracellular responses in the cell. Temporally resolving GPCR transduction pathways is key to understanding how cell signaling occurs. Here, we investigate the kinetics and dynamics of the activation and early signaling steps of the CXC chemokine receptor (CXCR) 4 in response to its natural ligands CXC chemokine ligand (CXCL) 12 and macrophage migration inhibitory factor (MIF), using Förster resonance energy transfer-based approaches. We show that CXCR4 presents a multifaceted response to CXCL12, with receptor activation (≈0.6 seconds) followed by a rearrangement in the receptor/G protein complex (≈1 seconds), a slower dimer rearrangement (≈1.7 seconds), and prolonged G protein activation (≈4 seconds). In comparison, MIF distinctly modulates every step of the transduction pathway, indicating distinct activation mechanisms and reflecting the different pharmacological properties of these two ligands. Our study also indicates that CXCR4 exhibits some degree of ligand-independent activity, a relevant feature for drug development. SIGNIFICANCE STATEMENT: The CXC chemokine ligand (CXCL) 12/CXC chemokine receptor (CXCR) 4 axis represents a well-established therapeutic target for cancer treatment. We demonstrate that CXCR4 exhibits a multifaceted response that involves dynamic receptor dimer rearrangements and that is kinetically embedded between receptor-G protein complex rearrangements and G protein activation. The alternative endogenous ligand macrophage migration inhibitory factor behaves opposite to CXCL12 in each assay studied and does not lead to G protein activation. This detailed understanding of the receptor activation may aid in the development of more specific drugs against this target.
Collapse
Affiliation(s)
- Cristina Perpiñá-Viciano
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Ali Işbilir
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Aurélien Zarca
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Birgit Caspar
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Laura E Kilpatrick
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Stephen J Hill
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Martine J Smit
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Martin J Lohse
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| | - Carsten Hoffmann
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, University of Jena, Jena, Germany (C.P.-V., C.H.); Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.P.-V., A.I., M.J.L., C.H.); Max-Delbrück Center for Molecular Medicine, Berlin, Germany (A.I., M.J.L.); Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit, Amsterdam, The Netherlands (A.Z., M.J.S.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom (B.C., L.E.K., S.J.H.); and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, The Midlands, United Kingdom (B.C., L.E.K., S.J.H.)
| |
Collapse
|
40
|
Pantouris G, Khurana L, Ma A, Skeens E, Reiss K, Batista VS, Lisi GP, Lolis EJ. Regulation of MIF Enzymatic Activity by an Allosteric Site at the Central Solvent Channel. Cell Chem Biol 2020; 27:740-750.e5. [PMID: 32433911 DOI: 10.1016/j.chembiol.2020.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
In proteins with multiple functions, such as macrophage migration inhibitory factor (MIF), the study of its intramolecular dynamic network can offer a unique opportunity to understand how a single protein is able to carry out several nonoverlapping functions. A dynamic mechanism that controls the MIF-induced activation of CD74 was recently discovered. In this study, the regulation of tautomerase activity was explored. The catalytic base Pro1 is found to form dynamic communications with the same allosteric node that regulates CD74 activation. Signal transmission between the allosteric and catalytic sites take place through intramolecular aromatic interactions and a hydrogen bond network that involves residues and water molecules of the MIF solvent channel. Once thought to be a consequence of trimerization, a regulatory function for the solvent channel is now defined. These results provide mechanistic insights into the regulation of catalytic activity and the role of solvent channel water molecules in MIF catalysis.
Collapse
Affiliation(s)
- Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, CA 95211, USA.
| | - Leepakshi Khurana
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Anthony Ma
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT 06510, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06510, USA
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903, USA.
| | - Elias J Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
41
|
Gelsomino L, Giordano C, La Camera G, Sisci D, Marsico S, Campana A, Tarallo R, Rinaldi A, Fuqua S, Leggio A, Grande F, Bonofiglio D, Andò S, Barone I, Catalano S. Leptin Signaling Contributes to Aromatase Inhibitor Resistant Breast Cancer Cell Growth and Activation of Macrophages. Biomolecules 2020; 10:biom10040543. [PMID: 32260113 PMCID: PMC7226081 DOI: 10.3390/biom10040543] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity represents a risk factor for breast cancer development and therapy resistance, but the molecular players underling these links are unclear. Here, we identify a role for the obesity-cytokine leptin in sustaining aromatase inhibitor (AI) resistant growth and progression in breast cancer. Using as experimental models MCF-7 breast cancer cells surviving long-term treatment with the AI anastrozole (AnaR) and Ana-sensitive counterparts, we found that AnaR cells expressed higher levels of leptin and its receptors (ObR) along with a constitutive activation of downstream effectors. Accordingly, leptin signaling inhibition reduced only AnaR cell growth and motility, highlighting the existence of an autocrine loop in mechanisms governing drug-resistant phenotypes. In agreement with ObR overexpression, increasing doses of leptin were able to stimulate to a greater extent growth and migration in AnaR than sensitive cells. Moreover, leptin contributed to enhanced crosstalk between AnaR cells and macrophages within the tumor microenvironment. Indeed, AnaR, through leptin secretion, modulated macrophage profiles and increased macrophage motility through CXCR4 signaling, as evidenced by RNA-sequencing, real-time PCR, and immunoblotting. Reciprocally, activated macrophages increased AnaR cell growth and motility in coculture systems. In conclusion, acquired AI resistance is accompanied by the development of a leptin-driven phenotype, highlighting the potential clinical benefit of targeting this cytokine network in hormone-resistant breast cancers, especially in obese women.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Antonella Campana
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi (SA), Italy; (R.T.); (A.R.)
| | - Antonio Rinaldi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi (SA), Italy; (R.T.); (A.R.)
| | - Suzanne Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600 N1220.01 Alkek Building, Houston, TX 77030, USA;
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
- Correspondence: (I.B.); (S.C.); Tel.: +39-0984-496216 (I.B.); +39-0984-496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
- Correspondence: (I.B.); (S.C.); Tel.: +39-0984-496216 (I.B.); +39-0984-496207 (S.C.)
| |
Collapse
|
42
|
Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020; 295:850-867. [PMID: 31811089 PMCID: PMC6970916 DOI: 10.1074/jbc.ra119.009716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/17/2019] [Indexed: 01/07/2023] Open
Abstract
Human macrophage migration-inhibitory factor (MIF) is an evolutionarily-conserved protein that has both extracellular immune-modulating and intracellular cell-regulatory functions. MIF plays a role in various diseases, including inflammatory diseases, atherosclerosis, autoimmunity, and cancer. It serves as an inflammatory cytokine and chemokine, but also exhibits enzymatic activity. Secreted MIF binds to cell-surface immune receptors such as CD74 and CXCR4. Plants possess MIF orthologs but lack the associated receptors, suggesting functional diversification across kingdoms. Here, we characterized three MIF orthologs (termed MIF/d-dopachrome tautomerase-like proteins or MDLs) of the model plant Arabidopsis thaliana Recombinant Arabidopsis MDLs (AtMDLs) share similar secondary structure characteristics with human MIF, yet only have minimal residual tautomerase activity using either p-hydroxyphenylpyruvate or dopachrome methyl ester as substrate. Site-specific mutagenesis suggests that this is due to a distinct amino acid difference at the catalytic cavity-defining residue Asn-98. Surprisingly, AtMDLs bind to the human MIF receptors CD74 and CXCR4. Moreover, they activate CXCR4-dependent signaling in a receptor-specific yeast reporter system and in CXCR4-expressing human HEK293 transfectants. Notably, plant MDLs exert dose-dependent chemotactic activity toward human monocytes and T cells. A small molecule MIF inhibitor and an allosteric CXCR4 inhibitor counteract this function, revealing its specificity. Our results indicate cross-kingdom conservation of the receptor signaling and leukocyte recruitment capacities of human MIF by its plant orthologs. This may point toward a previously unrecognized interplay between plant proteins and the human innate immune system.
Collapse
Affiliation(s)
- Dzmitry Sinitski
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Katrin Gruner
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Markus Brandhofer
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Pascal Winkler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Priscila Bourilhon
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany
| | - Zhangping Xiao
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Robbert Cool
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München (TUM), 85354 Freising, Germany
| | - Frank J. Dekker
- Division of Chemical and Pharmaceutical Biology, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany, To whom correspondence may be addressed:
Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany. Tel.:
49-241-80-26655; Fax:
49-241-80-22637; E-mail:
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany, To whom correspondence may be addressed:
Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU) Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany. Tel.:
49-89-4400–46151; Fax:
49-89-4400–46010; E-mail:
| |
Collapse
|
43
|
Xu F, Li MY, Chen J. D-dopachrome tautomerase from Japanese sea bass ( Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zool Res 2020; 41:39-50. [PMID: 31709785 PMCID: PMC6956724 DOI: 10.24272/j.issn.2095-8137.2020.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
D-dopachrome tautomerase (DDT), a member of the macrophage migration inhibitory factor (MIF) protein superfamily, is a newly described cytokine with chemokine-like characteristics. However, research on fish DDT remains limited. In this study, we identified a DDT homolog (LjDDT) from the Japanese sea bass, Lateolabrax japonicus. Sequence analysis showed that LjDDT had typical sequence features of known DDT and MIF homologs and was most closely related to DDT of rock bream ( Oplegnathus fasciatus). LjDDT transcripts were detected in all tested tissues of healthy Japanese sea bass, with the highest expression found in the liver. Upon infection with Vibrio harveyi, LjDDT transcripts were significantly down-regulated in the three tested tissues, including the liver, spleen, and head kidney. Recombinant LjDDT (rLjDDT) and the corresponding antibody (anti-rLjDDT) were subsequently prepared. The administration of 100 μg/g anti-rLjDDT had a statistically significant protective effect on the survival of V. harveyi-infected fish. Moreover, rLjDDT was able to induce the migration of monocytes/macrophages (MO/MФ) and lymphocytes both in vitro and in vivo, but without significant influence on the migration of neutrophils. rLjDDT exhibited chemotactic activity for lipopolysaccharide (LPS) -stimulated M1-type MO/ MΦ in vitro, but not for cAMP-stimulated M2-type MO/MΦ. Furthermore, the knockdown of LjCD74, but not LjCXCR4, significantly down-regulated the rLjDDT-enhanced migration of MO/MΦ and relieved the rLjMIF-inhibited migration of MO/MΦ. These results indicate that LjCD74 may be the major chemotactic receptor of LjDDT and LjMIF in Japanese sea bass MO/MΦ. Combined rLjDDT+ rLjMIF treatment had no significant effect on the migration of MsiRNA, LjCD74si-, or LjCXCR4sitreated MO/MΦ compared to the control group, suggesting that the roles of LjDDT and LjMIF may be antagonistic. In conclusion, our study demonstrates for the first time that DDT may play a role in the immune responses of fish against bacterial infection through chemotactic recruitment of MO/MΦ via mediation of CD74 as an antagonist of MIF.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail: ;
| |
Collapse
|
44
|
Jalce G, Guignabert C. Multiple roles of macrophage migration inhibitory factor in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1-L9. [DOI: 10.1152/ajplung.00234.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening condition arising from the loss and obstructive remodeling of the pulmonary arteries, leading to the sustained elevation of pulmonary arterial pressure (PAP) and pulmonary vascular resistance (PVR) and subsequently right ventricular (RV) failure and death. PH encompasses a group of multifactorial diseases, such as pulmonary arterial hypertension (PAH) and chronic thromboembolic PH, for which there is no treatment that can stop or reverse the progression of remodeling of the pulmonary vasculature. The identification of new molecular targets for the development of more effective drugs is thus urgently needed. In this context, macrophage migration inhibitory factor (MIF), a pleiotropic upstream proinflammatory mediator, is emerging as a promising molecular target, as it contributes to perivascular inflammation and pulmonary arterial remodeling, two key hallmarks of PAH that are not specifically targeted by currently approved therapies. The objective of this review is to summarize the scientific evidence on the pathogenic roles of MIF and its potential as a biomarker and therapeutic target in PH/PAH.
Collapse
Affiliation(s)
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre France
| |
Collapse
|
45
|
Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
46
|
Suresh V, Sundaram R, Dash P, Sabat SC, Mohapatra D, Mohanty S, Vasudevan D, Senapati S. Macrophage migration inhibitory factor of Syrian golden hamster shares structural and functional similarity with human counterpart and promotes pancreatic cancer. Sci Rep 2019; 9:15507. [PMID: 31664114 PMCID: PMC6820718 DOI: 10.1038/s41598-019-51947-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that increasingly is being studied in cancers and inflammatory diseases. Though murine models have been instrumental in understanding the functional role of MIF in different pathological conditions, the information obtained from these models is biased towards a specific species. In experimental science, results obtained from multiple clinically relevant animal models always provide convincing data that might recapitulate in humans. Syrian golden hamster (Mesocricetus auratus), is a clinically relevant animal model for multiple human diseases. Hence, the major objectives of this study were to characterize the structure and function of Mesocricetus auratus MIF (MaMIF) and finally evaluate its effect on pancreatic tumor growth in vivo. Initially, the recombinant MaMIF was cloned, expressed and purified in a bacterial expression system. The MaMIF primary sequence, biochemical properties, and crystal structure analysis showed greater similarity with human MIF. The crystal structure of MaMIF illustrates that it forms a homotrimer as known in human and mouse. However, MaMIF exhibits some minor structural variations when compared to human and mouse MIF. The in vitro functional studies show that MaMIF has tautomerase activity and enhances activation and migration of hamster peripheral blood mononuclear cells (PBMCs). Interestingly, injection of MaMIF into HapT1 pancreatic tumor-bearing hamsters significantly enhanced the tumor growth and tumor-associated angiogenesis. Together, the current study shows a structural and functional similarity between the hamster and human MIF. Moreover, it has demonstrated that a high level of circulating MIF originating from non-tumor cells might also promote pancreatic tumor growth in vivo.
Collapse
Affiliation(s)
- Voddu Suresh
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rajivgandhi Sundaram
- Macromolecular Crystallography Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pujarini Dash
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Surendra Chandra Sabat
- Molecular Biology of Abiotic Stress Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Debasish Mohapatra
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sneha Mohanty
- Department of Microbiology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Dileep Vasudevan
- Macromolecular Crystallography Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
47
|
Michelet C, Danchin EGJ, Jaouannet M, Bernhagen J, Panstruga R, Kogel KH, Keller H, Coustau C. Cross-Kingdom Analysis of Diversity, Evolutionary History, and Site Selection within the Eukaryotic Macrophage Migration Inhibitory Factor Superfamily. Genes (Basel) 2019; 10:genes10100740. [PMID: 31554205 PMCID: PMC6826473 DOI: 10.3390/genes10100740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/21/2022] Open
Abstract
Macrophage migration inhibitory factors (MIF) are multifunctional proteins regulating major processes in mammals, including activation of innate immune responses. MIF proteins also play a role in innate immunity of invertebrate organisms or serve as virulence factors in parasitic organisms, raising the question of their evolutionary history. We performed a broad survey of MIF presence or absence and evolutionary relationships across 803 species of plants, fungi, protists, and animals, and explored a potential relation with the taxonomic status, the ecology, and the lifestyle of individual species. We show that MIF evolutionary history in eukaryotes is complex, involving probable ancestral duplications, multiple gene losses and recent clade-specific re-duplications. Intriguingly, MIFs seem to be essential and highly conserved with many sites under purifying selection in some kingdoms (e.g., plants), while in other kingdoms they appear more dispensable (e.g., in fungi) or present in several diverged variants (e.g., insects, nematodes), suggesting potential neofunctionalizations within the protein superfamily.
Collapse
Affiliation(s)
- Claire Michelet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Maelle Jaouannet
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), D-81377 Munich, Germany.
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056 Aachen, Germany.
| | - Karl-Heinz Kogel
- Department of Phytopathology, Center of BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University (JLU), D-35392 Giessen, Germany.
| | - Harald Keller
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| | - Christine Coustau
- Institut Sophia Agrobiotech, Université Côte d'Azur, INRA, CNRS, 400 Route des Chappes, F-06903 Sophia Antipolis, France.
| |
Collapse
|
48
|
Ullah TR. The role of CXCR4 in multiple myeloma: Cells' journey from bone marrow to beyond. J Bone Oncol 2019; 17:100253. [PMID: 31372333 PMCID: PMC6658931 DOI: 10.1016/j.jbo.2019.100253] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
CXCR4 is a pleiotropic chemokine receptor which acts through its ligand CXCL12 to regulate diverse physiological processes. CXCR4/CXCL12 axis plays a pivotal role in proliferation, invasion, dissemination and drug resistance in multiple myeloma (MM). Apart from its role in homing, CXCR4 also affects MM cell mobilization and egression out of the bone marrow (BM) which is correlated with distant organ metastasis. Aberrant CXCR4 expression pattern is associated with osteoclastogenesis and tumor growth in MM through its cross talk with various important cell signalling pathways. A deeper insight into understanding of CXCR4 mediated signalling pathways and its role in MM is essential to identify potential therapeutic interventions. The current therapeutic focus is on disrupting the interaction of MM cells with its protective tumor microenvironment where CXCR4 axis plays an essential role. There are still multiple challenges that need to be overcome to target CXCR4 axis more efficiently and to identify novel combination therapies with existing strategies. This review highlights the role of CXCR4 along with its significant interacting partners as a mediator of MM pathogenesis and summarizes the targeted therapies carried out so far.
Collapse
Key Words
- AMC, Angiogenic monomuclear cells
- BM, Bone marrow
- BMSC, Bone marrow stromal cells
- CAM-DR, Cell adhesion‐mediated drug resistance
- CCR–CC, Chemokine receptor
- CCX–CKR, Chemo Centryx–chemokine receptor
- CD4, Cluster of differentiation 4
- CL—CC, Chemokine ligand
- CNS, Central nervous system
- CSCs, Cancer stem cells
- CTAP-III, Connective tissue-activating peptide-III
- CXCL, CXC chemokine ligand
- CXCR, CXC chemokine receptor
- EGF, Epidermal growth factor
- EMD, Extramedullary disease
- EPC, Endothelial progenitor cells
- EPI, Endogenous peptide inhibitor
- ERK, Extracellular signal related kinase
- FGF, Fibroblast growth factor
- G-CSF, Granulocyte colony-stimulating factor
- GPCRs, G protein-coupled chemokine receptors
- HCC, Hepatocellular carcinoma
- HD, Hodgkin's disease
- HGF, Hepatocyte growth factor
- HIF1α, Hypoxia-inducible factor-1 alpha
- HIV, Human Immunodeficiency Virus
- HMGB1, High Mobility Group Box 1
- HPV, Human papillomavirus
- HSC, Hematopoietic stem cells
- IGF, Insulin-like growth factor
- JAK/STAT, Janus Kinase signal transducer and activator of transcription
- JAM-A, Junctional adhesion molecule-A
- JNK, Jun N-terminal kinase
- MAPK, Mitogen Activated Protein Kinase
- MIF, Macrophage migration inhibitory factor
- MM, Multiple myeloma
- MMP, Matrix metalloproteinases
- MRD, Minimal residual disease
- NHL, Non-Hodgkin's lymphoma
- OCL, Octeoclast
- OPG, Osteoprotegerin
- PI3K, phosphoinositide-3 kinase
- PKA, protein kinase A
- PKC, Protein kinase C
- PLC, Phospholipase C
- Pim, Proviral Integrations of Moloney virus
- RANKL, Receptor activator of nuclear factor kappa-Β ligand
- RRMM, Relapsed/refractory multiple myeloma
- SFM-DR, Soluble factor mediated drug resistance
- VEGF, Vascular endothelial growth factor
- VHL, Von Hippel-Lindau
- WHIM, Warts, Hypogammaglobulinemia, Infections, and Myelokathexis
- WM, Waldenström macroglobulinemia
Collapse
|
49
|
Jankauskas SS, Wong DW, Bucala R, Djudjaj S, Boor P. Evolving complexity of MIF signaling. Cell Signal 2019; 57:76-88. [DOI: 10.1016/j.cellsig.2019.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/27/2023]
|
50
|
CXCR4 signaling regulates metastatic onset by controlling neutrophil motility and response to malignant cells. Sci Rep 2019; 9:2399. [PMID: 30787324 PMCID: PMC6382824 DOI: 10.1038/s41598-019-38643-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/18/2018] [Indexed: 01/24/2023] Open
Abstract
Developing tumors interact with the surrounding microenvironment. Myeloid cells exert both anti- and pro-tumor functions and chemokines are known to drive immune cell migration towards cancer cells. It is documented that CXCR4 signaling supports tumor metastasis formation in tissues where CXCL12, its cognate ligand, is abundant. On the other hand, the role of the neutrophilic CXCR4 signaling in driving cancer invasion and metastasis formation is poorly understood. Here, we use the zebrafish xenotransplantation model to study the role of CXCR4 signaling in driving the interaction between invasive human tumor cells and host neutrophils, supporting early metastasis formation. We found that zebrafish cxcr4 (cxcr4b) is highly expressed in neutrophils and experimental micrometastases fail to form in mutant larvae lacking a functional Cxcr4b. We demonstrated that Cxcr4b controls neutrophil number and motility and showed that Cxcr4b transcriptomic signature relates to motility and adhesion regulation in neutrophils in tumor-naïve larvae. Finally, Cxcr4b deficient neutrophils failed to interact with cancer cells initiating early metastatic events. In conclusion, we propose that CXCR4 signaling supports the interaction between tumor cells and host neutrophils in developing tumor metastases. Therefore, targeting CXCR4 on tumor cells and neutrophils could serve as a double bladed razor to limit cancer progression.
Collapse
|